Algorithms for the Satisfiability Problem

John Franco and Sean Weaver

Contents

Introduction 312
2 Logic 313
3 Representations and Structures 319
$3.1(0 \pm 1)$ Matrix 319
3.2 Binary Decision Diagrams 320
3.3 Implication Graph 321
3.4 Propositional Connection Graph 322
3.5 Variable-Clause Matching Graph 322
3.6 Formula Digraph 322
3.7 Satisfiability Index 324
3.8 And/Inverter Graphs 324
4 Applications 324
4.1 Consistency Analysis in Scenario Projects 325
4.2 Testing of VLSI Circuits 328
4.3 Diagnosis of Circuit Faults 330
4.4 Functional Verification of Hardware Design 332
4.5 Bounded Model Checking 336
4.6 Combinational Equivalence Checking 338
4.7 Transformations to Satisfiability 340
4.8 Boolean Data Mining 343
5 General Algorithms 345
5.1 Efficient Transformation to CNF Formulas 345
5.2 Resolution 351
5.3 Extended Resolution 355
5.4 Davis-Putnam Resolution 355
5.5 Davis-Putnam Loveland Logemann Resolution 356
5.6 Conflict-Driven Clause Learning 360
5.7 Satisfiability Modulo Theories 364
5.8 Stochastic Local Search. 371
J. Franco (\triangle)
School of Electronic and Computing Systems, University of Cincinnati, Cincinnati, OH, USA
S. WeaverU.S. Department of Defense, Ft. George G. Meade, MD, USA
5.9 Binary Decision Diagrams 375
5.10 Decompositions. 388
5.11 Branch and Bound 395
5.12 Algebraic Methods 397
6 Algorithms for Easy Classes of CNF Formulas 404
6.1 2-SAT 405
6.2 Horn Formulas 407
6.3 Renamable Horn Formulas 408
6.4 Linear Programming Relaxations 409
6.5 q-Horn Formulas. 412
6.6 Matched Formulas 414
6.7 Generalized Matched Formulas 415
6.8 Nested and Extended Nested Satisfiability 415
6.9 Linear Autark Formulas. 421
6.10 Minimally Unsatisfiable Formulas 425
6.11 Bounded Resolvent Length Resolution 432
6.12 Comparison of Classes 434
6.13 Probabilistic Comparison of Incomparable Classes 436
7 The k-SAT Problem. 439
8 Other Topics 443
9 Conclusion 443
Glossary 443
Cross-References 447
Recommended Reading 447

Abstract

This chapter discusses advances in SAT algorithm design, including the use of SAT algorithms as theory drivers, classic implementations of SAT solvers, and some theoretical aspects of SAT. Some applications to which SAT solvers have been successfully applied are also presented. The intention is to assist someone interested in applying SAT technology in solving some stubborn class of combinatorial problems.

1 Introduction

The satisfiability problem (SAT) has gained considerable attention over the past decade for two reasons. First, the performance of competitive SAT solvers has improved enormously due to the implementation of new algorithmic concepts. Second, so many real-world problems that are not naturally expressed as instances of SAT can be transformed to SAT instances and solved relatively efficiently using one of the ever-improving SAT solvers or solvers based on SAT. This chapter attempts to clarify these successes by presenting the important advances in SAT algorithm design as well as the classic implementations of SAT solvers. Some applications to which SAT solvers have been successfully applied are also presented. Finally, for the sake of developing some intuition on the subject, some classic theoretical results are presented.

The next section of the chapter presents some logic background and notation that will be necessary to understand and express the algorithms presented. The third
section presents several representations for SAT instances in preparation for discussing the wide variety of SAT solver implementations that have been tried. The fourth section presents some applications of SAT. The next two sections present algorithms for SAT, including search and heuristic algorithms plus systems that use SAT to manage the logic of complex computations. The seventh section presents some theoretical results regarding k-SAT instances and relates these with the performance of practical SAT solvers. The last section summarizes the results of the chapter.

2 Logic

An instance of satisfiability is a propositional logic expression in conjunctive normal form (CNF), the meaning of which is described in the next few paragraphs. The most elementary object comprising a CNF expression is the Boolean variable, shortened to variable in the context of this chapter. A variable takes one of two values from the set $\{0,1\}$. A variable v may be negated in which case it is denoted $\neg v$. The value of $\neg v$ is opposite that of v. A literal is either a variable or a negated variable. The term positive literal is used to refer to a variable and the term negative literal is used to refer to a negated variable. The polarity of a literal is positive or negative accordingly.

The building blocks of propositional expressions are binary Boolean operators. A binary Boolean operator is a function $\mathcal{O}_{b}:\{0,1\} \times\{0,1\} \mapsto\{0,1\}$. Often, such functions are presented in tabular form, called truth tables, as illustrated in Fig. 10. There are 16 possible binary operators and the most common (and useful) are \vee (or), \wedge (and), \rightarrow (implies), \leftrightarrow (equivalent), and \oplus (xor, alternatively exclusive-or). Mappings defining the common operators are shown in Fig. 1. The only interesting unary Boolean operator, denoted \neg (negation), is a mapping from 0 to 1 and 1 to 0 . If $\neg l$ is a literal, then $\neg \neg l$ is the same as l.

A formula is a propositional expression consisting of literals, parentheses, and operators which has some semantic content and whose syntax is described recursively as follows:

1. Any single variable is a formula.
2. If ψ is a formula, then so is $\neg \psi$.
3. If ψ_{1} and ψ_{2} are both formulas and \mathcal{O} is a Boolean binary operator, then ($\psi_{1} \mathcal{O} \psi_{2}$) is a formula, ψ_{1} is called the left operand of \mathcal{O}, and ψ_{2} is called the right operand of \mathcal{O}.
Formulas can be simplified by removing some or all parentheses. Parentheses around nestings involving the same associative operators such as \vee, \wedge, and \leftrightarrow may be removed. For example, $\left(\psi_{1} \vee\left(\psi_{2} \vee \psi_{3}\right)\right),\left(\left(\psi_{1} \vee \psi_{2}\right) \vee \psi_{3}\right)$, and $\left(\psi_{1} \vee \psi_{2} \vee \psi_{3}\right)$ are considered to be the same formula. In the case of non-associative operators such as \rightarrow, parentheses may be removed, but right associativity is then assumed. The following is an example of a simplified formula:

$$
\left(\neg v_{0} \vee v_{1} \vee \neg v_{7}\right) \wedge\left(\neg v_{2} \vee v_{3}\right) \wedge\left(v_{0} \vee \neg v_{6} \vee \neg v_{7}\right) \wedge\left(\neg v_{4} \vee v_{5} \vee v_{9}\right),
$$

Fig. 1 A (0 ± 1) matrix representation and associated CNF formula where clauses are labeled $c_{0}, c_{1}, \ldots, c_{7}$, from left to right, top to bottom

$$
\begin{gathered}
c_{0}^{v_{0}} \begin{array}{c}
v_{1} \\
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
c_{7}
\end{array}\left(\begin{array}{rrrrrrrrrr}
-1 & v_{3} & v_{4} & v_{5} & v_{6} & v_{7} & v_{8} & v_{9} \\
-1 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
-1 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right) \\
\left(\left(\neg v_{0} \vee v_{1} \vee \neg v_{7}\right) \wedge\left(\neg v_{1} \vee v_{2}\right) \wedge\left(\neg v_{2} \vee v_{3}\right) \wedge\left(\neg v_{0} \vee \neg v_{3} \vee v_{8}\right) \wedge\right. \\
\left.\left(v_{0} \vee \neg v_{6} \vee \neg v_{7}\right) \wedge\left(\neg v_{5} \vee v_{6}\right) \wedge\left(\neg v_{4} \vee v_{5} \vee v_{9}\right) \wedge\left(v_{0} \vee v_{4}\right)\right)
\end{gathered}
$$

Operator	Symbol	Mapping
Or	\vee	$\{00 \mapsto 0 ; 10,01,11 \mapsto 1\}$
And	\wedge	$\{00,01,10 \mapsto 0 ; 11 \mapsto 1\}$
Implies	\rightarrow	$\{10 \mapsto 0 ; 00,01,11 \mapsto 1\}$
Equivalent	\leftrightarrow	$\{01,10 \mapsto 0 ; 00,11 \mapsto 1\}$
XOR	\oplus	$\{00,11 \mapsto 0 ; 01,10 \mapsto 1\}$

A useful parameter associated with a formula is depth. The depth of a formula is determined as follows:

1. The depth of a formula consisting of a single variable is 0 .
2. The depth of a formula $\neg \psi$ is the depth of ψ plus 1 .
3. The depth of a formula $\left(\psi_{1} \mathcal{O} \psi_{2}\right)$ is the maximum of the depth of ψ_{1} and the depth of ψ_{2} plus 1 .
A truth assignment or assignment is a set of variables all of whom have value 1. If M is an assignment and V is a set of variables, then, if $v \in V$ and $v \notin M, v$ has value 0 . Any assignment of values to the variables of a formula induces a value on the formula. A formula is evaluated from innermost \neg or parentheses out using mappings associated with the Boolean operators that are found in Table 1.

Many algorithms that will be considered later iteratively build assignments, and it will be necessary to distinguish variables that have been assigned a value from those that have not been. In such cases, a variable will be allowed to hold a third value, denoted \perp, which means the variable is unassigned. This requires that the evaluation of operations be augmented to account for \perp as shown in Table 2. If M is an assignment of values to a set of variables where at least one variable has value \perp, then M is said to be a partial assignment.

Formulas that are dealt with in this chapter often have many components of the same type which are called clauses. Two common special types of clauses are disjunctive and conjunctive clauses. A disjunctive clause is a formula consisting only of literals and the operator \vee. If all the literals of a clause are negative (positive), then the clause is called a negative clause (respectively, positive clause).

Table 2 Boolean operator mappings with \perp. Symbol? means 1 or 0

Operator	Symbol	Mapping
Or	\vee	$\{00 \mapsto 0 ; 10,01,11,1 \perp, \perp 1 \mapsto 1 ; 0 \perp, \perp 0, \perp \perp \mapsto \perp\}$
And	\wedge	$\{00,01,10 \mapsto 0 ; 11 \mapsto 1 ; ? \perp, \perp ?, \perp \perp \mapsto \perp\}$
Implies	\rightarrow	$\{10 \mapsto 0 ; 00,01,11,0 \perp \mapsto 1 ; 1 \perp, \perp ? \mapsto \perp\}$
Equivalent	\leftrightarrow	$\{01,10 \mapsto 0 ; 00,11 \mapsto 1 ; ? \perp, \perp ?, \perp \perp \mapsto \perp\}$
XOR	\oplus	$\{00,11 \mapsto 0 ; 01,10 \mapsto 1 ; ? \perp, \perp ?, \perp \perp \mapsto \perp\}$
Negate	\neg	$\{0 \mapsto 1 ; 1 \mapsto 0, \perp \mapsto \perp\}$

In this chapter disjunctive clauses will usually be represented as sets of literals. When it is understood that an object is a disjunctive clause, it will be referred to simply as a clause. The following two lines show the same formula of four clauses expressed, above, in conventional logic notation and, below, as a set of sets of literals:

$$
\begin{gathered}
\left(\neg v_{0} \vee v_{1} \vee \neg v_{7}\right) \wedge\left(\neg v_{2} \vee v_{3}\right) \wedge\left(v_{0} \vee \neg v_{6} \vee \neg v_{7}\right) \wedge\left(\neg v_{4} \vee v_{5} \vee v_{9}\right) \\
\left\{\left\{\neg v_{0}, v_{1}, \neg v_{7}\right\},\left\{\neg v_{2}, v_{3}\right\},\left\{v_{0}, \neg v_{6}, \neg v_{7}\right\},\left\{\neg v_{4}, v_{5}, v_{9}\right\}\right\} .
\end{gathered}
$$

A conjunctive clause is a formula consisting only of literals and the operator \wedge. A conjunctive clause will also usually be represented as a set of literals and called a clause when it is unambiguous to do so. The number of literals in any clause is referred to as the width of the clause.

Often, formulas are expressed in some normal form. Four of the most frequently arising forms are defined as follows:

A CNF formula is a formula consisting of a conjunction of two or more disjunctive clauses.

Given CNF formula ψ and L_{ψ}, the set of all literals in ψ, a literal l is said to be a pure literal in ψ if $l \in L_{\psi}$ but $\neg l \notin L_{\psi}$. A clause $c \in \psi$ is said to be a unit clause if c has exactly one literal.

A $k-C N F$ formula, k fixed, is a CNF formula restricted so that the width of each clause is exactly k.

A Horn formula is a CNF formula with the restriction that all clauses contain at most one positive literal. Observe that a clause ($\neg a \vee \neg b \vee \neg c \vee g$) is functionally the same as ($a \wedge b \wedge c \rightarrow g$), so Horn formulas are closely related to logic programming. In fact, logic programming was originally the study of Horn formulas.

A DNF formula is a formula consisting of a disjunction of two or more conjunctive clauses.

When discussing a CNF or DNF formula ψ, V_{ψ} is used to denote its variable set and C_{ψ} is used to denote its clause set. The subscripts are dropped when the context is clear.

As mentioned earlier, evaluation of a formula is from innermost parentheses out using the truth tables for each operator encountered and a given truth assignment. If the formula evaluates to 1 , then the assignment is called a satisfying assignment, model, or a solution.

There are 2^{n} ways to assign values to n Boolean variables. Any subset of those assignments is a Boolean function on n variables. Thus, the number of such functions is $2^{2^{n}}$. Any Boolean function f on n variables can be expressed as a CNF formula ψ where the set of assignments for which f has value 1 is identical to the set of assignments satisfying ψ [129]. However, k-CNF formulas express only a proper subset of Boolean functions: for example, since a width k clause eliminates the fraction 2^{-k} of potential models, any Boolean function comprising more than $2^{n}\left(1-2^{-k}\right)$ assignments cannot be represented by a k-CNF formula. Similarly, all Boolean functions can be expressed by DNF formulas but not by k-DNF formulas [129].

The partial evaluation of a given formula ψ is possible when a subset of its variables are assigned values. A partial evaluation usually results in the replacement of ψ by a new formula which expresses exactly those assignments satisfying ψ under the given partial assignment. Write $\left.\psi\right|_{v=1}$ to denote the formula resulting from the partial evaluation of ψ due to assigning value 1 to variable v. An obvious similar statement is used to express the partial evaluation of ψ when v is assigned value 0 or when some subset of variables is assigned values. For example,

$$
\left.\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{1} \vee v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right)\right|_{v_{1}=1}=\left(v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right)
$$

since $\left(v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right)$ expresses all solutions to $\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{1} \vee v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right)$ given v_{1} has value 1 .

If an assignment M is such that all the literals of a disjunctive (conjunctive) clause have value 0 (respectively, 1) under M, then the clause is said to be falsified (respectively, satisfied) by M. If M is such that at least one literal of a disjunctive (conjunctive) clause has value 1 (respectively, 0) under M, then the clause is said to be satisfied (respectively, falsified) by M. If a clause evaluates to \perp, then it is neither satisfied nor falsified.

A formula ψ is satisfiable if there exists at least one assignment under which ψ has value 1. In particular, a CNF formula is satisfiable if there exists a truth assignment to its variables which satisfies all its clauses. Otherwise, the formula is unsatisfiable. Every nonempty DNF formula is satisfiable, but a DNF formula that is satisfied by every truth assignment to its variables is called a tautology. The negation of a DNF tautology is an unsatisfiable CNF formula.

Several assignments may satisfy a given formula. Any satisfying assignment containing the smallest number of variables of value 1 among all satisfying assignments is called a minimal model with respect to 1 . Thus, consistent with our definition of model as a set of variables of value 1 , a minimal model is a set of variables of least cardinality. The usual semantics for Horn formula logic programming is the minimal model semantics: the only model considered is the (unique) minimal one. ${ }^{1}$

[^0]If a CNF formula is unsatisfiable but removal of any clause makes it satisfiable, then the formula is said to be minimally unsatisfiable. Minimally unsatisfiable formulas play an important role in understanding the difference between easy and hard formulas.

This section ends with a discussion of formula equivalence. Three types of equivalence are defined along with symbols that are used to represent them as follows:

1. Equality of formulas $\left(\psi_{1}=\psi_{2}\right)$: two formulas are equal if they are the same string of symbols. Also "=" is used for equality of Boolean values, for example, $v=1$.
2. Logical equivalence ($\psi_{1} \Leftrightarrow \psi_{2}$): two formulas ψ_{1} and ψ_{2} are said to be logically equivalent if, for every assignment M to the variables of ψ_{1} and ψ_{2}, M satisfies ψ_{1} if and only if M satisfies ψ_{2}. For example, in the following expression, the two leftmost clauses on each side of " \Leftrightarrow " force v_{1} and v_{3} to have the same value so ($v_{2} \vee v_{3}$) may be substituted for ($v_{1} \vee v_{2}$). Therefore, the expression on the left of " \Leftrightarrow " is logically equivalent to the expression on the right.

$$
\left(\neg v_{1} \vee v_{3}\right) \wedge\left(v_{1} \vee \neg v_{3}\right) \wedge\left(v_{1} \wedge v_{2}\right) \Leftrightarrow\left(\neg v_{1} \vee v_{3}\right) \wedge\left(v_{1} \vee \neg v_{3}\right) \wedge\left(v_{2} \wedge v_{3}\right) .
$$

Another example is

$$
\left.\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{1} \vee v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right)\right|_{v_{1}=1} \Leftrightarrow\left(v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right) .
$$

In the second example, assigning $v_{1}=1$ has the effect of eliminating the leftmost clause and the literal $\neg v_{1}$. After doing so, equivalence is clearly established.

It is important to point out the difference between $\psi_{1} \Leftrightarrow \psi_{2}$ and $\psi_{1} \leftrightarrow \psi_{2}$. The former is an assertion that ψ_{1} and ψ_{2} are logically equivalent. The latter is just a formula of formal logic upon which one can ask whether there exists a satisfying assignment. The symbol " \Leftrightarrow " may not be included in a formula, and it makes no sense to ask whether a given assignment satisfies $\psi_{1} \Leftrightarrow \psi_{2}$. It is easy to show that $\psi_{1} \Leftrightarrow \psi_{2}$ if and only if $\psi_{1} \leftrightarrow \psi_{2}$ is a tautology (i.e., it is satisfied by every assignment to the variables of ψ_{1} and ψ_{2}).

Similarly, define ψ_{1} logically implies $\psi_{2}\left(\psi_{1} \Rightarrow \psi_{2}\right)$: for every assignment M to the variables in ψ_{1} and ψ_{2}, if M satisfies ψ_{1}, then M also satisfies ψ_{2}. Thus, $\psi_{1} \Leftrightarrow \psi_{2}$ if and only if $\psi_{1} \Rightarrow \psi_{2}$ and $\psi_{2} \Rightarrow \psi_{1}$. Also, $\psi_{1} \Rightarrow \psi_{2}$ if and only if $\psi_{1} \rightarrow \psi_{2}$ is a tautology.
3. Functional equivalence ($\psi_{1} \leftrightharpoons_{V} \psi_{2}$): two formulas ψ_{1} and ψ_{2}, with variable sets $V_{\psi_{1}}$ and $V_{\psi_{2}}$, respectively, are said to be functionally equivalent with respect to variable base set $V \subseteq V_{\psi_{1}} \cap V_{\psi_{2}}$ if, for every assignment M_{V} to just the variables of V, either:
a. There is an assignment M_{1} to $V_{\psi_{1}} \backslash V$ and an assignment M_{2} to $V_{\psi_{2}} \backslash V$ such that $M_{V} \cup M_{1}$ satisfies ψ_{1} and $M_{V} \cup M_{2}$ satisfies ψ_{2} or
b. There is no assignment to $V_{\psi_{1}} \cup V_{\psi_{2}}$ which contains M_{V} as a subset and satisfies either ψ_{1} or ψ_{2}.
The assignments $M_{V} \cup M_{1}$ and $M_{V} \cup M_{2}$ are called extensions to the assignment M_{V}.

The notation $\psi_{1} \leftrightharpoons V \psi_{2}$ is used to represent the functional equivalence of formulas ψ_{1} and ψ_{2} with respect to base set V. The notation $\psi_{1} \leftrightharpoons \psi_{2}$ is used if $V=V_{\psi_{1}} \cap V_{\psi_{2}}$. In this case logical equivalence and functional equivalence are the same.

For example, $(\neg a) \wedge(a \vee b) \leftrightharpoons_{\{a\}}(\neg a) \wedge(a \vee c)$ because $\exists b:(\neg a) \wedge(a \vee b)$ if and only if $\exists c:(\neg a) \wedge(a \vee c)$. But $(\neg a) \wedge(a \vee b) \neq(\neg a) \wedge(a \vee c)$ since $a=0, b=1, c=0$ satisfies $(\neg a) \wedge(a \vee b)$ but falsifies $(\neg a) \wedge(a \vee c)$.

Functional equivalence is useful when transforming a formula to a more useful formula. For example, consider the Tseitin transformation [139] (Sect.5.3) which extends resolution: for CNF formula ψ containing variables from set V_{ψ}, any pair of variables $x, y \in V_{\psi}$, and variable $z \notin V_{\psi}$,

$$
\psi \leftrightharpoons v_{\psi} \psi \wedge(z \vee x) \wedge(z \vee y) \wedge(\neg z \vee \neg x \vee \neg y)
$$

The term functional equivalence is somewhat of a misnomer. For any set V of variables, \leftrightharpoons_{V} is an equivalence relation but \leftrightharpoons is not transitive: for example, $a \vee c \leftrightharpoons a \vee b$ and $a \vee b \leftrightharpoons a \vee \neg c$ but $a \vee c \nLeftarrow a \vee \neg c$.
The foundational problem considered in this chapter is the satisfiability problem, commonly called SAT. It is stated as follows:

Satisfiability (SAT)

Given: A Boolean formula ψ.
Question: Determine whether ψ is satisfied by some truth assignment to the variables of ψ.
For the class of CNF, even 3-CNF, formulas, SAT is $\mathcal{N} \mathcal{P}$-hard. However, for the class of CNF formulas of maximum width 2, SAT can be solved in linear time using Algorithm 19 of Sect. 6.1. For the class of Horn formulas, SAT can be solved in linear time using Algorithm 20 of Sect. 6.2. If ψ is a CNF formula such that reversing the polarity of some subset of its variables results in a Horn formula, then ψ is renamable Horn. Satisfiability of a renamable Horn formula can be determined in linear time by Algorithm 21 of Sect. 6.4.

The problem of determining the satisfiability of $k-\mathrm{CNF}$ formulas is referred to as k-SAT. In that context, input formulas are said to be instances of k-SAT or k-SAT formulas.

A second problem of interest is a generalization of the common problem of determining a minimal model for a given formula. The question of minimal models is considered in Sect. 6.2.

Variable-Weighted Satisfiability

Given: A CNF formula ψ and a function $w: V \mapsto Z^{+}$where $w(v)$ is the weight of variable v.
Question: Determine whether ψ is satisfied by some truth assignment and, if so, determine the assignment M such that

$$
\sum_{v \in M} w(v) \text { is minimized. }
$$

A third problem of interest is the fundamental optimization version of SAT. This problem is probably more important in terms of practical use than even SAT.
Maximum Satisfiability (MAX-SAT)
Given: A CNF formula ψ.
Question: Determine the assignment M that satisfies the maximum number of clauses in ψ.
The following is an important variant of MAX-SAT:
Weighted Maximum Satisfiability (Weighted MAX-SAT)
Given: A CNF formula ψ and a function $w: C_{\psi} \mapsto Z^{+}$where $w(c)$ is the weight of clause $c \in C_{\psi}$.
Question: Determine the assignment M such that

$$
\sum_{c \in \psi} w(c) \cdot s_{M}(c) \text { is maximized, }
$$

where $s_{M}(c)$ is 1 if clause c is satisfied by M and is 0 otherwise.

3 Representations and Structures

Algorithmic concepts are usually easier to specify and understand if a formula or a particular part of a formula is suitably represented. Many representations are possible for Boolean formulas, particularly when expressed as CNF or DNF formulas. As mentioned earlier, CNF and DNF formulas will often be represented as sets of clauses and clauses as sets of literals. In this section additional representations are presented; these will later be used to express algorithms and explain algorithmic behavior. Some of these representations involve only a part of a given formula.

$3.1 \quad(0 \pm 1)$ Matrix

A CNF formula of m clauses and n variables may be represented as an $m \times n(0 \pm 1)$ matrix \mathcal{M} where the rows are indexed on the clauses, the columns are indexed on the variables, and a cell $\mathcal{M}(i, j)$ has the value +1 if clause i contains variable j as a positive literal, the value -1 if clause i contains variable j as a negative literal, and the value 0 if clause i does not contain variable j as a positive or negative literal. Figure 1 shows an example of a CNF formula and its (0 ± 1) matrix representation.

It is well known that the question of satisfiability of a given CNF formula ψ can be cast as an integer program as follows:

$$
\begin{align*}
\mathcal{M}_{\psi} \boldsymbol{\alpha}+\boldsymbol{b} & \geq \boldsymbol{Z}, \tag{1}\\
\alpha_{i} & \in\{0,1\}, \text { for all } 0 \leq i<n,
\end{align*}
$$

where \mathcal{M}_{ψ} is the (0 ± 1) matrix representation of ψ, \boldsymbol{b} is an integer vector with b_{i} equal to the number of -1 entries in row i of \mathcal{M}_{ψ}, and Z is a vector of 1 s. A solution to this system of inequalities certifies ψ is satisfiable. In this case a model can be obtained directly from $\boldsymbol{\alpha}$ as α_{i} is the value of variable v_{i}. If there is no solution to the system, then ψ is unsatisfiable.

In addition to the well-known matrix operations, two matrix operations that are relevant to SAT algorithms on (0 ± 1) matrix representations are applied in this chapter. The first is column scaling: a column may be multiplied or scaled by -1 which has the effect of reversing the polarity of a single variable. Every solution before scaling corresponds to a solution after scaling; the difference is that the values of variables associated with scaled columns are reversed. The second is row and column reordering: rows and columns may be permuted with the effect on a solution being only a possible relabeling of variables taking value 1 .

3.2 Binary Decision Diagrams

Binary decision diagrams $[6,103]$ are a general, graphical representation for arbitrary Boolean functions. Various forms have been put into use, especially for solving VLSI design and verification problems. A canonical form [27,28] has been shown to be quite useful for representing some particular, commonly occurring, Boolean functions. An important advantage of BDDs is that the complexity of binary and unary operations such as existential quantification, logical or, and logical and, among others, is efficient with respect to the size of the BDD operands. Typically, a given formula ψ is represented as a large collection of BDDs and operations such as those stated above are applied repeatedly to create a single BDD which expresses the models, if any, of ψ. Intermediate BDDs are created in the process. Unfortunately, the size of intermediate BDDs may become extraordinarily and impractically large even if the final BDD is small. So in some applications BDDs are useful and in some they are not.

A binary decision diagram (BDD) is a rooted, directed acyclic graph. A BDD is used to compactly represent the truth table, and therefore complete functional description, of a Boolean function. Vertices of a BDD are called terminal if they have no outgoing edges and are called internal otherwise. There is one internal vertex, called the root, which has no incoming edge. There is at least one terminal vertex, labeled 1 , and at most two terminal vertices, labeled 0 and 1 . Internal vertices are labeled to represent the variables of the corresponding Boolean function. An internal vertex has exactly two outgoing edges, labeled 1 and 0 . The vertices incident to edges outgoing from vertex v are called then (v) and else(v), respectively. Associated with any internal vertex v is an attribute called index(v) which satisfies the properties index $(v)<\min \{\operatorname{index}(\operatorname{then}(v))$, index(else(v))\} and index(v) $=\operatorname{index}(w)$ if and only if vertices v and w have the same labeling (i.e., correspond to the same variable). Thus, the index attribute imposes a linear ordering on the variables of a BDD. An example of a formula and one of its BDD representations is given in Fig.2.

Fig. 2 The formula $\left(v_{1} \vee \neg v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2}\right) \wedge\left(\neg v_{1} \vee \neg v_{2} \vee v_{3}\right)$ represented as a BDD. The topmost vertex is the root. The two bottom vertices are terminal vertices. Edges are directed from upper vertices to lower vertices. Vertex labels (variable names) are shown inside the vertices. The 0 branch out of a vertex labeled v means v takes the value 0 . The 1 branch out of a vertex labeled v means v takes the value 1 . The index of a vertex is, in this case, the subscript of the variable labeling that vertex

Clearly, there is no unique BDD for a given formula. In fact, for the same formula, one BDD might be extraordinarily large and another might be rather compact. It is usually advantageous to use the smallest BDD possible. At least one canonical form of BDD, called reduced ordered $B D D$, does this [27, 28]. The idea is to order the variables of a formula and construct a BDD such that (1) variables contained in a path from the root to any leaf respect that ordering and (2) each vertex is the root of a BDD that represents a Boolean function that is unique with respect to all other vertices. Two Boolean functions are equivalent if their reduced ordered BDDs are isomorphic. A more detailed explanation is given in Sect. 5.9.

3.3 Implication Graph

An implication graph of a CNF formula ψ is a directed graph $\vec{G}_{\psi}(V, \vec{E})$ where V consists of one special vertex T which corresponds to the value 1 , other vertices which correspond to the literals of ψ, and the edge set \vec{E} such that there is an edge $\left\langle v_{i}, v_{j}\right\rangle \in \vec{E}$ if and only if there is a clause $\left(\neg v_{i} \vee v_{j}\right)$ in ψ and an edge $\left\langle T, v_{i}\right\rangle \in \vec{E}$ $\left(\left\langle T, \neg v_{i}\right\rangle \in \vec{E}\right)$ if and only if there is a unit clause $\left(v_{i}\right)$ (respectively, $\left.\left(\neg v_{i}\right)\right)$ in ψ. Figure 3 shows an example of an implication graph for a particular 2-CNF formula.

Implication graphs are most useful for, but not restricted to, 2-CNF formulas. In this role the meaning of an edge $\left\langle v_{i}, v_{j}\right\rangle$ is as follows: if variable v_{i} is assigned the value 1 then variable v_{j} is inferred to have value 1 , or else the clause $\left(\neg v_{i} \vee v_{j}\right)$ will be falsified.

Fig. 3 An implication graph and associated 2-CNF formula

$$
\begin{gathered}
\left(\left(v_{0}\right) \wedge\left(\neg v_{0} \vee \neg v_{2}\right) \wedge\left(v_{1} \vee v_{2}\right) \wedge\left(\neg v_{1} \vee \neg v_{3}\right) \wedge\right. \\
\left.\left(\neg v_{1} \vee v_{3}\right) \wedge\left(v_{1} \vee v_{3}\right) \wedge\left(v_{0} \vee \neg v_{3}\right)\right)
\end{gathered}
$$

3.4 Propositional Connection Graph

A propositional connection graph for a CNF formula ψ is an undirected graph $G_{\psi}(V, E)$ whose vertex set corresponds to the clauses of ψ and whose edge set is such that there is an edge $\left\{c_{i}, c_{j}\right\} \in E$ if and only if the clause in ψ represented by vertex c_{i} has a literal that appears negated in the clause represented by vertex c_{j}, and there is no other literal in c_{i} 's clause that appears negated in c_{j} 's clause. An example of a connection graph for a particular CNF formula is given in Fig. 4. Propositional connection graphs are a specialization of the first-order connection graphs developed by Kowalski [102].

3.5 Variable-Clause Matching Graph

A variable-clause matching graph for a CNF formula is an undirected bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ where V_{1} vertices correspond to clauses and V_{2} vertices correspond to variables and whose edge set contains an edge $\left\{v_{i}, v_{j}\right\}$ if and only if $v_{i} \in V_{1}$ corresponds to a variable that exists, either as positive or negative literal, in clause $v_{j} \in V_{2}$. An example of a variable-clause matching graph is shown in Fig. 5.

3.6 Formula Digraph

Formulas are defined recursively on Page 313. Any Boolean formula can be adapted to fit this definition with the suitable addition of parentheses, and its structure

Fig. 4 A propositional connection graph and associated CNF formula

Fig. 5 A variable-clause matching graph and associated CNF formula

Fig. 6 A formula digraph and associated formula

$\left(\left(\neg v_{0} \vee v_{1} \vee \neg v_{7}\right) \wedge\left(\neg v_{1} \vee v_{2}\right) \wedge\left(\neg v_{2} \vee v_{3}\right) \wedge\left(\neg v_{0} \vee \neg v_{3} \vee v_{8}\right) \wedge\right.$

$$
\left.\left(v_{0} \vee \neg v_{6} \vee \neg v_{7}\right) \wedge\left(\neg v_{5} \vee v_{6}\right) \wedge\left(\neg v_{4} \vee v_{5} \vee v_{9}\right) \wedge\left(v_{0} \vee v_{4}\right)\right)
$$

$$
\left(\left(v_{0} \vee \neg v_{2} \vee v_{3}\right) \wedge\left(v_{1} \vee \neg v_{2} \vee \neg v_{4}\right) \wedge\left(\neg v_{0} \vee \neg v_{2} \vee v_{4}\right)\right)
$$

$v_{0} \leftrightarrow\left(\left(\neg v_{0} \leftrightarrow\left(v_{1} \vee \neg v_{2}\right)\right) \wedge\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{2} \rightarrow \neg v_{3} \rightarrow v_{4}\right)\right)$
(as opposed to its functionality) can be represented by a binary rooted acyclic digraph. In such a digraph, each internal vertex corresponds to a binary operator or a unary operator \neg that occurs in the formula. A vertex corresponding to a binary operator has two outward-oriented edges: the left edge corresponds to the left subformula and the right edge to the right subformula operated on. A vertex corresponding to \neg has one outward directed edge. The root represents the operator applied at top level. The leaves are variables. Call such a representation a wff digraph. An example is given in Fig. 6. An efficient algorithm for constructing a wff digraph is given in Sect. 5.1.

3.7 Satisfiability Index

Let ψ be a CNF formula and let \mathcal{M}_{ψ} be its (0 ± 1) matrix representation. Let $\boldsymbol{\alpha}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)$ be an n-dimensional vector of real variables. Let z be a real variable and let $\boldsymbol{Z}=(z, z, \ldots, z)$ be an m dimensional vector where every component is the variable z. Finally, let $\boldsymbol{b}=\left(b_{0}, b_{1}, \ldots, b_{m-1}\right)$ be an m dimensional vector such that for all $0 \leq i<m, b_{i}$ is the number of negative literals in clause c_{i}. Form the system of inequalities

$$
\begin{align*}
& \mathcal{M}_{\psi} \boldsymbol{\alpha}+\boldsymbol{b} \leq \boldsymbol{Z}, \tag{2}\\
& 0 \leq \alpha_{i} \leq 1 \text { for all } 0 \leq i<n .
\end{align*}
$$

The satisfiability index of ψ is the minimum z for which no constraints of the system are violated. For example, the CNF formula

$$
\left(\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{2} \vee \neg v_{3} \vee v_{5}\right) \wedge\left(v_{3} \vee \neg v_{4} \vee \neg v_{5}\right) \wedge\left(v_{4} \vee \neg v_{1}\right)\right)
$$

has satisfiability index of 5/4.

3.8 And/Inverter Graphs

An AIG is a directed acyclic graph where all gate vertices have in-degree 2, all input vertices have in-degree 0 , all output vertices have in-degree 1 , and edges are labeled as either negated or not negated. Any combinational circuit can be equivalently implemented as a circuit involving only 2 -input and gates and not gates. Such a circuit has an AIG representation: gate vertices correspond directly to the and gates, negated edges correspond directly to the not gates, and inputs and outputs represent themselves directly. Negated edges are typically labeled by overlaying a white circle on the edge: this distinguishes them from non-negated edges which are unlabeled. Examples are shown in Fig. 7.

4 Applications

This section presents a sample of real-world problems that may be viewed as, or transformed to, instances of SAT. Of primary interest is to explore the thinking process required for setting up logic problems and gauging the complexity of the resulting systems. Since it is infeasible to meet this objective and thoroughly discuss a large number of known applications, a small but varied and interesting collection of problems are discussed.

Fig. 7 Examples of AIGs. Edges with white circles are negated. Edges without a white circle are not negated. (a) and gate. (b) or gate. (c) xor gate. (d) 1-bit add circuit of Fig. 9

4.1 Consistency Analysis in Scenario Projects

This application, taken from the area of scenario management [8,54, 63], is contributed by Feldmann and Sensen [57] of Burkhard Monien's old PC^{2} group at Universität Paderborn, Germany. A scenario consists of (i) a progression of events from a known base situation to a possible terminal future situation and (ii) a means to evaluate its likelihood. Scenarios are used by managers and politicians to strategically plan the use of resources needed for solutions to environmental, social, economic, and other such problems.

A systematic approach to scenario management due to Gausemeier, Fink, and Schlake [62] involves the realization of scenario projects with the following properties:

1. There is a set S of key factors. Let the number of key factors be n.
2. For each key factor $s_{i} \in S$, there is a set $D_{i}=\left\{d_{i .1}, d_{i .2}, \ldots d_{i . m_{i}}\right\}$ of m_{i} possible future developments. In the language of databases, key factors are attributes and future developments are attribute values.
3. For all $1 \leq i \leq n, 1 \leq k \leq m_{i}$, denote by $\left(s_{i}, d_{i, k}\right)$ a feasible projection of development $d_{i, k} \in D_{i}$ from key factor s_{i}. For each pair of projections $\left(s_{i}, d_{i . k}\right),\left(s_{j}, d_{j . l}\right)$, a consistency value, usually an integer ranging from 0 to 4 , is defined. A consistency value of 0 typically means two projections are completely inconsistent, a value of 4 typically means the two projections support each other strongly, and the other values account for intermediate levels of support.

Consistency values may be organized in a $\sum_{i=1}^{n} m_{i} \times \sum_{i=1}^{n} m_{i}$ matrix with rows and columns indexed on projections.
4. Projections for all key factors may be bundled into a vector $x=\left(x_{s_{1}}, \ldots, x_{s_{n}}\right)$ where $x_{s_{i}}$ is a future development of key factor $s_{i}, i=1,2, \ldots, n$. In the language of databases, a bundle is a tuple which describes an assignment of values to each attribute.
5. The consistency of bundle x is the sum of the consistency values of all pairs $\left(s_{i}, x_{s_{i}}\right),\left(s_{j}, x_{s_{j}}\right)$ of projections represented by x if no pair has consistency value of 0 , and is 0 otherwise.
Bundles with greatest (positive) consistency are determined and clustered. Each cluster is a scenario.

To illustrate, consider a simplified example from [57] which is intended to develop likely scenarios for the German school system over the next 20 years. It was felt by experts that 20 key factors are needed for such forecasts; to keep the example small, only the first 10 are shown. The first five key factors and their associated future developments are as follows: [s_{1}] continuing education ($\left[d_{1.1}\right]$ lifelong learning), $\left[s_{2}\right]$ importance of education ([$\left.d_{2.1}\right]$ important, $\left[d_{2.2}\right]$ unimportant), $\left[s_{3}\right]$ methods of learning ($\left[d_{3.1}\right]$ distance learning, $\left[d_{3.2}\right]$ classroom learning), $\left[s_{4}\right]$ organization and policies of universities ($\left[d_{4.1}\right]$ enrollment selectivity, [$\left.d_{4.2}\right]$ semester schedules), and [$\left.s_{5}\right]$ adequacy of trained people ($\left[d_{5.1}\right]$ sufficiently many, [$d_{5.2}$] not enough).

The table in Fig. 8, called a consistency matrix, shows the consistency values for all possible pairs of future developments. The s_{i}, s_{j} cell of the matrix shows the consistency values of pairs $\left\{\left(s_{i}, d_{i . x}\right),\left(s_{j}, d_{j . y}\right): 1 \leq x \leq m_{i}, 1 \leq y \leq m_{j}\right\}$, with all pairs which include ($s_{i}, d_{i . x}$) on the x th row of the cell. For example, $\left|D_{5}\right|=2$ and $\left|D_{2}\right|=2$, so there are 4 numbers in cell s_{5}, s_{2} and the consistency value of $\left(s_{5}, d_{5.2}\right),\left(s_{2}, d_{2.2}\right)$ is the bottom right number of that cell. That number is 0 because experts have decided the combination of there being too few trained people $\left(d_{5.2}\right)$ at the same time education is considered unimportant $\left(d_{2.2}\right)$ is unlikely.

It is relatively easy to compute the consistency of a given bundle from this table. One possible bundle of future developments is $\left\{\left(s_{i}, d_{i .1}\right): 1 \leq i \leq 10\right\}$. Since the consistency value of $\left\{\left(s_{5}, d_{5.1}\right),\left(s_{2}, d_{2.1}\right)\right\}$ is 0 , this bundle is inconsistent. Another possible bundle is

$$
\begin{aligned}
& \left\{\left(s_{1}, d_{1.1}\right),\left(s_{2}, d_{2.1}\right),\left(s_{3}, d_{3.1}\right),\left(s_{4}, d_{4.1}\right),\left(s_{5}, d_{5.2}\right),\right. \\
& \left.\left(s_{6}, d_{6.3}\right),\left(s_{7}, d_{7.1}\right),\left(s_{8}, d_{8.2}\right),\left(s_{9}, d_{9.1}\right),\left(s_{10}, d_{10.2}\right)\right\} .
\end{aligned}
$$

Its consistency value is 120 (the sum of the 45 relevant consistency values from the table).

Finding good scenarios from a given consistency matrix requires efficient answers to the following questions:

1. Does a consistent bundle exist?
2. How many consistent bundles exist?
3. What is the bundle having the greatest consistency?

s_{2}	4 1								
S3	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \end{aligned}$							
S_{4}	$\begin{aligned} & 3 \\ & 3 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 13 \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \end{aligned}$						
S_{5}	2 3	$\begin{array}{r} 04 \\ 40 \\ \hline \end{array}$	$\begin{aligned} & 04 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 23 \\ & 23 \\ & \hline \end{aligned}$					
	2	23	32	23	13				
s_{6}	2	23	23	32	21				
	3	23	23	23	23				
	3	40	30	23	04	303			
S7	1	04	03	23	40	132			
	2	23	42	23	03	234	40		
S_{8}	2	23	31	23	04	232	23		
	2	23	02	23	32	231	04		
	3	23	23	23	13	232	40	421	
S9	3	23	23	23	14	232	41	321	
	3	30	04	23	40	232	23	123	12
S 10	2	23	40	23	04	232	32	232	23
	2	23	20	23	23	232	23	323	23
	S_{1}	S_{2}	S3	S_{4}	S_{5}	S_{6}	S_{7}	S_{8}	S9

Fig. 8 A consistency matrix for a scenario project

Table 3 Formula to determine existence of a consistent bundle

Clause of $\psi^{S, \mathcal{D}}$	Subscript range	Meaning
$\left(\neg v_{i, j} \vee \neg v_{i, k}\right)$	$1 \leq i \leq n, 1 \leq j<k \leq m_{i}$	≤ 1 development/key factor
$\left(v_{i, 1} \vee \ldots \vee v_{i, m_{i}}\right)$	$1 \leq i \leq n$	≥ 1 development/key factor
$\left(\neg v_{i, k} \vee \neg v_{j, l}\right)$	$i, j, k, l: C_{i . k, j . l}=0$	Consistent developments only

Finding answers to these questions is $\mathcal{N} \mathcal{P}$-hard [57]. But transforming to CNF formulas, in some cases with weights on proposition letters, and solving a variant of SAT are sometimes reasonable ways to tackle such problems. This context provides the opportunity to use our vast knowledge of SAT structures and analysis to apply an algorithm that has a reasonable chance of solving the consistency problems efficiently. It is next shown how to construct representative formulas so that, often, a large subset of clauses is polynomial-time solvable and the whole formula is relatively easy to solve.

Consider, first, the question whether a consistent bundle exists for a given consistency matrix of n key factors with m_{i} projections for factor $i, 1 \leq i \leq n$. Let $C_{i . k, j . l}$ denote the consistency of the pair $\left(s_{i}, d_{i . k}\right)\left(s_{j}, d_{j . l}\right)$ and let $\mathcal{D}=\cup_{i=1}^{n} D_{i}$. For each future development $d_{i . j}$, define variable $v_{i, j}$ which is intended to take the value 1 if and only if $d_{i, j}$ is a future development for key attribute s_{i}. The CNF formula $\psi^{S, \mathcal{D}}$ with the clauses described in Table 3 then says that there is a consistent bundle. That is, the formula is satisfiable if and only if there is a consistent bundle.

The second question to be considered is how many consistent bundles exist for a given consistency matrix? This is the same as asking how many satisfying truth assignments there are for $\psi^{S, \mathcal{D}}$. A simple inclusion-exclusion algorithm exhibits very good performance for some actual problems of this sort [57].

The third question is which bundle has the greatest consistency value? This question can be transformed to an instance of the variable-weighted satisfiability problem (defined on Page 318). The transformed formula consists of $\psi^{S, \mathcal{D}}$ plus some additional clauses as follows. For each pair $\left(s_{i}, d_{i . k}\right)\left(s_{j}, d_{j . l}\right), i \neq j$, of projections such that $C_{i, k, j, l}>0$, create a new Boolean variable $p_{i, k, j, l}$ of weight $C_{i, k, j, l}$ and add the following subexpression to $\psi^{S, \mathcal{D}}$:

$$
\left(\neg v_{i, k} \vee \neg v_{j, l} \vee p_{i, k, j, l}\right) \wedge\left(v_{i, k} \vee \neg p_{i, k, j, l}\right) \wedge\left(v_{j, l} \vee \neg p_{i, k, j, l}\right) .
$$

Observe that a satisfying assignment requires $p_{i, j, k, l}$ to have value 1 if and only if $v_{i, k}$ and $v_{j, l}$ both have value 1 , that is, if and only if the consistency value of $\left\{\left(s_{i}, d_{i . k}\right),\left(s_{j}, d_{j, l}\right)\right\}$ is included in the calculation of the consistency value of the bundle.

If weight 0 is assigned to all variables other than the $p_{i, k, j, l}$'s, a maximum weight solution specifies a maximum consistency bundle. It should be pointed out that, although the number of clauses added to $\psi^{S, \mathcal{D}}$ might be significant compared to the number of clauses originally in $\psi^{S, \mathcal{D}}$, the total number of clauses will be linearly related to the size of the consistency matrix. Moreover, the set of additional clauses is a Horn subformula. ${ }^{2}$ A maximum weight solution can be found by means of a branch-and-bound algorithm such as that discussed in Sect. 5.11.

4.2 Testing of VLSI Circuits

A classic application is the design of test vectors for VLSI circuits. At the specification level, a combinational VLSI circuit is regarded to be a function mapping $n 0-1$ inputs to $m 0-1$ outputs. ${ }^{3}$ At the design level, the interconnection of numerous $0-1$ logic gates are required to implement the function. Each connection entails an actual interconnect point that can fail during or soon after manufacture. Failure of an interconnect point usually causes the point to become stuck-at value 0 or 1 .

Traditionally, VLSI circuit testing includes testing all interconnect points for stuck-at faults. This task is difficult because interconnect points are encased in plastic and are therefore inaccessible directly. The solution is to apply an input pattern to the circuit which excites the point under test and sensitizes a path through the circuit from the test point to some output so that the correct value at the test point can be determined at the output.

[^1]

Fig. 9 A 1-bit full adder circuit

a	b	c
0	0	0
0	1	1
1	0	1
1	1	0

a	b	c
0	0	0
0	1	1
1	0	1
1	1	1

a	b	c
0	0	0
0	1	0
1	0	0
1	1	1

Fig. 10 Truth tables for logic elements of a 1-bit full adder

The following example illustrates how such an input pattern and output is found for one internal point of a l-bit full adder: an elementary but ubiquitous functional hardware block that is depicted in Fig. 9. For the sake of discussion, assume a given circuit will have at most one stuck-at failure. The 1-bit full adder uses logic gates that behave according to the truth tables in Fig. 10 where a and b are gate inputs and c is a gate output. Suppose none of the interconnect points enclosed by the dashed line of Fig. 9 are directly accessible, and suppose it is desired to develop a test pattern to determine whether point w is stuck at 0 . Then inputs must be set to give point w the value 1 . This is accomplished by means of the Boolean expression $\psi_{1}=(A \wedge B)$. The value of point w can only be observed at output Y. But this requires point v be set to 0 . This can be accomplished if either the value of C is 0 or u is 0 , and u is 0 if and only if A and B have the same value. Therefore, the Boolean expression representing sensitization of a path from w to Y is $\psi_{2}=$ $(\neg C \vee(A \wedge B) \vee(\neg A \wedge \neg B))$. The conjunction $\psi_{1} \wedge \psi_{2}$ is the CNF expression $(A \wedge B)$. This expression is satisfied if and only if A and B are set to 1 . Such an
input will cause output Y to have value 1 if w is not stuck at 0 and value 0 if w is stuck at 0 , assuming no other interconnect point is stuck at some value.

Test patterns must be generated for all internal interconnect points of a VLSI circuit. There could be millions of these and the corresponding expressions could be considerably more complex than that of the example above. Moreover, testing is complicated by the fact that most circuits are not combinational: that is, they contain feedback loops. This last case is mitigated by adding circuitry for testing purposes only. The magnitude of the testing problem, although seemingly daunting, is not great enough to cause major concern at this time because it seems that SAT problems arising in this domain are usually easy. Thus, at the moment, the VLSI testing problem is considered to be under control. However, this may change in the near future since the number of internal points in a dense circuit is expected to continue to increase dramatically.

4.3 Diagnosis of Circuit Faults

A natural extension of the test design discussed in Sect. 4.2 is finding a way to automate the diagnosis of, say, bad chips, starting with descriptions of their bad outputs. How can one reason backwards to identify likely causes of the malfunction? Also, given knowledge that some components are more likely to fail than others, how can the diagnosis system be tailored to suggest the most likely causes first? The first of these questions is discussed in this section.

The first step is to write the Boolean expression representing both the normal and abnormal behavior of the analyzed circuit. This is illustrated using the circuit of Fig. 9. The expression is assembled in stages, one for each gate, starting with gate 3 of Fig. 9, which is an and gate. The behavior of a correctly functioning and gate is specified in the right-hand truth table in Fig. 10. The following formula expresses the truth table:

$$
(a \wedge b \wedge c) \vee(\neg a \wedge \neg b \wedge c) \vee(\neg a \wedge b \wedge \neg c) \vee(\neg a \wedge \neg b \wedge \neg c)
$$

If gate 3 is possibly stuck at 0 , its functionality can be described by adding variable $A b_{3}$ (for gate 3 is abnormal) and substituting A, B, and w for a, b, and c, to get the following abnormality expression:

$$
\begin{aligned}
& \left(A \wedge B \wedge w \wedge \neg A b_{3}\right) \vee\left(\neg A \wedge \neg B \wedge w \wedge \neg A b_{3}\right) \vee \\
& \left(\neg A \wedge B \wedge \neg w \wedge \neg A b_{3}\right) \vee\left(\neg A \wedge \neg B \wedge \neg w \wedge \neg A b_{3}\right) \vee\left(\neg w \wedge A b_{3}\right)
\end{aligned}
$$

which has value 1 if and only if gate 3 is functioning normally for inputs A and B or it is functioning abnormally and w is stuck at 0 . The extra variable may be regarded as a switch which allows toggling between abnormal and normal states for gate 3 . Similarly, switches $A b_{1}, A b_{2}, A b_{4}$, and $A b_{5}$ may be added for all the other gates in

Table 4 Possible stuck-at-0 failures of 1-bit adder gates (see Fig. 9) assuming given inputs are $A=0$ and $B, C=1$ and observed outputs are $X, Y=0$. This is the list of assignments to Δ which satisfy the abnormality predicates for the 1 -bit adder. A " 1 " in the column for $A b_{i}$ means gate i is stuck at 0

IDs	$A b_{1}$	$A b_{2}$	$A b_{3}$	$A b_{4}$	$A b_{5}$
$1-16$	$*$	$*$	$*$	$*$	1
$17-24$	$*$	1	$*$	$*$	0
$25-26$	1	0	$*$	1	0

The symbol "*" means either " 0 " or " 1 "
the circuit, and corresponding expressions may be constructed using those switches. Then the set

$$
\Delta=\left\{A b_{1}, A b_{2}, A b_{3}, A b_{4}, A b_{5}\right\}
$$

represents all possible explanations for stuck-at- 0 malfunctions. The list of assignments to the variables of Δ which satisfy the collection of abnormality expressions, given particular inputs and observations, determines all possible combinations of stuck-at-0 failures in the circuit. The next task is to choose the most likely failure combination from the list. This requires some assumptions which are motivated by the following examples.

Suppose that, during some test, inputs are set to $A=0$ and $B, C=1$ and the observed output values are $Y=0$ and $X=1$ whereas $Y=1$ and $X=0$ are the correct outputs. One can reason backwards to try to determine which gates are stuck at 0 . Gate 4 cannot be stuck at 0 since its output is 1 . Suppose gate 4 is working correctly. Since the only gate that gate 4 depends on is gate 1 , that gate must be stuck. One cannot tell whether gates 2,3 , and 5 are functioning; normally it would be assumed that they are functioning correctly until evidence to the contrary is obtained. Thus, the natural diagnosis is gate 1 is defective (only $A b_{1}$ has value 1).

Alternatively, suppose under the same inputs it is observed that $X, Y=0$. Possibly, gates 5 and 4 are malfunctioning. If so, all other combinations of gate outputs will lead to the same observable outputs. If gate 5 is defective but gate 4 is good, then $u=1$ so gate 1 is good, and any possible combinations of w and v lead to the same observable outputs. If gate 5 is good and gate 4 is defective, the bad Y value may be caused by a defective gate 2 . In that case gates 1 and 3 conditions do not affect the observed outputs. But if gate 2 is not defective, the culprit must be gate 1 . If gates 4 and 5 are good, then $u=1$ so gate 2 is defective. Nothing can be determined about the condition of gate 3 through this test. The results of this paragraph lead to 26 abnormal Δ values that witness the observed outputs: these are summarized in Table 4, grouped into three cases. In the first two of these cases, the minimum number of gates stuck at 0 is 1 .

As before, it is assumed that the set of malfunctioning gates is as small as possible, so only those two diagnoses are considered: that is, either (i) gate 5 or (ii) gate 2 is defective. In general, it is argued, common sense leads us to consider
only minimal sets of abnormalities: sets, like gate 2 above, where no proper subset is consistent with the observations. This is Reiter's principle of parsimony [117]:

A diagnosis is a conjecture that some minimal set of components are faulty.
This sort of inference is called non-monotonic because it is inferred, above, that gate 3 was functioning correctly, since there is no evidence it was not. Later evidence may cause that inference to be withdrawn.

Yet a further feature of non-monotonic logic may be figured into such systems; the following illustrates the idea. Suppose it is known that one component, say, gate 5 , is the least likely to fail. Then, if there are any diagnoses in which gate 5 does not fail, it will report only such diagnoses. If gate 5 fails in all diagnoses, then it will report all the diagnoses. Essentially, this reflects a kind of preference relationship among diagnoses.

There is now software which automates this diagnosis process (e.g., [66]). Although worst-case performance of such systems is provably bad, such a system can be useful in many circumstances. Unfortunately, implementations of non-monotonic inference are new enough that there is not yet a sufficiently large body of standard benchmark examples.

4.4 Functional Verification of Hardware Design

Proving correctness of the design of a given block of hardware has become a major concern due to the complexity of present day hardware systems and the economics of product delivery time. Prototyping is no longer feasible since it takes too much time and fabrication costs are high. Breadboarding no longer gives reliable results because of the electrical differences between integrated circuits and discrete components. Simulation-based methodologies are generally fast but do not completely validate a design since there are many cases left unconsidered. Formal verification methods can give better results, where applicable, since they will catch design errors that may go undetected by a simulation.

Formal verification methods are used to check correctness by detecting errors in translation between abstract levels of the design hierarchy. Design hierarchies are used because it is impractical to design a VLSI circuit involving millions of components at the substrate, or lowest, level of abstraction. Instead, it is more reasonable to design at the specification or highest level of abstraction and use software tools to translate the design, through some intermediate stages such as the logic-gate level, to the substrate level. The functionality between a pair of levels may be compared. In this case, the more abstract level of the pair is said to be the specification and the other level is the implementation level of the pair. If functionality is equivalent between all adjacent pairs of levels, the design is said to be verified.

Determining functional equivalence (defined on Page 317) between levels amounts to proving a theorem of the form implementation I realizes specification S in a particular, suitable formal proof system. For illustration purposes only, consider the 1 -bit full adder of Fig. 9. Inputs A and B represent a particular bit position of
two different binary addends. Input C is the carry due to the addition at the next lower valued bit position. Output X is the value of the same bit position of the sum and output Y is the carry to the next higher valued bit position. The output X must have value 1 if and only if all inputs have value 1 or exactly one input has value 1. The output Y has value 1 if and only if at least two out of three inputs have value 1. Therefore, the following simple Boolean expression offers a reasonable specification of any 1-bit full adder:
$(X \Leftrightarrow(A \wedge \neg B \wedge \neg C) \vee(\neg A \wedge B \wedge \neg C) \vee(\neg A \wedge \neg B \wedge C) \vee(A \wedge B \wedge C)) \wedge$
$(Y \Leftrightarrow(A \wedge B) \vee(A \wedge C) \vee(B \wedge C))$.
A proposed implementation of this specification is given in the dotted region of Fig. 9. Its behavior may be described by a Boolean expression that equates each gate output to the corresponding logical function applied to its inputs. The following is such an expression:

$$
\begin{aligned}
& (u \Leftrightarrow(A \wedge \neg B) \vee(\neg A \wedge B)) \wedge \\
& (v \Leftrightarrow u \wedge C) \wedge \\
& (w \Leftrightarrow A \wedge B) \wedge \\
& (X \Leftrightarrow(u \wedge \neg C) \vee(\neg u \wedge C)) \wedge \\
& (Y \Leftrightarrow w \vee v) .
\end{aligned}
$$

Designate these formulas $\psi_{S}(A, B, C, X, Y)$ and $\psi_{I}(A, B, C, X, Y, u, v, w)$, respectively. The adder correctly implements the specification if, for all possible inputs $A, B, C \in\{0,1\}$, the output of the adder matches the specified output. For any individual inputs, A, B, C, that entails checking whether $\psi_{I}(A, B, C, X, Y, u, v, w)$ has value 1 for the appropriate u, v, w,

$$
\psi_{S}(A, B, C, X, Y) \Leftrightarrow \exists u, v, w \psi_{I}(A, B, C, X, Y, u, v, w),
$$

where the quantification $\exists u, v, w$ is over Boolean values u, v, w. For specific A, B, C, the problem is a satisfiability problem: can values for u, v, w which make the formula have value 1 be found? (Of course, it is an easy satisfiability problem in this case.) Thus, the question of whether the adder correctly implements the specification for all 32 possible input sequences is answered using the formula:

$$
\forall A, B, C, X, Y\left(\psi_{S}(A, B, C, X, Y) \Leftrightarrow \exists u, v, w \psi_{I}(A, B, C, X, Y, u, v, w)\right),
$$

which has a second level of Boolean quantification. Such formulas are called quantified Boolean formulas.

The example of the 1-bit full adder shows how combinational circuits can be verified. A characteristic of combinational circuits is that output behavior is strictly a function of the current values of inputs and does not depend on past history.

Table 5 The operators of temporal logic

Op. name	$\left(S, s_{i}\right) \models$	If and only if
	$\mathrm{p}(\mathrm{p}$ a variable $)$	$s_{i}(p)=1$
Not	$\neg \psi_{1}$	$\left(S, s_{i}\right) \not \models \psi_{1}$
And	$\psi_{1} \wedge \psi_{2}$	$\left(S, s_{i}\right) \models \psi_{1}$ and $\left(S, s_{i}\right) \models \psi_{2}$
Or	$\psi_{1} \vee \psi_{2}$	$\left(S, s_{i}\right) \models \psi_{1}$ or $\left(S, s_{i}\right) \models \psi_{2}$
Henceforth	$\square \psi_{1}$	$\left(S, s_{j}\right) \models \psi_{1}$ for all states $s_{j}, j \geq i$
Eventually	$\diamond \psi_{1}$	$\left(S, s_{j}\right) \models \psi_{1}$ for some state $s_{j}, j \geq i$
Next	$\circ \psi_{1}$	$\left(S, s_{i+1}\right) \models \psi_{1}$
		For some $j \geq i$,
Until	$\psi_{1} \mathcal{U} \psi_{2}$	$\left(S, s_{i}\right),\left(S, s_{i+1}\right), \ldots,\left(S, s_{j-1}\right) \models \psi_{1}$,
		and $\left(S, s_{j}\right) \models \psi_{2}$

However, circuits frequently contain components, such as registers, which exhibit some form of time dependency. Such effects may be modeled by some form of propositional temporal logic.

Systems of temporal logic have been applied successfully to the verification of some sequential circuits including microprocessors. One may think of a sequential circuit as possessing one of a finite number of valid states at any one time. The current state of such a circuit embodies the complete electrical signal history of the circuit beginning with some distinguished initial state. A change in the electrical properties of a sequential circuit at a particular moment in time is represented as a fully deterministic movement from one state to another based on the current state and a change in some subset of input values only. Such a change in state is accompanied by a change in output values.

A description of several temporal logics can be found in [149]. For illustrative purposes, one of these is discussed below, namely, the linear time temporal logic (LTTL). LTTL formulas take value 1 with respect to an infinite sequence of states $S=\left\{s_{0}, s_{1}, s_{2}, \ldots\right\}$. States of S obey the following: state s_{0} is a legal initial state of the system, state s_{i} is a legal state of the system at time step i, and every pair s_{i}, s_{i+1} must be a legal pair of states. Legal pairs of states are forced by some of the components of the formula itself (the latch example at the end of this section illustrates this). Each state is just an interpretation of an assignment of values to a set of Boolean variables.

LTTL is an extension of the propositional calculus that adds one binary and three unary temporal operators which are described below and whose semantics are outlined in Table 5 along with the standard propositional operators \neg, \wedge, and \vee (the definition of (S, s_{i}) \models is given below). The syntax of LTTL formulas is the same as for propositional logic except for the additional operators.

Let ψ be a LTTL expression that includes a component representing satisfaction of some desired property in a given circuit. An example of a property for a potential JK flip-flop might be that it is eventually possible to have a value of 1 for output Q while input J has value 1 which has a corresponding formula $\diamond(J \wedge Q)$. The event that ψ has value 1 for state s_{i} in S is denoted by

Fig. 11 A set-reset latch and complete description of signal behavior. Inputs are s and r, output is q. The horizontal axis represents time. The vertical axis represents signal value for both inputs and output. Values of all signals are assumed to be either 0 (low) or 1 (high) at any particular time. Two rows for q values are used to differentiate between the cases where the initial value of q is 0 or 1

$$
\left(S, s_{i}\right) \models \psi .
$$

Also, say

$$
S \models \psi \text { if and only if }\left(S, s_{0}\right) \models \psi \text {. }
$$

Finally, two LTTL formulas ψ_{1} and ψ_{2} are equivalent if, for all sequences S,

$$
S \models \psi_{1} \text { if and only if } S \models \psi_{2} \text {. }
$$

Our example concerns a hardware device of two inputs and one output called a set-reset latch. The electrical behavior of such a device is depicted in Fig. 11 as a set of six waveforms which show the value of the output q in terms of the history of the values of inputs r and s. For example, consider waveform (a) in the Fig. 11. This shows the value of the output q, as a function of time, if initially q, r, and s have value 0 and then s is pulsed or raised to value 1 then some time later dropped to value 0 . The waveform shows the value of q rises to 1 some time after s does and stays at value 1 after the value of s drops. The waveform (a) also shows that if q has value 1 and r and s have value 0 and then r is pulsed, the value of q drops to 0 . Observe the two cases where (i) r and s have value 1 at the same moment and (ii) q changes value after s or r pulses are not allowed. The six waveforms are enough to specify the behavior of the latch because the device is simple enough that only recent history matters.

The specification of this behavior is given by the LTTL formula of Table 6. Observe that the first three expressions of Table 6 represent assumptions needed for the latch to work correctly and do not necessarily reflect requirements that can

Table 6 Temporal logic formula for a set-reset latch

Expressions	Comments
$\square \neg(s \wedge r)$	No two inputs have value 1 simultaneously
$\square((s \wedge \neg q) \rightarrow((s \mathcal{U} q) \vee \square s))$	Input s cannot change if s is 1 and q is 0
$\square((r \wedge q) \rightarrow((r \mathcal{U} \neg q) \vee \square r))$	Input r cannot change if r is 1 and q is 1
$\square(s \rightarrow \diamond q)$	If s is $1, q$ will eventually be 1
$\square(r \rightarrow \diamond \neg q)$	If r is $1, q$ will eventually be 0
$\square((\neg q \rightarrow((\neg q \mathcal{U} s) \vee \square \neg q)))$	Output q rises to 1 only if s becomes 1
$\square((q \rightarrow((q \mathcal{U} r) \vee \square q)))$	Output q drops to 0 only if r becomes 1

be realized within the circuitry of the latch itself. Care must be taken to insure that the circuitry in which a latch is placed meets those requirements.

Latch states are triples representing values of s, r, and q, respectively. Some examples, corresponding to state sequences depicted by waveforms (a)-(f) in Fig. 11, that satisfy the formula of Table 6 are as follows:

$$
\begin{aligned}
& S_{a}:(\langle 000\rangle,\langle 100\rangle,\langle 101\rangle,\langle 001\rangle,\langle 011\rangle,\langle 010\rangle,\langle 000\rangle, \ldots) \\
& S_{b}:(\langle 000\rangle,\langle 100\rangle,\langle 101\rangle,\langle 001\rangle,\langle 101\rangle,\langle 001\rangle, \ldots) \\
& S_{c}:(\langle 000\rangle,\langle 010\rangle,\langle 000\rangle,\langle 010\rangle,\langle 000\rangle, \ldots) \\
& S_{d}:(\langle 001\rangle,\langle 101\rangle,\langle 001\rangle,\langle 011\rangle,\langle 010\rangle,\langle 000\rangle, \ldots) \\
& S_{e}:(\langle 001\rangle,\langle 101\rangle,\langle 001\rangle,\langle 101\rangle,\langle 001\rangle, \ldots) \\
& S_{f}:(\langle 001\rangle,\langle 011\rangle,\langle 010\rangle,\langle 000\rangle,\langle 010\rangle,\langle 000\rangle, \ldots)
\end{aligned}
$$

Clearly, infinitely many sequences satisfy the formula of Table 6 , so the problem of verifying functionality for sequential circuits appears daunting. However, by means of careful algorithm design, it is sometimes possible to produce such verifications and successes have been reported. In addition, other successful temporal logic systems such as computation tree logic and interval temporal logic have been introduced, along with algorithms for proving theorems in these logics. The reader is referred to [149], \triangleright Combinatorial Optimization Techniques for Network-Based Data Mining for details and citations.

4.5 Bounded Model Checking

Section 4.4 considered solving verification problems of the form $S \models \psi_{1} \equiv$ $S \models \psi_{2}$. If it is desired instead to determine whether there exists an S such that $S \models \psi$ temporal operators can be traded for Boolean variables, the sentence can be expressed as a propositional formula, and a SAT solver applied. The propositional formula must have the following parts:

1. Components which force the property or properties of the time-dependent expression to hold
2. Components which establish the starting state
3. Components which force legal state transitions to occur

In order for the Boolean expression to remain of reasonable size, it is generally necessary to bound the number of time steps in which the time-dependent expression is to be verified, thus the name bounded model checking.

As an example, consider a simple 2-bit counter whose outputs are represented by variables $v_{1}(\mathrm{LSB})$ and $v_{2}(\mathrm{MSB})$. Introduce variables v_{1}^{i} and v_{2}^{i} whose values are intended to be the same as those of variables v_{1} and v_{2}, respectively, on the i th time step. Suppose the starting state is the case where both v_{1}^{0} and v_{2}^{0} have value 0 . The transition relation is

Current output		Next output
00	$:$	01
01	$:$	10
10	$:$	11
11	$:$	00

the i th line of which can be expressed as the following Boolean function:

$$
\left(v_{1}^{i+1} \leftrightarrow \neg v_{1}^{i}\right) \wedge\left(v_{2}^{i+1} \leftrightarrow v_{1}^{i} \oplus v_{2}^{i}\right) .
$$

Suppose the time-dependent expression to be proved is as follows:
Can the two-bit counter reach a count of 11 in exactly three time steps?
Assemble the propositional formula having value 1 if and only if the above query holds as the conjunction of the following three parts:

1. Force the property to hold:

$$
\left(\neg\left(v_{1}^{0} \wedge v_{2}^{0}\right) \wedge \neg\left(v_{1}^{1} \wedge v_{2}^{1}\right) \wedge \neg\left(v_{1}^{2} \wedge v_{2}^{2}\right) \wedge\left(v_{1}^{3} \wedge v_{2}^{3}\right)\right)
$$

2. Express the starting state:

$$
\left(\neg v_{1}^{0} \wedge \neg v_{2}^{0}\right) .
$$

3. Force legal transitions (repetitions of the transition relation):

$$
\begin{aligned}
& \left(v_{1}^{1} \leftrightarrow \neg v_{1}^{0}\right) \wedge\left(v_{2}^{1} \leftrightarrow v_{1}^{0} \oplus v_{2}^{0}\right) \wedge \\
& \left(v_{1}^{2} \leftrightarrow \neg v_{1}^{1}\right) \wedge\left(v_{2}^{2} \leftrightarrow v_{1}^{1} \oplus v_{2}^{1}\right) \wedge \\
& \left(v_{1}^{3} \leftrightarrow \neg v_{1}^{2}\right) \wedge\left(v_{2}^{3} \leftrightarrow v_{1}^{2} \oplus v_{2}^{2}\right) .
\end{aligned}
$$

Since $(a \leftrightarrow b) \Leftrightarrow(a \vee \neg b) \wedge(\neg a \vee b)$, the last expression can be directly turned into a CNF expression. Therefore, the entire formula can be turned into a CNF expression and solved with an off-the-shelf SAT solver.

The reader may check that the following assignment satisfies the above expressions:

$$
v_{1}^{0}=0, v_{2}^{0}=0, v_{1}^{1}=1, v_{2}^{1}=0, v_{1}^{2}=0, v_{2}^{2}=1, v_{1}^{3}=1, v_{2}^{3}=1 .
$$

It may also be verified that no other assignment of values to v_{1}^{i} and $v_{2}^{i}, 0 \leq i \leq 3$, satisfies the above expressions. Information on the use and success of bounded model checking may be found in $[18,36]$.

4.6 Combinational Equivalence Checking

The power of bounded model checking is not needed to solve the combinational equivalence checking (CEC) problem which is to verify that two given combinational circuit implementations are functionally equivalent. CEC problems are easier, in general, because they carry no time dependency and there are no feedback loops in combinational circuits. It has recently been discovered that CEC can be solved very efficiently, in general [92,94, 95], by incrementally building a singleoutput and/inverter graph (AIG), representing the miter [26] of both input circuits, and checking whether the output has value 0 for all combinations of input values. The AIG is built one vertex at a time, working from input to output. Vertices are merged if they are found to be functionally equivalent. Vertices can be found functionally equivalent in two ways: (1) candidates are determined by random simulation $[26,93]$ and then checked by a SAT solver for functional equivalence, and (2) candidates are hashed to the same location in the data structure representing vertices of the AIG (for the address of a vertex to represent function, it must depend solely on the opposite endpoints of the vertex's incident edges, and therefore, an address change typically takes place on a merge). AIG construction continues until all vertices have been placed into the AIG and no merging is possible. The technique exploits the fact that checking the equivalence of two topologically similar circuits is relatively easy [65] and avoids testing all possible input-output combinations, which is $\mathcal{C o N} \mathcal{P}$-hard.

In CEC the AIG is incrementally developed from gate level representations. For example, Fig. 7a shows the AIG for an and gate, Fig. 7b shows the AIG for an or gate, Fig. 7c shows the AIG for exclusive-or, and Fig. 7d shows the AIG for the adder circuit of Fig. 9. Vertices may take $0-1$ values. Values are assigned independently to input vertices. The value of a gate vertex (a dependent vertex) is the product $x_{1} x_{2}$ where x_{i} is either the value of the non-arrow side endpoint of incoming edge i, $1 \leq i \leq 2$, if the edge is not negated or 1 minus the value of the endpoint if it is negated.

CEC begins with the construction of the AIG for one of the circuits as exemplified in Fig. 12a which shows an AIG and a circuit it is to be compared against. Working from input to output, a node of the circuit is determined to be functionally equivalent to an AIG vertex and is merged with the vertex. The output lines from the merged node become AIG edges outgoing from the vertex involved in the merge. Figure 12 b shows the first two nodes of the circuit being merged with the AIG and Fig. 12c shows the completed AIG.

Fig. 12 Creating the AIG. (a) The beginning of the equivalency check - one circuit has been transformed to an AIG. (b) Node a of the circuit (Fig. 12a) has been merged with vertex b of the AIG. (c) The completed AIG

CEC proceeds with the application of many random input vectors to the input vertices of the AIG for the purpose of partitioning the vertices into potential equivalence classes (two vertices are in the same equivalence class if they take the same value under all random input vectors). In the case of Fig. 12c, suppose the potential equivalence classes are $\{1,2\},\{3,4\}$, and $\{5,6\}$.

The next step is to use a SAT solver to verify that the equivalences actually hold. Those that do are merged, resulting in a smaller AIG. The cycle repeats until merging is no longer possible. If the output vertices hash to the same address, the circuits are equivalent. Alternatively, the circuits are equivalent if the AIG is augmented by adding a vertex corresponding to an xor gate with incident edges connecting to the two output vertices of the AIG, and the resulting graph represents an unsatisfiable formula, determined by using a SAT solver.

Above, CEC has been shown to check the equivalence of two combinational circuits, but it can also be used for checking a specification against a circuit implementation or for reverse engineering a circuit.

4.7 Transformations to Satisfiability

It is routine in the operations research community to transform a given optimization problem into another, solve the new problem, and use the solution to construct a solution or an approximately optimal solution for the given problem. Usual targets of transformations are linear programming and network flows. In some cases, where the given problem is $\mathcal{N} \mathcal{P}$-complete, it may be more efficient to obtain a solution or approximate solution by transformation to a satisfiability problem than by solving directly. However, care must be taken to choose a transformation that keeps running time down and supports low error rates. In this section a successful transformation from network Steiner tree problems to weighted MAX-SAT problems is considered (taken from [87]).

The network Steiner tree problem originates from the following important network cost problem (see, e.g., [4]). Suppose a potential provider of communications services wants to offer private intercity service for all of its customers. Each customer specifies a collection of cities it needs to have connected in its own private network. Exploiting the extraordinary bandwidth of fiber-optic cables, the provider intends to save cable costs by piggy-backing the traffic of several customers on single cables when possible. Assume there is no practical limit on the number of customers piggybacked to a single cable. The provider wants an answer to the following question: Through what cities should the cables be laid to meet all customer connectivity requirements and minimize total cabling cost?

This problem can be formalized as follows. Let $G(V, E)$ be a graph whose vertex set $V=\left\{c_{1}, c_{2}, c_{3}, \ldots\right\}$ represents all cities and whose edge set E represents all possible connections between pairs of cities. Let $w: E \mapsto Z^{+}$be such that $w\left(\left\{c_{i}, c_{j}\right\}\right)$ is the cost of laying fiber-optic cable between cities c_{i} and c_{j}. Let R be a given set of vertex-pairs $\left\{c_{i}, c_{j}\right\}$ representing pairs of cities that must be able to communicate with each other due to at least one customer's requirement. The problem is to find a minimum total weight subgraph of G such that there is a path between every vertex-pair of R.

Consider the special case of this problem in which the set T of all vertices occurring in at least one vertex-pair of R is a proper subset of all vertices of G (i.e., the provider has the freedom to use as connection points cities not containing customers' offices) and R requires that all vertices of T be connected. This is known as the network Steiner tree problem. An example and its optimal solution are given in Fig. 13. This problem is one of the first shown to be $\mathcal{N} \mathcal{P}$-complete [85]. The problem appears in many applications and has been extensively studied. Many enumeration algorithms, heuristics, and approximation algorithms are known (see [4] for a list of examples).

A feasible solution to an instance (G, T, w) of the network Steiner tree problem is a tree spanning all vertices of a subgraph of G which includes T. Such a subgraph is called a Steiner tree. A transformation from (G, T, w) to an instance of satisfiability is a uniform method of encoding of G, T, and w by a CNF formula ψ with nonnegative weights on its clauses. A necessary (feasibility) property of any transformation is that a truth assignment to the variables of ψ which maximizes

Fig. 13 An example of a network Steiner tree problem (top) and its optimal solution (bottom). The white nodes are terminals and the numbers represent hypothetical costs of laying fiber-optic cables between pairs of cities
the total weight of all satisfied clauses specifies a feasible solution for (G, T, w). A desired (optimality) property is, in addition, that feasible solution have minimum total weight. Unfortunately, known transformations that satisfy both properties produce formulas of size that is superlinearly related to the number of edges and vertices in G. Such encodings are useless for large graphs. More practical linear transformations satisfying the feasibility property are possible but these do not satisfy the optimality property. However, it has been demonstrated that, using a carefully defined linear transformation, one can achieve close to optimal results.

As an example, consider the linear transformation introduced in [87]. This transformation has a positive integer parameter k which controls the quality of the
approximation. Without losing any interesting cases, assume that G is connected. It is also assumed that no two paths in G between the same nodes of T have the same weight; this can be made true, if necessary, by making very small adjustments to the weights of the edges.

Preprocessing

1. Define an auxiliary weighted graph $\left(\left(T, E^{\prime}\right), w^{\prime}\right)$ as follows:

Graph $G^{\prime}=\left(T, E^{\prime}\right)$ is the complete graph on all vertices in T.
For edge $e^{\prime}=\left\{c_{i}, c_{j}\right\}$ of G^{\prime}, let $w^{\prime}\left(e^{\prime}\right)$ be the total cost of the minimum cost path between c_{i} and c_{j} in G. (This can be found, e.g., by Dijkstra's algorithm).
2. Let W be a minimum-cost spanning tree of $\left(G^{\prime}, w^{\prime}\right)$. It is intended to choose, for each edge $\left\{c_{i}, c_{j}\right\}$ of W, (all the edges on) one entire path in (G, w) between c_{i} and c_{j} to be included in the Steiner tree. This will produce a Steiner tree for T, G, although perhaps not a minimum-cost tree, as long as no cycles in G are included.

For some prespecified, fixed k : Find the k minimum-cost paths in G between c_{i} and c_{j} (again, e.g., by a variation of Dijkstra's algorithm); call them $P_{i, j, 1}, \ldots, P_{i, j, k}$. Thus, the algorithm will choose one of these k paths between each pair of elements of W.

The Formula

The output of the preprocessing step is a tree W spanning all vertices of T. Each edge $\left\{c_{i}, c_{j}\right\} \in W$ represents one of the paths $P_{i, j, 1}, \ldots, P_{i, j, k}$ in G. The tree W, the list of edges in G, the lists of edges comprising each of the k shortest paths between pairs of vertices of W, and the number k are input to the transformation step. The path weights are not needed by the transformation step and are therefore not provided as an input. The transformation is then carried out as shown in Table 7. In the table, E is the set of edges of G and I is any number greater than the sum of the weights of all edges of G.
A maximum weight solution to a formula of Table 7 must satisfy all non-unit clauses because the weights assigned to those clauses are so high. Satisfying those clauses corresponds to choosing all the edges of at least one path between pairs of vertices in the list. Therefore, since the list represents a spanning tree of G^{\prime}, a maximum weight solution specifies a connected subgraph of G which includes all vertices of T.

On the other hand, the subgraph must be a tree. If there is a cycle in the subgraph, then there is more than one path from a T vertex u to a non- T vertex v, so there is a shorter path that may be substituted for one of the paths going from u through v to some T vertex. Choosing a shorter path is always possible because it will still be one of the k shortest. Doing so removes at least one edge and cycle. This process may be repeated until all cycles are broken and the number of edges remaining is minimal for all T vertices to be connected. Due to the unit clauses, all edge variables whose values are not set to 1 by an assignment add their edge weights to that of the formula. Therefore, the maximum weight solution contains only edges forced by p variables and must specify a Steiner tree.

Table 7 Transformation from an instance of the network Steiner tree problem to a CNF formula. The instance has already been preprocessed to spanning tree W plus lists of k shortest paths $P_{i, j, x}$, $1 \leq x \leq k$, corresponding to edges $\left\{c_{i}, c_{j}\right\}$ of W. The edges of the original graph are given as set E. Boolean variables created expressly for the transformation are defined at the top and clauses are constructed according to the middle chart. Weights are assigned to clauses as shown at the bottom. The number I is chosen to be greater than the sum of all weights of edges in E

Variable	Subscript range	Meaning
$e_{i, j}$	Edge $\left\{c_{i}, c_{j}\right\} \in E$	$\left\{c_{i}, c_{j}\right\} \in$ the Steiner tree
$p_{i, j, l}$	$\left\{c_{i}, c_{j}\right\} \in W, 1 \leq l \leq k$	$P_{i, j, l} \subseteq$ the Steiner tree
Clause	Subscript range	Meaning
$\left(\neg e_{i, j}\right)$	$\left\{c_{i}, c_{j}\right\} \in E$	$e_{i, j} \notin$ Steiner tree
$\left(p_{i, j, 1} \vee \ldots \vee p_{i, j, k}\right)$	$\left\{c_{i}, c_{j}\right\} \in W$	Include at least one of k shortest paths between c_{i}, c_{j}
$\left(\neg p_{i, j, l} \vee e_{m, n}\right)$	$\left\{c_{m}, c_{n}\right\} \in P_{i, j, l}$	Include all edges of that path
Clause	Weight	Significance
$\left(\neg e_{i, j}\right)$	$w(\{i, j\})$	Maximize weights of edges not included
$\left(p_{i, j, 1} \vee \ldots \vee p_{i, j, k}\right)$	I	Force connected subgraph of G containing all vertices of T
$\left(\neg p_{i, j, l} \vee e_{m, n}\right)$	I	Force connected subgraph of G containing all vertices of T

A maximum weight solution specifies an optimal Steiner tree only if k is sufficiently large to admit all the shortest paths in an optimal solution. Generally this is not practical since too large a k will cause the transformation to be too large. However, good results can be obtained even with k values up to 30 .

Once the transformation to satisfiability is made, an incomplete algorithm such as Walksat (see Sect. 5.8.1) or even a branch-and-bound variant (see Sect. 5.11) can be applied to obtain a solution. The reader is referred to [87] for empirical results showing speed and approximation quality.

4.8 Boolean Data Mining

The field of data mining is concerned with discovering hidden structural information in databases; it is a form of (or variant of) machine learning. In particular, it is concerned with finding hidden correlations among apparently weakly related data. For example, a credit card company might look for patterns of charging purchases that are frequently correlated with using stolen credit card numbers. Using this data, the company can look more closely at suspicious patterns in an attempt to discover thefts before they are reported by the card owners.

Many of the methods for data mining involve essentially numerical calculations. However, others work on Boolean data. Typically, the relevant part of the database consists of a set B of m Boolean n-tuples (plus keys to distinguish tuples, which presumably are unimportant here). Each of these n attributes might be the results of some monitoring equipment or experts' answers to questions.

Some of the tuples in B are known to have some property; the others are known not to have the property. Thus, what is known is a partially defined Boolean function f_{B} of the n variables. An important problem is to predict whether tuples to be added later will have the same property. This amounts to finding a completely defined Boolean function f which agrees with f_{B} at every value for which it is defined. Frequently, the goal is also to find such an f with, in some sense, a simple definition: such a definition, it is hoped, will reveal some interesting structural property or explanation of the data points.

For example, binary vectors of dimension two describing the condition of an automobile might have the following interpretation:

Vector	Value	Overheating	Coolant level
00	0	No	Low
01	0	No	Normal
10	0	Yes	Low
11	1	Yes	Normal

where the value associated with each vector is 1 if and only if the automobile's thermostat is defective.

One basic method is to search for such a function f with a relatively short disjunctive normal form (DNF) definition. An example formula in DNF is

$$
\left(v_{1} \wedge v_{2} \wedge \neg v_{3}\right) \vee\left(\neg v_{1} \wedge v_{4}\right) \vee\left(v_{3} \wedge v_{4} \wedge v_{5} \wedge v_{6}\right) \vee\left(\neg v_{3}\right)
$$

DNF formulas have the same form as that of CNF formulas except that the positions of the \wedge 's and the \vee 's are reversed. In this case the formula is in 4-DNF since each disjunct contains at most 4 conjuncts. Each term, for example, $\left(v_{1} \wedge v_{2} \wedge \neg v_{3}\right)$ is an implicant: whenever it is true, the property holds.

There is extensive research upon the circumstances under which, when some random sample points f_{B} from an actual Boolean function f are supplied, a program can, with high probability, learn a good approximation to f within reasonable time (e.g., [140]). Of course, if certain additional properties of f are known or assumed, more such functions f can be determined.

Applications are driving interest in the field. The problem has become more interesting due to the use of binarization which allows nonbinary data sets to be transformed to binary data sets [25]. Such transformations allow the application of special binary tools for cause-effect analysis that would otherwise be unavailable and may even sharpen explainability. For example, for a set of 290 data points containing 9 attributes related to Chinese labor productivity, it was observed in [24] that the short clause

Not in the northwest region and time is later than 1987,
where time ranges over the years 1985-1994, explains all the data and the clause
SOE is at least 71.44% and time is earlier than 1988,
where SOE means state-owned enterprises, explains 94% of the data. The technique of logical analysis of data has been successfully applied to inherently nonbinary problems of oil exploration, psychometric analysis, and economics, among others.

5 General Algorithms

In this section some algorithms for solving various SAT problems are presented. Most of these algorithms operate on CNF formulas. Therefore, the following efficient transformation to CNF formulas is needed to demonstrate the general applicability of these algorithms.

5.1 Efficient Transformation to CNF Formulas

An algorithm due to Tseitin [139] efficiently transforms an arbitrary Boolean formula ϕ to a CNF formula ψ such that ψ has a model if and only if ϕ has a model and if a model for ψ exists, it is a model for ϕ. The transformation is important because it supports the general use of many of the algorithms which are described in following sections and require CNF formulas as input.

The transformation can best be visualized graphically. As discussed in Sect. 3.6, any Boolean formula ϕ can be represented as a binary rooted acyclic digraph W_{ϕ} where each internal vertex represents some operation on one or two operands (an example is given in Fig. 6). Associate with each internal vertex x of W_{ϕ} a new variable v_{x} not occurring in ϕ. If x represents a binary operator \mathcal{O}_{x}, let v_{l} and v_{r} be the variables associated with the left and right endpoints, respectively, of the two outward-oriented edges of x (v_{l} and v_{r} may be variables labeling internal or leaf vertices). If x represents the operator \neg, then call the endpoint of the outwardoriented edge v_{g}. For each internal vertex x of W_{ϕ}, write

$$
\begin{array}{ll}
v_{x} \Leftrightarrow\left(v_{l} \mathcal{O}_{x} v_{r}\right) & \text { if } \mathcal{O}_{x} \text { is binary or } \\
v_{x} \Leftrightarrow \neg v_{g} & \text { if vertex } x \text { represents } \neg .
\end{array}
$$

For each equivalence there is a short, functionally equivalent CNF expression. The table of Fig. 14 shows the equivalent CNF expression for all 16 possible binary operators where each bit pattern in the left column expresses the functionality of an operator for each of four assignments to v_{l} and v_{r}, in increasing order, from 00 to 11. The equivalent CNF expression for \neg is $\left(v_{g} \vee v_{x}\right) \wedge\left(\neg v_{g} \vee \neg v_{x}\right)$.

The target of the transformation is a CNF formula consisting of all clauses in every CNF expression from Fig. 14 that corresponds to an equivalence expressed at a non-leaf vertex of W_{ϕ} plus a unit clause that forces the root expression to evaluate to 1. For example, the expression of Fig. 6, namely,

$$
v_{0} \leftrightarrow\left(\left(\neg v_{0} \leftrightarrow\left(v_{1} \vee \neg v_{2}\right)\right) \wedge\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{2} \rightarrow \neg v_{3} \rightarrow v_{4}\right)\right),
$$

\mathcal{O}_{x}	Equivalent CNF Expression	Comment
0000	$\left(\neg v_{x}\right)$	$v_{x} \Leftrightarrow 0$
1111	$\left(v_{x}\right)$	$v_{x} \Leftrightarrow 1$
0011	$\left(v_{l} \vee \neg v_{x}\right) \wedge\left(\neg v_{l} \vee v_{x}\right)$	
1100	$\left(v_{l} \vee v_{x}\right) \wedge\left(\neg v_{l} \vee \neg v_{x}\right)$	$v_{x} \Leftrightarrow \neg v_{l}$
0101	$\left(v_{r} \vee \neg v_{x}\right) \wedge\left(\neg v_{r} \vee v_{x}\right)$	
1010	$\left(v_{r} \vee v_{x}\right) \wedge\left(\neg v_{r} \vee \neg v_{x}\right)$	
0001	$\left(v_{l} \vee \neg v_{x}\right) \wedge\left(v_{r} \vee \neg v_{x}\right) \wedge\left(\neg v_{l} \vee \neg v_{r} \vee v_{x}\right)$	$v_{x} \Leftrightarrow\left(v_{l} \wedge v_{r}\right)$
1110	$\left(v_{l} \vee v_{x}\right) \wedge\left(v_{r} \vee v_{x}\right) \wedge\left(\neg v_{l} \vee \neg v_{r} \vee \neg v_{x}\right)$	$v_{x} \Leftrightarrow\left(\neg v_{l} \vee \neg v_{r}\right)$
0010	$\left(\neg v_{l} \vee \neg v_{x}\right) \wedge\left(v_{r} \vee \neg v_{x}\right) \wedge\left(v_{l} \vee \neg v_{r} \vee v_{x}\right)$	
1101	$\left(v_{l} \vee v_{x}\right) \wedge\left(\neg v_{r} \vee v_{x}\right) \wedge\left(\neg v_{l} \vee v_{r} \vee \neg v_{x}\right)$	$v_{x} \Leftrightarrow\left(v_{l} \rightarrow v_{r}\right)$
0100	$\left(v_{l} \vee \neg v_{x}\right) \wedge\left(\neg v_{r} \vee \neg v_{x}\right) \wedge\left(\neg v_{l} \vee v_{r} \vee v_{x}\right)$	
1011	$\left(\neg v_{l} \vee v_{x}\right) \wedge\left(v_{r} \vee v_{x}\right) \wedge\left(v_{l} \vee \neg v_{r} \vee \neg v_{x}\right)$	$v_{x} \Leftrightarrow\left(v_{l} \leftarrow v_{r}\right)$
1000	$\left(\neg v_{l} \vee \neg v_{x}\right) \wedge\left(\neg v_{r} \vee \neg v_{x}\right) \wedge\left(v_{l} \vee v_{r} \vee v_{x}\right)$	$v_{x} \Leftrightarrow\left(\neg v_{l} \wedge \neg v_{r}\right)$
0111	$\left(\neg v_{l} \vee v_{x}\right) \wedge\left(\neg v_{r} \vee v_{x}\right) \wedge\left(v_{l} \vee v_{r} \vee \neg v_{x}\right)$	$v_{x} \Leftrightarrow\left(v_{l} \vee v_{r}\right)$
1001	$\begin{aligned} & \left(v_{l} \vee \neg v_{r} \vee \neg v_{x}\right) \wedge\left(\neg v_{l} \vee v_{r} \vee \neg v_{x}\right) \wedge \\ & \left(\neg v_{l} \vee \neg v_{r} \vee v_{x}\right) \wedge\left(v_{l} \vee v_{r} \vee v_{x}\right) \end{aligned}$	$v_{x} \Leftrightarrow\left(v_{l} \leftrightarrow v_{r}\right)$
0110	$\begin{aligned} & \left(\neg v_{l} \vee v_{r} \vee v_{x}\right) \wedge\left(v_{l} \vee \neg v_{r} \vee v_{x}\right) \wedge \\ & \left(v_{l} \vee v_{r} \vee \neg v_{x}\right) \wedge\left(\neg v_{l} \vee \neg v_{r} \vee \neg v_{x}\right) \end{aligned}$	$v_{x} \Leftrightarrow\left(v_{l} \oplus v_{r}\right)$

Fig. 14 CNF expressions equivalent to $v_{x} \Leftrightarrow\left(v_{l} \mathcal{O}_{x} v_{r}\right)$ for \mathcal{O}_{x} as shown
transforms to

$$
\begin{aligned}
& \left(v_{0} \vee v_{x_{1}}\right) \wedge\left(\neg v_{0} \vee \neg v_{x_{1}}\right) \wedge \\
& \left(v_{2} \vee v_{x_{2}}\right) \wedge\left(\neg v_{2} \vee \neg v_{x_{2}}\right) \wedge \\
& \left(v_{3} \vee v_{x_{3}}\right) \wedge\left(\neg v_{3} \vee \neg v_{x_{3}}\right) \wedge \\
& \left(\neg v_{1} \vee v_{x_{4}}\right) \wedge\left(\neg v_{x_{2}} \vee v_{x_{4}}\right) \wedge\left(v_{1} \vee v_{x_{2}} \vee \neg v_{x_{4}}\right) \wedge \\
& \left(v_{x_{3}} \vee v_{x_{5}}\right) \wedge\left(\neg v_{4} \vee v_{x_{5}}\right) \wedge\left(\neg v_{x_{3}} \vee v_{4} \vee \neg v_{x_{5}}\right) \wedge \\
& \left(v_{x_{1}} \vee \neg v_{x_{4}} \vee \neg v_{x_{6}}\right) \wedge\left(\neg v_{x_{1}} \vee v_{x_{4}} \vee \neg v_{x_{6}}\right) \wedge\left(\neg v_{x_{1}} \vee \neg v_{x_{4}} \vee v_{x_{6}}\right) \wedge \\
& \left(v_{x_{1}} \vee v_{x_{4}} \vee v_{x_{6}}\right) \wedge\left(v_{x_{2}} \vee v_{x_{7}}\right) \wedge\left(\neg v_{x_{5}} \vee v_{x_{7}}\right) \wedge\left(\neg v_{x_{2}} \vee v_{x_{5}} \vee \neg v_{x_{7}}\right) \wedge \\
& \left(v_{x_{4}} \vee \neg v_{x_{8}}\right) \wedge\left(v_{x_{7}} \vee \neg v_{x_{8}}\right) \wedge\left(\neg v_{x_{4}} \vee \neg v_{x_{7}} \vee v_{x_{8}}\right) \wedge \\
& \left(v_{x_{6}} \vee \neg v_{x_{9}}\right) \wedge\left(v_{x_{8}} \vee \neg v_{x_{9}}\right) \wedge\left(\neg v_{x_{6}} \vee \neg v_{x_{8}} \vee v_{x_{9}}\right) \wedge \\
& \left(v_{0} \vee \neg v_{x_{9}} \vee \neg v_{x_{10}}\right) \wedge\left(\neg v_{0} \vee v_{x_{9}} \vee \neg v_{x_{10}}\right) \wedge\left(\neg v_{0} \vee \neg v_{x_{9}} \vee v_{x_{10}}\right) \wedge \\
& \left(v_{0} \vee v_{x_{9}} \vee v_{x_{10}}\right) \wedge\left(v_{x_{10}}\right) .
\end{aligned}
$$

where each line except the last corresponds to an internal vertex x_{i} of W_{ϕ} of Fig. 6, i increasing from 1 in left-to-right and bottom-to-top order, and the new variables labeling those vertices are $v_{x_{1}}, \ldots, v_{x_{10}}$ correspondingly. The last line forces the root expression to evaluate to 1 . The algorithm of Fig. 15 expresses these ideas formally.

```
Algorithm 1.
Transformation to CNF ( \(\phi\) )
/* Input \(\phi\) : formula consistent with syntax described on Page 2
/* Output \(\psi\) : CNF expression functionally equivalent to \(\phi\) */
/* Assume variables of \(\phi\) are labeled \(v_{0}, v_{1}, \ldots, v_{n-1} \quad * /\)
/* Additional variables \(v_{n}, v_{n+1}, v_{n+2}, \ldots\) are created as needed */
/* Locals: stack S, integer i, quoted expression \(\phi^{q}\), set of clauses \(\phi^{c}\)
*/
Set \(\phi^{q} \leftarrow " \phi\) ".
Next \(s \leftarrow \phi^{q}\).
Repeat the following while \(\phi^{q} \neq \emptyset\) :
If \(s\) is a variable and the symbol at the top of \(S\) is \(\neg\),
                    Set \(i \leftarrow i+1 . \quad / /\) Evaluate ' \(\neg s\) '
Replace the top of \(S\) with \(v_{i}\).
Append \(L \leftarrow " v_{i} \Leftrightarrow \neg s\) ".
Next \(s \leftarrow \phi^{q}\).
Otherwise, if \(s\) is ')',
Pop \(w \leftarrow S . \quad / /\) Evaluate ' \((v \mathcal{O} w)\) '
Pop \(\mathcal{O} \leftarrow S\).
Pop \(v \leftarrow S\).
Pop \(S\).
Set \(i \leftarrow i+1\).
Append \(L \leftarrow " v_{i} \Leftrightarrow(v \mathcal{O} w)\) ".
Set \(s \leftarrow v_{i}\).
Otherwise, // Push an operator, positive variable, or '(' onto \(S\)
                    Push \(S \leftarrow s\).
                    Next \(s \leftarrow \phi^{q}\).
    Set \(\psi \leftarrow\{\{\operatorname{Pop} S\}\}\)
    Repeat the following while \(L \neq \emptyset\) :
            Pop \(\psi^{q} \leftarrow L\).
            If \(\psi^{q}\) equals " \(v_{j} \Leftrightarrow \neg v_{g}\) " for some \(v_{j}\) and \(v_{g}\),
            Set \(\psi \leftarrow \psi \cup\left\{\left\{v_{j}, v_{g}\right\},\left\{\neg v_{j}, \neg v_{g}\right\}\right\}\).
            Otherwise, \(\psi^{q}\) equals " \(v_{j} \Leftrightarrow\left(v_{l} \mathcal{O} v_{r}\right)\) " so do the following:
            Build \(\phi^{c}\) based on \(\mathcal{O}, v_{j}, v_{l}, v_{r}\) using the table of Figure 14.
            Set \(\psi \leftarrow \psi \cup \phi^{c}\).
        Output \(\psi\).
```

Fig. 15 Algorithm for transforming a formula to a functionally equivalent CNF formula

For simplicity, it is assumed that the input is a formula with syntax consistent with that described on Page 313.

The next lemma and theorems show that the algorithm correctly transforms a given expression to a CNF formula and the size of the target formula is linearly related to the size of the original expression.

Lemma 1 Let \mathcal{O} be any binary Boolean operator except the two trivial ones that evaluate to 0 or 1 regardless of the value of their operands. Given formulas ψ_{1} and ψ_{2}, variables $v_{1} \in V_{\psi_{1}} \backslash V_{\psi_{2}}$ and $v_{2} \in V_{\psi_{2}} \backslash V_{\psi_{1}}$, and some base set V such that $\left.\left.\psi_{1}\right|_{v_{1}=1} \leftrightharpoons V \psi_{1}\right|_{v_{1}=0}$ and $\left.\left.\psi_{2}\right|_{v_{2}=1} \leftrightharpoons V \psi_{2}\right|_{v_{2}=0}$,

$$
\left(v_{1} \mathcal{O} v_{2}\right) \wedge \psi_{1} \wedge \psi_{2} \leftrightharpoons_{V} \neg\left(v_{1} \mathcal{O} v_{2}\right) \wedge \psi_{1} \wedge \psi_{2}
$$

Proof It must be shown that for every truth assignment M_{V} to $V(1)$ if there is an extension that satisfies ψ_{1}, ψ_{2}, and ($v_{1} \mathcal{O} v_{2}$), then there is an extension that satisfies ψ_{1}, ψ_{2}, and $\neg\left(v_{1} \mathcal{O} v_{2}\right)$ and (2) if there is an extension that satisfies ψ_{1}, ψ_{2}, and $\neg\left(v_{1} \mathcal{O} v_{2}\right)$, then there is an extension that satisfies ψ_{1}, ψ_{2}, and $\left(v_{1} \mathcal{O} v_{2}\right)$. It is only necessary to take care of (1) since a similar argument applies for (2).

Assume there is an extension M_{1} that satisfies ψ_{1}, ψ_{2}, and ($v_{1} \mathcal{O} v_{2}$). From $\left.\left.\psi_{1}\right|_{v_{1}=1} \leftrightharpoons V \psi_{1}\right|_{v_{1}=0}$ and $\left.\left.\psi_{2}\right|_{v_{2}=1} \leftrightharpoons_{V} \psi_{2}\right|_{v_{2}=0}$ and the fact that M_{1} satisfies both ψ_{1} and ψ_{2}, all four extensions identical to M_{1} except in v_{1} and v_{2} will satisfy ψ_{1} and ψ_{2}. One of those will also satisfy $\neg\left(v_{1} \mathcal{O} v_{2}\right)$ since \mathcal{O} is nontrivial. Hence, if there is an extension to M_{V} that satisfies ψ_{1}, ψ_{2}, and ($v_{1} \mathcal{O} v_{2}$), there is also an extension that satisfies ψ_{1}, ψ_{2}, and $\neg\left(v_{1} \mathcal{O} v_{2}\right)$.

Theorem 1 Let ϕ be a formula and $V_{\phi}=\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ the set of n variables contained in it. The output of Algorithm 1 on input ϕ represents a CNF formula ψ, written $\left(v_{0}\right)$ if ϕ has no operators and otherwise written $\left(v_{i}\right) \wedge \psi_{\phi}, n \leq i$, where clause $\left(v_{i}\right)$ is due to the line "Set $\psi \leftarrow\{\{\operatorname{Pop} S\}\}$ " and ψ_{ϕ} is such that $\left.\psi_{\phi}\right|_{v_{i}=1}$ $\left.\leftrightharpoons V_{\phi} \psi_{\phi}\right|_{v_{i}=0 .{ }^{4}}$ In addition, $\psi \leftrightharpoons V_{\phi} \phi$. That is, any truth assignment $M_{V_{\phi}} \subset V_{\phi}$ is a model for ϕ if and only if there is a truth assignment $M_{1} \subset\left\{v_{n}, v_{n+1}, \ldots, v_{i}\right\}$ such that $M_{V_{\phi}} \cup M_{1}$ is a model for ψ.

Proof The output is a set of sets of variables and therefore represents a CNF formula. The line "Set $\psi \leftarrow\{\{\operatorname{Pop} S\}\}$ " is reached after all input symbols are read. This happens only after either the "Evaluate ' $\neg s$ '" block or the "Push $S \leftarrow s$ " line. In the former case, v_{i} is left at the top of the stack. In the latter case, s must be v_{0}, in the case of no operators, or v_{i} from execution of the "Evaluate ' $(v \mathcal{O} w)$ '" block immediately preceding execution of the "Push $S \leftarrow s$ " line (otherwise, the input is not a formula). Therefore, either v_{0} or v_{i} is the top symbol of S when "Set $\psi \leftarrow\{\{\operatorname{Pop} S\}\} "$ is executed so $\left\{v_{0}\right\}$ or $\left\{v_{i}\right\}$ is a clause of ψ.

Formulas ψ^{\prime} and ψ may be shown to have the stated properties by induction on the depth of the input formula ϕ. For improved clarity, \leftrightharpoons is used instead of $\leftrightharpoons V_{V_{\phi^{\prime}}}$ below.

The base case is depth 0 . In this case ϕ is the single variable v_{0} and $n=1$. The line "Push $S \leftarrow s$ " is executed in the first Repeat block, then the line "Set $\psi \leftarrow\{\{\operatorname{Pop} S\}\} "$ is executed so $\psi=\left\{\left\{v_{0}\right\}\right\}$. Since $L=\emptyset$, execution terminates. Obviously, $\psi=\phi$ so both hypotheses are satisfied.

[^2]For the induction step, suppose ϕ is a formula of positive depth $k+1$ and the hypotheses hold for all formulas of depth k or less. It is next shown that they also hold for ϕ. Consider first the case $\phi=\neg \phi^{\prime}\left(\phi^{\prime}\right.$ has depth k). Algorithm 1 stacks \neg in the line "Push $S \leftarrow s$ " and then, due to the very next line, proceeds as though it were operating on ϕ^{\prime}. The algorithm reaches the same point it would have if ϕ^{\prime} were input. However, in this case, \neg and a variable are on the stack. This requires one pass through the "Evaluate ' $\neg s$ '" block which adds " $v_{i} \Leftrightarrow \neg s$ " to L and leaves v_{i} as the only symbol in S. Thus, upon termination,

$$
\psi=\left(v_{i}\right) \wedge \psi_{\phi}=\left(v_{i}\right) \wedge\left(v_{i-1} \vee v_{i}\right) \wedge\left(\neg v_{i-1} \vee \neg v_{i}\right) \wedge \psi_{\phi^{\prime}}
$$

and v_{i} is not in $\psi_{\phi^{\prime}}$. Hence,

$$
\begin{aligned}
\left.\psi_{\phi}\right|_{v_{i}=1} & =\left.\left(\left(v_{i-1} \vee v_{i}\right) \wedge\left(\neg v_{i-1} \vee \neg v_{i}\right)\right)\right|_{v_{i}=1} \wedge \psi_{\phi^{\prime}} \\
& =\left(\neg v_{i-1}\right) \wedge \psi_{\phi^{\prime}} \\
& \leftrightharpoons\left(v_{i-1}\right) \wedge \psi_{\phi^{\prime}} \quad(\text { by the induction hypothesis and Lemma 1, Page 348) } \\
& =\left.\left(\left(v_{i-1} \vee v_{i}\right) \wedge\left(\neg v_{i-1} \vee \neg v_{i}\right)\right)\right|_{v_{i}=0} \wedge \psi_{\phi^{\prime}} \\
& =\left.\psi_{\phi}\right|_{v_{i}=0} .
\end{aligned}
$$

Next, it is shown that $\psi \leftrightharpoons \phi$ for this case. The expression $\left(v_{i}\right) \wedge \psi_{\phi}$ can evaluate to 1 only when the value of v_{i} is 1 . Therefore,

$$
\begin{aligned}
\psi & =\left.\left(v_{i}\right) \wedge \psi_{\phi} \leftrightharpoons \psi_{\phi}\right|_{v_{i}=1} \\
& =\left(\neg v_{i-1}\right) \wedge \psi_{\phi^{\prime}} \\
& \leftrightharpoons\left(v_{i-1}\right) \wedge \psi_{\phi^{\prime}} \quad \text { (from above) } \\
& \leftrightharpoons \phi^{\prime} \quad(\text { by } \psi \leftrightharpoons \phi \text { induction hypothesis) } \\
& \leftrightharpoons \phi
\end{aligned}
$$

Finally, consider the case that $\phi=\left(\phi_{l} \mathcal{O} \phi_{r}\right)\left(\phi_{l}\right.$ and ϕ_{r} have depth at most $\left.k\right)$. The algorithm stacks a "(" then, by the inductive hypothesis and the recursive definition of a formula, completes operations on ϕ_{a} which results in $\psi_{\phi_{l}}$ in L. The line "Set $\psi \leftarrow\{\{\operatorname{Pop} S\}\}$ " is avoided because there are still unread input symbols. Thus, there are two symbols on the stack at this point: a "(" which was put there initially and a variable. The symbol \mathcal{O} is read next and pushed on S by the line "Push $S \leftarrow s$." Then $\psi_{\phi_{r}}$ is put in L, but again the line "Set $\psi \leftarrow\{\{\operatorname{Pop} S\}\}$ " is avoided because there is still a ")" to be read. Thus, the stack now contains "(;" a variable, say, v_{l}; an operator symbol \mathcal{O}; and another variable, say, v_{r}. The final ")" is read and the "Evaluate ' $(v \mathcal{O} w)$ ' " section causes the stack to be popped, $v \Leftrightarrow\left(v_{l} \mathcal{O} v_{r}\right)$ to be added to L, and variable v_{i} to be put on S (in the final iteration of the first loop). Therefore, upon termination,

$$
\psi=\left(v_{i}\right) \wedge \psi_{\phi}=\left(v_{i}\right) \wedge\left(v_{i} \Leftrightarrow\left(v_{l} \mathcal{O} v_{r}\right)\right) \wedge \psi_{\phi_{l}} \wedge \psi_{\phi_{r}}
$$

where $\left(v_{l}\right) \wedge \psi_{\phi_{l}}$ is what the algorithm output represents on input ϕ_{l} and $\left(v_{r}\right) \wedge \psi_{\phi_{r}}$ is represented by the output on input ϕ_{r} (some clauses may be duplicated to exist both in $\psi_{\phi_{l}}$ and $\psi_{\phi_{r}}$). Then,

$$
\begin{aligned}
\left.\psi_{\phi}\right|_{v_{i}=1} & =\left.\left(v_{i} \Leftrightarrow\left(v_{l} \mathcal{O} v_{r}\right)\right)\right|_{v_{i}=1} \wedge \psi_{\phi_{l}} \wedge \psi_{\phi_{r}} \\
& =\left(v_{l} \mathcal{O} v_{r}\right) \wedge \psi_{\phi_{l}} \wedge \psi_{\phi_{r}} \\
& \leftrightharpoons \neg\left(v_{l} \mathcal{O} v_{r}\right) \wedge \psi_{\phi_{l}} \wedge \psi_{\phi_{r}} \text { (induction hypothesis and Lemma 1) } \\
& =\left.\left(v_{i} \Leftrightarrow\left(v_{l} \mathcal{O} v_{r}\right)\right)\right|_{v_{i}=0} \wedge \psi_{\phi_{l}} \wedge \psi_{\phi_{r}} \\
& =\left.\psi_{\phi}\right|_{v_{i}=0}
\end{aligned}
$$

It remains to show $\psi \leftrightharpoons \phi$ for this case. By the induction hypothesis, $\left.\psi_{\phi_{l}}\right|_{v_{l}=1}$ $\left.\leftrightharpoons \psi_{\phi_{l}}\right|_{v_{l}=0}$. Therefore, for a given truth assignment $M_{V_{\phi}}$, if there is an extension such that v_{l} has value $1(0)$ and $\psi_{\phi_{l}}$ has value 0 , then there is always an extension such that v_{l} has value $0(1)$, respectively, and $\psi_{\phi_{l}}$, has value 1 . Since, by the induction hypothesis, $\phi_{l} \leftrightharpoons\left(v_{l}\right) \wedge \psi_{\phi_{l}}$, there is always an extension such that $\psi_{\phi_{l}}$ has value 1 and v_{l} has the same value as ϕ_{l}. The same holds for v_{r} and ϕ_{r}. Therefore,

$$
\begin{aligned}
\psi & =\left.\left(v_{i}\right) \wedge \psi_{\phi} \leftrightharpoons \psi_{\phi}\right|_{v_{i}=1} \\
& =\left.\left(\left(v_{i}\right) \wedge\left(v_{i} \Leftrightarrow\left(v_{l} \mathcal{O} v_{r}\right)\right)\right)\right|_{v_{i}=1} \wedge \psi_{\phi_{l}} \wedge \psi_{\phi_{r}} \\
& \leftrightharpoons\left(v_{l} \mathcal{O} v_{r}\right) \wedge \psi_{\phi_{l}} \wedge \psi_{\phi_{r}} \\
& \leftrightharpoons\left(\phi_{l} \mathcal{O} \phi_{r}\right) \leftrightharpoons \phi
\end{aligned}
$$

Theorem 2 Algorithm 1 produces a representation using a number of symbols that is no greater than a constant times the number of symbols the input formula has if there are no double negations in the input formula.

Proof Each binary operator in the input string accounts for a pair of parentheses in the input string plus itself plus a literal. Hence, if there are m binary operators, the string has at least $4 m$ symbols.

If there are m binary operators in the input string, m new variables associated with those operators will exist in ψ due to the Append of the "Evaluate ' $(v \mathcal{O} w)$ '" block. For each, at most 12 symbols involving literals, 12 involving operators (both \wedge and \vee represented as ","), and 8 involving parentheses (represented as " $\{$ " " $\}$ ") are added to ψ (see Fig. 14), for a total of at most $32 m$ symbols. At most $m+n$ new variables associated with negations are added to ψ (both original variables and new variables can be negated) due to the Append of the "Evaluate ' $\neg s$ '" block. For each, at most 4 literals, 4 operators, and 4 parentheses are added to ψ (from $\left.\left\{v_{i}, v_{j}\right\},\left\{\neg v_{i}, \neg v_{j}\right\}\right)$, for a total of $12(m+n)$ symbols. Therefore, the formula output by Algorithm 1 has at most $44 m+12 n$ symbols.

Since $n-1 \leq m, 44 m+12 n \leq 56 m+12$. Therefore, the ratio of symbols of ψ to ϕ is not greater than $(56 m+12) / 4 m=14+3 / m<17$.

The next result shows that the transformation is computed efficiently.
Theorem 3 Algorithm 1 has $O(m)$ worst-case complexity if input formulas do not have double negations, where m is the number of operators, and one symbol is used per parenthesis, operator, and variable.

Proof Consider the first Repeat block. Every right parenthesis is read once from the input, is never stacked, and results in an extra loop of the Repeat block due to the line "Set $s \leftarrow v_{i}$ " in the first Otherwise block. Since all other symbols are read once during an iteration of the Repeat block, the number of iterations of this block is the number of input symbols plus the number of right parentheses. Since the number of operators (m) must be at least one fifth of the number of input symbols, the number of iterations of the Repeat block is no greater than 10 m . Since all lines of the Repeat block require unit time, the complexity of the block is $O(m)$.

The second Repeat block checks items in L, in order, and for each makes one of a fixed number of substitutions in which the number of variables is bounded by a constant. An item is appended to L every time a \neg or right parenthesis is encountered, and there is one right parenthesis for every binary operator. Thus, there are m items in L and the complexity of the second Repeat block is $O(m)$. Therefore, the complexity of the algorithm is $O(m)$.

If ϕ contains duplicate subformulas, the output will consist of more variables and CNF blocks than are needed to represent a CNF formula equivalent to ϕ. This is easily remedied by implementing L as a balanced binary search tree keyed on v_{l}, v_{r}, and \mathcal{O} and changing the Append to a tree insertion operation. If, before insertion in the "Evaluate ' $(v \mathcal{O} w)$ '" block, it is discovered that " $v_{j} \Leftrightarrow(v \mathcal{O} w)$ " already exists in L for some v_{j}, then s can be set to v_{j}, i need not be incremented, and the insertion can be avoided. A similar change can be made for the "Evaluate ' $\neg s$ '" block. With L implemented as a balanced binary search tree, each query and each insertion would take at most $\log (m)$ time since L will contain no more than m items. Hence, the complexity of the algorithm with the improved data structure would be $O(m \log (m))$.

As a final remark, there is no comparable, efficient transformation from a formula to a DNF formula.

5.2 Resolution

Resolution is a general procedure that is primarily used to certify that a given CNF formula is unsatisfiable, but can also be used to find a model, if one exists. The idea originated as consensus in [20] and [129] (ca. 1937) and was applied to DNF formulas in a form exemplified by the following:

$$
(x \wedge y) \vee(\neg x \wedge z) \Leftrightarrow(x \wedge y) \vee(\neg x \wedge z) \vee(y \wedge z)
$$

Consensus in DNF was rediscovered in [120] and [116] (ca. 1954) where it was given its name. A few years later its dual, as resolution in propositional logic, was applied to CNF (M. Davis and H. Putnam, 1958, Computational methods in the propositional calculus, unpublished report), for example,

$$
(x \vee y) \wedge(\neg x \vee z) \Leftrightarrow(x \vee y) \wedge(\neg x \vee z) \wedge(y \vee z)
$$

The famous contribution of Robinson [118] in 1965 was to lift resolution to firstorder logic.

Let c_{1} and c_{2} be disjunctive clauses such that there is exactly one variable v that occurs negated in one clause and unnegated in the other. Then, the resolvent of c_{1} and c_{2}, denoted by $\mathcal{R}_{c_{2}}^{c_{1}}$, is a disjunctive clause which contains all the literals of c_{1} and all the literals of c_{2} except for v or its complement. The variable v is called a pivot variable. If c_{1} and c_{2} are treated as sets, their resolvent is $\{l: l \in$ $\left.c_{1} \cup c_{2} \backslash\{v, \neg v\}\right\}$.

The usefulness of resolvents derives from the following Lemma.
Lemma 2 Let ψ be a CNF formula represented as a set of sets. Suppose there exists a pair $c_{1}, c_{2} \in \psi$ of clauses such that $\mathcal{R}_{c_{2}}^{c_{1}} \notin \psi$ exists. Then $\psi \Leftrightarrow \psi \cup\left\{\mathcal{R}_{c_{2}}^{c_{1}}\right\}$.

Proof Clearly, any assignment that does not satisfy CNF formula ψ cannot satisfy a CNF formula which includes a subset of clauses equal to ψ. Therefore, no satisfying assignment for ψ implies none for $\psi \cup\left\{\mathcal{R}_{c_{2}}^{c_{1}}\right\}$.

Now suppose M is a model for ψ. Let v be the pivot variable for c_{1} and c_{2}. Suppose $v \in M$. One of c_{1} or c_{2} contains $\neg v$. That clause must also contain a literal that has value 1 under M or else it is falsified by M. But that literal exists in the resolvent $\mathcal{R}_{c_{2}}^{c_{1}}$, by definition. Therefore, $\mathcal{R}_{c_{2}}^{c_{1}}$ is satisfied by M and so is $\psi \cup\left\{\mathcal{R}_{c_{2}}^{c_{1}}\right\}$. A similar argument applies if $v \notin M$.

The resolution method makes use of Lemma 2 and the fact that a clause containing no literals cannot be satisfied by any truth assignment. A resolution algorithm for CNF formulas is presented in Fig. 16. It uses the notion of pure literal (Page 315) to help find a model, if one exists. Recall, a literal is pure in formula ψ if it occurs in ψ, but its complement does not occur in ψ. If the algorithm outputs unsatisfiable, then the set of all resolvents generated by the algorithm is a resolution refutation for the input formula.

Theorem 4 Let ψ be a CNF formula represented as a set of sets. The output of Algorithm 2 on input ψ is unsatisfiable, if and only if ψ is unsatisfiable. If the output is a set of variables, then it is a model for ψ.

Proof If the algorithm returns unsatisfiable, one resolvent is the empty clause. From Lemma 2 and the fact that an empty clause cannot be satisfied, ψ is unsatisfiable.

If the algorithm does not return "unsatisfiable" the Otherwise block is entered because new resolvents cannot be generated from ψ. Next, a Repeat block to

```
Algorithm 2.
Resolution \((\psi)\)
/* Input \(\psi\) is a set of sets of literals representing a CNF formula */
/* Output is either "unsatisfiable" or a model for \(\psi\) */
/* Locals: set of variables M */
    Set \(M \leftarrow \emptyset\).
    Repeat the following until some statement below outputs a value:
        If \(\emptyset \in \psi\), Output "unsatisfiable."
        If there are two clauses \(c_{1}, c_{2} \in \psi\) such that \(\mathcal{R}_{c_{2}}^{c_{1}} \notin \psi\) exists,
            Set \(\psi \leftarrow \psi \cup\left\{\mathcal{R}_{c_{2}}^{c_{1}}\right\}\).
        Otherwise,
            Repeat the following while there is a pure literal \(l\) in \(\psi\) :
                If \(l\) is a positive literal, Set \(M \leftarrow M \cup\{l\}\).
                Set \(\psi \leftarrow\{c: c \in \psi, l \notin c\}\).
            Arbitrarily index all variables in \(V_{\psi}\) as \(v_{1}, v_{2}, \ldots, v_{n}\).
            Repeat the following for \(i\) from 1 to \(n\) :
                If \(M_{1: i}\) falsifies some clause in \(\psi\), Set \(M \leftarrow M \cup\left\{v_{i}\right\}\).
                Output \(M\).
```

Fig. 16 Resolution algorithm for CNF formulas
remove clauses containing pure literals is executed, followed by a final Repeat block which adds some variables to M.

Consider the result of the Repeat block on pure literals. All the clauses removed in this block are satisfied by M because all variables associated with negative pure literals are absent from M and all variables associated with positive pure literals are in M. Call the set of clauses remaining after this Repeat block ψ^{\prime}. Now, consider the final Repeat block. If $\psi^{\prime}=\emptyset$, then all clauses are satisfied by M from the previous Repeat block, and $M_{1: i}$ will never falsify a clause for any i. In that case M is returned and is a model for ψ. So suppose $\psi^{\prime} \neq \emptyset$. The only way a clause can be falsified by $M_{1: 1}$ is if it is $\left\{v_{1}\right\}$. In that case, the line "Set $M \leftarrow M \cup\left\{v_{i}\right\}$ " changes M to satisfy that clause. The clause $\left\{\neg v_{1}\right\} \notin \psi^{\prime}$ because otherwise it would have resolved with $\left\{v_{1}\right\}$ to give $\emptyset \in \psi$ which violates the hypothesis that the pure literal Repeat block was entered. Therefore, no clauses are falsified by $M_{1: 1}$ at the beginning of the second iteration of the Repeat block when $M_{1: 2}$ is considered.

Assume the general case that no clause is falsified for $M_{1: i-1}$ at the beginning of the i th iteration of the final Repeat block. A clause c_{1} will be falsified by $M_{1: i}$ but not by $M_{1: i-1}$ if it contains literal v_{i}, which cannot be a pure literal that was processed in the previous Repeat block. Then, the line "Set $M \leftarrow M \cup\left\{v_{i}\right\}$ " changes M to satisfy c_{1} without affecting any previously satisfied clauses. However, it is possible that a clause that was not previously satisfied becomes falsified by the change. If there were such a clause c_{2}, it must contain literal $\neg v_{i}$ and no other literal in c_{2} would have a complement in c_{1}; otherwise, it would already have been satisfied by $M_{1: i-1}$. That means ψ, before the pure literal Repeat block, would contain $\mathcal{R}_{c_{2}}^{c_{1}}$. Moreover, $\mathcal{R}_{c_{2}}^{c_{1}}$ could not be satisfied by $M_{1: i-1}$ because such an assignment
would have satisfied c_{1} and c_{2}. But then $\mathcal{R}_{c_{2}}^{c_{1}}$ must be falsified by $M_{1: i-1}$ because it contains literals associated only with variables v_{1}, \ldots, v_{i-1}. But this is impossible by the inductive hypothesis. It follows that the line "Set $M \leftarrow M \cup\left\{v_{i}\right\}$ " does not cause any clauses to be falsified and that no clause is falsified for $M_{1: i}$. Since no clause is falsified by $M_{1: n}$, all clauses must be satisfied by M which is then a model. The statement of the theorem follows.

Resolution is a powerful tool for mechanizing the solution to variants of SAT. However, in the case of an unsatisfiable input formula, since the resolution algorithm offers complete freedom to choose which pair of clauses to resolve next, it can be difficult to control the total number of clauses resolved and therefore the running time of the algorithm. The situation in the case of satisfiable input formulas is far worse since the total number of resolvents generated can be quite large even when a certificate of satisfiability can be generated quite quickly using other methods.

It is easy to find examples of formulas on which the resolution algorithm may perform poorly or well, depending on the order of resolvents, and one infinite family is presented here. Let there be n normal variables $\left\{v_{0}, v_{1}, \ldots, v_{n-1}\right\}$ and $n-1$ selector variables $\left\{z_{1}, z_{2}, \ldots, z_{n-1}\right\}$. Let each clause contain one normal variable and one or two selector variables. For each $0 \leq i \leq n-1$, let there be one clause with v_{i} and one with $\neg v_{i}$. The selector variables allow the clauses to be chained together by resolution to form any n-literal clause consisting of normal variables. Therefore, the number of resolvents generated could be as high as $2^{O(n)}$ although the input length is $O(n)$. The family of input formulas is specified as follows:

$$
\begin{aligned}
& \left\{\left\{v_{0}, \neg z_{1}\right\},\left\{z_{1}, v_{1}, \neg z_{2}\right\},\left\{z_{2}, v_{2}, \neg z_{3}\right\}, \ldots,\left\{z_{n-2}, v_{n-2}, \neg z_{n-1}\right\},\left\{z_{n-1}, v_{n-1}\right\},\right. \\
& \left.\left\{\neg v_{0}, \neg z_{1}\right\},\left\{z_{1}, \neg v_{1}, \neg z_{2}\right\}, \quad \ldots \quad,\left\{z_{n-2}, \neg v_{n-2}, \neg z_{n-1}\right\},\left\{z_{n-1}, \neg v_{n-1}\right\}\right\} .
\end{aligned}
$$

The number of resolvents generated by the resolution algorithm greatly depends on the order in which clauses are chosen to be resolved. Resolving vertically, the 0th column adds resolvent $\left\{\neg z_{1}\right\}$. This resolves with the clauses of column 1 to add $\left\{v_{1}, \neg z_{2}\right\}$ and $\left\{\neg v_{1}, \neg z_{2}\right\}$, and these two add resolvent $\left\{\neg z_{2}\right\}$. Continuing, resolvents $\left\{\neg z_{3}\right\}, \ldots,\left\{\neg z_{n-1}\right\}$ are added. Finally, $\left\{\neg z_{n-1}\right\}$ resolves with the two clauses of column $n-1$ to generate resolvent \emptyset showing that the formula is unsatisfiable. The total number of resolutions executed is $O(n)$ in this case. On the other hand, resolving horizontally (resolve one clause of column 0 with a clause of column 1 , then resolve the resolvent with a clause from column 2, and so on), all $2^{n} n$-literal clauses of normal variables can be generated before \emptyset is.

The number of resolution steps executed on a satisfiable formula can be outrageous. Remove column $n-1$ from the above formulas. They are then satisfiable. But that is not known until $2^{O(n)}$ resolutions fail to generate \emptyset.

This example may suggest that something is wrong with resolution and that it should be abandoned in favor of faster algorithms. While this is reasonable for satisfiable formulas, it may not be for unsatisfiable formulas. As illustrated by Theorem 5, in the case of providing a certificate of unsatisfiability, the resolution algorithm can always simulate the operation of many other algorithms in time
bounded by a polynomial on input length. So the crucial problem for the resolution algorithm, when applied to unsatisfiable formulas, is determining the order in which clauses should be resolved to keep the number of resolvents generated at a minimum. A significant portion of this chapter deals with this question. However, first consider an extension to resolution that has shown improved ability to admit short refutations.

5.3 Extended Resolution

In the previous section it was shown that the size of a resolution refutation can vary enormously depending on the order in which resolvents are formed. That is, for at least one family of formulas, there are both exponentially long and linearly long refutations. But for some families of formulas, nothing shorter than exponential size resolution refutations is possible. However, the simple idea of extended resolution can sometimes yield short refutations in such cases.

Extended resolution is based on a result of Tseitin [139] who showed that, for any pair of variables v, w in a given CNF formula ψ, the following expression may be appended to ψ :

$$
\begin{equation*}
(z \vee v) \wedge(z \vee w) \wedge(\neg z \vee \neg v \vee \neg w) \tag{3}
\end{equation*}
$$

where z is a variable that is not in ψ. From Fig. 14 this is equivalent to

$$
z \leftrightarrow(\neg v \vee \neg w)
$$

which means either v and w both have value 1 (then $z=0$) or at least one of v or w has value 0 (then $z=1$). Observe that as long as z is never used again, any of the expressions of Fig. 14 can be used in place of or in addition to (3). More generally,

$$
z \leftrightarrow f\left(v_{1}, v_{2}, \ldots, v_{k}\right)
$$

can be used as well where f is any Boolean function of arbitrary arity. Judicious use of such extensions can result in polynomial size refutations for problems that have no polynomial size refutations without extension, a notable example being the pigeonhole formulas.

By adding variables not in ψ, one obtains, in linear time, a satisfiabilitypreserving translation from any propositional expression to CNF with at most a constant factor blowup in expression size as shown in Sect. 5.1.

5.4 Davis-Putnam Resolution

The Davis-Putnam procedure (DPP) [51] is presented here mainly for historical reasons. In DPP, a variable v is chosen and then all resolvents with v as pivot are
generated. When no more such resolvents can be generated, all clauses containing v or $\neg v$ are removed and the cycle of choosing a variable, generating resolvents, and eliminating clauses is repeated to exhaustion. The fact that it works is due to the following result.

Lemma 3 Let ψ be a CNF formula. Perform the following operations:

```
\(\psi_{1} \leftarrow \psi\).
Choose any variable \(v\) from \(\psi_{1}\).
Repeat the following until no new resolvents with \(v\) as pivot can be
added to \(\psi_{1}\) :
    If there is a pair of clauses \(c_{1}, c_{2} \in \psi_{1}\) such that \(\mathcal{R}_{c_{2}}^{c_{1}}\) with \(v\)
    as pivot exists and \(\mathcal{R}_{c_{2}}^{c_{1}} \notin \psi_{1}\),
        \(\psi_{1} \leftarrow \psi_{1} \cup\left\{\mathcal{R}_{c_{2}}^{c_{1}}\right\}\).
\(\psi_{2} \leftarrow \psi_{1}\).
Repeat the following while there is a clause \(c \in \psi_{2}\) such that \(v \in c\)
or \(\neg v \in c\) :
    \(\psi_{2} \leftarrow \psi_{2} \backslash\{c\}\).
```

Then ψ is satisfiable if and only if ψ_{2} is satisfiable.
Proof By Lemma $2 \psi_{1}$ is functionally equivalent to ψ. Since removing clauses cannot make a satisfiable formula unsatisfiable, if ψ and therefore ψ_{1} is satisfiable, then so is ψ_{2}.

Now, suppose ψ is unsatisfiable. Consider any pair of assignments M (without v) and $M \cup\{v\}$. Either both assignments falsify some clause not containing v or $\neg v$ or else all clauses not containing v or $\neg v$ are satisfied by both M and $M \cup\{v\}$. In the former case, some clause common to ψ and ψ_{2} is falsified by M, so both formulas are falsified by M. In the latter case, M must falsify a clause $c_{1} \in \psi$ containing v, and $M \cup\{v\}$ must falsify a clause containing $\neg v$. Then the resolvent $\mathcal{R}_{c_{2}}^{c_{1}} \in \psi_{2}$ is falsified by M. Therefore, since every assignment falsifies ψ, ψ_{2} is unsatisfiable.

Despite the apparent improvement in the management of clauses over the resolution algorithm, DPP is not considered practical. However, it has spawned some other commonly used variants, especially the next algorithm to be discussed.

5.5 Davis-Putnam Loveland Logemann Resolution

Here a reasonable implementation of the key algorithmic idea in DPP is presented. The idea is to repeat the following: choose a variable, take care of all resolutions due to that variable, and then erase clauses containing it. The algorithm, called DPLL [52], is shown in Fig. 17. It was developed when Loveland and Logemann attempted to implement DPP but found that it used too much RAM. So they changed the way variables are eliminated by employing the splitting rule: assignments are

```
Algorithm 3.
DPLL \((\psi)\)
/* Input \(\psi\) is a set of sets of literals representing a CNF formula */
/* Output is either "unsatisfiable" or a model for \(\psi \quad\) */
/* Locals: integer d, variable stack \(V_{P}\), list of formulas \(\psi_{0}, \psi_{1}, \ldots\) */
/* partial assignments \(M_{1: d}\). */
    Set \(d \leftarrow 0\); Set \(M_{1: 0} \leftarrow \emptyset\); Set \(\psi_{0} \leftarrow \psi\); Set \(V_{P} \leftarrow \emptyset\).
    Repeat the following until some statement outputs a value:
    If \(\psi_{d}=\emptyset\), Output \(M_{1: d}\).
        If \(\emptyset \in \psi_{d}\),
            Repeat the following until \(l\) is "tagged."
                If \(V_{P}=\emptyset\), Output "unsatisfiable."
                Pop \(l \leftarrow V_{P}\).
                Set \(d \leftarrow d-1\).
            Push \(V_{P} \leftarrow \neg l\). \(\quad /^{*} l\) and \(\neg l\) are not tagged \(* /\)
            If \(l\) is a negative literal then \(M_{1: d+1} \leftarrow M_{1: d} \cup\{\neg l\}\).
            Otherwise, \(M_{1: d+1} \leftarrow M_{1: d}\).
            Set \(\psi_{d+1} \leftarrow\left\{c-\{\neg l\}: c \in \psi_{d}, l \notin c\right\}\).
            Set \(d \leftarrow d+1\).
        Otherwise,
            If there exists a pure literal in \(\psi_{d}\),
                Choose a pure literal \(l\).
            Otherwise, if there is a unit clause in \(\psi_{d}\),
                Choose a literal \(l\) in a unit clause and "tag" \(l\).
                    Otherwise,
                Choose a literal \(l\) in \(\psi_{d}\) and "tag" \(l\).
            Push \(V_{P} \leftarrow l\).
            If \(l\) is a positive literal, \(M_{1: d+1} \leftarrow M_{1: d} \cup\{l\}\).
            Otherwise, \(M_{1: d+1} \leftarrow M_{1: d}\).
            Set \(\psi_{d+1} \leftarrow\left\{c-\{\neg l\}: c \in \psi_{d}, l \notin c\right\}\).
            Set \(d \leftarrow d+1\).
```

Fig. 17 DPLL algorithm for CNF formulas
recursively extended by one variable in both possible ways, looking for a satisfying assignment. Thus, DPLL is of the divide-and-conquer family of algorithms.

The DPLL algorithm of Fig. 17 is written iteratively instead of recursively for better comparison with other algorithms to be discussed later. Omitted is a formal proof of the fact that the output of DPLL on input ψ is unsatisfiable if and only if ψ is unsatisfiable, and if the output is a set of variables, then it is a model for ψ. The reader may consult [52] for details.

A common visualization of the flow of control of DPLL and similar algorithms involves a graph structure known as a search tree. Since search trees will be used several times in this chapter to assist in making some difficult points clear, this concept is explained here. A search tree is a rooted acyclic digraph where each

Fig. 18 A DPLL refutation tree for the above CNF formula
vertex has out-degree at most 2 and in-degree 1 except for the root. Each internal vertex represents some Boolean variable and each leaf may represent a clause or may have no affiliation. If an internal vertex represents variable v and it has two outward-oriented edges, then one is labeled v and the other is labeled $\neg v$; if it has one outward-oriented edge, that edge is labeled either v or $\neg v$. All vertices encountered on a path from root to a leaf represent distinct variables. The labels of edges on such a path represent a truth assignment to those variables: $\neg v$ means set the value of v to 0 and v means set the value of v to 1 .

The remaining details are specific to a particular CNF formula ψ which is input to the algorithm modeled by the search tree. A leaf is such that the partial truth assignment represented by the path from the root either minimally satisfies all clauses of ψ or minimally falsifies at least one clause of ψ. In the latter case, one of the clauses falsified becomes the label for the leaf. If ψ is unsatisfiable, all leaves are labeled and the search tree is a refutation tree. A fully labeled refutation tree modeling one possible run of DPLL on a particular unsatisfiable CNF formula is shown in Fig. 18. With reference to Fig. 17, a path from the root to any vertex represents the state of V_{P} at some point in the run. For a vertex with out-degree 2, the left edge label is a tagged literal. For vertices with out-degree 1, the single edge label is a pure literal.

The DPLL algorithm is a performance compromise. Its strong point is that sets of resolvents are constructed incrementally, allowing some sets of clauses and resolvents to be entirely removed from consideration long before the algorithm terminates. But this is offset by the weakness that some freedom in choosing the order of forming resolvents is lost, so more resolvents may have to be generated. Applied to a satisfiable formula, DPLL can be a huge winner over the resolution
algorithm: if the right choices for variable elimination are made, models may be found in $O(n)$ time. However, for an unsatisfiable formula it is not completely clear which algorithm performs best generally. Theorem 5 below shows that if there is a short DPLL refutation for a given unsatisfiable formula, then there must be a short resolution refutation for the same formula. ${ }^{5}$ But, in [7] a family for formulas for which a shortest resolution proof is exponentially smaller than the smallest DPLL refutation is presented. These facts seem to give the edge to resolution. On the other hand, it may actually be relatively easy to find a reasonably short DPLL refutation but very hard to produce an equally short or shorter resolution refutation. An important determining factor is the order in which variables or resolutions are chosen, and the best order is often sensitive to structural properties of the given formula. For this reason, quite a number of choice heuristics have been studied and some results on these are presented later in this chapter.

Many modern SAT solvers augment DPLL with other features such as restarts and conflict-driven clause learning. The refutation complexity of a solver so modified is then theoretically similar to that of resolution. More will be said about this in subsequent sections.

This section concludes with the following classic result.

Theorem 5 Suppose DPLL is applied to a given unsatisfiable CNF formula ψ and suppose the two lines "Set $\psi_{d+1} \leftarrow\left\{c-\{\neg l\}: c \in \psi_{d}, l \notin c\right\}$ " are together executed p times. Then there is a resolution refutation in which no more than $p / 2$ resolvents are generated.

Proof Run DPLL on ψ and, in parallel, generate resolvents from clauses of ψ and other resolvents. At most one resolvent will be generated every time the test "If $V_{P}=\emptyset$ " succeeds or the line "Pop $l \leftarrow V_{P}$ " is executed and l is neither tagged nor a pure literal. But this is at most half the number of times ψ_{d+1} is set. Hence, when DPLL terminates on an unsatisfiable formula, at most $p / 2$ resolvents will be generated. Next, it is shown how to generate resolvents and show that \varnothing is a resolvent of two of them.

The idea can be visualized as a series of destructive operations on a DPLL refutation tree. Assume clauses in ψ label leaves as discussed on Page 358. Repeat the following: if there are two leaf siblings, replace the subtree of the two siblings and their parent either with the resolvent of the leaf clauses, if they resolve, or with the leaf clause that is falsified by the assignment represented by the path from root to the parent (there must be one if ψ is unsatisfiable); otherwise, there is a pair of vertices consisting of one leaf and a parent, so replace this pair with the leaf. Replacement entails setting the edge originally pointing to the parent to point to the replacement vertex. Eventually, the tree consists of a root only and its label is the empty clause.

[^3]This visualization is implemented as follows. Define a stack S and set $S \leftarrow \emptyset$. The stack will hold clauses of ψ and resolvents. Run DPLL on ψ. In parallel, manipulate S as follows:

1. The test "If $\emptyset \in \psi_{d}$ ":

Whenever this test succeeds, there is a clause $c \in \psi$ whose literals can only be complements of those in V_{P} so push $S \leftarrow c$.
2. The line "Pop $l \leftarrow V_{P}$ ":

Immediately after execution of this line, if l is not tagged and is not a pure literal, then do the following. Pop $c_{1} \leftarrow S$ and pop $c_{2} \leftarrow S$. If c_{1} and c_{2} can resolve, push $S \leftarrow \mathcal{R}_{c_{2}}^{c_{1}}$; otherwise, at least one of c_{1} or c_{2}, say, c_{1}, does not contain l or $\neg l$, so push $S \leftarrow c_{1}$.
3. The line "If $V_{P}=\emptyset$, Output 'unsatisfiable.'":

The algorithm terminates so pop $c_{1} \leftarrow S$, pop $c_{2} \leftarrow S$, and form the resolvent $c_{t}=\mathcal{R}_{c_{2}}^{c_{1}}$.
We claim that, when the algorithm terminates, $c_{t}=\emptyset$.
To prove this claim, it is shown that when c_{1} and c_{2} are popped in Step 2, c_{2} contains literals that are only complementary to those of a subset of $V_{P} \cup\{l\}$ and c_{1} contains literals that are only complementary to those of a subset of $V_{P} \cup\{\neg l\}$, and if l is a pure literal in the same step, then c_{1} contains literals complementary to those of a subset of V_{P}. Since $V_{P}=\emptyset$ when c_{1} and c_{2} are popped to form the final resolvent, c_{t}, it follows that $c_{t}=\emptyset$.

By induction on the maximum depth of stacking of c_{2} and c_{1}. The base case has c_{2} and c_{1} as clauses of ψ. This can happen only if c_{2} had been stacked in Step 1 then Step 2 was executed and then c_{1} was stacked soon after in Step 1. It is straightforward to check that the hypothesis is satisfied in this case.

Suppose the hypothesis holds for maximum depth up to k and consider a situation where the maximum depth of stacking is $k+1$. There are two cases. First, suppose l is a pure literal. Then neither l nor $\neg l$ can be in c_{1} so, by the induction hypothesis, all of the literals of c_{1} must be complementary to literals of V_{P}. Second, suppose l is not tagged and not a pure literal. Then c_{1} and c_{2} are popped. By the induction hypothesis, c_{1} contains only literals complementary to some in $V_{P} \cup\{\neg l\}$ and c_{2} contains only literals complementary to some in $V_{P} \cup\{l\}$. Therefore, if they resolve, the pivot must be l and the resolvent contains only literals complementary to some in V_{P}. If they do not resolve, by the induction hypothesis, one must not contain l or $\neg l$. That one has literals only complementary to those of V_{P}, so the hypothesis holds in this case.

5.6 Conflict-Driven Clause Learning

Early SAT solvers used refinements and enhancements to DPLL to solve SAT instances. Recently, these refinements and enhancements have been standardized and developed into a parameterized algorithm. This algorithm is far enough removed from DPLL that it is commonly referred to as conflict-driven clause learning (CDCL) [119, 130, 131].

The reasons for the increased solving power and efficiency of modern SAT solvers lie in specialized CDCL techniques tailored to support core CDCL operations such as binary constraint propagation (BCP) and heuristic computation. Each technique on its own is not very impressive but, when all of these techniques are fitted together in the DPLL framework, orders of magnitude improvement can be seen. For example, conflict clause learning helps to create a dynamic search space that is DAG-like instead of treelike as was the case for early DPLL-based algorithms [16]. This technique, when used in conjunction with dynamic restarts, is as strong as general resolution and exponentially more powerful than DPLL [16]. The combination of such techniques has allowed SAT solvers to be used practically in a wide range of fields such as bioinformatics [107], cryptography [110, 132], and planning $[46,151]$ as well as on many hard combinatorial problems such as van der Waerden numbers [100, 101]. Also, the recent integration of SAT-based techniques with theory solvers (this technology is named SMT [126] - details are given in Sect. 5.7) is enabling push-button solutions to industrial strength problems that previously required expert human interaction to solve (e.g., see [77]).

Two chapters in the Handbook of Satisfiability [19] cover CDCL extensively. The reader is referred to [50] and [131] for details. The remainder of this section highlights the main points.

5.6.1 Conflict Analysis

DPLL explores both sides of a choicepoint before backtracking over it. This is called chronological backtracking and is not generally conducive to good SAT solving because it is often the case that the same conflict exists on both sides of a choicepoint. Analyzing the conflict on one side may prevent re-computation of the same conflict on the other side, in which case the choicepoint can be backjumped over. Performing conflict analysis in the framework of DPLL enables nonchronological backtracking, which, in effect, works to counteract bad decisions made by the search heuristic.

Conflict analysis is often depicted in terms of an implication graph, though, in practice, the implication graph is not actually built. In modern SAT solvers, new clauses are generated by resolution steps ordered by the current search tree path. Specifically, a conflict is reached when two asserting clauses infer opposing literals during BCP. These two clauses can be resolved together to create a new clause called a conflict clause. This clause will either be the empty clause (in which case the formula is unsatisfiable) or it will, if evaluated under the current partial assignment, be falsified. Consider the most recently assigned literal in the conflict clause. If the literal was assigned by an asserting clause, the conflict clause and the asserting clause are resolved, creating a new conflict clause, and the process is repeated. If the literal was assigned by a choicepoint, the current search tree up to the literal is undone and the value assigned by the choicepoint is flipped. All new conflict clauses may be safely added to the original CNF formula (i.e., learned) because they are logical consequences of the original formula [130]. Learning conflict clauses helps to prune the search space by preventing re-exploration of shared search structure, especially when used in conjunction with restarts. Also, prior to adding
newly learned clauses, it may be beneficial to attempt to minimize the clauses by performing a restricted version of resolution with other asserting clauses [15, 143].

There is at least one special case to consider when learning conflict clauses. If a conflict clause contains only one literal at the current decision level, called a unique implication point (UIP), the search state can backjump to the second most recently assigned literal in the clause. This will cause the UIP literal to be naturally inferred via BCP [112] and has the effect of promoting those parts of the search tree relevant to the current conflict.

Conflict analysis is also used to generate resolution proofs of unsatisfiable instances. In the same way that an assignment to a satisfiable instance acts as a polynomial-time checkable certificate that an instance is satisfiable, a resolution proof acts as a certificate of unsatisfiability, checkable in linear time and space on the number of learned clauses (though the number of learned clauses can be exponential on the number of variables in the best case). More information on this topic can be found in [15, 150], and [142].

5.6.2 Conflict Clause Memory Management

Not all derived conflict clauses can be stored. Too many conflict clause increases the overhead of finding an applicable one, and too few conflict clauses reduce the chance that a good one can be found to prune the search space. Therefore, the size of the conflict clause database, what goes into it, and how long entries should stay there have been well studied. The number of conceivable schemes is quite large. A good one was recently discovered and reported in [11]. In that paper the learned clause measure LBD (for literals blocks distance) is defined to be the number of different levels at which literals of a clause were assigned values as choicepoints up to the current assignment. A small LBD suggests a learned clause that was useful in generating a long sequence of unit resolutions. It was found in experiments on all SAT-Race ' 06 benchmarks that 40% of unit resolutions occur in clauses of $\mathrm{LBD}=2$ versus 20% on 2-literal clauses, and generally, the lower the LBD, the more significant the contribution to BCP. Due to this, the following cleaning strategy was proposed: remove half of the learned clauses, not including a class of easy discovered clauses of least LBD, every $20000+500 * x$ conflicts, where x is the number of times this operation has been performed before on the current input. Adding this strategy to existing solvers resulted in a significant improvement in performance.

Many other ideas for determining the life of conflict clauses have been proposed and tried. Several of these are mentioned in [131] near the end of the chapter.

5.6.3 Lazy Structures

An important aspect of CDCL associated with performance has to do with maintaining data structures that store solver state. The degree to which these structures are managed lazily has an impact on the optimal choice of other solver mechanisms. For example, lazy structures result in faster backtracking, so "the authors of Chaff proposed to always stop clause learning at the first UIP" and "always take the backtrack step" [131]. In addition, the implementation of BCP and conflict analysis
is influenced by the implementation of lazy structures. Using lazy structures, the fact that a clause becomes satisfied by a state change may not be reported to solver mechanisms immediately or even at all. This presents potential savings by preventing some unnecessary computation and does not affect the correctness of the solver. Next, in this section the classic notion of watched literals [112] is used to illustrate this point.

Suppose a clause is stored as a sequence of literals and suppose the number of literals is at least 2. For each clause, assign two pointers each pointing to one of the literals but both pointing to different literals of the clause. The literals pointed to are called watched literals and are distinguished in name as the first and second watched literal. The following properties are maintained always:

1. A clause is satisfied if and only if its first watched literal has value 1 .
2. A clause is falsified if and only if its first and second watched literals have value 0 .
3. A clause is unit if and only if one watched literal is unassigned and the other has value 0 .
4. A clause is unassigned and not unit if and only if both watched literals are unassigned.
Initially, a clause is unassigned and the pointers are pointing to arbitrary literals. If a clause is unassigned, not unit, and a literal other than the second watched literal takes value 1, then that literal becomes the first watched literal. If the literal taking value 1 is the second watched literal, the first and second watched literals are swapped. If both watched literals are unassigned and one of them takes value 0 , a check must be made to determine whether the clause has another unassigned literal. If it does not, the clause becomes a unit clause and the single unassigned literal takes value 1 and becomes the first watched literal swapping title, if necessary, with the watched literal of value 0 . Otherwise, the pointer referencing the recently assigned watched literal gets set to point to the unassigned literal that was found during the check. The search for an unassigned literal can proceed in any direction among the literals of the clause. Observe that the watched literal pointers do not have to be reset on backtrack. Further savings are obtained by associating a level and value field with every literal: when a clause is satisfied or falsified, it is the level and value of the first watched literal that is set. Since watched literals do not change during backtrack, this information represents clause status as well. Earlier schemes for managing clause status during backtrack associate level and value fields with clauses and require searching the literals of a clause to determine status. Thus, implementing the watched literal concept results in much less backtracking overhead and significantly increases the number of backtracks handled per second.

As can be observed from the above discussion, watched literals are useful in reacting to single-variable inferences. But more advanced techniques look at multivariable inferences, for example, two-variable equivalence. Watched literals cannot help in this case. Additional clause references, of course, may be used to support these advances [141] at added expense. Another idea [106] is to maintain an order of assigned literals in a clause by nondecreasing level, while the unassigned literals remain watched as above. As a variable is assigned a value, it is sifted into
its proper place in the ordered list. The problem with this idea is that all literals in the ordered list may need to be visited on a backtrack.

5.6.4 CDCL Heuristics

Lazy data structures can drastically increase the speed of BCP, but since the current state of the search is not readily available, traditional heuristics such as MOMs (see [60] for a complete discussion), Jeroslow-Wang [80], and Johnson [81] cannot be used. The first CDCL heuristic is the variable state independent decaying sum (VSIDS) [112] heuristic. VSIDS maintains one counter per literal in the SAT instance, initialized to the number of clauses each literal occurs in. VSIDS branches on the literal with the highest count, though this requires sorting the counters, which is expensive, and so is only done periodically. When a new clause is learned, the counts for each literal in the clause are incremented. Also periodically, the counters are halved. This heuristic and many similar variants efficiently glean information from learned clauses to guide the solver towards unsatisfiable cores, enabling modern solvers to solve large SAT instances (millions of variables and clauses) that have small resolution proofs.

5.6.5 Restarts

Conflict-directed heuristics can sometimes cause a solver to focus too heavily on one particular region of the search space, leading to heavy-tailed runtime distribution (where progress seems to exponentially decrease the longer a solver runs). One way to positively modify this behavior [68] is to restart. A dynamic restart [76,88] clears a solver's current partial assignment; heuristic information and learned clauses are kept, and a short preprocessing phase where the learned clause database is garbage collected may typically follow a restart. As reported empirically in the literature, "it is advantageous to restart often" [50].

5.7 Satisfiability Modulo Theories

Despite highly significant and broad advances to SAT solver design, there are still many problems for which DPLL and CDCL variants are a challenge. For example, it is well known that verifying correctness of arithmetic circuits is generally difficult for SAT solvers. The problem is that datapath operations are over a fixed bit-width and, beyond modular arithmetic, some operations such as multiplication are not linear and particularly vexing for SAT solvers. An accepted method, called bitblasting, for dealing with small bit-widths is to describe operations as propositional formulas over vectors of Boolean variables, convert to CNF using the results of Sect. 5.1, and solve with a SAT solver. But it is doubtful that bit-blasting is going to be universally practical for 64-bit or even 32-bit logic. As another, more universally occurring example, SAT solvers have a difficult time handling cardinality constraints and, more generally, constraints comparing numeric expressions. To mitigate these and other problems, a significant body of research has studied the use of a SAT solver to manage a collection of special purpose solvers for first order theories,

Fig. 19 An SMT instance with uninterpreted functions and quantifiers

```
```

(set-evidence! true)

```
```

(set-evidence! true)
(define f::(-> int int))
(define f::(-> int int))
(define g::(-> int int))
(define g::(-> int int))
(define a::int)
(define a::int)
(assert (forall (x::int) (= (f x) x)))
(assert (forall (x::int) (= (f x) x)))
(assert (forall (x::int) (= (g (g x)) x)))
(assert (forall (x::int) (= (g (g x)) x)))
(assert (/= (g (f (g a))) a))
(assert (/= (g (f (g a))) a))
(check)

```
```

(check)

```
```

```
(set-evidence! true)
```

(set-evidence! true)
(define b1::(bitvector 8))
(define b1::(bitvector 8))
(define b2::(bitvector 8))
(define b2::(bitvector 8))
(define v1::(bitvector 8))
(define v1::(bitvector 8))
(assert (= v1 (mk-bv 8 39)))
(assert (= v1 (mk-bv 8 39)))
(define v2::(bitvector 8))
(define v2::(bitvector 8))
(assert (= (bv-mul b1 (mk-bv 8 17)) b2))
(assert (= (bv-mul b1 (mk-bv 8 17)) b2))
(assert (= (bv-add (bv-shift-right0 b2 2) v2) v1))
(assert (= (bv-add (bv-shift-right0 b2 2) v2) v1))
(check)

```
(check)
```

Fig. 20 An SMT instance with bit-vector expressions
including bit-vector arithmetic. This extension of SAT has found applications in hardware verification, software model checking and testing, and vulnerability detection, among other applications, and is called Satisfiability Modulo Theories or SMT.

A formal specification of SMT is not given here; the reader is invited to check [12] for the syntax and semantics of SMT-LIB, the official documented language of SMT solvers. Most importantly, with respect to SAT, an instance of SMT is a formula in first-order logic where uninterpreted functions are admitted and Boolean variables are used to tie predicates from disparate theories and allow a SAT solver to decide the consistency of the constraints of the instance. The scope of SMT is made apparent through the SMT examples shown in Figs. 19 and 20. The examples are expressed in a lisp-like language that is native to YICES [55], one of the leading available SMT solvers, and may actually be input to YICES.

In Fig. 19, £ and g are uninterpreted functions: note that only their signatures, namely, a single int as input and an int as output, are defined in the second and third lines. However, the fifth and sixth lines force $f(x)=x, g(y)=x$, and $g(x)=y$ for all integers. This is inconsistent with the seventh line which requires, for any integer a, that $g(f(g(a)))$, which is $g(g(a))$ and therefore a from the above, is not equal to a. On this input YICES returns unsat. If $/=$ (not equal) is changed to $=$, YICES returns unknown with the following interpretation: $a=2, g(2)=1, f(1)=1, g(1)=a 2$. The first and eighth lines are YICES-specific directives.

Figure 20 shows constraints expressed in terms of bit-vector operations. This instance is satisfied by 8 -bit numbers b1 and v2 such that multiplying b1 by 17 , shifting right by 2 bits, and adding v 2 result in 39 .

YICES output on this example is as follows:

```
sat
(= v1 0b00100111)
(= b1 0b01110110)
(= b2 0b11010110)
(= v2 0b11110010)
```

That is, b1 is 118 and v2 is 242 , which is one of many possible solutions.
Clearly, admitting bit-vector operations is important as it makes circuit design and verification problems easier to express and solve: trying to express the constraints of such problems as a CNF formula is unnatural and time-and-space consuming. A special solver for the theory of bit-vector arithmetic and logic may be developed to handle bit-vector predicates such as those in Fig. 20. Other theory solvers may be designed to handle other problems that are difficult for CNF solvers. Examples of such theories, including the theory of bit-vectors, are as follows:

1. Linear arithmetic ($L A$): constraints are equations or inequalities involving addition and subtraction over rational variables, constants, or constants times variables.
2. Uninterpreted functions (UF): all uninterpreted function, constant, and predicate symbols together with Leibniz's law that allows substitution of equals for equals.
3. Difference arithmetic: this is linear arithmetic restricted to equations or inequalities of the form $x-y \leq c$ where x and y are variables and c is a constant.
4. Nonlinear arithmetic: constraints are like linear arithmetic except that variables may be multiplied by other variables.
5. Arrays: array constraints ensure that the value of a memory location does not change unless a specific write operation on that location with a different value is executed and that a value written to a location may be accessed by a read operation. Symbols of this theory might be select and store with semantics given by the following:
```
select(store(v,i,e),j) = if i=j then e else select ( }v,j
store(v,i,select(v,i))=v
store(store(v,i,e),i,f)=store(v,i,f)
i}\not=j=>\operatorname{store(store(v,i,e),j,f)=store(store(v,j,f),i,e),
```

where $\operatorname{select}(v, j)$ means read the j th value from array v and $\operatorname{store}(v, i, e)$ means store the value e into the i th element of array v.
6. Lists: symbols of this theory might be car, cdr, cons, and atom with semantics given by the following:

```
car(cons(x,y)) =x
cdr(cons(x,y))=y
\negatom(x) => cons(car(x), cdr(x))=x
\negatom(cons(x,y))
```

7. Fixed-width bit-vectors: the main reason for including a bit-vector theory is to remove the burden of solving bit-level formulas from the SAT solver. As seen in Fig. 20, constraints are expressed at word level and may involve any machinelevel operations on words.
8. Recursive data types: this is an abstraction for common data structures that may be defined recursively such as linked lists and for common data types that may be defined recursively such as a tree or the natural numbers.
It is not within the scope of this chapter to discuss the construction of decision procedures for theories. The interested reader may begin a search for such information by consulting [13]. The remainder of this section will show how a SAT solver can be made to interact with constraints from several theories.

Some definitions are given now to make the procedures to be discussed later easier to express and analyze. A first-order formula is an expression consisting of a set V of variables and symbols $(),, \neg, \vee, \wedge, \rightarrow, \exists, \forall ;$ a set \mathcal{P} of predicate symbols; a set \mathcal{F} of function symbols, each with associated positive arity; and a set $C \subset \mathcal{F}$ of constant symbols which are just 0 -arity function symbols, for example, x or f. A signature, denoted Σ, is a subset of $\mathcal{F} \cup \mathcal{P}$. A first-order structure \mathcal{A} specifies a semantics for the above: that is, a domain A of elements, mappings of every n ary function symbol $f \in \Sigma$ to a total function $f^{\mathcal{A}}: A^{n} \mapsto A$ and mappings of every n-ary predicate symbol $p \in \Sigma$ to a relation $p^{\mathcal{A}} \subseteq A^{n}$. The symbols \exists and \forall are quantifiers and the scope of one of these is the entire formula. A sentence is a formula all of whose variables are bound by a quantifier (i.e., the formula has no free variables) and therefore evaluates either to true or false, depending on the structure it is evaluated over. A formula is a ground formula if it has no variables. Observe that $x+1 \leq y$ has no variables because x and y are constants in the theory of linear arithmetic and is therefore a ground formula. Denote $(\mathcal{A}, \alpha) \models \phi$ to mean the sentence ϕ evaluates to true in structure \mathcal{A} under variable assignment $\alpha: V \mapsto A^{|V|}$. Sentence ϕ is said to be satisfiable in \mathcal{A} if $(\mathcal{A}, \alpha) \models \phi$ for some α. Sentence ϕ is said to be valid in \mathcal{A} if $(\mathcal{A}, \alpha) \models \phi$ for every α. If \mathcal{A} is finite, the question $(\mathcal{A}, \alpha) \models \phi$ for some α and given ϕ is decidable. However, for infinite structures, the question may be undecidable.

A theory T is a set of first-order sentences expressed in the language of some signature Σ. Equality is implicit in the theories mentioned earlier so their signatures do not contain the symbol $=$. A model of T is a structure \mathcal{A} in which every sentence of T is valid. Denote by $T \models \phi$ the condition where \mathcal{A} is a model for T and $(\mathcal{A}, \alpha) \models \phi$ for all α. Then ϕ is said to be T-valid. Let \perp denote a formula that is not satisfied by any structure. Then ϕ is said to be T-satisfiable if $T \cup\{\phi\} \mid \neq \perp$, also written $T, \phi \not \models \perp . T$-validity and T-satisfiability are seen as dual concepts since $T, \neg \phi \models \perp$ if and only if $T \models \phi$.

One is generally interested in combining theories: that is, proving that statements with terms from more than one theory are valid over those combined theories. Suppose, for two theories T_{1} of Σ_{1} and T_{2} of Σ_{2}, there exist procedures P_{1} and P_{2} that determine whether a given formula ϕ_{1} expressed in the language of Σ_{1} is T_{1} valid and whether a given formula ϕ_{2} expressed in the language of Σ_{2} is T_{2}-valid,
respectively. It is generally not possible to the solve the problem of determining whether $\left\{\phi_{1}\right\} \cup\left\{\phi_{2}\right\}$ in the language of $\Sigma_{1} \cup \Sigma_{2}$ is $\left(T_{1} \cup T_{2}\right)$-valid with P_{1} and P_{2}. However, it can be under some modest restrictions that usually do not get in the way in practice. These restrictions will be assumed for the rest of this section and are as follows: theories T_{1} and T_{2} are decidable, $\Sigma_{1} \cap \Sigma_{2}=\emptyset$, and T_{1} and T_{2} are stably infinite - let C be an infinite set of constants not in signature Σ and define a theory T of Σ to be stably infinite if every T-satisfiable ground formula of signature $\Sigma \cup C$ is satisfiable in a model of T with an infinite domain of elements.

By the duality noted above, the validity problem can be treated as a satisfiability problem where it is more conveniently solved. Suppose ϕ is a formula that is logically equivalent to a DNF formula with m conjuncts $\phi_{i, 1} \wedge \phi_{i, 2}, i \in\{1,2, \ldots, m\}$, where $\phi_{i, 1}$ and $\phi_{i, 2}$ are expressed in the language of $\Sigma_{1} \cup C$ and $\Sigma_{2} \cup C$, respectively, and C is a set of constants that are shared by $\phi_{i, 1}$ and $\phi_{i, 2}$. Terms $\phi_{i, 1} \wedge \phi_{i, 2}$ are said to be in pure form. Clearly, ϕ is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable if and only if for all $i \in\{1,2, \ldots, m\}, \phi_{i, 1} \wedge \phi_{i, 2}$ is ($T_{1} \cup T_{2}$)-unsatisfiable. It is desirable to use P_{1} and P_{2} individually to determine this. By Craig's interpolation lemma [45], a pure-form term $\phi_{i, 1} \wedge \phi_{i, 2}$ is $\left(T_{1} \cup T_{2}\right)$-unsatisfiable if and only if there is a formula ψ, called an interpolant, whose free variables are a subset of the free variables contained in both $\phi_{i, 1}$ and $\phi_{i, 2}$ such that $T_{1}, \phi_{i, 1} \models \psi$ and $T_{2}, \phi_{i, 2}, \psi \models \perp$. Finding an interpolant is a primary goal of an SMT solver and the subject of much of the remainder of this section, the exposition of which is strongly influenced by Klaedtke [90]. Although combining only two theories is considered here, the process generalizes to more than two theories.

The first step in combining theories is to produce a pure-form formula from ϕ. This is accomplished by introducing variables to C which remove the dependence on objects from an alien theory through substitution. More specifically, suppose function $f \in \Sigma_{1}$ and one of its arguments t is a term, possibly a constant, expressed in Σ_{2}. Then create a new w, set $C=C \cup\{w\}$, add a new constraint $w=t$, and replace t by w in the argument list of f. Similarly, for predicates $p \in \Sigma_{1}, p \in \Sigma_{2}$ and function $f \in \Sigma_{2}$. If there is a constraint $s=t$ where $s \in \Sigma_{1}$ and $t \in \Sigma_{2}$, then create a new w, and replace the constraint with $w=s$ and $w=t$. If there is a constraint $s \neq t$, then add a new w_{1} and new w_{2} and replace the constraint with $w_{1}=s, w_{2}=t$, and $w_{1} \neq w_{2}$. For example, consider

$$
\phi=\{x \leq y, y \leq x+\operatorname{car}(\operatorname{cons}(0, x)), p(h(x)-h(y)), \neg p(0)\}
$$

which mixes uninterpreted functions, linear arithmetic, and lists. For this $\phi, C=$ $\{x, y\}$. The constraint on the left need not be touched because it only contains symbols from linear arithmetic. The subterm $h(x)-h(y)$ is mixed, so create new constants $g_{1}=h(x)$ and $g_{2}=h(y)$ and substitute $g_{1}-g_{2}$ for $h(x)-h(y)$. The term $p\left(g_{1}-g_{2}\right)$ is mixed, so create constant $g_{3}=g_{1}-g_{2}$ and substitute. The remaining term $p\left(g_{3}\right)$ has no alien subterms. The symbol 0 is alien to the theory of uninterpreted functions. Hence, create $g_{4}=0$ and substitute making the rightmost constraint $\neg p\left(g_{4}\right)$, and changing the list theory subterm to $\operatorname{car}\left(\operatorname{cons}\left(g_{4}, x\right)\right)$, both
of which may be left alone. However, the second constraint from the left is still mixed, so create $g_{5}=\operatorname{car}\left(\operatorname{cons}\left(g_{4}, x\right)\right)$ and substitute. This leaves

$$
\begin{align*}
& C=\left\{x, y, g_{1}, g_{2}, g_{3}, g_{4}, g_{5}\right\}, \\
& \phi_{1}=\left\{x \leq y, y \leq x+g_{5}, g_{3}=g_{1}-g_{2}, g_{4}=0\right\}, \\
& \phi_{2}=\left\{g_{1}=h(x), g_{2}=h(y), p\left(g_{4}\right)=\text { false, } p\left(g_{3}\right)=\text { true }\right\}, \text { (UF) } \\
& \phi_{3}=\left\{g_{5}=\operatorname{car}\left(\operatorname{cons}\left(g_{4}, x\right)\right)\right\}, \tag{Lists}
\end{align*}
$$

so ϕ has become a pure formula whose constraints are partitioned according to the theories of linear arithmetic, uninterpreted functions, and lists and are tied by newly created constants and equality constraints.

The next step is to propagate inferred equalities between the partitioned sections. First, this is illustrated using the above example, then a general procedure for propagation is presented. By the first axiom of the theory of lists, the constraint $g_{5}=\operatorname{car}\left(\operatorname{cons}\left(g_{4}, x\right)\right)$ infers $g_{4}=g_{5}$. This propagates to section LA where $g_{5}=0$ is inferred. Then $y \leq x$ is inferred and $x=y$ is inferred from $x \leq y$ and $y \leq x$. The inferred constraint $x=y$ propagates to section UF where $g_{1}=g_{2}$ is inferred. Propagating back to LA infers $g_{3}=0$ and finally $g_{3}=g_{4}$. But this contradicts UF constraints which say $p\left(g_{3}\right)=$ true and $p\left(g_{4}\right)=$ false. Hence, the conclusion is that ϕ is unsatisfiable in the combined theories of linear arithmetic, lists, and uninterpreted functions. Observe that ϕ_{1}, ϕ_{2}, and ϕ_{3} are all satisfiable in their respective theories.

Figure 21 shows an algorithm for determining satisfiability of a formula $\phi_{1} \wedge \phi_{2}$ that is in pure form with ϕ_{1} of signature $\Sigma_{1} \cup C, \phi_{2}$ of signature $\Sigma_{2} \cup C$, C a set of shared constants, and $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ and assumes there exist decision procedures P_{1} and P_{2} for theories T_{1} and T_{2} over Σ_{1} and Σ_{2}, respectively. It is straightforward to generalize this to any number of theories; it is also possible to use the generalized algorithm to decide any mixed theory formula by converting to DNF in pure form and applying the algorithm to the conjuncts separately. Step 1 applies decision procedures P_{1} and P_{2} to ϕ_{1} and ϕ_{2}. Both P_{1} and P_{2} not only decide whether their respective theories are consistent but also infer the maximum number of equalities from ϕ_{1} and ϕ_{2} within their respective theories. If no inconsistencies are found, these inferences are propagated out of their theories and the step is repeated; otherwise, unsatisfiable is returned. Step 2 does a case split in case a disjunction of equalities is inferred by one of the partitioned sets of constraints. Step 3 returns "satisfiable" if nothing else can be inferred and no inconsistencies between current sets ϕ_{1} and ϕ_{2} have been discovered. The algorithm always terminates since the number of shared constants is finite and the number of equalities added is directly related to that number. The algorithm closely follows the algorithm of the original Nelson-Oppen paper [113].

Completeness of Algorithm 4 is not difficult to see. Soundness is proved by observing that the algorithm produces an interpolant for ϕ_{1} and ϕ_{2} : namely, the residue of $\phi_{1} \wedge \phi_{2}$. The residue of a formula ϕ, denoted $\operatorname{Res}(\phi)$, is the strongest collection of equalities between constants that are inferred by the formula. The important property of residues is that if ϕ_{1} and ϕ_{2} are formulas whose signatures

```
Algorithm 4.
    CTSolver ( \(\phi_{1}, \phi_{2}, P_{1}, P_{2}\) )
    /* Input: formulas \(\phi_{1}\) over \(\Sigma_{1} \cup C\), \(\phi_{2}\) over \(\Sigma_{2} \cup C\),
        where \(\Sigma_{1} \cap \Sigma_{2}=\emptyset\), and decision procedures
        \(P_{1}, P_{2}\) for theories \(T_{1}\) over \(\Sigma_{1}\) and \(T_{2}\) over \(\Sigma_{2} \quad * /\)
/* Output: satisfiable if \(\phi_{1} \wedge \phi_{2}\) is \(\left(T_{1} \cup T_{2}\right)\)-satisfiable,
        otherwise unsatisfiable
        */
```

1. Apply P_{1} to ϕ_{1}, and apply P_{2} to ϕ_{2} collecting all inferences of equality made within T_{1} and T_{2}. If ϕ_{1} or ϕ_{2} is unsatisfiable, return unsatisfiable. Otherwise, if there is an inferred equality between constants $u=v$ that is not inferred by one of ϕ_{1} or ϕ_{2}, then add $u=v$ to the set that does not infer it and repeat this step.
2. If ϕ_{1} or ϕ_{2} infers a disjunction of equalities between constants without inferring any of the equalities alone, then, for every such equality $u=v$ inferred by ϕ_{1}, call CTSolver $\left(\phi_{1}, \phi_{2} \cup\{u=v\}, P_{1}, P_{2}\right)$ and for every such equality $u=v$ inferred by ϕ_{2}, call CTSolver $\left(\phi_{1} \cup\{u=\right.$ $v\}, \phi_{2}, P_{1}, P_{2}$. If, for every inferred equality both calls to CTSolver return unsatisfiable, then return unsatisfiable, otherwise return satisfiable.
3. If neither ϕ_{1} nor ϕ_{2} infers an equality or a disjunction of equalities, then return satisfiable.

Fig. 21 Combined theory solver for two theories
overlap only in constants, then $\operatorname{Res}\left(\phi_{1} \wedge \phi_{2}\right)$ is logically equivalent to $\operatorname{Res}\left(\phi_{1}\right) \wedge$ $\operatorname{Res}\left(\phi_{2}\right)$. Thus, the residue of the conjunction of all formulas derived within each theory is the conjunction of the residues of formulas for each theory. The algorithm returns "satisfiable" only if all theories are consistent and no additional equalities of constants can be inferred. In this case the residues of all theories are satisfiable. It may be observed that the conjunction of the residues is therefore satisfiable. Hence, the residue of the conjunction of theories is satisfiable. This means if the algorithm returns satisfiable, then $\phi_{1} \wedge \phi_{2}$ is satisfiable.

The purpose of this section is to acquaint the reader with procedures that comprise SMT solver implementations. As such, much has been left out. This chapter has not considered elimination of the purification step by shifting the burden of handling alien terms to the theory solvers themselves, application of theory specific rewrites, Shostak's theories and method, and how to lift the requirement of stably infinite theories for completeness by propagating cardinality constraints in addition to equalities. Nelson-Oppen only works for quantifier free formulas, but there are some techniques for allowing quantifiers which are not discussed here. For more information about these topics, the reader may start by consulting [13].

5.8 Stochastic Local Search

In DPLL and CDCL variants, a search for a satisfying assignment proceeds by extending a partial assignment as long as no constraint is falsified. In stochastic local search (SLS), there is a "current" complete assignment at every point in the search: if some clauses are not satisfied by the current assignment, one of a set of functions, each designed to create a new assignment from the given formula and current assignment, is applied according to some probability schedule to determine a new current assignment. This process continues until either all clauses are satisfied or until some function determines it is time to give up. Thus, SLS algorithms are generally incomplete and are not typically designed to provide a certificate for an unsatisfiable formula. A main strength of SLS algorithms is that they admit "long jumps" through the search space and thereby avoid the condition of becoming mired in an unnecessarily long exploration of a search subspace, particularly that for which all search trajectories lead to a local minimum number of satisfied clauses: deterministic solvers must take special measures to avoid that condition. On the other hand, it is difficult for SLS solvers to use the systematic tabulation and learning techniques that have made the deterministic variants successful.

5.8.1 Walksat

A successful early implementation of SLS for SAT is Walksat [127]. The Walksat algorithm is shown in Fig. 22. It is safe to assume that all clauses in the input formula ψ have at least two literals since elementary and prudent preprocessing of ψ would have assigned a value to any variable in a unit clause to satisfy that clause and would have propagated the effect of that change to the remainder of ψ.

This algorithm has a few interesting features worth pointing out. One is the probability p which is used to choose a variable whose value should be reversed (from now on the word flipped is used to mean just this): whether a random literal or the one whose flipped value results in the minimum number of satisfied clauses that become falsified. Experiments suggest the optimal value for p depends on and is sensitive to the particular class of problem the algorithm is applied to [89]. For example, it has been found that $p=0.57$ is best for random 3-SAT formulas ${ }^{6}$ and this point sits at the minimum of an upward facing, cup-shaped curve with steeply increasing slopes on either side of the minimum. A second interesting feature is that a flip is chosen randomly only if there is not a variable in c which does not break any satisfied clauses. Thus, emphasizing positive movement to the goal of satisfying the most clauses as early as possible, Walksat has weakened some of the protection against loop stagnation that random flips provide. A third feature is the parameter $m f$ which limits exploration of a local search space: if significant progress is not being made for a while, then exploration of this local space terminates and a long jump to a different local search space is made and search resumed. This restart

[^4]```
Algorithm 5.
 Walksat (\psi,mt,mf,p)
/* Input: \psi is a set of sets of literals representing a CNF formula, */
/* mt is the maximum number of solution attempts, */
/* mf is the maximum number of assignment changes, */
/* p is a probability
/* Output is either a model for \psi or "give up" */
 Repeat the following mt times:
 Set }M\leftarrow\mathrm{ a random truth assignment for }\psi\mathrm{ .
 Repeat the following mf times:
 If M is a model for }\psi\mathrm{ , Output }M\mathrm{ .
 Set c}\leftarrow\textrm{a}\mathrm{ random falsified clause of }\psi\mathrm{ .
 If }\existsl\inc\mathrm{ such that flipping var(l) does not
 falsify a satisfied clause, Set v\leftarrowvar(l).
 Otherwise, Set v\leftarrowvar(l) where, with probability p,l is
 chosen randomly from c; and otherwise is the literal l l c
 for which the number of satisfied clauses that become
 falsified by flipping var(l) is minimum.
 Flip v.
 Output "give up"
```

        \(\square\)
    Fig. 22 Walksat
mechanism compensates for the possible problem nonrandom flips may get into as mentioned above. Walksat may be applied to MAX-SAT problems. A version for weighted MAX-SAT problems is available [86].

### 5.8.2 Novelty Family

Novelty [109] is a variant of Walksat that uses a more sophisticated variable selection algorithm. Once a falsified clause $c$ is chosen, a score is computed for each variable $v$ represented in $c$, based on the total number of satisfied clauses that would result if $v$ were flipped. If the variable with highest score is not the variable that was most recently flipped, it is flipped now. Otherwise, it becomes the flipped variable with probability $1-p$ or the second highest scoring variable becomes the flipped variable with probability $p$.

Although Novelty is an improvement over Walksat in many empirical cases, it has the problem that its inner loop may not terminate for a given $M$ [73]. Novelty+ is a slight modification that eliminates this problem by introducing a second probability $w p$ : a variable is randomly selected from $c$ and flipped with probability $w p$ and otherwise the Novelty flip heuristic is applied. It is reported that $w p=0.01$ is sufficient to eliminate the non-termination problem [75] (i.e., a solution will be found with arbitrarily high probability, if one exists, even if $m t=1$, as long as $m f$ is set arbitrarily high).

Adaptive Novelty+ provides one more tweak to the Walksat/Novelty+ approach: the noise parameter $p$ is allowed to vary during search. It has been mentioned above that algorithm performance is sensitive to $p$ : thus, the optimal value for $p$ depends significantly on the particular class of input formulas. Adaptive Novelty+ [74] attempts to mitigate this problem. If $p$ is increased, the probability of inner loop stagnation is reduced. If $p$ is decreased, the ability of the algorithm to follow a gradient to a solution is improved. These two counteracting conditions are thought to explain the sensitivity of $p$ to problem domain. Adaptive Novelty+ begins at $p=0$ and witnesses a rapid improvement in the number of clauses satisfied. When stagnation is detected, $p$ is increased. Such increases continue periodically until stagnation is overcome and then $p$ is reduced. The cycle is continued until termination. Stagnation is detected when it is noticed that an objective function has not changed over a certain number of steps, called the Stagnation Detection Interval. The usual objective function is the number of satisfied clauses. One specific adaptation strategy is the following:

Stagnation Detection Interval: $\quad m / 6, m=$ number of clauses
Incremental increase in $p: \quad p=p+(1-p) * 0.2$
Incremental decrease in $p: \quad p=p-0.4 * p$
The asymmetry between increases and decreases in $p$ is motivated by the fact that detecting search stagnation is computationally more expensive than detecting search progress and that it is advantageous to approximate optimal noise levels from above rather than from below [74]. After $p$ has been reset, the current objective function value is stored and becomes the basis for detecting stagnation. Observe that the factors $1 / 6,0.4$, and 0.2 are parameters that could be adjusted, but according to [74], performance appears to be less sensitive to these parameters than it is to $p$.

### 5.8.3 Discrete Lagrangian Methods

Discrete Lagrangian methods are another class of SLS algorithms which control the ability of a search to escape a subspace that contains a local minimum [128]. Let $\psi=\left\{c_{1}, c_{2}, \ldots, c_{m}\right\}$ be a CNF formula with clauses $c_{1}, \ldots, c_{m}$; let $V=\{v: \exists c \in$ $\psi$ s.t. $v \in c$ or $\neg v \in c\}$; and attach labels to variables to write $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. Define for all $c_{i} \in \psi$ and $v_{j} \in V$ as follows:

$$
Q_{i, j}\left(v_{j}\right)= \begin{cases}1-v_{j} & \text { if } v_{j} \in c_{i} \\ v_{j} & \text { if } \neg v_{j} \in c_{i} \\ 1 & \text { otherwise }\end{cases}
$$

Let $x$ be an $n$-dimensional 0-1 vector where $x_{j}$ holds the value of variable $v_{j}$, and let $C_{i}(x)=\prod_{j=1}^{n} Q_{i, j}\left(v_{j}\right)$. Define

$$
N(x)=\sum_{i=1}^{m} C_{i}(x)
$$

Then $N(x)$ is the number of unsatisfied clauses in $\psi$ under the assignment $x$. Consider the following optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} \text { over } x \in\{0,1\}^{n} & N(x)=\sum_{i=1}^{m} C_{i}(x) \\
\text { subject to } & C_{i}(x)=0 \quad \forall i \in\{1,2, \ldots, m\} .
\end{array}
$$

The objective function (the first line of the above) is enough to specify the SAT problem. The extra constraints are added to guide the search. In particular, the extra constraints help bring the search out of a local minimum.

The above overconstrained optimization problem may be converted to an unconstrained optimization problem by applying a Lagrange multiplier $\lambda_{i}$ to each constraint $C_{i}(x)$ and adding the result to the objective function. Writing $\lambda$ to represent the vector $\left\langle\lambda_{1}, \ldots, \lambda_{m}\right\rangle$ of Lagrange multipliers and $\mathbf{C}(\mathbf{x})$ to represent the vector $\left\langle C_{1}(x), \ldots, C_{m}(x)\right\rangle$, define

$$
L(x, \lambda)=N(x)+\lambda^{T} \mathbf{C}(x),
$$

where $x \in\{0,1\}^{n}$ and $\lambda_{i}$ can be real valued. A saddle point $\left(x^{*}, \lambda^{*}\right)$ of $L(x, \lambda)$ is defined to satisfy the following condition:

$$
L\left(x^{*}, \lambda\right) \leq L\left(x^{*}, \lambda^{*}\right) \leq L\left(x, \lambda^{*}\right)
$$

for all $\lambda$ sufficiently close to $\lambda^{*}$ and for all $x$ whose Hamming distance between $x^{*}$ and $x$ is 1 . The discrete Lagrangian method (DLM) for solving CNF SAT can be defined as a set of equations which update $x$ and $\lambda$ :

$$
\begin{aligned}
& x^{k+1}=x^{k}-\Delta_{x} L\left(x^{k}, \lambda^{k}\right) \\
& \lambda^{k+1}=\lambda^{k}+\mathbf{C}\left(x^{k}\right),
\end{aligned}
$$

where $\Delta_{x} L(x, \lambda)$ is the discrete gradient operator with respect to $x$ such that $\Delta_{x} L(x, \lambda)=\left\langle\delta_{1}, \delta_{2}, \ldots, \delta_{n}\right\rangle, \forall_{1 \leq i \leq n} \delta_{i} \in\{-1,0,1\}, \sum_{1 \leq i \leq n}\left|\delta_{i}\right|=1$, and $\left(x-\Delta_{x} L(x, \lambda)\right) \in\{0,1\}^{n}$ (i.e., $\Delta_{x} L(x, \lambda)$ identifies a variable to be flipped and $x-\Delta_{x} L(x, \lambda)$ is a neighbor of $x$ - i.e., at Hamming distance 1 from $x$ ). There are two ways to calculate $\Delta_{x} L(x, \lambda)$. One way, termed greedy, replaces the current assignment with a neighboring assignment leading to the maximum decrease in the Lagrangian function value. Another way, termed hill climbing, replaces the current assignment with a neighboring assignment that leads to a decrease in the value of the Lagrangian function. Both involve some local search in the neighborhood of the current assignment, but for every greedy update, the complexity of this search is $O(n)$, whereas the hill-climbing update generally is less expensive.

## Algorithm 6.

```
DLM \((\psi)\)
/* Input: \(\psi\) is a set of sets of literals representing a CNF formula, */
/* Output is either a model for \(\psi\) or "give up" */
 Set \(x \leftarrow\) a random \(n\)-dimensional 0 - 1 vector.
 Set \(\lambda \leftarrow\langle 0,0, \ldots, 0\rangle\).
 Construct \(\mathbf{C}(x)\) from \(\psi\).
 Repeat the following while \(N(x)>0\) :
 Set \(x \leftarrow x-\Delta_{x} L(x, \lambda)\).
 If condition to update \(\lambda\) is satisfied, do this:
 \(\lambda \leftarrow \lambda+\gamma \cdot \mathbf{C}(x)\).
 Output \(x\)
```

Fig. 23 Discrete Lagrangian method

An algorithmic sketch of DLM is shown in Fig. 23. The parameter $\gamma$ controls the magnitude of the changes to $\lambda_{i}$. A value of $\gamma=1$ is reported to be sufficient for many benchmarks, but a smaller $\gamma$ has resulted in improved performance for some difficult ones. Experiments have shown that $\lambda$ should not be updated every time the current assignment is replaced. This is because the changes in $L(x, \lambda)$ are usually very small and relatively larger changes in $\lambda$ can overcompensate causing the search to become lost. Therefore, the DLM algorithm contains a line stating that a condition must be satisfied before $\lambda$ can be updated. One possibility is that $\lambda$ is not updated until $\Delta_{x} L(x, \lambda)=0$. When that happens, the local minimum is reached and the change in $\lambda$ is needed to jump to a different section of the search space. This strategy may cause a problem if a search-space plateau is entered. In that case, it will be prudent to change $\lambda$ sooner. For improved variants of DLM, see [147, 148].

### 5.9 Binary Decision Diagrams

Binary decision diagrams (BDDs) as graphs were discussed in Sect. 3.2. In this section the associated BDD data structure and efficient operations on that data structure are discussed. Attention is restricted to reduced ordered binary decision diagrams (ROBDDs) due to its compact, efficient, canonical properties.

The following is a short review of Sect. 3.2. A ROBDD is a BDD such that (1) there is no vertex $v$ such that then $(v)=e l s e(v)$ and (2) the subgraphs of two distinct vertices $v$ and $w$ are not isomorphic. A ROBDD represents a Boolean function uniquely in the following way (symbol $v$ will represent both a vertex of a ROBDD and a variable labeling a vertex). Define $f(v)$ recursively as follows:

1. If $v$ is the terminal vertex labeled 0 , then $f(v)=0$.
2. If $v$ is the terminal vertex labeled 1 , then $f(v)=1$.
3. Otherwise, $f(v)=(v \wedge f($ then $(v))) \vee(\neg v \wedge f(e l s e(v)))$.
```
Algorithm 7.
 findOrCreateNode (}v,t,e\mathrm{)
 /* Input: variable label v, Node object indices t and e */
 /* Output: an array index of a Node object \langlev,t,e\rangle */
 If t== e then Return t.
 Set node \leftarrow lookup(\langlev,t,e\rangle).
 If node }=\mathrm{ null then Return node.
 Set node }\leftarrow\mathrm{ createNode(}\langlev,t,e\rangle)\mathrm{ .
 insert(\langlev,t,e\rangle, node).
 Return node.
```

Fig. 24 Procedure for finding a node or creating and inserting it

Then $f(\operatorname{root}(v))$ is the function represented by the ROBDD. A Boolean function has different ROBDD representations, depending on the variable order imposed by index, but there is only one ROBDD for each ordering. Thus, ROBDDs are known as a canonical representation of Boolean functions. From now on BDD will be used to refer to a ROBDD.

A data structure representing a BDD consists of an array of Node objects (or nodes), each corresponding to a BDD vertex and each containing three elements: a variable label $v$, then $(v)$, and else ( $v$ ), where the latter two elements are BDD array indices. The first two nodes in the BDD array correspond to the 0 and 1 terminal vertices of a BDD. For both, then (..) and else(..) are empty. Denote by terminal( 1 ) and terminal $(0)$ the BDD array locations of these nodes. All other nodes fill up the remainder of the BDD array in the order they are created. A node that is not in the BDD array can be created and added to the BDD array, and its array index returned in constant time. A hashtable, commonly referred to as a unique table, is maintained for the purpose of finding a node's array location given $v$, then $(v)$, else $(v)$. If there is no corresponding entry in the hashtable, a new node is created and recorded in the hashtable with key $v$, then $(v)$, else ( $v$ ). A single procedure called findOrCreateNode takes $v$, then $(v)$,else ( $v$ ) as arguments and returns the BDD array index of a node, either a newly created one or an existing one. This procedure is shown in Fig. 24.

The main BDD construction operation is to find and attach two descendant nodes (then $(v)$ and $e l s e(v)$ ) to a parent node ( $v$ ). The procedure findOrCreateNode is used to ensure that no two nodes in the final BDD data structure represent the same function. The procedure for building a BDD data structure is buildBDD, shown in Fig. 25. It is assumed that variable indices match the value of index applied to that variable (thus, $i=\operatorname{index}\left(v_{i}\right)$ ). The complexity of buildBDD is proportional to the number of nodes that must be created. In all interesting applications, many BDDs are constructed. But they may all share the BDD data structure above. Thus, a node may belong to many BDDs.

```
Algorithm 8.
 buildBDD (}f,i\mathrm{)
 /* Input: Boolean function f, index i */
 /* Output: root Node of BDD representing f */
 If f}\Leftrightarrow1\mathrm{ return terminal(1).
 If f}\Leftrightarrow0\mathrm{ return terminal(0).
 Set t}\leftarrow\mathrm{ buildBDD (f f (
 Set }e\leftarrow\operatorname{buildBDD}(f\mp@subsup{|}{\mp@subsup{v}{i}{}=0}{\prime},i+1)
 Return findOrCreateNode(}\mp@subsup{v}{i}{},t,e)\mathrm{ .
```

Fig. 25 Algorithm for building a BDD: invoked using buildBDD $(f, 1)$

```
Algorithm 9.
 reduce ((v,f)
 /* Input: variable v, BDD f */
 /* Output: reduced BDD */ /* Output: reduced BDD
 If root (f) == v then
 Return then(root(f)).
 Return f
 reduce
 /* Input: variable v,BDD f */
 If }\operatorname{root}(f)==v\mathrm{ then
 Return else(root(f)).
 Return f.
```

Fig. 26 Operations reduce $_{1}$ and reduce $_{0}$

The operations reduce ${ }_{1}$ and reduce $_{0}$, shown in Fig. 26, are used to describe several important BDD operations in subsequent sections. Assuming $v$ is the root of the BDD representing $f$, the operation reduce ${ }_{1}(v, f)$ returns $f$ constrained by the assignment of 1 to variable $v$ and $\operatorname{reduce}_{0}(v, f)$ returns $f$ constrained by the assignment of 0 to the variable $v$.

Details on performing the common binary operations of $\wedge$ and $\vee$ on BDDs will be ignored here. The reader may refer to [9] for detailed descriptions. Here, it is only mentioned that, using a dynamic programming algorithm, the complexity of these operations is proportional to the product of the sizes of the operands and the size of the result of the operation can be that great as well. Therefore, using $\wedge$ alone, for example (as so many problems would require), could lead to intermediate structures that are too large to be of value. This problem is mitigated somewhat by operations of the kind discussed in the next four subsections, particularly existential quantification.

The operations considered next are included not only because they assist BDDoriented solutions but mainly because they can assist search-oriented solutions when used properly. For example, if inputs are expressed as a collection of BDDs, then they may be preprocessed to reveal information that may be exploited later,

```
Algorithm 10.
exQuant \((f, v)\)
/* Input: BDD \(f\), variable \(v \quad\) */
/* Output: BDD \(f\) with \(v\) existentially quantified away */
If \(\operatorname{root}(f)==v\) then Return then \((\operatorname{root}(f)) \vee \operatorname{else}(\operatorname{root}(f))\).
 If index \((v)>\operatorname{index}(\operatorname{root}(f))\) then Return 0 . // If \(v\) is not in \(f\) do nothing
 Set \(h_{f_{1}} \leftarrow \operatorname{exQuant}(\) then \((\operatorname{root}(f)), v)\).
 Let \(h_{f_{0}} \leftarrow \operatorname{exQuant}(\operatorname{else}(\operatorname{root}(f)), v)\).
 If \(h_{f_{0}}==h_{f_{1}}\) then Return \(h_{f_{1}}\).
 Return FindOrCreateNode \(\left(\operatorname{root}(f), h_{f_{1}}, h_{f_{0}}\right)\).
```

Fig. 27 Algorithm for existentially quantifying variable $v$ away from $\operatorname{BDD} f$. The $\vee$ denotes the or of BDDs
during search. In particular, inferences ${ }^{7}$ may be determined and used to reduce input complexity. The discussion of the next four sections emphasizes this role.

### 5.9.1 Existential Quantification

A Boolean function which can be written

$$
f(v, \vec{x})=\left(v \wedge h_{1}(\vec{x})\right) \vee\left(\neg v \wedge h_{2}(\vec{x})\right)
$$

can be replaced by

$$
f(\vec{x})=h_{1}(\vec{x}) \vee h_{2}(\vec{x}),
$$

where $\vec{x}$ is a list of one or more variables. There is a solution to $f(\vec{x})$ if and only if there is a solution to $f(v, \vec{x})$, so it is sufficient to solve $f(\vec{x})$ to get a solution to $f(v, \vec{x})$. Obtaining $f(\vec{x})$ from $f(v, \vec{x})$ is known as existentially quantifying $v$ away from $f(v, \vec{x})$. This operation is efficiently handled if $f(v, \vec{x})$ is represented by a BDD. However, since most interesting BDD problems are formulated as a conjunction of functions and therefore as conjunctions of BDDs, existentially quantifying away a variable $v$ succeeds easily only when just one of the input BDDs contains $v$. Thus, this operation is typically used together with other BDD operations for maximum effectiveness. The algorithm for existential quantification is shown in Fig. 27.

If inferences can be revealed in preprocessing, they can be applied immediately to reduce input size and therefore reduce search complexity. Although existential quantification can, by itself, uncover inferences (see, e.g., Fig. 28), those same inferences are revealed during BDD construction if inference lists for each node are built and maintained. Therefore, a more effective use of existential quantification is

[^5]Fig. 28 Two examples of existentially quantifying a variable away from a function. Functions are represented as BDDs on the left. Variable $v_{3}$ is existentially quantified away from the top BDD leaving 1, meaning that regardless of assignments given to variables $v_{1}$ and $v_{2}$, there is always an assignment to $\nu_{3}$ which satisfies the function. Variable $v_{2}$ is existentially quantified away from the bottom BDD leaving the inference $v_{1}=1$

in support of other operations, such as strengthening (see Sect. 5.9.5), to uncover those inferences that cannot be found during BDD construction or in tandem with $\wedge$ to retard the growth of intermediate BDDs.

Existential quantification, if applied as a preprocessing step prior to search, can increase the number of choicepoints expanded per second but can increase the size of the search space. The increase in choicepoint speed is because existentially quantifying a variable away from the function has the same effect as branching from a choicepoint in both directions. Then overhead is reduced by avoiding heuristic computations. However, search-space size may increase since the elimination of a variable can cause subfunctions that had been linked only by that variable to become merged with the result that the distinction between the subfunctions becomes blurred. This is illustrated in Fig. 29. The speedup can overcome the lost intelligence but it is sometimes better to turn it off.

### 5.9.2 Reductions and Inferences

Consider the truth tables corresponding to two BDDs $f$ and $c$ over the union of variable sets of both $f$ and $c$. Build a new $\operatorname{BDD} g$ with variable set no larger than the union of the variable sets of $f$ and $c$ and with a truth table such that on rows which $c$ maps to $1, g$ maps to the same value that $f$ maps to and on other rows $g$ maps to any value, independent of $f$. It should be clear that $f \wedge c$ and $g \wedge c$ are identical so $g$ can replace $f$ in a collection of BDDs without changing its solution space.

There are at least three reasons why this might be done. The superficial reason is that $g$ can be made smaller than $f$. A more important reason is that inferences can

Fig. 29 Existential quantification can cause blurring of functional relationships. The top function is seen to separate variables $v_{6}, v_{7}$, and $v_{8}$ from $v_{3}, v_{4}$, and $v_{5}$ if $v_{2}$ is chosen during search first. Existentially quantifying $v_{2}$ away from the top function before search results in the bottom function in which no such separation is immediately evident. Without existential quantification, the assignment $v_{1}=0, v_{2}=1$,
 $v_{3}=1$ reveals the inference $v_{4}=1$. With existential quantification the assignment must be augmented with $v_{7}=0$ and $v_{8}=0$ (but $v_{2}$ is no longer necessary) to get the same inference

be discovered. The third reason is that BDDs can be removed from the collection without loss. Consider, for example, BDDs representing functions

$$
\begin{aligned}
& f=\left(v_{1} \vee \neg v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2}\right) \text { and } \\
& c=\left(v_{1} \vee \neg v_{2}\right)
\end{aligned}
$$

Let a truth table row be represented by a 0-1 vector which reflects assignments of variables indexed in increasing order from left to right. Let $g$ have the same truth table as $f$ except for row $\langle 011\rangle$ which $c$ maps to 0 and $g$ maps to 1 . Then $g=\left(v_{1} \leftrightarrow v_{2}\right)$ and $f \wedge c$ is the same as $g \wedge c$ but $g$ is smaller than $f$. As an example of discovering inferences, consider

$$
f=\left(v_{1} \rightarrow v_{2}\right) \wedge\left(\neg v_{1} \rightarrow\left(\neg v_{3} \wedge v_{4}\right)\right)
$$



$$
c=\left(v_{1} \vee v_{3}\right)
$$

$$
g=\left(v_{1}\right) \wedge\left(v_{2}\right)
$$



Fig. 30 A call to restrict $(f, c)$ returns the BDD $g$ shown on the right. In this case inferences $v_{1}=1$ and $v_{2}=1$ are revealed. The symbol $\downarrow$ denotes the operation

$$
\begin{aligned}
& f=\left(v_{1} \rightarrow v_{2}\right) \wedge\left(\neg v_{1} \rightarrow\left(\neg v_{3} \wedge v_{4}\right)\right) \text { and } \\
& c=\left(v_{1} \vee v_{3}\right) .
\end{aligned}
$$

Let $g$ have the same truth table as $f$ except $g$ maps rows $\langle 0001\rangle$ and $\langle 0101\rangle$ to 0 , as does $c$. Then $g=\left(v_{1}\right) \wedge\left(v_{2}\right)$ which reveals two inferences. The BDDs for $f, c$, and $g$ of this example are shown in Fig. 30. The example showing BDD elimination is deferred to Theorem 6, Sect. 5.9.4.

Clearly, there are numerous strategies for creating $g$ from $f$ and $c$ and replacing $f$ with $g$. An obvious one is to have $g$ map to 0 all rows that $c$ maps to 0 . This strategy, which will be called zero-restrict in this chapter, turns out to have weaknesses. Its obvious dual, which has $g$ map to 1 all rows that $c$ maps to 0 , is no better. For example, applying zero-restrict to $f$ and $c$ of Fig. 32 produces $g=\neg v_{3} \wedge\left(v_{1} \vee\left(\neg v_{1} \wedge \neg v_{2}\right)\right)$ instead of the inference $g=\neg v_{3}$ which is obtained from a more intelligent replacement strategy. An alternative approach, one of many possible ones, judiciously chooses some rows of $g$ to map to 1 and others to map to 0 so that $g$ 's truth table reflects a logic pattern that generates inferences. The truth table of $c$ has many 0 rows and this is exploited. Specifically, $c$ maps rows $\langle 010\rangle$, $\langle 011\rangle,\langle 101\rangle$, and $\langle 111\rangle$ to 0 . The more intelligent strategy lets $g$ map rows $\langle 011\rangle$ and $\langle 111\rangle$ to 0 and rows $\langle 010\rangle$ and $\langle 101\rangle$ to 1 . Then $g=\neg v_{3}$.

Improved replacement strategies might target particular truth table patterns, for example, equivalences, or they might aim for inference discovery. Since there is more freedom to manipulate $g$ if the truth table of $c$ has many zeros, it is important to choose $c$ as carefully as the replacement strategy. This is illustrated by the examples of Figs. 31 and 32 where, in the first case, no inference is generated but after $f$ and $c$ are swapped, an inference is generated. The next two subsections show two replacement strategies that are among the more commonly used.

### 5.9.3 Restrict

The original version of restrict is what is called zero-restrict above. That is, the original version of restrict is intended to remove paths to terminal(1) from $f$

$$
f=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{1} \vee \neg v_{3}\right) \quad c=\left(v_{2} \vee \neg v_{3}\right)
$$



Fig. 31 A call to restrict $(f, c)$ results in no change

$$
f=\left(v_{2} \vee \neg v_{3}\right) \quad c=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{1} \vee \neg v_{3}\right) \quad g=\left(\neg v_{3}\right)
$$



Fig. 32 Reversing the roles of $f$ and $c$ in Fig. 31, a call to restrict $(f, c)$ results in the inference $g=\neg v_{3}$ as shown on the right. In this case, the large number of 0 truth table rows for $c$ was exploited to advantage
that are made irrelevant by $c$. The idea was introduced in [43]. In this chapter an alternative version which is implemented as Algorithm 11 of Fig. 33 is considered. Use the symbol $\Downarrow$ to denote the restrict operator. Then $g=f \Downarrow c$ is the result of zero-restrict after all variables in $c$ that are not in $f$ are existentially quantified away from $c$. Figures 30-32 show examples that were referenced in the previous subsection.

Procedure restrict is similar to a procedure called generalized cofactor (gef) or constrain (see the next subsection for a description). Both restrict $(f, c)$ and $\boldsymbol{\operatorname { g c f }}(f, c)$ agree with $f$ on interpretations where $c$ is satisfied but are generally somehow simpler than $f$. Procedure restrict can be useful in preprocessing because the BDDs produced from it can never contain more variables than the BDDs they replace.

On the negative side, it can, in odd cases, cause a garbling of local information. Moreover, although restrict may reveal some of the inferences that strengthening would (see below), it can still cause the number of search choicepoints to increase. Both these issues are related: restrict can spread an inference that is evident in one BDD over multiple BDDs (see Fig. 34 for an example).

### 5.9.4 Generalized Cofactor

The generalized cofactor operation, also known as constrain, is denoted here by | and implemented as $\operatorname{gcf}$ (Algorithm 12) in Fig. 35. It takes BDDs $f$ and $c$ as input

```
Algorithm 11.
 restrict (f,c)
 /* Input: BDD f, BDD c */
/* Output: BDD f restricted by c
*/
 If c or f is terminal(1) or if f is terminal(0) return f.
 If c== \negf return terminal(0).
 If c==f return terminal(1).
 // f and c have a non-trivial relationship
 Set vf}\leftarrow\operatorname{root}(f).// vf is a variabl
 Set }\mp@subsup{v}{c}{}\leftarrow\operatorname{root}(c).//\mp@subsup{v}{c}{}\mathrm{ is a variable
 If index (vf) > index (vcc) return restrict (f, exQuant (c, vc}))
 If reduce }\mp@subsup{0}{0}{}(\mp@subsup{v}{f}{},c)\mathrm{ is terminal(0) then
 Return restrict(reduce }\mp@subsup{}{1}{(}\mp@subsup{v}{f}{\prime},f)\mathrm{ , reduce }\mp@subsup{}{1}{(}\mp@subsup{v}{f}{},c))
 If reduce}\mp@subsup{}{1}{}(\mp@subsup{v}{f}{\prime},c)\mathrm{ is terminal(0) then
 Return restrict(reduce }\mp@subsup{0}{0}{(}\mp@subsup{v}{f}{\prime},f)\mathrm{ , reduce }\mp@subsup{0}{0}{(}\mp@subsup{v}{f}{},c))
 Set }\mp@subsup{h}{\mp@subsup{f}{1}{}}{}\leftarrow\operatorname{restrict}(\mp@subsup{\boldsymbol{reduce}}{1}{(}(\mp@subsup{v}{f}{\prime},f),\mp@subsup{\mathrm{ reduce}}{1}{(}(\mp@subsup{v}{f}{},c))
 Set }\mp@subsup{h}{\mp@subsup{f}{0}{}}{}\leftarrow\operatorname{restrict(reduce}\mp@subsup{\mathbf{0}}{0}{(}\mp@subsup{v}{f}{\prime},f),\mp@subsup{\mathrm{ reduce}}{0}{(}(\mp@subsup{v}{f}{},c))
 If }\mp@subsup{h}{\mp@subsup{f}{1}{}}{}==\mp@subsup{h}{\mp@subsup{f}{0}{}}{}\mathrm{ then Return }\mp@subsup{h}{\mp@subsup{f}{1}{}}{}\mathrm{ .
 Return findOrCreateNode(vf},\mp@subsup{h}{\mp@subsup{f}{1}{}}{},\mp@subsup{h}{\mp@subsup{f}{0}{}}{})\mathrm{ .
```

Fig. 33 Algorithm for restricting a $\operatorname{BDD} f$ by a $\operatorname{BDD} c$

$$
f=\left(v_{1} \vee \neg v_{2}\right) \wedge\left(\neg v_{1} \vee v_{3}\right) \quad c=\left(\neg v_{1} \vee v_{3}\right) \quad g=\left(v_{1} \vee \neg v_{2}\right)
$$



Fig. 34 A call to $\operatorname{restrict}(f, c)$ spreads an inference that is evident in one BDD over multiple BDDs. If $v_{3}$ is assigned 0 in $f$, then $v_{1}=0$ and $v_{2}=0$ are inferred. After replacing $f$ with $g=\operatorname{restrict}(f, c)$, to get the inference $v_{2}=0$ from the choice $v_{3}=0$, visit $c$ to get $v_{1}=0$ and then $g$ to get $v_{2}=0$. Thus, restrict can increase work if not used properly. In this case, restricting in the reverse direction leads to a better result
and produces $g=f \mid c$ by sibling substitution. BDD $g$ may be larger or smaller than $f$, but, more importantly, systematic use of this operation can result in the elimination of BDDs from a collection. Unfortunately, by definition, the result of this operation depends on the underlying BDD variable ordering, so it cannot be regarded as a logical operation. It was introduced in [42].
$\mathrm{BDD} g$ is a generalized cofactor of $f$ and $c$ if for any truth assignment $t, g(t)$ has the same value as $f\left(t^{\prime}\right)$ where $t^{\prime}$ is the nearest truth assignment to $t$ that maps $c$ to 1 . The notion of nearest truth assignment depends on a permutation $\pi$ of the numbers

```
Algorithm 12.
\(\operatorname{gcf}(f, c)\)
/* Input: BDD f, BDD c */
/* Output: greatest co-factor of \(f\) by c */
 If \(f==\operatorname{terminal}(0)\) or \(c==\operatorname{terminal}(0)\) return terminal \((0)\).
 If \(c==\operatorname{terminal}(1)\) or \(f==\operatorname{terminal}(1)\) return \(f\).
 Set \(v_{m} \leftarrow \operatorname{index} x^{-1}(\min \{\operatorname{index}(\operatorname{root}(c)), \operatorname{index}(\operatorname{root}(f))\})\).
 \(/ / v_{m}\) is the top variable of \(f\) and \(c\)
 If reduce \({ }_{0}\left(v_{m}, c\right)==\operatorname{terminal}(0)\) then
 Return \(\operatorname{gcf}\left(\operatorname{reduce}_{1}\left(v_{m}, f\right)\right.\), reduce \(\left._{1}\left(v_{m}, c\right)\right)\).
 If reduce \({ }_{1}\left(v_{m}, c\right)==\operatorname{terminal}(0)\) then
 Return gcf(reduce \({ }_{0}\left(v_{c}, f\right)\), reduce \(\left._{0}\left(v_{c}, c\right)\right)\).
 Set \(h_{1} \leftarrow \operatorname{gcf}\left(\operatorname{reduce}_{1}\left(v_{m}, f\right)\right.\), reduce \(\left._{1}\left(v_{m}, c\right)\right)\).
 Set \(h_{0} \leftarrow \operatorname{gcf}\left(\operatorname{reduce}_{0}\left(v_{m}, f\right)\right.\), reduce \(\left._{0}\left(v_{m}, c\right)\right)\).
 If \(h_{1}==h_{0}\) then Return \(h_{1}\).
 Return FindOrCreateNode \(\left(v_{m}, h_{1}, h_{0}\right)\).
```

Fig. 35 Algorithm for finding a greatest common cofactor of a BDD
$1,2, \ldots, n$ which states the variable ordering of the input BDDs. Represent a truth assignment to $n$ variables as a vector in $\{0,1\}^{n}$ and, for truth assignment $t$, let $t_{i}$ denote the $i$ th bit of the vector representing $t$. Then the distance between two truth assignments $t^{\prime}$ and $t^{\prime \prime}$ is defined as $\sum_{i=1}^{n} 2^{n-i}\left(t_{\pi_{i}}^{\prime} \oplus t_{\pi_{i}}^{\prime \prime}\right)$. One pair of assignments is nearer to each other than another pair if the distance between that pair is less. It should be evident that distances between pairs are unique for each pair.

For example, Fig. 36 shows BDDs $f$ and $c$ under the variable ordering given by $\pi=\langle 1,2,3,4\rangle$. For assignment vectors $\langle * * 01\rangle,\langle * * 10\rangle$, and $\langle * * 11\rangle$ (where * is a wildcard meaning 0 or 1$), \operatorname{gcf}(f, c)$, shown as the BDD at the bottom of Fig. 36, agrees with $f$ since those assignments cause $c$ to evaluate to 1 . The closest assignment to $\langle 0000\rangle,\langle 0100\rangle,\langle 1000\rangle$, and $\langle 1100\rangle$ causing $c$ to evaluate to 1 is $\langle 0001\rangle,\langle 0101\rangle,\langle 1001\rangle$, and $\langle 1101\rangle$, respectively. On all these inputs $\operatorname{gcf}(f, c)$ has value 1, which the reader can check in Fig. 36.

The following expresses the main property of | that makes it useful.
Theorem 6 Given BDDs $f_{1}, \ldots, f_{k}$, for any $1 \leq i \leq k, f_{1} \wedge f_{2} \wedge \ldots \wedge f_{k}$ is satisfiable if and only if $\left(f_{1} \mid f_{i}\right) \wedge \ldots \wedge\left(f_{i-1} \mid f_{i}\right) \wedge\left(f_{i+1} \mid f_{i}\right) \wedge \ldots \wedge\left(f_{k} \mid f_{i}\right)$ is satisfiable. Moreover, any assignment satisfying the latter can be mapped to an assignment that satisfies $f_{1} \wedge \ldots \wedge f_{k}$.

Proof If it can be shown that

$$
\begin{equation*}
\left(f_{1} \mid f_{i}\right) \wedge \ldots \wedge\left(f_{i-1} \mid f_{i}\right) \wedge\left(f_{i+1} \mid f_{i}\right) \wedge \ldots \wedge\left(f_{k} \mid f_{i}\right) \tag{4}
\end{equation*}
$$

is satisfiable if and only if

$$
\begin{equation*}
\left(f_{1} \mid f_{i}\right) \wedge \cdots \wedge\left(f_{i-1} \mid f_{i}\right) \wedge\left(f_{i+1} \mid f_{i}\right) \wedge \ldots \wedge\left(f_{k} \mid f_{i}\right) \wedge f_{i} \tag{5}
\end{equation*}
$$

is satisfiable, then, since (5) is equivalent to $f_{1} \wedge \ldots \wedge f_{k}$, the first part of the theorem will be proved. Suppose (5) is satisfied by truth assignment $t$. That $t$ represents a truth table row that $f_{i}$ maps to 1 . Clearly that assignment also satisfies (4). Suppose no assignment satisfies (5). Then all assignments for which $f_{i}$ maps to 1 do not satisfy (4) since otherwise (5) would be satisfied by any that do. Only truth assignments $t$ which $f_{i}$ maps to 0 need to be considered. Each $\left(f_{j} \mid f_{i}\right)$ in (4) and (5) maps to the same value that $f_{j}$ maps the nearest truth assignment, say, $r$, to $t$ that satisfies $f_{i}$. But $r$ cannot satisfy (5) because it cannot satisfy (4) by the argument above. Hence, there is no truth assignment falsifying $f_{i}$ but satisfying (4) so the first part is proved.

For the second part, observe that any truth assignment that satisfies (4) and (5) also satisfies $f_{i} \wedge \ldots \wedge f_{k}$, so it is only necessary to consider assignments $t$ that satisfy (4) but not (5). In that case, by construction of $\left(f_{j} \mid f_{i}\right)$, the assignment that is nearest to $t$ and satisfies $f_{i}$ also satisfies $\left(f_{j} \mid f_{i}\right)$. That assignment satisfies $f_{1} \wedge \ldots \wedge f_{k}$.

This means that, for the purposes of a solver, generalized cofactoring can be used to eliminate one of the BDDs among a given conjoined set of BDDs: the solver finds an assignment satisfying $\operatorname{gcf}\left(f_{1}, f_{i}\right) \wedge \ldots \wedge \operatorname{gcf}\left(f_{k}, f_{i}\right)$ and then extends the assignment to satisfy $f_{i}$; otherwise, the solver reports that the instance has no solution. However, unlike restrict, generalized co-factoring cannot by itself reduce the number of variables in a given collection of BDDs. Other properties of the gef operation, all of which are easy to show, are:

1. $f=c \wedge \operatorname{gcf}(f, c) \vee \neg c \wedge \operatorname{gcf}(f, \neg c)$.
2. $\mathbf{g c f}(\mathbf{g c f}(f, g), c)=\boldsymbol{g c f}(f, g \wedge c)$.
3. $\boldsymbol{\operatorname { g c f }}(f \wedge g, c)=\boldsymbol{\operatorname { g c f }}(f, c) \wedge \boldsymbol{\operatorname { g c f }}(g, c)$.
4. $\boldsymbol{\operatorname { g c f }}(f \wedge c, c)=\boldsymbol{\operatorname { g c f }}(f, c)$.
5. $\boldsymbol{\operatorname { g c f }}(f \wedge g, c)=\boldsymbol{\operatorname { g c f }}(f, c) \wedge \boldsymbol{\operatorname { g c f }}(g, c)$.
6. $\boldsymbol{g c f}(f \vee g, c)=\boldsymbol{\operatorname { g c f }}(f, c) \vee \boldsymbol{\operatorname { g c f }}(g, c)$.
7. $\boldsymbol{\operatorname { g c f }}(f \vee \neg c, c)=\boldsymbol{\operatorname { g c f }}(f, c)$.
8. $\boldsymbol{\operatorname { g c f }}(\neg f, c)=\neg \boldsymbol{\operatorname { g c f }}(f, c)$.
9. If $c$ and $f$ have no variables in common and $c$ is satisfiable, then $\operatorname{gcf}(f, c)=f$. Care must be taken when cofactoring in both directions (exchanging $f$ for $c$ ). For example, $f \wedge g \wedge h$ cannot be replaced by $(g \mid f) \wedge(f \mid g) \wedge h$ since the former may be unsatisfiable when the latter is satisfiable.

Examples of the application of gcf are shown in Figs. 36 and 37. Figure 36 illustrates the possibility of increasing BDD size. Figure 37 presents the same example after swapping $v_{1}$ and $v_{3}$ under the same variable ordering and shows that the result produced by gcf is sensitive to variable ordering. Observe that the functions produced by gcf in both figures have different values under the assignment $v_{1}=1, v_{2}=1$, and $v_{3}=0$. Thus, the function returned by gcf depends on the variable ordering as well.

Fig. 36 Generalized cofactor operation on $f$ and $c$ as shown. In this case the result is more complicated than $f$. The variable ordering is $v_{1}<v_{2}<v_{3}$

$$
f=\left(v_{1} \rightarrow \neg v_{2}\right) \vee\left(\neg v_{1} \rightarrow v_{3}\right) \quad c=\left(v_{2} \vee v_{3}\right)
$$



$$
g c f(f, c)=\left(v_{1} \rightarrow \neg v_{2}\right) \vee\left(\neg v_{1} \rightarrow\left(v_{2} \rightarrow v_{3}\right)\right)
$$



### 5.9.5 Strengthen

This binary operation on BDDs helps reveal inferences that are missed by restrict due to its sensitivity to variable ordering. Given two BDDs, $b_{1}$ and $b_{2}$, strengthening conjoins $b_{1}$ with the projection of $b_{2}$ onto the variables of $b_{1}$ : that is, $b_{1} \wedge \exists \vec{v} b_{2}$, where $\vec{v}$ is the set of variables appearing in $b_{2}$ but not in $b_{1}$. Strengthening each $b_{i}$ against all other $b_{j}$ s sometimes reveals additional inferences or equivalences. Algorithm strengthen is shown in Fig. 38. Figure 39 shows an example.

Strengthening provides a way to pass important information from one BDD to another without causing a size explosion. No size explosion can occur because, before $b_{1}$ is conjoined with $b_{2}$, all variables in $b_{2}$ that do not occur in $b_{1}$ are existentially quantified away. If an inference (of the form $v=1, v=0, v=w$, or $v=\neg w$ ) exists due to just two BDDs, then strengthening those BDDs against each other (pairwise) can move those inferences, even if originally spread across both BDDs, to one of the BDDs. Because strengthen shares information between BDDs, it can be thought of as sharing intelligence and strengthening the relationships between functions; the added intelligence in these strengthened functions can be exploited by a smart search heuristic. It has been found empirically that strengthen usually decreases the number of choicepoints when a particular search heuristic is employed, but sometimes it causes more choicepoints. It may be conjectured this is due to the delicate nature of some problems where duplicating information in the BDDs leads the heuristic astray.


Fig. 37 Generalized cofactor operation on the same $f$ and $c$ of Fig. 36 and with the same variable ordering but with $v_{1}$ and $v_{3}$ swapped. In this case the result is less complicated than $f$ and the assignment $\left\{v_{1}, v_{2}\right\}$ causes the output of gcf in this figure to have value 1 , whereas the output of gcf in Fig. 36 has value 0 under the same assignment

## Algorithm 13.

Strengthen $\left(b_{1}, b_{2}\right)$
/* Input: $B D D b_{1}, B D D b_{2}$
/* Output: $B D D b_{1}$ strengthened by $b_{2}$
Set $\vec{x} \leftarrow\left\{x: x \in b_{2}, x \notin b_{1}\right\}$.
Repeat the following for all $x \in \vec{x}$ :
Set $b_{2} \leftarrow \operatorname{exQuant}\left(b_{2}, x\right)$.
Return $b_{1} \wedge b_{2}$.

Fig. 38 Algorithm for strengthening a BDD by another


Strengthening example: Existentially quantify $v_{1}$ away from $b_{2} \ldots$


Fig. $39 \ldots$ then conjoin the two BDDs. Inference $v_{3}=0$ is revealed

Procedure strengthen may be applied to CNF formulas and in this case it is the same as applying Davis-Putnam resolution selectively on some of the clauses. When used on more complex functions, it is clearer how to use it effectively as the clauses being resolved are grouped with some meaning. Evidence for this comes from bounded model checking examples.

This section concludes by mentioning that for some classes of problems, resolution has polynomial complexity, while strictly BDD manipulations require exponential time, and for other classes of problems, resolution has exponential complexity, while BDD manipulations require polynomial time [67].

### 5.10 Decompositions

The variable elimination methods of Sects. 5.5 and 5.11 recursively decompose a given formula $\psi$ into overlapping subformulas $\psi_{1}$ and $\psi_{2}$ such that the solution to $\psi$ can be inferred from the solutions to $\psi_{1}$ and $\psi_{2}$. The decompositions are based on occurrences of a selected variable $v$ in clauses of $\psi$ and each subformula has at least as many clauses as those of $\psi$ which contain neither literal $v$ nor literal $\neg v$. Intuitively, the speed of the methods usually depends on the magnitude of the size reduction from $\psi$ to $\psi_{1}$ and $\psi_{2}$. However, it is often the case that the number of occurrences of most variables in a formula or subformula is small which usually means small size reductions for most variables. For example, the average number of occurrences of a variable in a random $k$-SAT formula ${ }^{8}$ of $m$ clauses developed

[^6]from $n$ variables is $k m / n$ : so, if $k=3$ and $m / n$ is, say, 4, then the average number of occurrences of a randomly chosen variable is only 12 . Hence, the methods often suffer computational inadequacies which can make them unusable in some cases. On the positive side, such methods can be applied to any CNF formula.

But there are other decomposition methods that sacrifice some generality for the sake of producing subformulas of relatively small size. Truemper's book [138] presents quite a few of these, all of which are capable of computationally efficient solutions to some problems that would be considered difficult for the more general variable elimination methods. This section presents one of these, called monotone decomposition, for illustration and because it is related to material that is elsewhere in this chapter.

### 5.10.1 Monotone Decomposition

Let CNF formula $\psi$ of $m$ clauses and $n$ variables be represented as a $m \times n$ ( $0 \pm 1$ )-matrix $\mathcal{M}_{\psi}$ (defined in Sect. 3.1). A monotone decomposition of $\mathcal{M}_{\psi}$ is a permutation of rows and columns of $\mathcal{M}_{\psi}$ and the multiplication by -1 of some or all of its columns, referred to below as a column scaling, resulting in a partition into four submatrices as follows:

$$
\left(\begin{array}{c|c}
\mathcal{A}^{1} & \mathcal{E}  \tag{6}\\
\hline & \\
\mathcal{D} & \mathcal{A}^{2}
\end{array}\right)
$$

where the submatrix $\mathcal{A}^{1}$ has at most one +1 entry per row; the submatrix $\mathcal{D}$ contains only -1 or 0 entries; the submatrix $\mathcal{A}^{2}$ has no restrictions other than the three values of $-1,+1$, and 0 for each entry; and the submatrix $\mathcal{E}$ has only 0 entries.

The submatrix $\mathcal{A}^{1}$ represents a Horn formula. In Sect. 6.2 Horn formulas are shown to have the following two important properties: they are solved efficiently, for example, by Algorithm 20 of Fig. 46, and, by Theorem 15, there is always a unique minimum model for a satisfiable Horn formula. The second property means there is always a satisfying assignment $M$ such that, for any other satisfying assignment $M^{\prime}$, the variables that have value 1 according to $M^{\prime}$ are a superset of the variables set to 1 according to $M$ (more succinctly, $M \subset M^{\prime}$ ). This property, plus the nature of submatrices $\mathcal{D}$ and $\mathcal{E}$, effectively allows a split of the problem of determining the satisfiability of $\psi$ into two independent problems: namely, determine satisfiability for the Horn formula represented by $\mathcal{A}^{1}$ and determine satisfiability for the subformula represented by $\mathcal{A}^{2}$. The algorithm of Fig. 40 shows this in more detail. The following theorem proves correctness of this algorithm:

Theorem 7 Let CNF formula $\psi$ be represented as a monotone decomposition ( $0 \pm 1$ )-matrix. On input $\psi$, Algorithm 14 outputs "unsatisfiable" if and only if $\psi$ is unsatisfiable, and if $\psi$ is satisfiable, then the output set $M_{1} \cup M_{2}$ is a model for $\psi$.

```
Algorithm 14.
Monotone Decomposition Solver (}\psi\mathrm{)
/* Input: CNF formula \psi as (0, \pm1) \mathcal{M}
/* Output: "unsatisfiable" or a model for \psi */
/* Locals: set of variables M}\mp@subsup{M}{1}{},\mp@subsup{M}{2}{
 Let }\mp@subsup{\mathcal{M}}{\psi}{}\mathrm{ be partitioned according to (6).
 If Horn formula }\mp@subsup{\mathcal{A}}{}{1}\mathrm{ is unsatisfiable, Output "unsatisfiable."
 Let }\mp@subsup{M}{1}{}\mathrm{ be a unique minimum model for the Horn formula }\mp@subsup{\mathcal{A}}{}{1}\mathrm{ .
 Remove from }\mp@subsup{\mathcal{A}}{}{2}\mathrm{ all rows common to }\mathcal{D}'s that are satisfied by M M .
 If }\mp@subsup{\mathcal{A}}{}{2}\mathrm{ is unsatisfiable, Output "unsatisfiable."
 Let }\mp@subsup{M}{2}{}\mathrm{ be a model for }\mp@subsup{\mathcal{A}}{}{2}\mathrm{ .
 Output M}\mp@subsup{M}{1}{}\cup\mp@subsup{M}{2}{}\mathrm{ .
```

Fig. 40 Algorithm for determining satisfiability of a monotone decomposition

Proof Clearly, if Horn formula $\mathcal{A}^{1}$ is unsatisfiable, then so is $\psi$. So suppose there is a model $M_{1}$ for $\mathcal{A}^{1}$ and consider the rows of $\mathcal{A}^{2}$ remaining after rows common to those of $\mathcal{D}$ which are satisfied by $M_{1}$ are removed. Since $M_{1}$ is a unique minimum model for $\mathcal{A}^{1}$, no entries of $\mathcal{D}$ are +1 , and since variables of $\mathcal{A}^{1}$ are distinct from variables of $\mathcal{A}^{2}$, no remaining row of $\mathcal{A}^{2}$ can be satisfied by any model for $\mathcal{A}^{1}$. Therefore, if these rows of $\mathcal{A}^{2}$ are unsatisfiable, then so is $\psi$. On the other hand, if these rows are satisfied by model $M_{2}$, then clearly, $M_{1} \cup M_{2}$ is a model for $\psi$.

A $(0 \pm 1)$ matrix $\mathcal{M}_{\psi}$ representing CNF formula $\psi$ may have more than one monotone decomposition. Of particular interest is the maximum monotone decomposition of $\mathcal{M}_{\psi}$, that is, the monotone decomposition of $\psi$ such that $\mathcal{A}^{1}$ has the greatest number of rows and columns. A monotone decomposition is said to be maximal with respect to the dimensions of $\mathcal{A}^{1}$. The following theorem says a unique maximal monotone decomposition is always possible.

Theorem 8 Any ( $0 \pm 1$ ) matrix $\mathcal{M}$ has a unique maximal monotone decomposition.
Proof Suppose $\mathcal{M}$ has two distinct maximal monotone decompositions, say, $\mathcal{M}_{1}$ and $\mathcal{M}_{2}$. Let $\mathcal{A}_{i}^{1}, \mathcal{A}_{i}^{2}$, and $\mathcal{D}_{i}, i \in\{1,2\}$, be the partition of $\mathcal{M}$, after column scaling, corresponding to $\mathcal{M}_{i}$ (see the partition (6) on page 389). Construct a new partition $\mathcal{M}^{\prime}$ of $\mathcal{M}$ into $\mathcal{A}^{\prime 1}, \mathcal{A}^{\prime 2}$, and $\mathcal{D}^{\prime}$ such that $\mathcal{A}^{\prime 1}$ includes all rows and columns of $\mathcal{A}_{1}^{1}$ and $\mathcal{A}_{2}^{1}$. For those columns of $\mathcal{M}^{\prime}$ that are also columns of $\mathcal{A}_{1}^{1}$, use a column scaling that is exactly the same as the one used in $\mathcal{M}_{1}$. For all other columns, use the same scaling as in $\mathcal{M}_{2}$. The submatrix of $\mathcal{A}^{\prime 1}$ that includes rows and columns of $\mathcal{A}_{1}^{1}$ is the same as $\mathcal{A}_{1}^{1}$ because the scaling of those columns is the same as for $\mathcal{M}_{1}$. The submatrix of $\mathcal{A}^{\prime 1}$ including rows of $\mathcal{A}_{1}^{1}$ and columns not in $\mathcal{A}_{1}^{1}$ must be a 0 submatrix by the monotone decomposition $\mathcal{M}_{1}$. The submatrix of $\mathcal{A}^{\prime 1}$ including columns of $\mathcal{A}_{1}^{1}$ and no rows of $\mathcal{A}_{1}^{1}$ must contain only 0 or -1 entries due to the $\mathcal{M}_{1}$ scaling and the submatrix including neither columns or rows of $\mathcal{A}_{1}^{1}$ must be Horn due to $\mathcal{M}_{2}$ column scaling. It follows that submatrix $\mathcal{A}^{\prime 1}$ is Horn (at most one +1 in each row).

It is similarly easy to check that the submatrix of $\mathcal{M}^{\prime}$ consisting of rows of $\mathcal{A}^{11}$ and columns other than those of $\mathcal{A}^{11}$ is 0 and that the submatrix of $\mathcal{M}^{\prime}$ consisting of columns of $\mathcal{A}^{11}$ and rows other than those of $\mathcal{A}^{11}$ contains no +1 entries. It follows that $\mathcal{M}^{\prime}$ is a monotone decomposition. Since $\mathcal{A}_{1}^{1} \supset \mathcal{A}^{11}$ and $\mathcal{A}_{2}^{1} \supset \mathcal{A}^{\prime 1}$, neither $\mathcal{M}_{1}$ nor $\mathcal{M}_{2}$ is a maximal monotone decomposition in violation of the hypothesis. The theorem follows.

From Theorem 8 there is always a maximum monotone decomposition for $\mathcal{M}_{\psi}$. A maximum monotone decomposition is useful because (1) $\mathcal{A}^{1}$, representing a Horn formula, is as large as possible so $\mathcal{A}^{2}$ is as small as possible; (2) Horn formulas may be efficiently solved by Algorithm 20 and (3) a maximum monotone decomposition can be found efficiently, as will now be shown.

A maximum monotone decomposition can be found using Algorithm 15 of Fig. 41. The algorithm completes one or more stages where each stage produces a proper monotone decomposition of some matrix. All submatrices change dimensions during the algorithm, so primes are used as in $\mathcal{E}^{\prime}$ to refer to the current incantation of corresponding submatrices. Initially, that matrix is $\mathcal{M}_{\psi}$. At the end of a stage, if the algorithm needs another stage to produce a bigger decomposition, $\mathcal{A}^{\prime 2}$ of the current stage becomes the entire input of the next stage and the next stage proceeds independently of previous stages. This can be done since the operation to be mentioned next does not multiply by -1 any of the rows and columns of the $\mathcal{A}^{\prime 1}$ and $\mathcal{D}^{\prime}$ matrices of previous stages. The important operation is to move a nonpositive column that intersects $\mathcal{A}^{\prime 2}$ to just right of the border of the current stage's $\mathcal{A}^{\prime 1}$ matrix, move the border of $\mathcal{A}^{\prime 1}$ and $\mathcal{D}^{\prime}$ to the right by one column, tag and move the rows containing 1 on the right boundary of the changed $\mathcal{D}^{\prime}$ up to just below the border of $\mathcal{A}^{\prime 1}$, and finally lower the border of $\mathcal{A}^{\prime 1}$ and $\mathcal{E}^{\prime}$ down to include the tagged rows. Doing so keeps $\mathcal{A}^{11}$ Horn and $\mathcal{D}^{\prime}$ nonpositive and enlarges $\mathcal{A}^{\prime 1}$. If no nonpositive column exists through $\mathcal{A}^{\prime 2}$, no column can be made nonpositive through $\mathcal{A}^{\prime 2}$ by a -1 multiplication, and the initial moved column is not multiplied by -1 , then the initial moved column of the stage is multiplied by -1 and the stage is restarted.

Because of the following theorem, backtracking is limited to just one per stage and is used only to try to decompose with the initial moved column of the stage multiplied by -1 .

Theorem 9 Refer to Algorithm 15 for specific variable names and terms:

1. If $z$ is not a nonpositive column in $\mathcal{E}^{\prime}$ and $z$ multiplied by -1 is not nonpositive in $\mathcal{E}^{\prime}$, then there is no monotone decomposition at the current stage with the initial moved column $v$ of the stage left as is.
2. If multiplying $v$ by -1 also fails because a $z$ cannot be made nonpositive in $\mathcal{E}^{\prime}$, then not only does $z$ block a monotone decomposition but multiplying any of the other columns in $\mathcal{A}^{\prime 1}$ except $v$ by -1 blocks a monotone decomposition as well.

## Proof

1. There is no way to extend the right boundary of $\mathcal{A}^{11}$ and stay Horn while making $\mathcal{E}^{\prime} 0$ because column $z$ prevents it.

## Algorithm 15.

## Find Maximum Monotone Decomposition $(\psi)$

/* Input: CNF formula $\psi$ as $(0, \pm 1)$ matrix $\mathcal{M}_{\psi}$
/* Output: A maximum monotone decomposition of $\mathcal{M}_{\psi}$
/* Locals: set of variables $M_{1}, M_{2}$, set of unusable literals $N, L \quad$ */
Set $N \leftarrow \emptyset$.
Set $\mathcal{A}^{2} \leftarrow \mathcal{M}_{\psi}$.
Repeat while there is a column $v$ of $\mathcal{A}^{2}$ such that $v \notin N$ or $\neg v \notin N$ :
Remove 0 rows from $\mathcal{A}^{2}$.
Choose any $v$ such that either $v \notin N$ or $\neg v \notin N$.
Set $L \leftarrow \emptyset$ and $\alpha \leftarrow 1$.
If $v \in N$ :
Multiply all entries in column $v$ of $\mathcal{A}^{2}$ by -1 .
Set $\alpha \leftarrow-1$.
Set $N \leftarrow N \backslash\{v\} \cup\{\neg v\}$.
Set $p \leftarrow v$.
Define $\mathcal{A}^{\prime 1}=\mathcal{D}^{\prime}=\mathcal{E}^{\prime}=0, \mathcal{A}^{\prime 2}=\mathcal{A}^{2}$, the initial partition of $\mathcal{A}^{2}$.
Repeat the following:
Move column $p$ of $\mathcal{A}^{\prime 2}$ to the right border of $\mathcal{A}^{\prime 1}$.
Move the right border of $\mathcal{A}^{\prime 1}$ to the right by 1 column.
Move and tag rows of $\mathcal{D}^{\prime}$ with 1 in its right column to the top.
Move the bottom border of $\mathcal{A}^{11}$ down to include tagged rows.
If $\mathcal{E}^{\prime}=0$, Set $\mathcal{A}^{2} \leftarrow \mathcal{A}^{\prime 2}$ and Break.
Choose column $z$ through $\mathcal{E}^{\prime}$ with a non-zero entry in $\mathcal{E}^{\prime}$.
If ( $z \in N$ and $\neg z \in N$ ) or
( $z \in N$ and column $z$ has -1 entry) or
( $\neg z \in N$ and column $z$ has +1 entry) or
(column $z$ has +1 and -1 entries):
If $\neg v \in N$ or $\alpha=-1$ : Set $N \leftarrow N \cup\{v, \neg v, z, \neg z\} \cup L$. Break.
Otherwise, If $\neg z \notin N$ and column $z$ has no -1 entries:

Multiply all entries in column $z$ of $\mathcal{A}^{2}$ by -1 .
If $z \in N$ : Set $N \leftarrow N \backslash\{z\} \cup\{\neg z\}$.
If $\neg z \in L$ : Set $L \leftarrow L \backslash\{\neg z\} \cup\{z\}$. Set $L \leftarrow L \cup\{\neg z\}$. Set $p \leftarrow z$.
Remove 0 rows from $\mathcal{A}^{2}$.
Let $\mathcal{M}$ be the permuted and scaled $\mathcal{M}_{\psi}$ with lower right matrix $\mathcal{A}^{2}$. Output M.

Fig. 41 Algorithm for finding the maximum monotone decomposition of a $(0 \pm 1)$ matrix
2. Consider columns in $\mathcal{A}^{11}$ first. The proof is by induction on the number of columns processed in $\mathcal{A}^{\prime 1}$. The base case has no such column: that is, $\mathcal{A}^{\prime 1}$ only contains the column $v$ and is trivially satisfied. For the inductive step, change the column scaling to 1 for all columns and run the algorithm in the same column order it had been when it could not continue. Assume the hypothesis holds to $k$ columns and consider processing at the $k+1$ st column, call it column $x$. At this point $\mathcal{A}^{\prime 1}$ has one 1 in each row, $\mathcal{D}^{\prime}$ is nonpositive, and since $x$ is multiplied by 1 , it is nonzero and nonpositive through $\mathcal{E}^{\prime}$. If there is a monotone decomposition where $x$ is multiplied by -1 , then $x$ goes through $\mathcal{A}^{1}$ of that decomposition. The multiplication by -1 changes the nonzero nonpositive elements of $x$ through $\mathcal{E}^{\prime}$ to nonzero nonnegative elements. Therefore, at least one of these elements, say, in row $r$, is +1 . But $\mathcal{A}^{1}$ of the decomposition must have a +1 in each row, so it must be that row $r$ has this +1 in, say, column $c$, a column of $\mathcal{A}^{\prime 1}$ that is multiplied by -1 . But $c$ cannot be the same as $v$ since $v$ multiplied by -1 blocks a monotone decomposition by hypothesis. On the other hand, if $c$ is not $v$, then by the inductive hypothesis $c$ cannot be multiplied by -1 in a monotone decomposition. Therefore, by contradiction, there is no monotone decomposition and the hypothesis holds to $k+1$ columns.
Now consider column $z$. No scaling of column $z$ can make $z$ nonpositive in $\mathcal{E}^{\prime}$. Then that part of $z$ that goes through $\mathcal{E}^{\prime}$ has -1 and 1 entries. The hypothesis follows from the same induction argument as above.

Any column blocking a monotone decomposition need never be checked again.
The algorithm keeps track of blocking columns with set $N$, the long-term record of blocking columns, and set $L$, the temporary per stage record. If column indicator $w$ is placed in $N$, it means the unmultiplied column $w$ blocks, and if $\neg w$ is placed in $N$, it means column $w$ multiplied by -1 blocks.

The algorithm has quadratic complexity. Complexity can be made linear by running the two possible starting points of each stage, namely, using column $v$ as is and multiplying column $v$ by -1 , concurrently, and breaking off computation when one of the two succeeds.

A formula $\psi$ which has a maximum monotone decomposition where $\mathcal{A}^{2}$ is a member of an efficiently solved subclass of satisfiability obviously may be solved efficiently by Algorithm 14 if $\mathcal{A}^{2}$ can efficiently be recognized as belonging to such a subclass. Section 6 discusses several efficiently solved subclasses of satisfiability problems which may be suitable for testing. If $\mathcal{A}^{2}$ represents a 2 -SAT formula (see Sect. 6.1), then $\psi$ is said to be q -Horn. The class of q -Horn formulas was discovered and efficiently solved in [21,22], and it was the results of that work that led to the development of maximum monotone decompositions [137].

### 5.10.2 Autarkies and Safe Assignments

Definition 1 An assignment to a set of variables is said to be autark or an autarky if all clauses that contain at least one of those variables are satisfied by the assignment. We will call a set of variables that is associated with an autarky an autark set.

If all clauses satisfied by an autarky are removed from a CNF formula $\psi$, then the resulting formula is equivalent in satisfiability to $\psi$. A simple example of an autark set is a collection of one or more pure literals. A simple decomposition is to remove all clauses that contain pure literals. One can do the same for any autarky. However, discovering autarkies can be expensive. In some cases, though, an autarky can be found in polynomial time. This is treated in Sect. 6.9.

A similar decomposition exists for BDDs. Let $f$ be a Boolean function and let $\left.f\right|_{v}\left(\left.f\right|_{\neg v}\right)$ denote the function obtained by setting variable $v$ to 1 (respectively, 0 ).

Lemma 4 ([146]) Given a conjunction of BDDs $f=f_{1} \wedge \ldots \wedge f_{m}$ and variable $v$ occurring in one or more BDDs of $f$, let $f^{\prime}$ be the conjunction of all BDDs in $f$ which contain v. Let $f_{v}^{\prime}=\neg\left(\left.f^{\prime}\right|_{v}\right) \wedge\left(\left.f^{\prime}\right|_{\neg v}\right)$. Let $f_{\neg v}^{\prime}=\left(\left.f^{\prime}\right|_{v}\right) \wedge \neg\left(\left.f^{\prime}\right|_{\neg v}\right)$.

1. If $f_{v}^{\prime}$ has value 0 , then $\left.f\right|_{v}$ is satisfiable if and only if $f$ is satisfiable.
2. If $f_{\neg v}^{\prime}$ has value 0 , then $\left.f\right|_{\neg_{v}}$ is satisfiable if and only if $f$ is satisfiable.

Lemma 4 states that if any of the BDDs in $f$ are falsified or if all of the BDDs in $f$ are satisfied by setting $v$ to 1 (respectively, 0 ), then it is safe to make that assignment because the satisfiability of $f$ does not change by doing so. We emphasize that the safe value for $v$ is not necessarily inferred. This lemma provides a way to test whether a safe value exists for a variable, that is, if $f_{v}^{\prime}\left(f_{\neg v}^{\prime}\right)$ has value 0 , then it is safe to set $v$ to $1(0)$ in $f$. However, to use this lemma directly requires conjoining all BDDs containing $v$, and from Sect. 5.9 , this could be expensive. In pursuit of an efficient method for finding safe assignments, Lemma 4 may be used to derive the following weaker result:

Theorem 10 ([146]) Given a conjunction of BDDs $f=f_{1} \wedge \ldots \wedge f_{m}$ and variable $v$ occurring in one or more BDDs of $f$, let $f^{\prime}$ be the conjunction of all BDDs in $f$ which contain $v$. Without loss of generality, suppose $f^{\prime}=f_{1} \wedge \ldots \wedge f_{n}$ where $n \leq m$. Let $f_{v}^{\prime}=\left(\left.\neg\left(\left.f_{1}\right|_{v}\right) \wedge f_{1}\right|_{\neg v}\right) \vee \ldots \vee\left(\left.\neg\left(\left.f_{n}\right|_{v}\right) \wedge f_{n}\right|_{\neg v}\right)$. Let $f_{\neg v}^{\prime}=$ $\left(\left.f_{1}\right|_{v} \wedge \neg\left(\left.f_{1}\right|_{\neg v}\right)\right) \vee \ldots \vee\left(\left.f_{n}\right|_{v} \wedge \neg\left(\left.f_{n}\right|_{\neg v}\right)\right)$.

1. If $f_{v}^{\prime}$ has value 0 , then $\left.f\right|_{v}$ is satisfiable if and only if $f$ is satisfiable.
2. If $f_{\neg v}^{\prime}$ has value 0 , then $\left.f\right|_{\neg v}$ is satisfiable if and only if $f$ is satisfiable.

According to Theorem 10, a safe assignment may be found without having to conjoin BDDs containing $v$. This is practical when BDDs are fairly small and is more practical than conjoining BDDs if $v$ appears in many of them. However, it is possible that a safe assignment discovered using Lemma 4 may be undiscoverable using Theorem 10 .

The following is the corresponding theorem for safe assignments involving more than one variable:

Theorem 11 ([146]) Given a conjunction of $B D D s f=f_{1} \wedge \ldots \wedge f_{m}$ and a set of variables $V=\left\{v_{1}, \ldots, v_{k}\right\}$ each occurring in one or more BDDs of $f$, let $f^{\prime}$ be the conjunction of all BDDs in $f$ which contain at least one of the variables in $V$. Let $\mathcal{M}=\left\{M_{1}, \ldots, M_{2^{k}}\right\}$ be the set of all possible truth assignments to the variables
in $V$. Without loss of generality, suppose $f^{\prime}=f_{1} \wedge \ldots \wedge f_{n}$ where $n \leq m . \forall_{1 \leq i \leq 2^{k}}$ if $\left(\neg\left(\left.f^{\prime}\right|_{M_{i}}\right) \wedge\left(\left.\left.f^{\prime}\right|_{M_{1}} \vee \ldots \vee f^{\prime}\right|_{M_{2} k}\right)\right)$ has value 0 , then $\left.f\right|_{M_{i}}$ is satisfiable if and only if $f$ is satisfiable.

It is straightforward to turn Theorems 10 and 11 into an algorithm, but this is not done here because numerous variants to speed up the search are possible and it is impractical to list all of them.

### 5.11 Branch and Bound

The DPLL algorithm of Fig. 17 is sequential in nature. At any point in the search, only one node, representing a partial assignment $M_{1}$, of the search tree is active: that is, open to exploration. This means exploration of a promising branch of the search space may be delayed for a potentially considerable period until search finally reaches that branch. Branch and bound aims to correct this to some extent. In branch and bound, quite a few nodes of the search space may be active at any point in the search. Each of the active nodes has a number $l\left(M_{1:}\right)$ which is an aggregate estimate of how close the assignment represented at a node is to a solution or confirms that assignment cannot be extended to a best solution. Details concerning how $l\left(M_{1:}\right)$ is computed will follow. A variable $v$ is chosen for assignment from the subformula of the active node of lowest $l$ value and that node is expanded. The expansion eliminates one active node and may create up to two others, one for each value to $v$. To help control the growth of active nodes, branch and bound maintains a monotonically decreasing number $u$ for preventing nodes known to be unfruitful from becoming active. If the $l$ value of any potential active node is greater than $u$, it is thrown out and not made active. Eventually, there are no active nodes left and the algorithm completes.

Branch and bound is intended to solve more problems than SAT, one of the most important being MAX-SAT (Page 319). It requires a function $g_{\psi}\left(M_{1:}\right)$ which maps a given formula $\psi$ and partial or total truth assignment $M_{1}$ : to a nonnegative number. The objective of branch and bound is to return an assignment $M$ such that $g_{\psi}(M)$ is minimum over all truth assignments, partial or complete. That is,

$$
M: \forall x, g_{\psi}(X) \geq g_{\psi}(M)
$$

For example, if $g_{\psi}\left(M_{1:}\right)$ is just the number of clauses in $\psi_{M_{1}}$, then branch and bound seeks to find $M$ which satisfies the greatest number of clauses, maybe all.

Branch and bound discovers and discards search paths that are known to be fruitless, before they are explored, by means of a heuristic function $h\left(\psi_{M_{1}:}\right)$ where $\psi_{M_{1} \text { : }}$ is obtained from $\psi$ by removing clauses satisfied by and literals falsified by $M_{1:}$. The heuristic function returns a nonnegative number which, when added to $g_{\psi}\left(M_{1:}\right)$, is a lower bound on $g\left(\psi_{X}\right)$ over all possible extensions $X$ to $M_{1:}$. That sum is the $l\left(M_{1}\right)$ that was referred to above. That is,

```
Algorithm 16.
Branch-and-bound (\(\psi, h, g_{\psi}\))
\(\begin{array}{ll}\text { /* Input: } n \text { variable CNF formula } \psi \text {, heuristic function } h, & \text { */ } \\ \text { /* } & \text { objective function } g_{\psi} \text { mapping partial assignments to } Z \quad * /\end{array}\)
/* Output: Assignment \(M\) such that \(g_{\psi}(M)\) is minimized */
/* Locals: Integer u, priority queue \(P\) */
 Set \(M \leftarrow \emptyset\); Set \(M_{1: 0} \leftarrow \emptyset\); Set \(u \leftarrow \infty\).
 Insert \(P \leftarrow\left\langle\left\langle\psi, M_{1: 0}\right\rangle, 0\right\rangle\).
 Repeat the following while \(P \neq \emptyset\) :
 Pop \(\left\langle\psi^{\prime}, M_{1: i}\right\rangle \leftarrow P\).
 If \(\psi^{\prime}=\emptyset\) then Output \(M\).
 Choose variable \(v\) from \(\psi^{\prime}\).
 Set \(\psi_{1}^{\prime} \leftarrow\left\{c \backslash\{v\}: c \in \psi^{\prime}\right.\) and \(\left.\neg v \notin c\right\}\).
 Set \(\psi_{2}^{\prime} \leftarrow\left\{c \backslash\{\neg v\}: c \in \psi^{\prime}\right.\) and \(\left.v \notin c\right\}\).
 Repeat the following for \(j=1\) and \(j=2\) :
 If \(j=1\) then do the following:
 Set \(M_{1: i+1} \leftarrow M_{1: i}\).
 Otherwise
 Set \(M_{1: i+1} \leftarrow M_{1: i} \cup\{v\}\).
 If \(h\left(\psi_{j}^{\prime}\right)+g_{\psi}\left(M_{1: i+1}\right)<u\) then do the following:
 Insert \(P \leftarrow\left\langle\left\langle\psi_{j}^{\prime}, M_{1: i+1}\right\rangle, h\left(\psi_{j}^{\prime}\right)+g_{\psi}\left(M_{1: i+1}\right)\right\rangle\).
 If \(g_{\psi}\left(M_{1: i+1}\right)<u\) then do the following:
 Set \(u \leftarrow g_{\psi}\left(M_{1: i+1}\right)\).
 Set \(M \leftarrow M_{1: i+1}\).
 Output \(M\).
```

Fig. 42 Classic branch-and-bound procedure adapted to satisfiability

$$
l\left(M_{1:}\right)=h\left(\psi_{M_{1}}\right)+g_{\psi}\left(M_{1:}\right) \leq \min \left\{g_{\psi}(X): X \text { is an extension of } M_{1:}\right\} .
$$

The algorithm maintains a number $u$ that records the lowest $g_{\psi}$ value that has been seen so far during search. If partial assignment $M_{1: i}$ is extended by one variable to $M_{1: i+1}$ and $g_{\psi}\left(M_{1: i+1}\right)<u$ then $u$, is updated to that value and $M_{1: i+1}$, the assignment that produced that value, is saved as $M$. In that case, $l\left(M_{1: i+1}\right)$ must also be less than $u$ because it is less than $g_{\psi}\left(M_{1: i+1}\right)$. But if $l\left(M_{1: i+1}\right)>u$, then there is no chance, by definition of $l\left(M_{1:}\right)$, that any extension to $M_{1: i+1}$ will yield the minimum $g_{\psi}$. Hence, if that test succeeds, the node that would correspond to $M_{1: i+1}$ is thrown out, eliminating exploration of that branch.

The algorithm in its general form for satisfiability is shown in Fig. 42 as Algorithm 16. A priority queue $P$ is used to hold all active nodes as pairs where each pair contains a reduced formula and its corresponding partial assignment. Pairs are stored in $P$ in increasing order of $l\left(M_{1:}\right)$. It is easy to see, by definition of $l\left(M_{1:}\right)$, that no optimal assignment gets thrown out. It is also not difficult to see that, given two heuristic functions $h_{1}$ and $h_{2}$, if $h_{1}\left(\psi_{M_{1}:}\right) \leq h_{2}\left(\psi_{M_{1}:}\right)$ for all $M$, then the search
explored using $h_{1}$ will be no larger than the search space explored using $h_{2}$. Thus, to keep the size of the search space down, as tight a heuristic function as possible is desired. However, since overall performance is most important and since tighter heuristic functions typically mean more overhead, it is sometimes more desirable to use a weaker heuristic function which generates a larger search space in less time. Section 5.12.2 shows how linear programming relaxations of integer programming representations of search nodes can be used as heuristic functions. This section concludes with an alternative to illustrate what else is possible.

Recall the problem of variable-weighted satisfiability which was defined in Sect. 2: given CNF formula $\psi$ and positive weights on variables, find a satisfying assignment for $\psi$, if one exists, such that the sum of weights of variables of value 1 is minimized. Let $\psi_{M_{1} \text { : }}$ be defined as above and let $Q_{\psi_{M_{1}} \text { : }}$ be a subset of positive clauses of $\psi_{M_{1}:}$ such that no variable appears twice in $Q_{\psi_{M_{1}}:}$. For example, $Q_{\psi_{M_{1}} \text { : }}$ might look like this:

$$
\left(v_{1} \vee v_{3} \vee v_{7}\right) \wedge\left(v_{2} \vee v_{6}\right) \wedge\left(v_{4} \vee v_{5} \vee v_{8}\right) .
$$

A strictly lower bound on the minimum weight solution over all extensions to $M_{1}$ : is $g_{\psi}\left(M_{1:}\right)+h\left(\psi_{M_{1}}\right)$, the sum of the weights of the minimum weight variable in each of the clauses of $Q_{\psi_{M_{1}}}$. Clearly, this is not a very tight bound. But it is computationally fast to acquire this bound, and the trade-off of accuracy for speed often favors this approach [61], particularly when weight calculations are made incrementally. Additionally, there are some tricks that help to find a $\operatorname{good} Q_{\psi_{M_{1}}}$ : For example, a greedy approach may be used as follows: choose a positive clause $c$ with variables independent of clauses already in $Q_{\psi_{M_{1}} \text { : }}$ and such that the ratio of the weight of the minimum weight variable in $c$ to the number of variables in $c$ is maximum [108]. The interested reader can consult [108] and [41] for additional ideas.

### 5.12 Algebraic Methods

A collection of Boolean constraints may be expressed as a system of algebraic equations or inequalities which has a solution if and only if the constraints are satisfiable. The attraction of these methods is that, in some cases, a single algebraic operation can simulate a large number of resolution operations. The problem is that it is not always obvious how to choose the optimal sequence of operations to take advantage of this, and often performance is disappointing due to nonoptimal choices.

### 5.12.1 Gröbner Bases Applied to SAT

It is interesting that at the same time resolution was being developed and understood as a search tool in the 1960s, an algebraic tool for computing a basis for highly nonlinear systems of equations was introduced: the basis it found was given the name Gröbner basis and the tool was called the Gröbner basis algorithm [29].

But it was not until the mid-1990s that Gröbner bases crossed paths with satisfiability when it was shown that Boolean expressions can be written as systems of multilinear equations which a simplified Gröbner basis algorithm can solve using a number of derivations that is guaranteed to be within a polynomial of the minimum number possible [37]. Also in that paper, it is shown that the minimum number of derivations cannot be much greater than, and may sometimes be far less than, the minimum number needed by resolution. Such powerful results led the authors to say "these results suggest the Gröbner basis algorithm might replace resolution as a basis for heuristics for NP-complete problems."

This has not happened, perhaps partly because of the advances in the development of CNF SAT solvers in the 1990s and partly because, as is the case for resolution, it is generally difficult to find a minimum sequence of derivations leading to the desired conclusion. However, the complementary nature of algebraic and logic methods makes them an important alternative to resolution. Generally, in the algebraic world, problems that can be solved essentially using Gaussian elimination with a small or modest increase in the degree of polynomials are easy. A classic example where this is true is the systems of equations involving only the exclusiveor operator. By contrast, just expressing the exclusive-or of $n$ variables in CNF requires $2^{n-1}$ clauses.

In the algebraic proof system outlined here, facts are represented as multilinear equations and new facts are derived a database of existing facts using rules described below. Let $\left\langle c_{0}, c_{1}, \ldots, c_{2^{n}-1}\right\rangle$ be a $0-1$ vector of $2^{n}$ coefficients. For $0 \leq j<n$, let $b_{i, j}$ be the $j$ th bit in the binary representation of the number $i$. An input to the proof system is a set of equations of the following form:

$$
\begin{equation*}
\sum_{i=0}^{2^{n}-1} c_{i} v_{1}^{b_{i, 0}} v_{2}^{b_{i, 1}} \ldots v_{n}^{b_{i, n-1}}=0 \tag{7}
\end{equation*}
$$

where all variables $v_{i}$ can take value 0 or 1 , and addition is taken modulo 2. An equation of the form (7) is said to be multilinear. A product $t_{i}=v_{1}^{b_{i, 0}} v_{2}^{b_{i, 1}} \ldots v_{n}^{b_{i, n-1}}$, for any $0 \leq i \leq 2^{n}-1$, will be referred to as a multilinear term or simply a term. The degree of $t_{i}$, denoted $\operatorname{deg}\left(t_{i}\right)$, is $\sum_{0 \leq j<n} b_{i, j}$. A term that has a coefficient of value 1 in an equation is said to be a nonzero term of that equation.

New facts may be derived from known facts using the following rules:

1. Any even sum of like nonzero terms in an equation may be replaced by 0 . Thus, $v_{1} v_{2}+v_{1} v_{2}$ reduces to 0 and $1+1$ reduces to 0 . This reduction rule is needed to eliminate terms when adding two equations (see below).
2. A factor $v^{2}$ in a term may be replaced by $v$. This reduction rule is needed to ensure terms remain multilinear after multiplication (see below).
3. An equation of the form (7) may be multiplied by a term, and the resulting equation may be reduced to the form (7) by rule 2 above. Thus, $v_{3} v_{4}\left(v_{1}+v_{3}=0\right)$ becomes $v_{1} v_{3} v_{4}+v_{3} v_{4}=0$.
4. Two equations may be added to produce an equation that may be reduced by rule 1 above to the form (7). Examples will be given below.

An equation that is created by rule 3 or 4 is said to be derived. All derived equations are reduced by rules 1 and 2 before being added to the proof.

Observe that the solution spaces of two equations are complementary if they differ only in that $c_{0}=0$ for one and $c_{0}=1$ for the other. For example, the sets of solutions for the two equations

$$
\begin{aligned}
& v_{1} v_{2} v_{3}+v_{1} v_{2}+v_{2} v_{3}+v_{1}+1=0 \text { and } \\
& v_{1} v_{2} v_{3}+v_{1} v_{2}+v_{2} v_{3}+v_{1}=0
\end{aligned}
$$

are complementary.
It is left as evident that performing operations rules 3 and 4 with reductions rules 1 and 2 as needed results in a set of derived equations whose solution space is a superset of the original set. The set of all possible derived equations has a solution space which is identical to that of the original set of equations.

Theorem 12 The equation $1=0$ is always derivable using rules 3 and 4 (and implicitly rules 1 and 2) from an inconsistent input set of multilinear equations and never derived from a consistent set.

Proof Assume $1=0$ is not one of the input equations. Suppose $1=0$ is derived from a consistent input set. Then two equations were added to derive $1=0$. But the solution space of both must be complementary and therefore the solution space of the entire system must be empty. That is not possible since application of rules 3 and 4 does not reduce the solution space below that of the original set of equations, and there is at least one solution because the input set is consistent.

Suppose $1=0$ is not derivable from an inconsistent input set. Re-index terms, with the term of degree 0 taking the lowest index, and construct a sequence of derivations such that no two derived equations have the same nonzero term. If the derivation cannot continue to the lowest (0th) term, then the resulting system of equations is linearly independent and therefore must have a solution. But that is impossible by assumption.

Re-indexing is as follows: terms of degree $i$ all have higher index than terms of degree $j$ if $i>j$; among terms of the same degree, the order of index is decided lexicographically. Call the equations $\psi$ and create set $B$, initially empty. Repeat the following until $\psi$ is empty. Pick an equation $e$ of $\psi$ that has the highest index, nonzero term. As long as there is an equation $g$ in $B$ whose highest nonzero term has the same index as the highest index nonzero term of $e$, replace $e$ with $e+g$. If $0=0$ is not produced, add $e$ to $B$. This ensures $B$ remains linearly independent. Create as many as $n$ new equations by multiplying $e$ by every variable and add those equations to $\psi$ that have never been in $\psi$. This sets up the addition of $e$ with all other equations in $B$. When $\psi$ is empty, all original equations have been replaced by equations with the same solution space and are such that no two of them have the same highest index nonzero term.

Next some examples of inputs are shown and then two short derivations. The CNF clause

$$
\left(v_{1} \vee v_{2} \vee v_{3}\right)
$$

is represented by the equation

$$
v_{1}\left(1+v_{2}\right)\left(1+v_{3}\right)+v_{2}\left(1+v_{3}\right)+v_{3}+1=0
$$

which may be rewritten

$$
v_{1} v_{2} v_{3}+v_{1} v_{2}+v_{1} v_{3}+v_{2} v_{3}+v_{1}+v_{2}+v_{3}+1=0 .
$$

The reader can verify this from the truth table for the clause. Negative literals in a clause are handled by replacing variable symbol $v$ with $(1+v)$. For example, the clause

$$
\left(\neg v_{1} \vee v_{2} \vee v_{3}\right)
$$

is represented by

$$
\left(1+v_{1}\right)\left(1+v_{2}\right)\left(1+v_{3}\right)+v_{2}\left(1+v_{3}\right)+v_{3}+1=0
$$

which reduces to

$$
\begin{equation*}
v_{1} v_{2} v_{3}+v_{1} v_{2}+v_{1} v_{3}+v_{1}=0 \tag{8}
\end{equation*}
$$

As can be seen, just the expression of a clause introduces nonlinearities. However, this is not the case for some Boolean functions. For example, the exclusive-or formula

$$
v_{1} \oplus v_{2} \oplus v_{3} \oplus v_{4}
$$

is represented by

$$
v_{1}+v_{2}+v_{3}+v_{4}+1=0
$$

An equation representing a BDD (Sect. 5.9) can be written directly from the BDD as a sum of algebraic expressions constructed from paths to 1 because each path represents one or more rows of a truth table and the intersection of rows represented by any two paths is empty. Each expression is constructed incrementally while tracing a path as follows: when a 1 branch is encountered for variable $v$, multiply by $v$, and when a 0 branch is encountered for variable $v$, multiply by $(1+v)$. Observe that for any truth assignment, at most one of the expressions has value 1. The equation corresponding to the BDD at the upper left in Fig. 28 is

$$
\left(1+v_{1}\right)\left(1+v_{2}\right)\left(1+v_{3}\right)+\left(1+v_{1}\right) v_{2} v_{3}+v_{1}\left(1+v_{2}\right) v_{3}+v_{1} v_{2}+1=0
$$

which reduces to

$$
v_{1}+v_{2}+v_{3}+v_{1} v_{2} v_{3}=0
$$

Since there is a BDD for every Boolean function, this example illustrates the fact that a single equation can represent any complex function. It should be equally clear that a single equation addition may have the same effect as many resolution steps.

Addition of equations and the Gaussian-elimination nature of algebraic proofs is illustrated by showing steps that solve the following simple formula:

$$
\begin{equation*}
\left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{2} \vee \neg v_{3}\right) \wedge\left(v_{3} \vee \neg v_{1}\right) . \tag{9}
\end{equation*}
$$

The equations corresponding to (9) are expressed below as (1), (2), and (3). All equations following those equations are derived as stated on the right.

| $v_{1} v_{2}$ | $+v_{2}$ |  |  |  |  | $=0$ | (1) | |
|---|---|---|---|---|---|---|---|---|
|  | $v_{1} v_{3} \quad v_{2} v_{3}$ |  | $+v_{1}$ |  | $+v_{3}$ | $=0$ | (2) |
|  |  |  |  |  | $=0$ | (3) |
| $\nu_{1} v_{2} v_{3}$ |  | $+v_{2} v_{3}$ |  |  |  |  | $=0$ | $(4) \Leftarrow v_{3} \cdot(1)$ |
| $v_{1} v_{2} v_{3}$ |  |  |  |  | $+v_{3}$ | $=0$ | $(5) \Leftarrow(4)+(2)$ |
| $\nu_{1} v_{2} \nu_{3}$ | $+v_{1} v_{3}$ |  |  |  |  | $=0$ | (6) $\Leftarrow v_{1} \cdot(2)$ |
| $\nu_{1} v_{2} \nu_{3}$ |  |  | $+v_{1}$ |  |  | $=0$ | $(7) \Leftarrow(6)+(3)$ |
| $v_{1} v_{2} v_{3}+v_{1} v_{2}$ |  |  |  |  |  | $=0$ | $(8) \Leftarrow v_{2} \cdot(3)$ |
| $v_{1} v_{2} v_{3}$ |  |  |  | $+v_{2}$ |  | $=0$ | $(9) \Leftarrow(8)+(1)$ |
|  |  |  | $v_{1}$ | $+v_{2}$ |  | $=0$ | $(10) \Leftarrow(9)+(7)$ |
|  |  |  | $\nu_{1}$ |  | $+v_{3}$ | $=0$ | $(11) \Leftarrow(5)+(7)$ |

The solution is given by the bottom two equations which state that $v_{1}=v_{2}=v_{3}$. If, say, the following two clauses are added to (9)

$$
\left(\neg v_{1} \vee \neg v_{2}\right) \wedge\left(v_{3} \vee v_{1}\right),
$$

the equation $v_{1}+v_{2}+1=0$ could be derived. Adding this to (10) would give $1=0$ which proves that no solution exists.

Ensuring a derivation of reasonable length is difficult. One possibility is to limit derivations to equations of bounded degree where the degree of a term $t$, $\operatorname{deg}(t)$, is defined in the proof of Theorem 12 and the degree of an equation is $\operatorname{degree}(e)=\max \{\operatorname{deg}(t): t$ is a nonzero term in $e\}$. An example is Algorithm 17 of Fig. 43 which is adapted from [37]. In the algorithm terms are re-indexed as in Theorem 12. Then first_non-zero $\left(e_{i}\right)$ is used to determine the highest index of a nonzero term of $e_{i}$. The function reduce (e) is an explicit statement that says reduction rules 1 and 2 are applied as needed to produce a multilinear equation.

```
Algorithm 17.
An Algebraic Solver \((\psi, d)\)
/* Input: List of equations \(\psi=\left\langle e_{1}, \ldots, e_{m}\right\rangle\), integer d */
/* Output: "satisfiable" or "unsatisfiable" */
/* Locals: Set B of equations */
 Set \(B \leftarrow \emptyset\).
 Repeat while \(\psi \neq \emptyset\) :
 Pop \(e \leftarrow \psi\).
 Repeat while \(\exists e^{\prime} \in B:\) first_non-zero \((e)=\) first_non-zero \(\left(e^{\prime}\right)\) :
 Set \(e \leftarrow \operatorname{reduce}\left(e+e^{\prime}\right) . \quad / *\) Rule \(4 .{ }^{*} /\)
 If \(e\) is \(1=0\) : Output "unsatisfiable"
 If \(e\) is not \(0=0\) :
 Set \(B \leftarrow B \cup\{e\}\).
 If degree \((e)<d\) :
 Repeat for all variables \(v\) :
 If reduce (ve) has not been in \(\psi\) :
 Append \(\psi \leftarrow\) reduce (ve). \(\quad /^{*}\) Rule 3. */
 Output "satisfiable".
```

Fig. 43 Simple algebraic algorithm for SAT

This section concludes by comparing equations and the algebraic method with BDDs and BDD operations. Consider an example taken from Sect. 5.9. Equations corresponding to $f$ and $c$ in Fig. 31 are

$$
\begin{aligned}
& f: v_{1} v_{3}+v_{2}+v_{1} v_{2}=0 \\
& c: v_{2} v_{3}+v_{3}=0
\end{aligned}
$$

Multiply $f$ by $v_{2} v_{3}$ to get $v_{2} v_{3}=0$ which adds with $c$ to get $v_{3}=0$, the inference that is missed by restrict $(f, c)$ in Fig. 31. The inference can be derived from BDDs by reversing the role of $f$ and $c$ as shown in Fig. 32. Consider what multiplying $f$ by $v_{2} v_{3}$ and adding to $c$ means in the BDD world. The BDD representing $v_{2} v_{3}$, call it $d$, consists of two internal nodes $v_{2}$ and $v_{3}$, a path to 0 following only 1 branches, and all other paths terminating at 1 . Every path that terminates at 1 in $f$ also terminates at 1 in $d$. Therefore, $d \wedge c$ can safely be added as a BDD as long as $f$ remains. But it is easy to check that $d \wedge c$ is simply $v_{3}=0$.

The process used in the above example can be applied more generally. All that is needed is some way to create a best factor $d$ from $f$ and $c$. This is something a generalized cofactor, which is discussed in Sect. 5.9.4, can sometimes do. However, the result of finding a generalized cofactor depends on BDD variable ordering. For the ordering $v_{1}<v_{2}<v_{3}$, the generalized cofactor $g=\boldsymbol{\operatorname { g c f }}(f, c)$ turns out to be $\left(v_{1} \vee \neg v_{2} \vee v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right)$ which is different from $d$ in the leading clause but
is sufficient to derive the inference when conjoined with $c$. By the definition of gcf, since $f \wedge c=g \wedge c, g$ may replace $f$ - this is not the case for $d$ above.

Existentially quantifying $v$ away from a BDD has a simple counterpart in algebra: just multiply two polynomials, one with restriction $v=1$ and the other with restriction $v=0$. For example, the BDD of Fig. 28 may be expressed as

$$
v_{1} v_{2} v_{3}+v_{1} v_{3}+v_{1}+1=0
$$

The equations under restrictions $v_{2}=1$ and $v_{2}=0$, respectively, are

$$
v_{1}+1=0 \quad \text { and } \quad v_{1} v_{3}+v_{1}+1=0 .
$$

The result of existential quantification is

$$
\left(v_{1}+1\right)\left(v_{1} v_{3}+v_{1}+1\right)=v_{1}+1=0
$$

which reveals the same inference. As with BDDs, this can be done only if the quantified variable is in no other equation.

The counterpart to strengthening is just as straightforward. The BDDs of Fig. 39 have equation representations

$$
\begin{aligned}
& b 2: v_{1} v_{3}+v_{2}+v_{1} v_{2}=0 \\
& b 1: v_{3}+v_{2} v_{3}=0
\end{aligned}
$$

Existentially quantify $v_{1}$ away from $b_{2}$ to get $v_{2} v_{3}=0$ and add this to $b_{1}$ to get $v_{3}=0$.

### 5.12.2 Integer Programming

An integer program models the problem of maximizing or minimizing a linear function subject to a system of linear constraints, where all $n$ variables are integral:

$$
\begin{align*}
\text { maximize or minimize } & \boldsymbol{c} \boldsymbol{\alpha}  \tag{10}\\
\text { subject to } & \mathcal{M} \boldsymbol{\alpha} \leq \boldsymbol{b} \\
& l \leq \boldsymbol{\alpha} \leq u \\
& \alpha_{i} \text { integral, } 1 \leq i \leq n,
\end{align*}
$$

where $\mathcal{M}$ is a constraint matrix, $\boldsymbol{c}$ is a linear objection function, $\boldsymbol{b}$ is a constant vector, and $\boldsymbol{\alpha}$ is a variable vector.

The integer programming problem and its relaxation to linear programming are very well studied, and a large body of techniques have been developed to assist in establishing an efficient solution to (10). They are divided into the categories of preprocessing and solving. However, an important third aspect concerns the matrix $\mathcal{M}$ that is used to model a given instance.

Modeling is important because the effective solution of integer programs often entails the use of linear programming relaxations. A solution to such a relaxation generally provides a bound on the actual solution, and the relaxation of one formulation of the input may provide a tighter bound than another. Generally, the tighter the bound, the better.

For example, consider two formulations of the pigeonhole problem. The pigeonhole problem is as follows: can $n+1$ pigeons be placed in $n$ holes so that no two pigeons are in the same hole? Define Boolean variables $v_{i, j}, 1 \leq i \leq n$, $1 \leq j \leq n+1$ with the interpretation that $v_{i, j}$ will take the value 1 if and only if pigeon $j$ is in hole $i$ and otherwise will take value 0 . The following equations, one per pigeon, express the requirement that every pigeon is to be assigned to a single hole:

$$
\begin{equation*}
\sum_{i=1}^{n} v_{i, j}=1, \quad 1 \leq j \leq n+1, \tag{11}
\end{equation*}
$$

and the following inequalities express the requirement that two pigeons cannot occupy the same hole:

$$
\begin{equation*}
v_{i, j}+v_{i, k} \leq 1, \quad 1 \leq i \leq n, 1 \leq j<k \leq n+1 . \tag{12}
\end{equation*}
$$

There is no solution to this system of equations and inequalities. Relaxing integrality constraints, there is a solution at $v_{i, j}=1 / n$ for all $i, j$. If running the algorithm to be shown later, practically complete enumeration is necessary before finally it is determined that no solution exists [82]. However, the requirement that at most one pigeon is in a hole may alternatively be represented by

$$
\begin{equation*}
\sum_{j=1}^{n+1} v_{i, j} \leq 1, \quad 1 \leq i \leq n . \tag{13}
\end{equation*}
$$

which may be used instead of (12). The new constraints are much tighter than (12) and the system (11) and (13) is easily solved [82].

The purpose of preprocessing is to reformulate a given integer program and tighten its linear programming relaxation. In the process it may eliminate redundant constraints and may even be able to discover unsatisfiability.

## 6 Algorithms for Easy Classes of CNF Formulas

For certain classes of CNF formulas, the satisfiability problem is known to be solved efficiently by specially designed algorithms. Some classes, such as the 2-SAT and Horn classes are quite important because they show up in real applications and others are quite interesting because results on these add to our understanding of

```
Algorithm 18.
 Unit Resolution (}\psi\mathrm{)
 /* Input: set of sets CNF formula \psi */
 /* Output: pair \langleCNF formula \phi, partial assignment P\rangle */
 /* \psi is satisfiable if and only if \phi is satisfiable
 /* \phi has no unit clauses
 /* Locals: set of variables P, set of sets CNF formula \phi
 */
 Set }\phi\leftarrow\psi\mathrm{ ; Set }P\leftarrow\emptyset\mathrm{ .
 Repeat the following while \emptyset}\not\in\phi\mathrm{ and there is a unit clause in }\phi\mathrm{ :
 Let {l}\in\phi be a unit clause.
 If l is a positive literal, Set }P\leftarrowP\cup{l}
 Set }\phi\leftarrow{c-{\negl}:c\in\phi,l\not\inc}
 Output }\langle\phi,P\rangle\mathrm{ .
```

Fig. 44 Unit resolution for CNF formulas
the structural properties that make formulas hard or easy. Such an understanding can help develop a search heuristic that will obtain a solution more efficiently. In particular, knowledge that a large subset of clauses of a given formula belongs to some easy class of formulas can help reduce the size of the search space needed to determine whether some partial truth assignment can be extended to a solution. Because CNF formulas are so rich in structure, much space in this section is devoted to a few special cases. Hopefully this will help to fully appreciate the possibilities. In particular, results on minimally unsatisfiable and nested formulas are greatly detailed.

The reader may have the impression that the number of polynomial-time solvable classes is quite small due to the famous dichotomy theorem of Schaefer [121]. But this is not the case. Schaefer proposed a scheme for defining classes of propositional formulas with a generalized notion of clause. He proved that every class definable within his scheme was either $\mathcal{N} P$-complete or polynomial-time solvable, and he gave criteria to determine which. But not all classes can be defined within his scheme. The class of Horn formulas can be but several others, which will be described in this section, including q-Horn, extended Horn, CC-balanced, and SLUR cannot be so defined. The reason is that Schaefer's scheme is limited to classes that can be recognized in log space.

Below, some of the more notable easy classes and algorithms for solving them are presented. A crucial component of many of these algorithms is unit resolution. An implementation is given in Fig. 44.

## $6.1 \quad$ 2-SAT

Every clause of a 2-SAT formula contains at most two literals. A given 2-SAT formula $\psi$ may be solved efficiently by constructing the implication graph $\vec{G}_{\psi}$

```
Algorithm 19.
 2-SAT Solver \((\psi)\)
 /* Input: set of sets 2-CNF formula \(\psi \quad\) */
 /* Output:"unsatisfiable" or a model for \(\psi\) */
 /* Locals: variable s, set of variables \(M, M^{\prime}\), set of sets formula \(\phi^{* /}\)
 Set \(\phi \leftarrow \psi\); Set \(s \leftarrow 1\); Set \(M \leftarrow \emptyset\); Set \(M^{\prime} \leftarrow \emptyset\); Set \(\phi^{\prime} \leftarrow \emptyset\).
 Repeat the following until some statement outputs a value:
 Set \(\left\langle\phi, M^{\prime}\right\rangle \leftarrow\) Unit Resolution \((\phi)\).
 If \(\emptyset \in \phi\) then do the following:
 If \(s\) has value 1 or \(\phi^{\prime}=\emptyset\) then Output "unsatisfiable".
 Set \(s \leftarrow 1\)
 Set \(M^{\prime} \leftarrow \emptyset ; \phi \leftarrow \phi^{\prime} ; l \leftarrow l^{\prime}\).
 If \(l\) is a negative literal, Set \(M^{\prime} \leftarrow \neg l\).
 Set \(\phi \leftarrow\{c-\{l\}: c \in \phi, \neg l \notin c\}\).
 Otherwise, if \(\phi \neq \emptyset\) then do the following:
 Set \(s \leftarrow 0\).
 Choose a literal \(l\) arbitrarily from a clause of \(\phi\).
 Set \(M \leftarrow M \cup M^{\prime}\).
 Set \(M^{\prime} \leftarrow \emptyset\).
 Set \(\phi^{\prime} \leftarrow \phi\).
 Set \(l^{\prime} \leftarrow l\).
 If \(l\) is a positive literal, Set \(M^{\prime} \leftarrow\{l\}\).
 Set \(\phi \leftarrow\{c-\{\neg l\}\}: c \in \phi, l \notin c\}\).
 Otherwise, Output \(M \cup M^{\prime}\).
```

Fig. 45 Algorithm for determining satisfiability of 2-CNF formulas
of $\psi$ (see Sect. 3.3) and traversing its vertices, ending either at a cycle containing complementary literals or with no additional vertices to explore. The algorithm of Fig. 45 implicitly does this.

Unit resolution drives the exploration of strongly connected components of $\vec{G}_{\psi}$. The initial application of unit resolution, if necessary, is analogous to traversing all vertices reachable from the special vertex $F$. Choosing a literal $l$ arbitrarily and temporarily assigning it the value 1 after unit resolution completes is analogous to starting a traversal of some strongly connected component with another round of unit resolution. If that round completes with an empty clause, a contradiction exists so $l$ is set to $0, \phi$ and $M$ are reset to what they were just before $l$ was set to 1 , and exploration resumes. If an empty clause is encountered before the entire component is visited (i.e., while there still exist unit clauses), then the formula is unsatisfiable. Otherwise, the value of $l$ is made permanent and so are values that were given to other variables during traversal of the component. This process repeats until the formula is found to be unsatisfiable or all components have been explored. The variable named $s$ keeps track of whether variable $l$ has been given one value or two,
the variable $M^{\prime}$ holds the temporary assignments to variables during traversal of a component, and the variables $\phi^{\prime}$ and $l^{\prime}$ save the point to return to if a contradiction is found. This algorithm is adapted from [56].

The next two theorems are stated without proof.
Theorem 13 On input CNF formula $\psi$, Algorithm 2-SAT Solver outputs "unsatisfiable" if and only if $\psi$ is unsatisfiable, and if it outputs a set $M$, then $M$ is a model for $\psi$.

Theorem 14 On input CNF formula $\psi$ containing $m$ clauses and $n$ variables, Algorithm 2-SAT Solver has $O(m+n)$ worst-case complexity.

### 6.2 Horn Formulas

A CNF formula is Horn if every clause in it has at most one positive literal. This class is widely studied, in part because of its close association with logic programming. To illustrate, a Horn clause ( $\neg v_{1} \vee \neg v_{2} \vee \ldots \vee \neg v_{i} \vee v$ ) is equivalent to the rule $v_{1} \wedge v_{2} \wedge \ldots \wedge v_{i} \rightarrow v$ or the implication $v_{1} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{i} \rightarrow v$. However, the notion of causality is generally lost when translating from rules to Horn formulas.

The following states an important property of Horn formulas.
Theorem 15 Every Horn formula has a unique minimum model.

Proof Let $\psi$ be a Horn formula. Let $M$ be a minimal model for $\psi$, that is, a smallest subset of variables of value 1 that satisfies $\psi$. Choose any $v \in M$. Since $M \backslash\{v\}$ is not a model for $\psi$, there must be a clause $c \in \psi$ such that positive literal $v \in c$. Since all other literals of $c$ are negative and $M$ is minimal, all assignments not containing $v$ cannot satisfy $c$ and therefore $\psi$. It follows that all models other than $M$ must have cardinality greater than $|M|$. Hence, $M$ is a unique minimum model for $\psi$.

The satisfiability of Horn formulas can be determined in linear time using unit resolution [53, 78, 125]. One of several possible variants is shown in Fig. 46.

Theorem 16 Given Horn formula $\psi$ as input, Algorithm Horn Solver outputs "unsatisfiable" if and only if $\psi$ is unsatisfiable, and if it outputs a set of variables $M$, then $M$ is a unique minimum model for $\psi$.

Proof When Algorithm Horn Solver completes with output set $M$, all remaining clauses have at least one negative literal. Since none of the remaining clauses are null and since $v$ added to $M$ serves to falsify negative literals, at least one of the remaining negative literals in a remaining clause has not been added to $M$ and is therefore satisfied by $M$. Therefore, all remaining clauses are satisfied by $M$.

```
Algorithm 20.
 Horn Solver (}\psi\mathrm{)
 /* Input: set of sets Horn formula \psi */
 /* Output:"unsatisfiable" or a model for \psi */
 /* Locals: set of variables M */
 Set M}\leftarrow\emptyset
 Repeat the following until no positive literal unit clauses are in }\psi\mathrm{ :
 Choose v}\mathrm{ from a positive literal unit clause {v} { %}\mathrm{ .
 Set M\leftarrowM\cup{v}.
 Set }\psi\leftarrow{c-{\negv}:c\in\psi,v\not\inc}
 If \emptyset\in\psi, Output "unsatisfiable."
 Output M.
```

Fig. 46 Algorithm for determining satisfiability of Horn formulas

A clause is removed when adding $v$ to $M$ only because it contains literal $v$. Therefore, all removed clauses are satisfied by $M$. Hence, $M$ satisfies $\psi$.

Suppose $M$ is not the unique minimum model for $\psi$. Then, for some variable $v$, the assignment $M \backslash\{v\}$ satisfies $\psi$. Variable $v$ was added to $M$ because some clause $c \in \psi$ containing positive literal $v$ became a unit clause after all variables associated with the negative literals of $c$ were placed in $M$. But then $M \backslash\{v\}$ cannot satisfy $c$. Therefore, $M$ is the unique minimum model.

Now suppose the algorithm outputs unsatisfiable but there is a model for $\psi$. Let $M^{\prime}$ be the unique minimum model. Run the algorithm until reaching the point at which an empty clause is generated. Let this happens on the $i$ th iteration of the Repeat block and let $\psi^{\prime}$ be the set of all clauses removed up to the test for an empty clause on the $i$-first iteration. Let $v$ be the last variable added to $M$ and $c$ be the unit clause from which it was obtained. Clearly, $\psi^{\prime}$ is Horn and $M \backslash\{v\}$ is its unique minimum model. $M^{\prime}$ must contain all variables of $M \backslash\{v\}$ since it is the unique minimum model for $\psi$. Therefore, it cannot contain $\{v\}$. But then $c$ is not satisfied by $M^{\prime}$, a contradiction.

Algorithm Horn Solver is only useful if the input formula is known to be Horn. It is easy to see that this can be checked in linear time.

### 6.3 Renamable Horn Formulas

Given CNF formula $\psi$ and variable subset $V_{\psi}^{\prime} \subset V_{\psi}$, define $\operatorname{switch}\left(\psi, V_{\psi}^{\prime}\right)$ to be the formula obtained from $\psi$ by reversing the polarity of all occurrences of $v$ and $\neg v$ in $\psi$ for all $v \in V_{\psi}^{\prime}$. If there exists a $V_{\psi}^{\prime} \subset V_{\psi}$ such that $\operatorname{switch}\left(\psi, V_{\psi}^{\prime}\right)$ is Horn, then $\psi$ is said to be renamable Horn or hidden Horn.

Renamable Horn formulas can be recognized and solved in $O(|\psi|)$ time [10, 104]. Algorithm SLUR on Page 410 solves renamable Horn formulas in linear time.

### 6.4 Linear Programming Relaxations

Let $\mathcal{M}_{\psi}$ be a $(0 \pm 1)$ matrix representing a CNF formula $\psi$. If $\mathcal{M}_{\psi}$ has a particular structure, it is possible to solve the inequalities (1) with non-integer constraints $0 \leq \alpha_{i} \leq 1$ to obtain a solution to $\psi$ either directly or by rounding. Notable classes based on particular matrix structures are the extended Horn formulas and what in this chapter are called the CC-balanced formulas.

The class of extended Horn formulas was introduced by Chandru and Hooker [31] who were looking for conditions under which a linear programming relaxation could be used to find solutions to propositional formulas. It is based on a theorem of Chandrasekaran [30] which characterizes sets of linear inequalities for which 0-1 solutions can always be found (if one exists) by rounding a real solution obtained using an LP relaxation. Extended Horn formulas can be expressed as linear inequalities that belong to this family of 0-1 problems.

For the sake of clarity, an equivalent graph theoretic definition is presented here. A formula $\psi$ is in the class of extended Horn formulas if one can construct a rooted directed tree $T$, called an extended Horn tree, indexed on the variables of $\psi$ such that, for every clause $c \in \psi$ :

1. All the positive literals of $c$ are consecutive on a single path of $T$.
2. There is a partition of the negative literals of $c$ into sets $N_{1}, N_{2} \ldots, N_{n_{c}}$, where $n_{c}$ is at least 1 , but no greater than the number of negative literals of $c$, such that for all $1 \leq i \leq n_{c}$, all the variables of $N_{i}$ are consecutive on a single path of $T$.
3. For at most one $i$, the path in $T$ associated with $N_{i}$ begins at the vertex in $T$ from which the path associated with positive literals begins.
4. For all remaining $i$, the path in $T$ associated with $N_{i}$ begins at the root of $T$.

Disallowing negative paths that do not originate at the root (point 3 above) gives a subclass of extended Horn called simple extended Horn [133]. Extended Horn formulas can be solved in polynomial time by Algorithm SLUR on Page 410 [122].

Chandru and Hooker showed that unit resolution alone can determine whether or not a given extended Horn formula is satisfiable. This is due to the following two properties of an extended Horn formula:

1. If $\psi$ is extended Horn and has no unit clauses, then $\psi$ is satisfiable.
2. If $\psi$ is extended Horn and $v$ is a variable in $\psi$, then
$\psi_{1}=\{c-\{v\}: c \in \psi, \neg v \notin c\}$ and $\psi_{2}=\{c-\{\neg v\}: c \in \psi, v \notin c\}$ are both extended Horn.
Chandru and Hooker proposed an algorithm that finds a model for a satisfiable extended Horn formula. First, apply unit resolution, setting values of unassigned variables to $1 / 2$ when no unit clauses remain. Then round the result by a matrix multiplication. Their algorithm cannot, however, be reliably applied unless it is
```
Algorithm 21.
SLUR \((\psi)\)
/* Input: a set of sets CNF formula \(\psi \quad\) */
/* Output: "unsatisfiable" or a model for \(\psi\)
/* Locals: set of variables M, flag d, formula \(\psi^{\prime}\) */
 Set \(\left\langle\psi^{\prime}, M\right\rangle \leftarrow\) Unit Resolution \((\psi)\).
 If \(\emptyset \in \psi^{\prime}\) then Output "unsatisfiable."
 Set \(d \leftarrow 0 \quad /^{*} d=0\) iff execution is at the top level. */
 Repeat the following while \(\psi^{\prime} \neq \emptyset\) :
 Choose arbitrarily a variable \(v \in V_{\psi^{\prime}}\).
 Set \(\left\langle\psi_{1}, M_{1}\right\rangle \leftarrow\) Unit Resolution \(\left(\left\{c-\{v\}: c \in \psi^{\prime}, \neg v \notin c\right\}\right.\)).
 Set \(\left\langle\psi_{2}, M_{2}\right\rangle \leftarrow\) Unit Resolution \(\left(\left\{c-\{\neg v\}: c \in \psi^{\prime}, v \notin c\right\}\right.\)).
 If \(\emptyset \in \psi_{1}\) and \(\emptyset \in \psi_{2}\) then do the following:
 If \(d=0\) then Output "unsatisfiable."
 Otherwise, Output "give up."
 Otherwise, do the following:
 Arbitrarily choose \(i\) so that \(\emptyset \notin \psi_{i}\)
 Set \(\psi^{\prime} \leftarrow \psi_{i}\).
 If \(i=1, M \leftarrow M \cup M_{1}\).
 Otherwise, \(M \leftarrow M \cup M_{2} \cup\{v\}\).
 Set \(d \leftarrow 1\)
 Output M
```

Fig. 47 Algorithm for determining satisfiability of SLUR formulas
known that a given formula is extended Horn. Unfortunately, the problem of recognizing extended Horn formulas is not known to be solved in polynomial time. As will be shown later in this section, this problem has become moot since Algorithm SLUR solves extended Horn formulas in linear time without the need for recognition.

The class of CC-balanced formulas has been studied by several researchers (see [38] for a detailed account of balanced matrices and a description of CCbalanced formulas). The motivation for this class is the question, for SAT, when do linear programming relaxations have integer solutions? A formula $\psi$ with $(0 \pm 1)$ matrix representation $\mathcal{M}_{\psi}$ is $C C$-balanced if in every submatrix of $\mathcal{M}_{\psi}$ with exactly two nonzero entries per row and per column, the sum of the entries is a multiple of 4 (this definition is taken from [138]). Recognizing that a formula is CC-balanced takes linear time. However, the recognition problem is moot because Algorithm SLUR solves CC-balanced formulas in linear time without the need for recognition.

As alluded to above, both extended Horn and CC-balanced formulas are subsets of a larger efficiently solved class of formulas solved by single lookahead unit resolution [122] (SLUR). The SLUR class is peculiar in that it is defined based on an algorithm rather than on properties of formulas. Algorithm SLUR of Fig. 47 selects variables sequentially and arbitrarily and considers a one-level lookahead,
under unit resolution, of both possible values that the selected variable can take. If unit resolution does not result in an empty clause in one direction, the assignment corresponding to that value choice is made permanent and variable selection continues. If all clauses are satisfied after a value is assigned to a variable (and unit resolution is applied), the algorithm returns a satisfying assignment. If unit resolution, applied to the given formula or to both subformulas created from assigning values to the selected variable on the first iteration, results in a clause that is falsified, the algorithm reports that the formula is unsatisfiable. If unit resolution results in falsified clauses as a consequence of both assignments of values to the selected variable on any iteration except the first, the algorithm reports that it has given up.

A formula is in the class SLUR if, for all possible sequences of selected variables, Algorithm SLUR does not give up on that formula. Observe that due to the definition of this class, the question of class recognition is avoided.

The worst-case complexity of Algorithm SLUR, as written, is quadratic in the length of the input formula. The complexity is dominated by the execution of $\{c-\{v\}: c \in \psi, \neg v \notin c\},\{c-\{\neg v\}: c \in \psi, v \notin c\}$, and the number of unit clauses eliminated by unit resolution. The total number of times a clause is checked and a literal removed due to the first two expressions is at most the number of literals existing in the given formula if the clauses are maintained in a linked list indexed on the literals. However, the same unit clause may be removed by unit resolution on successive iterations of the Repeat block of Algorithm SLUR since once branch of execution is always cut. This causes quadratic worst-case complexity.

A simple modification to Algorithm SLUR brings the complexity down to linear time: run both calls of unit resolution simultaneously, alternating execution of their Repeat blocks. When one terminates without an empty clause in its output formula, abandon the other call.

Theorem 17 Algorithm SLUR has $O(|\psi|)$ worst-case complexity if both calls to unit resolution are applied simultaneously and one call is immediately abandoned if the other finishes first without falsifying a clause.

Proof For reasons mentioned above, only the number of steps used by unit resolution is considered. The number of times a literal from a unit clause is chosen and satisfied clauses and falsified literals removed in non-abandoned calls of unit resolution is $O(|\psi|)$ since no literal is chosen twice. Since the Repeat blocks of abandoned and non-abandoned calls alternate, the time used by abandoned calls is no greater than that used by non-abandoned ones. Thus, the worst-case complexity of Algorithm SLUR, with the interleave modification, is $O(|\psi|)$.

All Horn, renamable Horn, extended Horn, and CC-balanced formulas are in the class SLUR. Thus, an important outcome of the results on SLUR is the observation that no special preprocessing or testing is needed for some of the special polynomial-time solvable classes of SAT when using a reasonable variant of the DPLL algorithm.

A limitation of all the classes of this section is they do not represent many interesting unsatisfiable formulas. There are several possible extensions to the SLUR class which improve the situation. One is to add a 2-SAT solver to the unit resolution steps of Algorithm SLUR. This extension is at least able to handle all 2-SAT formulas which is something Algorithm SLUR cannot do. It can be elegantly incorporated due to the following observation: whenever Algorithm SLUR completes a sequence of unit resolutions and if at that time the remaining clauses are nothing but a subset of the original clauses (which they would have to be if all clauses have at most two literals), then effectively the algorithm can start all over. That is, if fixing of a variable to both values leads to an empty clause, then the formula has been proved to be unsatisfiable. Thus, one need not augment Algorithm SLUR by the 2-SAT algorithm, because the 2-SAT algorithm (at least one version of it) does exactly what the extended algorithm does. Another extension of Algorithm SLUR is to allow a polynomial number of backtracks, giving up if at least one branch of the search tree does not terminate at a leaf where a clause is falsified. This enables unsatisfiable formulas with short search trees to be solved efficiently by Algorithm SLUR.

## 6.5 q-Horn Formulas

This class of propositional formulas was developed in [22] and [23]. The class of q -Horn formulas may be characterized as a special case of maximum monotone decomposition of matrices $[137,138]$. Express a CNF formula of $m$ clauses and $n$ variables as an $m \times n(0 \pm 1)$-matrix $\mathcal{M}$. In the monotone decomposition of $\mathcal{M}$, columns are scaled by -1 and the rows and columns are partitioned into submatrices as follows:

$$
\left(\begin{array}{c|c}
\mathcal{A}^{1} & \mathcal{E} \\
\hline \mathcal{D} \mathcal{A}^{2}
\end{array}\right)
$$

where the submatrix $\mathcal{A}^{1}$ has at most one +1 entry per row; the submatrix $\mathcal{D}$ contains only -1 or 0 entries; the submatrix $\mathcal{A}^{2}$ has no restrictions other than the three values of $-1,+1$, and 0 for each entry; and the submatrix $\mathcal{E}$ has only 0 entries. If $\mathcal{A}^{1}$ is the largest possible over columns, then the decomposition is a maximum monotone decomposition. If the maximum monotone decomposition of $\mathcal{M}$ is such that $\mathcal{A}^{2}$ has no more than two nonzero entries per row, then the formula represented by $\mathcal{M}$ is $q$-Horn.

Truemper [138] shows that a maximum monotone decomposition for a matrix associated with a q-Horn formula can be found in linear time (this is discussed in Sect. 5.10.1). Once a q-Horn formula is in its decomposed form, it can be solved in linear time by Algorithm q-Horn Solver of Fig. 48.

Theorem 18 Given $q$-Horn formula $\psi$, Algorithm $\mathbf{q}$-Horn Solver outputs "unsatisfiable" if and only if $\psi$ is unsatisfiable, and if $\psi$ is satisfiable, then the output set $M_{1} \cup M_{2}$ is a model for $\psi$.

```
Algorithm 22.
 q-Horn Solver (}\mp@subsup{\mathcal{M}}{\psi}{}
 /* Input: a (0,\pm1) matrix representation for q-Horn formula }
 /* Output: "unsatisfiable" or a model for \psi */
 /* Locals: set of variables M}\mp@subsup{M}{1}{},\mp@subsup{M}{2}{
 */
 Find the maximum monotone decomposition of }\mp@subsup{\mathcal{M}}{\psi}{}\mathrm{ (Page 84).
 If Horn formula }\mp@subsup{\mathcal{A}}{}{1}\mathrm{ is unsatisfiable then Output "unsatisfiable".
 Let }\mp@subsup{M}{1}{}\mathrm{ be a unique minimum model for the Horn formula }\mp@subsup{\mathcal{A}}{}{1}\mathrm{ .
 Remove from }\mp@subsup{\mathcal{A}}{}{2}\mathrm{ all rows whose columns in }\mathcal{D}\mathrm{ are satisfied by }\mp@subsup{M}{1}{}\mathrm{ .
 If }\mp@subsup{\mathcal{A}}{}{2}\mathrm{ is unsatisfiable then Output "unsatisfiable".
 Let }\mp@subsup{M}{2}{}\mathrm{ be a model for the 2-SAT formula }\mp@subsup{\mathcal{A}}{}{2}\mathrm{ .
 Output M}\mp@subsup{M}{1}{}\cup\mp@subsup{M}{2}{}\mathrm{ .
```

$\square$

Fig. 48 Algorithm for determining satisfiability of q-Horn formulas

Proof Clearly, if Horn formula $\mathcal{A}^{1}$ is unsatisfiable, then so is $\psi$. Suppose $\mathcal{A}^{2}$ is unsatisfiable after rows whose columns in $\mathcal{D}$ are removed because they are satisfied by $M_{1}$. Since $M_{1}$ is a unique minimum model for $\mathcal{A}^{1}$ and no entries of $\mathcal{D}$ are +1 , no remaining row of $\mathcal{A}^{2}$ can be satisfied by any model for $\mathcal{A}^{1}$. Therefore, $\psi$ is unsatisfiable in this case. The set $M_{1} \cup M_{2}$ is a model for $\psi$ if it is output since $M_{1}$ satisfies rows in $\mathcal{A}^{1}$ and $M_{2}$ satisfies rows in $\mathcal{A}^{2}$.

An equivalent definition of $q$-Horn formulas comes from the following.
Theorem 19 A CNF formula is $q$-Horn if and only if its satisfiability index is no greater than 1 .

Proof Let $\psi$ be a q-Horn formula with variable set $V_{\psi}$ and suppose $\left|V_{\psi}\right|=n$. Let $\mathcal{M}_{\psi}$ be a monotone decomposition for $\psi$. Let $n_{a}$ be such that for $0 \leq i<n_{a}$, column $i$ of $\mathcal{M}_{\psi}$ coincides with submatrices $\mathcal{A}^{1}$ and $\mathcal{D}$ and for $n_{a} \leq i<n$, column $i$ coincides with submatrix $\mathcal{A}^{2}$. Form the inequalities (2) from $\mathcal{M}_{\psi}$. Assign value 1 to all $\alpha_{i}, 0 \leq i<n_{a}$, and value $1 / 2$ to all $\alpha_{i}, n_{a} \leq i<n$. This satisfies $0 \leq \alpha_{i} \leq 1$ of system (2). Since rows of $\mathcal{A}^{1}$ have nonzero entries in columns 0 to $n_{a}-1$ only and at most one of those is +1 , the maximum sum of the elements of the corresponding row of inequality (2) is 1 . Since all rows of $\mathcal{D}$ and $\mathcal{A}^{2}$ have at most two nonzero entries in columns $n_{a}$ to $n-1$ and no +1 entries in columns 0 to $n_{a}-1$, the sum of elements of a corresponding row of inequality (2) has maximum value 1 too. Thus, inequality (2) is satisfied with $z=1$.

Now, suppose $\psi$ has satisfiability index $I_{\psi}$ which is no greater than 1 . Choose values for all $\alpha_{i}$ terms such that inequality (2) is satisfied for $z=I_{\psi}$. Let $\pi$ be a permutation of the columns of $\mathcal{M}_{\psi}$ so that $\alpha_{\pi_{i}} \leq \alpha_{\pi_{j}}$ if and only if $i<j$. Form $\mathcal{M}_{\psi}^{\prime}$ from $\mathcal{M}_{\psi}$ by permuting columns according to $\pi$. Let $n_{b}$ be such that $\alpha_{\pi_{i}}<1 / 2$ for $0 \leq i<n_{b}$ and $1 / 2 \leq \alpha_{\pi_{i}}$ for $n_{b} \leq i<n$. Scale columns 0 through $n_{b}-1$ of $\mathcal{M}_{\psi}^{\prime}$ by -1 . Then inequality (2), using $\mathcal{M}_{\psi}^{\prime}$ for $\mathcal{M}_{\psi}$, is satisfied with $z=I_{\psi}$ and
$1 / 2 \leq \alpha_{i}$ for all $0 \leq i<n$. It follows that each row of $\mathcal{M}_{\psi}^{\prime}$ can have at most two +1 entries or else the elements of the corresponding row of inequality (2) sums to greater than 1 . Consider all rows of $\mathcal{M}_{\psi}^{\prime}$ with two +1 entries and mark all columns that contain at least one of those entries. Let $\rho$ be a permutation of the columns of $\mathcal{M}_{\psi}^{\prime}$ so that all marked columns have higher index than all unmarked columns. Form $\mathcal{M}_{\psi}^{\prime \prime}$ from $\mathcal{M}_{\psi}^{\prime}$ by permuting columns according to $\rho$ and permuting rows so that all rows with only 0 entries in marked columns are indexed lower than rows with at least one nonzero entry in a marked column. Let $n_{c}$ be such that columns $n_{c}$ to $n-1$ in $\mathcal{M}_{\psi}^{\prime \prime}$ are exactly the marked columns. The value of $\alpha_{\rho_{\pi_{i}}}, n_{c} \leq i<n$, must be exactly $1 / 2$ or else the elements of some row of inequality (2) must sum to greater than 1 . It follows that the number of nonzero entries in columns $n_{c}$ to $n-1$ in any row of $\mathcal{M}_{\psi}^{\prime \prime}$ must be at most two or else the elements of some row of the inequality sum to greater than 1 . By construction of $\mathcal{M}_{\psi}^{\prime \prime}$, every row can have at most one +1 entry in columns 0 to $n_{c}-1$. Hence, $\mathcal{M}_{\psi}^{\prime \prime}$ is a monotone decomposition for $\psi$.

The following result from [23] is also interesting in light of Theorem 19. It is stated without proof.

Theorem 20 The class of all formulas with a satisfiability index greater than $1+1 / n^{\epsilon}$, for any fixed $\epsilon<1$, is $N P$-complete.

There is an almost obvious polynomial-time solvable class larger than that of the q-Horn formulas: namely, the class of formulas which have a satisfiability index no greater than $1+a \ln (n) / n$, where $a$ is any positive constant. The $\mathcal{M}$ matrix for any formula in this class can be scaled by -1 and partitioned as follows:

$$
\left(\begin{array}{c|c|c}
\mathcal{A}^{1} & \mathcal{E} & \mathcal{B}^{1} \\
\hline & & \\
\mathcal{D} & \mathcal{A}^{2} \mid \mathcal{B}^{2}
\end{array}\right),
$$

where submatrices $\mathcal{A}^{1}, \mathcal{A}^{2}, \mathcal{E}$, and $\mathcal{D}$ have the properties required for q -Horn formulas and the number of columns in $\mathcal{B}^{1}$ and $\mathcal{B}^{2}$ is no greater than $O(\ln (n))$. Satisfiability for such formulas can be determined in polynomial time by solving the q-Horn system obtained after substitution of each of $2^{O(\ln (n))}$ partial truth assignments to the variables of $\mathcal{B}^{1}$ and $\mathcal{B}^{2}$.

### 6.6 Matched Formulas

The matched formulas have been considered in the literature (see [136]) but not extensively studied, probably because this seems to be a rather useless and small class of formulas. Our interest in matched formulas is to provide a basis of comparison with other, well-known, well-studied classes. Let $G_{\psi}\left(V_{1}, V_{2}, E\right)$ be the variableclause matching graph (see Sect. 3.5) for CNF formula $\psi$, where $V_{1}$ is the set of clause vertices and $V_{2}$ is the set of variable vertices. A total matching with respect
to $V_{1}$ is a subset of edges $E^{\prime} \subset E$ such that no two edges in $E^{\prime}$ share an endpoint but every vertex $v \in V_{1}$ is an endpoint for some edge in $E^{\prime}$. Formula $\psi$ is a matched formula if its variable-clause matching graph has a total matching with respect to $V_{1}$. A matched formula is trivially satisfied: for each edge $e \in E^{\prime}$, assign the variable represented by the variable vertex in $e$ a value that satisfies the clause represented by the clause vertex in $e$. The comparison with other classes is discussed in Sect. 6.12.

### 6.7 Generalized Matched Formulas

The class of matched formulas has been generalized by Szeider [135]. Let $G_{\psi}\left(V_{1}, V_{2}, E\right)$ be the variable-clause matching graph of $\psi$ as above. Let $V_{1}^{\prime} \subset V_{1}$ and $V_{2}^{\prime} \subset V_{2}$ and suppose the subgraph $G_{\psi}^{\prime}\left(V_{1}^{\prime}, V_{2}^{\prime}, E^{\prime}\right)$ induced by $V_{1}^{\prime}$ and $V_{2}^{\prime}$ is complete: that is, for every pair of vertices $v_{1} \in V_{1}^{\prime}$ and $v_{2} \in V_{2}^{\prime}$, there is an edge $e \in E^{\prime}$. Call such a subgraph a biclique.

Theorem 21 Let $G_{\psi}\left(V_{1}, V_{2}, E\right)$ be the variable-clause graph for $\psi$. Let $\left\{X_{1}, X_{2}, \ldots, X_{r}\right\}$ be a collection of bicliques in $G_{\psi}\left(V_{1}, V_{2}, E\right)$ and suppose (1) the number of clause vertices in $X_{1}$ is less than 2 raised to the number of variable vertices in $X_{i}, 1 \leq i \leq r$; (2) every $v_{1} \in V_{1}$ (representing a clause) is in some $X_{i}$, $1 \leq i \leq r$; and (3) every $v_{2} \in V_{2}$ (representing a variable) is in at most one $X_{i}$, $1 \leq i \leq r$. Then $\psi$ is satisfiable.

Proof Let $V^{X_{i}}$ be the variables represented by vertices of $X_{i}$ and let $C^{X_{i}}$ be the clauses represented by the remaining vertices of $X_{i}$. Remove from all $c \in C^{X_{i}}$ all literals not associated with variables of $V^{X_{i}}$. Since $X_{i}$ is complete, the number of literals in $c$ is $\left|V^{X_{i}}\right|$ and the number of assignments to the variables of $V^{X_{i}}$ which are falsified by $c$ is 1 . By condition (1), the total number of falsifying assignments for $C^{X_{i}}$ is less than all possible assignments to $V^{X_{i}}$; hence, some assignment satisfies $C^{X_{i}}$. By condition (3), $V^{X_{i}} \cap V^{X_{j}}=\emptyset, i \neq j$, so satisfying assignments for both $C^{X_{i}}$ and $C^{X_{j}}$ cannot conflict. By condition (2), every clause in $\psi$ is in some biclique and is therefore satisfied by some assignment.

Clause width is typically fixed. In that case, a model for a formula satisfying the conditions of Theorem 21 can be found in time linear in the number of clauses of $\psi$. If the bicliques of $G_{\psi}$ are all single edges, then $\psi$ is a matched formula.

Unfortunately, the problem of recognizing a generalized matched formula is $\mathcal{N} P$-complete, even for 3-CNF formulas.

### 6.8 Nested and Extended Nested Satisfiability

The complexity of nested satisfiability, inspired by Lichtenstein's theorem of planar satisfiability [105], has been studied in [91]. Index all variables in a $C N F$ formula consecutively from 1 to $n$ and let positive and negative literals take the index of
their respective variables. A clause $c_{i}$ is said to straddle another clause $c_{j}$ if the index of a literal of $c_{j}$ is strictly between two indices of literals of $c_{i}$. Two clauses are said to overlap if they straddle each other. A formula is said to be nested if no two clauses overlap. For example, the following formula is nested:

$$
\left(v_{6} \vee \neg v_{7} \vee v_{8}\right) \wedge\left(v_{2} \vee v_{4}\right) \wedge\left(\neg v_{6} \vee \neg v_{9}\right) \wedge\left(v_{1} \vee \neg v_{5} \vee v_{10}\right) .
$$

The class of nested formulas is quite limited in size. A variable cannot show up in more than one clause of a nested formula where its index is strictly between the greatest and least of the clause: otherwise, two clauses overlap. Therefore, a nested formula of $m$ clauses and $n$ variables has at most $2 m+n$ literals. Thus, no CNF formula consisting of $k$-literal clauses is a nested formula unless $m / n<1 /(k-2)$. This particular restriction will be understood better from the probabilistic perspective taken in Sect. 6.13. Despite this, the class of nested formulas is not contained in either of the SLUR or q-Horn classes as shown in Sect. 6.12. This adds credibility to the potential usefulness of the algorithm presented here. However, our main interest in nested formulas is due to an enlightening analysis and efficient dynamic programming solution which appears in [91] and is presented here.

Strong dependencies between variables of nested formulas may be exploited for fast solutions. In a nested formula, if clause $c_{i}$ straddles clause $c_{j}$, then $c_{j}$ does not straddle $c_{i}$, and if clause $c_{i}$ straddles clause $c_{j}$ and clause $c_{j}$ straddles $c_{k}$, then $c_{i}$ straddles $c_{k}$. Thus, the straddling relation induces a partial order on the clauses of a nested formula. It follows that the clauses can be placed in a total ordering using a standard linear time algorithm for topologically sorting a partial order: in the total ordering, a given clause does not straddle any clauses following it. In the example above, if clauses are numbered $c_{0}$ to $c_{3}$ from left to right, $c_{2}$ straddles $c_{0}$, $c_{3}$ straddles $c_{1}$ and $c_{2}$, and no other clause straddles any other, so these clauses are in the desired order already.

Once clauses are topologically sorted into a total order, the satisfiability question may be solved in linear time by a dynamic programming approach where clauses are processed one at a time, in order. The idea is to maintain a partition of variables as a list of intervals such that all variables in any clause seen so far are in one interval. Associated with each interval are four $D$ values that express the satisfiability of corresponding processed clauses under all possible assignments of values to the endpoints of the interval. As more clauses are considered, intervals join and $D$ values are assigned. By introducing two extra variables, $v_{0}$ and $v_{n+1}$ and an extra clause ( $v_{0} \vee$ $v_{n+1}$ ) which straddles all others and is the last one processed, there is one interval [ $v_{0}, v_{n+1}$ ] remaining at the end. A $D$ value associated with that interval determines satisfiability for the given formula. What remains is to determine how to develop the interval list and associated $D$ values incrementally. This task is made easy by the fact that a variable which appears in a clause $c$ with index strictly between the highest and lowest indices of variables in $c$ never appears in a following clause.

An efficient algorithm for determining the satisfiability of nested formulas is shown in Fig. 49. The following lemma is needed to prove correctness. The actual dependence of $h$ values on $i$ is not shown to prevent the notation from going out of control. However, from the context, this dependence should be clear.

```
Algorithm 23.
Nested Solver \((\psi)\)
/* Input: set of sets CNF formula \(\psi\), with variables indexed 1 to \(n\) */
/* and \(m\) clauses indexed from 0 to \(m-1\) */
/* Output: "unsatisfiable" or "satisfiable" */
/* Locals: Boolean variables \(D_{i, j}(s, t), E_{i, j}(s, t), G_{i, j}(s, t), \quad\) */
/* set \(\mathcal{D}\) of Boolean variables. */
```

Apply unit resolution to eliminate all unit clauses in $\psi$.
Topologically sort the clauses of $\psi$ as explained in the text.
Let $c_{0}, \ldots, c_{m-1}$ denote the clauses, in order.
Add the clause $c_{m}=\left\{v_{0}, v_{n+1}\right\}$.
Set $\mathcal{D} \leftarrow\left\{D_{j, j+1}(s, t) \leftarrow 1: \quad 0 \leq j \leq n, \quad s, t \in\{0,1\}\right\}$.
Repeat the following for $0 \leq i \leq m$ :
Let $0<h_{1}<h_{2}<\ldots<h_{k}<n+1$ be the intervals for $D \in \mathcal{D}$.
$/ /$ That is, $\mathcal{D}=\left\{D_{0, h_{1}}(*, *), D_{h_{1}, h_{2}}(*, *), \ldots, D_{h_{k}, n+1}(*, *)\right\}$.
Let $c_{i}=\left\{l_{h_{p}}, \ldots, l_{h_{q}}\right\}$, where $l_{h_{r}} \in\left\{v_{h_{r}}, \neg v_{h_{r}}\right\}, p \leq r \leq q$.
Set $E_{h_{p}, h_{p}}(s, t) \leftarrow 0$ for all $s \in\{0,1\}, t \in\{0,1\}$.
Set $G_{h_{p}, h_{p}}(s, t) \leftarrow 0$ for all $s \in\{0,1\}, t \in\{0,1\}$.
If $l_{h_{p}}=v_{h_{p}}$ then do the following:
Set $E_{h_{p}, h_{p}}(1,1) \leftarrow G_{h_{p}, h_{p}}(0,0) \leftarrow 1$.
Set $E_{h_{p}, h_{p}}(0,0) \leftarrow G_{h_{p}, h_{p}}(1,1) \leftarrow 0$.
Otherwise, if $l_{h_{p}}=\neg v_{h_{p}}$ then do the following:
Set $E_{h_{p}, h_{p}}(1,1) \leftarrow G_{h_{p}, h_{p}}(0,0) \leftarrow 0$.
Set $E_{h_{p}, h_{p}}(0,0) \leftarrow G_{h_{p}, h_{p}}(1,1) \leftarrow 1$.
Repeat the following for $0 \leq j<q-p, s \in\{0,1\}, t \in\{0,1\}$ :
If $t=1$ then Set $l \leftarrow v_{h_{p+j+1}}$, Otherwise Set $l \leftarrow \neg v_{h_{p+j+1}}$.
Set $E_{h_{p}, h_{p+j+1}}(s, t) \leftarrow$
$\left(E_{h_{p}, h_{p+j}}(s, 1) \wedge D_{h_{p+j}, h_{p+j+1}}(1, t)\right) \vee$ $\left(E_{h_{p}, h_{p+j}}(s, 0) \wedge D_{h_{p+j}, h_{p+j+1}}(0, t)\right) \vee$ $\left(G_{h_{p}, h_{p+j}}(s, 1) \wedge D_{h_{p+j}, h_{p+j+1}}(1, t) \wedge l \in c_{i}\right) \vee$ $\left(G_{h_{p}, h_{p+j}}(s, 0) \wedge D_{h_{p+j}, h_{p+j+1}}(0, t) \wedge l \in c_{i}\right)$.
Set $G_{h_{p}, h_{p+j+1}}(s, t) \leftarrow$

$$
\left(G_{h_{p}, h_{p+j}}(s, 1) \wedge D_{h_{p+j}, h_{p+j+1}}(1, t) \wedge \neg\left(l \in c_{i}\right)\right) \vee
$$

$$
\left(G_{h_{p}, h_{p+j}}(s, 0) \wedge D_{h_{p+j}, h_{p+j+1}}(0, t) \wedge \neg\left(l \in c_{i}\right)\right) .
$$

Repeat for $s \in\{0,1\}, t \in\{0,1\}:$ Set $D_{h_{p}, h_{q}}(s, t) \leftarrow E_{h_{p}, h_{q}}(s, t)$.
Set $\mathcal{D} \leftarrow \mathcal{D} \backslash\left\{D_{h_{p}, h_{p+1}}(*, *) \ldots D_{h_{q-1}, h_{q}}(*, *)\right\} \cup\left\{D_{h_{p}, h_{q}}(*, *)\right\}$.
If $D_{0, n+1}(1,1)=1$, Output "satisfiable,"
Otherwise Output "unsatisfiable."

Fig. 49 Algorithm for determining satisfiability of nested formulas

Lemma 5 Assume, at the start of any iteration $0 \leq i \leq m$ of the outer Repeat loop of Algorithm Nested Solver, that

$$
\mathcal{D}=\left\{D_{h_{0}, h_{1}}(*, *), D_{h_{1}, h_{2}}(* . *), \ldots, D_{h_{k}, h_{k+1}}(*, *)\right\}
$$

where $h_{0}=0$ and $h_{k+1}=n+1$. Let

$$
\psi_{p, p+j}^{i}=\left\{c: c \in\left\{c_{0}, \ldots, c_{i-1}\right\}, h_{p} \leq \operatorname{minIndex}(c)<\operatorname{maxIndex}(c) \leq h_{p+j}\right\},
$$

for any $0 \leq j \leq k-p+1$. Then the following hold:

1. At the start of iteration $i$ of the outer Repeat loop, each variable in $c_{i}$ is the same as one of $\left\{v_{h_{0}}, v_{h_{1}}, \ldots, v_{h_{k+1}}\right\}$, and for every clause $c \in\left\{c_{0}, \ldots, c_{i-1}\right\}$, there exists an $0 \leq r \leq k$ such that all the variables of $c$ have index between $h_{r}$ and $h_{r+1}$. Moreover, for every $h_{r}$ and $h_{h+1}$, there is at least one clause whose minimum indexed variable has index $h_{r}$ and whose maximum indexed variable has index $h_{r+1}$.
2. At the start of iteration $i$ of the outer Repeat loop, $D_{h_{j}, h_{j+1}}(s, t), 0 \leq j \leq k$, has value 1 if and only if $\psi_{j, j+1}^{i}$ is satisfiable with variable $v_{h_{j}}$ set to value $s$ and variable $v_{h_{j+1}}$ set to value $t$.
3. At the start of iteration $0 \leq j<q-p$ of the main inner Repeat loop, $E_{h_{p}, h_{p+j}}(s, t)$ has value 1 if and only if $\psi_{p, p+j}^{i} \cup\left\{\left\{l_{x}: l_{x} \in c_{i}, x \leq h_{p+j}\right\}\right\}$ is satisfiable with variable $v_{h_{p}}$ set to value s and variable $v_{h_{p+j}}$ set to value $t$.
4. At the start of iteration $0 \leq j<q-p$ of the main inner Repeat loop, $G_{h_{p}, h_{p+j}}(s, t)$ has value 1 if and only if $\psi_{p, p+j}^{i} \cup\left\{\left\{l_{x}: l_{x} \in c_{i}, x \leq h_{p+j}\right\}\right\}$ is not satisfiable, but $\psi_{p, p+j}^{i}$ is satisfiable with variable $h_{p}$ set to value $s$ and variable $v_{h_{p+j}}$ set to value $t$.

Proof Consider point 1. At the start of iteration 0 of the outer Repeat loop, point 1 holds because all variables are in the set $\left\{h_{0}, \ldots, h_{n+1}\right\}$. Suppose point 1 holds at the beginning of iteration $i$. As a result of the topological sort, $c_{i}$ cannot be straddled by any clause in $\left\{c_{0} \ldots c_{i-1}\right\}$. If one variable of $c_{i}$ is indexed strictly between $h_{r}$ and $h_{r+1}$, by point 1 , there is a clause in $\left\{c_{0}, \ldots, c_{i-1}\right\}$ whose variable indices are as high as $h_{r+1}$ and as low as $h_{r}$. But such a clause would straddle $c_{i}$. Hence, for every variable $v \in c_{i}, v \in\left\{v_{h_{p}}, v_{h_{p+1}}, \ldots, v_{h_{q}}\right\}$. Since the last line of the outer Repeat loop replaces all $D_{h_{p}, h_{p+1}} \ldots D_{h_{q-1}, q}$ with $D_{h_{p}, h_{q}}$, point 1 holds at the beginning of iteration $i+1$ of the outer loop.

Consider point 2. At the start of iteration $i=0$, all defined variables are $D_{j, j+1}(*, *), 0 \leq j \leq n$, and these have value 1. From the definition of $\psi_{p, j}^{i}$, $\psi_{j, j+1}^{0}=\emptyset$. Thus, point 2 holds before iteration $i=0$. Suppose point 2 holds at the start of iteration $i$. Since $c_{i}$ contains no variables indexed less than $h_{p}$ or greater than $h_{q}$ and all $D_{h_{r}, h_{r+1}}(*, *)$ are unchanged by the algorithm for $r<p$ and $r \geq q$, then these $D$ values are correct for iteration $i+1$ (but the subscripts on $h$ values change because there are fewer $D$ variables on the next iteration). So, due to the short inner Repeat loop following the main inner Repeat loop, point 2 holds
at the start of iteration $i+1$ if $E_{h_{p}, h_{q}}(s, t)$ has value 1 if and only if $\psi_{p, q}^{i} \cup\left\{c_{i}\right\}$ is satisfiable with variable $v_{h_{p}}$ set to value $s$ and variable $v_{h_{q}}$ set to value $t$. This is shown below, thus taking care of point 2 .

Assume, during iteration $i$ of the outer loop and before the start of the main inner loop, that points 1 and 2 hold. Consider the iteration $j=0$ of the main inner loop. As above, $\psi_{*, *}^{0}=\emptyset$. Moreover, by point $1,\left\{l_{x}: l_{x} \in c_{0}, x \leq h_{p}\right\}=\left\{l_{h_{p}}\right\}$ so $\psi_{p, p}^{0} \cup\left\{\left\{l_{h_{p}}\right\}\right\}=\left\{\left\{l_{h_{p}}\right\}\right\}$. There is no satisfying assignment for this set if the value of the highest and lowest indexed variables of $c_{0}$ are opposite each other since the highest and lowest indexed variables are the same. Accordingly, $E_{p, p}(s, t)$ and $G_{p, p}(s, t)$ are set to 0 in the algorithm when $s$ and $t$ are of opposite value. However, if $s=t=1$ and if $l_{h_{p}}=v_{h_{p}}$, then $\psi_{p, p}^{0} \cup\left\{\left\{v_{h_{p}}\right\}\right\}$ is satisfiable. Accordingly, $E_{p, p}(1,1)$ is set to 1 and $G_{p, p}(1,1)$ is set to 0 in the algorithm. Otherwise, if $s=t=1$ and $l_{h_{p}}=\neg v_{h_{p}}$, then $\psi_{p, p}^{0} \cup\left\{\left\{\neg v_{h_{p}}\right\}\right\}$ is unsatisfiable. Accordingly, $E_{p, p}(1,1)$ is set to 0 and $G_{p, p}(1,1)$ is set to 1 in the algorithm. Similar reasoning applies to the case $s=t=0$. Thus, points 3 and 4 hold for the case $j=0$.

Now consider iteration $i$ of the outer loop and iteration $j>0$ of the main inner loop. Assume, at the start of iteration $j-1$, that points 3 and 4 hold. Points 1 and 2 hold from before since no changes to these occur in the main inner loop. Let $c_{i}^{j-1}=\left\{l_{x}: l_{x} \in c_{i}, x \leq p+j-1\right\}$ be the subset of literals of $c_{i}$ that have index no greater than $h_{p+j-1}$. From Point 1 , for every clause $c \in\left\{c_{0}, \ldots, c_{i-1}\right\}$, there exists a positive integer $0 \leq r \leq k$ such that all variables of $c$ have index between $h_{r}$ and $h_{r+1}$. It follows that

$$
\psi_{p, p+j}^{i} \cup\left\{c_{i}^{j-1}\right\}=\left(\psi_{p, p+j-1}^{i} \cup\left\{c_{i}^{j-1}\right\}\right) \cup \psi_{p+j-1, p+j}^{i}
$$

and $\left(\psi_{p, p+j-1}^{i} \cup\left\{c_{i}^{j-1}\right\}\right) \cap \psi_{p+j-1, p+j}^{i}=\emptyset$. For the sake of visualization, define $\psi_{1}=\psi_{p, p+j-1}^{i}$ and $\psi_{2}=\psi_{p+j-1, p+j}^{i}$. At most one variable, namely, $v_{h_{p+j-1}}$, is common to both $\psi_{1}$ and $\psi_{2}$. Hence, when $\nu_{h_{p+j-1}}$ is set to some value, the following holds: both $\psi_{1} \cup\left\{c_{i}^{j-1}\right\}$ and $\psi_{2}$ are satisfiable if and only if $\psi_{p, p+j}^{i} \cup\left\{c_{i}^{j-1}\right\}$ is satisfiable. Now consider $\psi_{p, p+j}^{i} \cup\left\{c_{i}^{j}\right\}$. Since every variable of $c_{i}$ has an index matching one of $\left\{h_{p}, h_{p+1}, \ldots, h_{q}\right\}, c_{i}^{j} \backslash c_{i}^{j-1}$, either is the empty set or $\left\{v_{h_{p+j}}\right\}$ or $\left\{\neg v_{h_{p+j}}\right\}$. Therefore, given $v_{h_{p+j-1}}, \psi_{p, p+j-1}^{i} \cup\left\{c_{i}^{j}\right\}$ is satisfiable if and only if either both $\psi_{1} \cup\left\{c_{i}^{j-1}\right\}$ and $\psi_{2}$ are satisfiable or $\psi_{1}$ and $\psi_{2}$ are satisfiable, $\psi_{1} \cup\left\{c_{i}^{j-1}\right\}$ is unsatisfiable, but $\psi_{1} \cup\left\{c_{i}^{j-1} \cup\{l\}\right.$ is satisfiable where $l \in\left\{v_{h_{p+j}}, \neg v_{h_{p+j}}\right\}$ or $\{l\}=$ $\emptyset$. But since $l$ does not occur in $\psi_{1}, \psi_{1} \cup\left\{c_{i}^{j-1}\right\}$ can be unsatisfiable with $\psi_{1}$ and $\psi_{1} \cup$ $\left\{c_{i}^{j-1} \cup\{l\}\right.$ satisfiable only for assignments which satisfy $l$. Then, by hypothesis, the association of the $E$ and $G$ variables with $\psi_{p, p+j-1}^{i}$ and $\psi_{p+j-1, p+j}^{i}$, and the assignments to $E$ and $G$ in the main inner loop of Algorithm 23, the values of $E$ and $G$ match points 3 and 4 for the $j$ th iteration of the main inner loop.

From point 3 , upon completion of the main inner loop, $E_{h_{p}, h_{q}}(s, t)$ has value 1 if and only if $\psi_{h_{p}, h_{q}}^{i} \cup\left\{c_{i}\right\}$ is satisfiable. This matches the hypothesis of point 2, thereby completing the proof that point 2 holds.

Corollary 1 Algorithm Nested Solver correctly determines satisfiability for a given nested formula.

Proof Algorithm Nested Solver determines $\psi$ is satisfiable if and only if $D_{0, n+1}(1,1)$ has value 1 . But, from Lemma $5, D_{0, n+1}(1,1)$ has value 1 if and only if $\psi \cup\left\{v_{0}, v_{n+1}\right\}$ is satisfiable and $v_{0}$ and $v_{n+1}$ are set to value 1 . The corollary follows.

The operation of Nested Solver is demonstrated by means of an example taken from [91]. Suppose the algorithm is applied to a nested formula containing the following clauses which are shown in proper order after the topological sort:

$$
\left(v_{1} \vee v_{2}\right) \wedge\left(v_{2} \vee v_{3}\right) \wedge\left(\neg v_{2} \vee \neg v_{3}\right) \wedge\left(v_{3} \vee v_{4}\right) \wedge\left(v_{3} \vee \neg v_{4}\right) \wedge\left(\neg v_{3} \vee v_{4}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee v_{4}\right) .
$$

The following table shows the $D$ values that have been computed prior to the start of iteration 6 of the outer loop of the algorithm. The columns show $s, t$ values and the rows show variable intervals.

| $D_{*, *}(s, t)$ | 0,0 | 0,1 | 1,0 | 1,1 |
| :--- | :--- | :--- | :--- | :--- |
| 1,2 | 0 | 1 | 1 | 1 |
| 2,3 | 0 | 1 | 1 | 0 |
| 3,4 | 0 | 0 | 0 | 1 |

Such a table could result from the following set of processed clauses at the head of the topological order (and before $c$ ): processing clause $c$, using the initial values and recurrence relations for $E$ and $G$ variables given above, produces values as shown in the following tables.

| $E_{p, p+j}(s, t)$ | 0,0 | 0,1 | 1,0 | 1,1 |
| :--- | :--- | :--- | :--- | :--- |
| 1,1 | 1 | 0 | 0 | 0 |
| 1,2 | 0 | 1 | 0 | 1 |
| 1,3 | 1 | 0 | 1 | 0 |
| 1,4 | 0 | 0 | 0 | 1 |
|  |  |  |  |  |
| $G_{p, p+j}(s, t)$ | 0,0 | 0,1 | 1,0 | 1,1 |
| 1,1 | 0 | 0 | 0 | 1 |
| 1,2 | 0 | 0 | 1 | 0 |
| 1,3 | 0 | 0 | 0 | 1 |

The last line of the $E$ table holds the new $D$ values for the interval $\left[v_{1}, v_{4}\right]$ as shown by the following table.

| $D_{*, *}(s, t)$ | 0,0 | 0,1 | 1,0 | 1,1 |
| :--- | :--- | :--- | :--- | :--- |
| 1,4 | 0 | 0 | 0 | 1 |

Linear time is achieved by careful data structure design and from the fact that no more than $2 m+n$ literals exist in a nested formula.

Theorem 22 Algorithm Nested Solver has worst-case time complexity that is linear in the size of $\psi$.

The question of whether the variable indices of a given formula can, in linear time, be permuted to make the formula nested appears to be open.

An extension to nested satisfiability has been proposed in [72]. The details are skipped. This extension can be recognized and solved in linear time. For details, the reader is referred to [72].

### 6.9 Linear Autark Formulas

This class is based on the notion of an autark assignment which was introduced in [111]. Repeating the definition from Page 393, an assignment to a set of variables is an autark assignment if all clauses that contain at least one of those variables are satisfied by the assignment. An autark assignment provides a means to partition the clauses into two groups: one that is satisfied by the autark assignment and one that is completely untouched by that assignment. Therefore, autark assignments provide a way to reduce a formula to one that is equivalent in satisfiability.

The following shows how to find an autark assignment in polynomial time. Let CNF formula $\psi$ of $m$ clauses and $n$ variables be represented as a $(0 \pm 1)$ matrix $\mathcal{M}_{\psi}$. Let $\boldsymbol{\alpha}$ be an $n$-dimensional real vector with components $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}$. Consider the following system of inequalities:

$$
\begin{array}{r}
\mathcal{M}_{\psi} \boldsymbol{\alpha} \geq 0,  \tag{14}\\
\alpha \neq 0 .
\end{array}
$$

Theorem 23 ([145]) A solution to (14) implies an autark assignment for $\psi$.

Proof Create the autark assignment as follows: if $\alpha_{i}<0$ then assign $v_{i}=0$, and if $\alpha_{i}>0$ then assign $v_{i}=1$, if $\alpha_{i}=0$ then keep $v_{i}$ unassigned. It is shown that either a clause is satisfied by this assignment or it contains only unassigned variables.

For every clause, by (1), it is necessary to satisfy the following:

$$
\begin{equation*}
a_{1} v_{1}+a_{2} v_{2}+\ldots+a_{n} v_{n} \geq 1-b \tag{15}
\end{equation*}
$$

where $a_{i}$ factors are $0,-1$, or +1 and the number of negative $a_{i}$ terms is $b$. Suppose $\boldsymbol{\alpha}$ is a solution to (14). Write an inequality of (14) as follows:

$$
\begin{equation*}
a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots+a_{n} \alpha_{n} \geq 0 \tag{16}
\end{equation*}
$$

Suppose at least one term, say, $a_{i} \alpha_{i}$, is positive. If $\alpha_{i}$ is positive, then $a_{i}=1$ so, with $v_{i}=1$ and since there are at most $b$ terms of value -1 , the left side of (15) must be at least $1-b$. On the other hand, if $\alpha_{i}$ is negative, then $a_{i}=-1, v_{i}=0$, and the product $a_{i} v_{i}$ in (15) is 0 . Since there are $b-1$ negative factors left in (15), the left side must be at least $1-b$. Therefore, in either case, inequalities of the form (16) with at least one positive term represent clauses that are satisfied by the assignment corresponding to $\boldsymbol{\alpha}$.

Now consider the case where no terms in (16) are positive. Since the left side of (16) is at least 0 , there can be no negative terms either. Therefore, all the variables for the represented clause are unassigned.

A formula $\psi$ for which the only solution to (14) is $\boldsymbol{\alpha}=0$ is said to be linear autarky-free.

System (14) is an instance of linear programming and can therefore be solved in polynomial time. Hence, an autark assignment, if one exists, can be found in polynomial time.

Algorithm LinAut of Fig. 50 is the central topic of study in this section and it will be used to define a polynomial-time solvable class of formulas called linear autarky formulas. The algorithm repeatedly applies an autark assignment as long as one can be found by solving (14). In a departure from [145], the algorithm begins with a call to Unit Resolution to eliminate all unit clauses. This is done to remove some awkwardness in the description of linear autarky formulas that will become clear shortly.

The following states an important property of Algorithm LinAut.
Lemma 6 Let $\psi$ be a CNF formula that is input to Algorithm LinAut and let $\psi^{\prime}$ be the formula that is output. If $\psi^{\prime}=\emptyset$ then $\psi$ is satisfiable and $\boldsymbol{\alpha}^{S}$ transforms to a satisfying assignment for $\psi$.

Proof An autark assignment $t$ to $\psi^{\prime}$ induces a partition of clauses of $\psi^{\prime}$ into those that are satisfied by $t$ and those that are untouched by $t$. Due to the independence of the latter group, a satisfying assignment for that group can be combined with the autark assignment for the former group to satisfy $\psi^{\prime}$. If there is no satisfying assignment for either group, then $\psi^{\prime}$ cannot be satisfiable. Therefore, since each iteration finds and applies an autark assignment (via $\boldsymbol{\alpha}$ ), if $\psi^{\prime}=\varnothing$ then the composition of the autark assignments of each iteration is a satisfying assignment for $\psi$.

The algorithm has polynomial-time complexity. In some cases it solves its input formula.

## Algorithm 24.

LinAut $(\psi)$

```
/* Input: a set of sets CNF formula \(\psi\)
/* Output: pair 〈real vector, subformula of \(\psi\rangle\) or "unsatisfiable" */
 Set \(\left\langle\psi^{\prime}, P\right\rangle \leftarrow\) Unit Resolution \((\psi)\).
 If \(\emptyset \in \psi^{\prime}\) then Output "unsatisfiable".
 Set \(\boldsymbol{\alpha}^{S} \leftarrow 0\)
 For each \(v_{i} \in P\) Set \(\alpha_{i}^{S} \leftarrow 1\).
 For each \(v_{i}\) such that \(v_{i} \notin P\) and \(v_{i} \in V_{P}\) Set \(\alpha_{i}^{S} \leftarrow-1\).
 If \(\psi^{\prime}=\emptyset\) then Output \(\left\langle\boldsymbol{\alpha}^{S}, \emptyset\right\rangle\).
 Repeat the following until some statement generates output:
 Solve for \(\boldsymbol{\alpha}: \mathcal{M}_{\psi^{\prime}} \boldsymbol{\alpha} \geq 0\) and \(\alpha_{i}^{S}=0\) if column \(i\) in \(\mathcal{M}_{\psi^{\prime}}\) is 0 .
 If \(\boldsymbol{\alpha}=0\) then Output \(\left\langle\boldsymbol{\alpha}^{S}, \psi^{\prime}\right\rangle\).
 Otherwise, do the following:
 Set \(\boldsymbol{\alpha}^{S} \leftarrow \boldsymbol{\alpha}^{S}+\boldsymbol{\alpha}\).
 For every \(\alpha_{i}^{S} \neq 0\) do the following:
 Zero out rows of \(\mathcal{M}_{\psi^{\prime}}\) with a non-zero entry in column \(i\).
 Set \(\psi^{\prime} \leftarrow\left\{c: c \in \psi^{\prime}, v_{i} \notin c, \neg v_{i} \notin c\right\}\).
```

Fig. 50 Repeated decomposition of a formula using autark assignments. $V_{P}$ is the set of variables whose values are set in partial assignment $P$. Output real vector $\boldsymbol{\alpha}^{S}$ can be transformed to a truth assignment as described in the proof of Theorem 23

Theorem 24 Let $\psi$ be Horn or renamable Horn. If $\psi$ is satisfiable, then LinAut returns an $\boldsymbol{\alpha}^{S}$ that transforms to a solution of $\psi$ as described in the proof of Theorem 23, and the formula returned by LinAut is $\emptyset$. If $\psi$ is unsatisfiable, LinAut returns "unsatisfiable."

Proof Horn or renamable Horn formula $\psi$ is unsatisfiable only if there is at least one positive unit clause in $\psi$. In this case Unit Resolution $(\psi)$ will output a formula containing $\varnothing$ and LinAut will output unsatisfiable. Otherwise, Unit Resolution $(\psi)$ outputs a Horn or renamable Horn formula $\psi^{\prime}$ with no unit clauses and a partial assignment $P$ which is recorded in $\boldsymbol{\alpha}^{S}$. In the next paragraph, it will be shown that any such Horn or renamable Horn formula is not linear autarky-free, so there exists an autark assignment for it. By definition, the clauses that remain after the autark assignment is applied must be Horn or renamable Horn. Therefore, the Repeat loop of LinAut must continue until there are no clauses left. Then, by Lemma 6, $\boldsymbol{\alpha}^{S}$ transforms to a satisfying assignment for $\psi$.

Now it is shown that there is always an $\boldsymbol{\alpha} \neq 0$ that solves (14). Observe that any Horn formula without unit clauses has at least one negative literal in every clause. Therefore, some all-negative vector $\boldsymbol{\alpha}$ of equal components solves (14). In the case of renamable Horn, the polarity of $\boldsymbol{\alpha}$ components in the switch set is reversed to get the same result. Therefore, there is always at least one autark assignment for a Horn or renamable Horn formula. Note that Algorithm LinAut may find an $\boldsymbol{\alpha}$ that does not zero out all rows, so the Repeat loop may have more than 1 iteration, but since
the reduced formula $\psi$ is Horn or renamable Horn, there is always an $\boldsymbol{\alpha} \neq 0$ that solves (14) for the clauses that are left.

The following Horn formula would violate Theorem 24 if the call to Unit Resolution had not been added to LinAut:

$$
\left(v_{1}\right) \wedge\left(v_{2}\right) \wedge\left(v_{3}\right) \wedge\left(v_{1} \vee \neg v_{2} \vee \neg v_{3}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee \neg v_{3}\right) \wedge\left(\neg v_{1} \vee \neg v_{2} \vee v_{3}\right) .
$$

This formula is satisfied with variables set to 1 but is linear autarky-free.
Theorem 25 If $\psi$ is a 2-SAT formula that is satisfiable, then LinAut outputs an $\boldsymbol{\alpha}^{S}$ that represents a solution of $\psi$ and the formula output by $\operatorname{LinAut}$ is $\emptyset$.

Proof In this case Unit Resolution $(\psi)$ outputs $\psi$ and causes no change to $\boldsymbol{\alpha}^{S}$. The only nonzero autark solutions to $\mathcal{M}_{\psi} \boldsymbol{\alpha} \geq 0$ have the following clausal interpretation: choose a literal in a clause and assign its variable a value that satisfies the clause; for all non-satisfied clauses that contain the negation of that literal, assign a value to the variable of the clause's other literal that satisfies that clause; continue the process until some clause is falsified or no variable is forced to be assigned a value to satisfy a clause. This is one iteration of Algorithm 2-SAT Solver, so since $\psi$ is satisfiable, the process never ends in a falsified clause. Since what is left is a satisfiable 2-SAT formula, this step is repeated until $\emptyset$ is output. As in the proof of Theorem $24, \boldsymbol{\alpha}^{S}$ transforms to a satisfying assignment for $\psi$.

If $\psi$ is an unsatisfiable 2-SAT formula, then $\operatorname{LinAut}(\psi)$ will output an unsatisfiable 2-SAT formula.

The class of linear autarky formulas is the set of CNF formulas on which the application of LinAut either outputs unsatisfiable or a formula that is $\emptyset$ or a linear autarky-free 2-SAT formula. In the middle case, the input formula is satisfiable; in the other two cases, it is unsatisfiable. Observe that in the last case, it is unnecessary to solve the remaining 2-SAT formula.

Theorem 26 All q-Horn formulas are linear autark formulas.
Proof Apply LinAut to q-Horn formula $\psi$. Then a linear autarky-free q-Horn formula is output. Assume that all clauses in the output formula have at least 2 literals - this can be done because all clauses of $\psi^{\prime}$ entering the Repeat loop for the first time have at least 2 literals and any subsequent autark assignment would not introduce a clause that is not already in $\psi^{\prime}$. The rows and columns of $\mathcal{M}_{\psi^{\prime}}$ representing the output q -Horn formula $\psi^{\prime}$ may be permuted, and columns may be scaled by -1 to get a form as shown on Page 389 where $\mathcal{A}^{1}$ represents a Horn formula, $\mathcal{D}$ is nonpositive, and $\mathcal{A}^{2}$ represents a 2 -SAT formula. Construct vector $\alpha$ as follows. Assign equal negative values to all $\alpha_{i}$ where $i$ is the index of a column through $\mathcal{A}^{1}$ (reverse the value if the column had been scaled by -1 ) and 0 to all other $\alpha_{i}$. Then, since there are at least as many positive as negative entries in every
row through $\mathcal{A}^{1}$, the product of any of those rows, unscaled, and $\boldsymbol{\alpha}$ is greater than 0 . Since there are only negative entries in rows through $\mathcal{D}$ and all the entries through columns of $\mathcal{A}^{2}$ multiply by $\alpha_{i}$ values that are 0 , the product of any of the rows through $\mathcal{D}$, unscaled, and $\boldsymbol{\alpha}$ is also positive. Therefore, $\boldsymbol{\alpha}$ shows that $\psi^{\prime}$ is not linear autarky-free, a contradiction. It follows that $\mathcal{A}^{1}=\mathcal{D}=\varnothing$ and the output formula is either 2-SAT or $\emptyset$. If it is 2-SAT, it must be unsatisfiable as argued in Theorem 25.

The relationship between linear autarky-free formulas and the satisfiability index provides a polynomial-time test for the satisfiability of a given CNF formula.

Theorem 27 If the shortest clause of a CNF formula $\psi$ has width $k$ and if the satisfiability index of $\psi$ is less than $k / 2$, then $\psi$ is satisfiable.

Proof This is seen more clearly by transforming variables as follows. Define real $n$-dimensional vector $\beta$ with components

$$
\beta_{i}=2 \alpha_{i}-1 \text { for all } 0 \leq i<n .
$$

The satisfiability index (2) for the transformed variables may be expressed, by simple substitution, as follows:

$$
\begin{equation*}
\mathcal{M}_{\psi} \beta \leq 2 Z-1 \tag{17}
\end{equation*}
$$

where $l$ is an $n$-dimensional vector expressing the number of literals in all clauses and $\boldsymbol{Z}=\langle z, z, \ldots, z\rangle$. The minimum $z$ that satisfies (17) is the satisfiability index of $\psi$. Apply Algorithm LinAut to $\psi$ which, by hypothesis, has shortest clause of width $k$. The algorithm removes rows, so $z$ can only decrease and $k$ can only increase. Therefore, if $z<k / 2$ for $\psi$, it also holds for the $\psi^{\prime}$ that is output by LinAut. Suppose $\psi^{\prime} \neq \emptyset$. Formula $\psi^{\prime}$ is linear autarky-free so the only solution to $0 \leq \mathcal{M}_{\psi^{\prime}} \boldsymbol{\beta}$ is $\boldsymbol{\beta}=0$ which implies $0 \leq 2 \boldsymbol{Z}-\mathbf{l}$. Since the shortest clause of $\psi^{\prime}$ is at least $k$, it follows that $k / 2 \leq z$. This contradicts the hypothesis that $z<k / 2$. Therefore, $\psi^{\prime}=\emptyset$ and, by Lemma 6, the input formula is satisfiable.

The effectiveness of this test on random $k$-CNF formulas ${ }^{9}$ will be discussed in Sect. 6.13.

### 6.10 Minimally Unsatisfiable Formulas

An unsatisfiable CNF formula is minimally unsatisfiable if removing any clause results in a satisfiable formula. The class of minimally unsatisfiable formulas is

[^7]easily solved if the number of clauses exceeds the number of variables by a fixed positive constant $k$. This difference is called the formula's deficiency. This section begins with a discussion of the special case where deficiency is 1 , then considers the case of any fixed deficiency greater than 1 . The discussion includes some useful properties which lead to an efficient solver for this case and helps explain the difficulty of resolution methods for many CNF formulas.

The following result was proved in one form or another by several people (e.g., $[5,99]$ ). A simple argument due to Truemper is presented.

Theorem 28 If $\psi$ is a minimally unsatisfiable CNF formula with $\left|V_{\psi}\right|=n$ variables, then the number of clauses in $\psi$ must be at least $n+1$.

Proof Let $\psi$ be a minimally unsatisfiable CNF formula with $n+1$ clauses. Suppose $\left|V_{\psi}\right| \geq n+1$. Let $G_{\psi}\left(V_{1}, V_{2}, E\right)$ be the variable-clause matching graph for $\psi$ (see Sect. 3.5) where $V_{1}$ is the set of clause vertices and $V_{2}$ is the set of variable vertices. There is no total matching with respect to $V_{1}$ since this would imply $\psi$ is satisfiable, a contradiction. Therefore, by Hall's Theorem [70] (stated as Theorem 36 in Sect. 6.13), there is a subset $V_{\psi}^{\prime} \subset V_{1}$ with neighborhood smaller than $\left|V_{\psi}^{\prime}\right|$ Let $V_{\psi}^{\prime}$ be such a subset of maximum cardinality. Define $\psi_{1}$ to be the CNF formula consisting of the clauses of $\psi$ corresponding to the neighborhood of $V_{\psi}^{\prime}$. By the minimality property of $\psi, \psi_{1}$ must be satisfiable. Delete from $\psi$ the clauses of $\psi_{1}$ and from the remaining clauses all variables occurring in $\psi_{1}$. Call the resulting CNF formula $\psi_{2}$. There must be a matching of the clauses of $\psi_{2}$ into the variables of $\psi_{2}$ since otherwise $V_{\psi}^{\prime}$ and therefore $\psi_{1}$ were not maximal in size. Hence, $\psi_{2}$ is satisfiable. But if $\psi_{1}$ and $\psi_{2}$ are satisfiable, then so is $\psi$, a contraction.

Most of the remaining ideas of this section have been inspired by Oliver Kullmann [96].

A saturated minimally unsatisfiable formula $\psi$ is a minimally unsatisfiable formula such that adding any literal $l$, existing in a clause of $\psi$, to any clause of $\psi$ not already containing $l$ or $\neg l$ results in a satisfiable formula. The importance of saturated minimally unsatisfiable formulas is grounded in the following lemma.

Lemma 7 Let $\psi$ be a saturated minimally unsatisfiable formula and let $l$ be a literal from $\psi$. Then

$$
\psi^{\prime}=\{c \backslash\{\neg l\}: c \in \psi, l \notin c\}
$$

is minimally unsatisfiable. In other words, if satisfied clauses and falsified literals due to $l$ taking value 1 are removed from $\psi$, what is left is minimally unsatisfiable.

Proof Formula $\psi^{\prime}$ is unsatisfiable if $\psi$ is; otherwise, there is an assignment which sets $l$ to 1 and satisfies $\psi$. Suppose there is a clause $c \in \psi^{\prime}$ such that $\psi^{\prime} \backslash\{c\}$ is unsatisfiable. Clause $c$ must contain a literal $l^{\prime}$ that is neither $l$ nor $\neg l$. Construct $\psi^{\prime \prime}$ by adding $l^{\prime}$ to all clauses of $\psi$ containing $\neg l$. Since $\psi$ is saturated, there is a truth assignment $M$ satisfying $\psi^{\prime \prime}$ and therefore $\psi^{\prime}$ with literals $l^{\prime}$ added as
above. Assignment $M$ must set $l^{\prime}$ to 1 ; otherwise, $\psi^{\prime} \backslash\{c\}$ is satisfiable. Then, adjusting $M$ so the value of $l$ is 0 gives an assignment which also satisfies $\psi^{\prime}$, a contradiction.

The following is a simple observation that is needed to prove Theorem 29 below.
Lemma 8 Every variable of a minimally unsatisfiable formula occurs positively and negatively in the formula.

Proof Let $\psi$ be any minimally unsatisfiable formula. Suppose there is a positive literal $l$ such that $\exists c \in \psi: l \in c$ and $\forall c \in \psi, \neg l \notin c$. Let $\psi_{1}=\{c: c \in \psi, l \notin c\}$. Let $\psi_{2}=\psi \backslash \psi_{1}$ denote the clauses of $\psi$ which contain literal $l$. Clearly, $\left|\psi_{2}\right|>0$. Then, by definition of minimal unsatisfiability, $\psi_{1}$ is satisfiable by some truth assignment $M$. Hence, $M \cup\{l\}$ satisfies $\psi_{1} \cup \psi_{2}=\psi$. This contradicts the hypothesis that $\psi$ is unsatisfiable. A similar argument applies if literal $l$ is negative, proving the lemma.

Theorem 29 Let $\psi$ be a minimally unsatisfiable formula with $n>0$ variables, and $n+1$ clauses. Then there exists a variable $v \in V_{\psi}$ such that the literal $v$ occurs exactly one time in $\psi$ and the literal $\neg v$ occurs exactly one time in $\psi$.

Proof If $\psi$ is not saturated, there is some set of literals already in $\psi$ that may be added to clauses in $\psi$ to make it saturated. Doing so does not change the number of variables and clauses of $\psi$. So suppose from now on that $\psi$ is a saturated minimally unsatisfiable formula with $n$ variables and $n+1$ clauses. Choose a variable $v$ such that the sum of the number of occurrences of literal $v$ and literal $\neg v$ in $\psi$ is minimum. By Lemma 8 , the number of occurrences of literal $v$ in $\psi$ is at least one and the number of occurrences of literal $\neg v$ in $\psi$ is at least one. By Lemma 7,

$$
\psi_{1}=\{c \backslash\{\neg v\}: c \in \psi, \nu \notin c\} \text { and } \psi_{2}=\{c \backslash\{v\}: c \in \psi, \neg v \notin c\}
$$

are minimally unsatisfiable. Clearly, $\left|V_{\psi_{1}}\right|=\left|V_{\psi_{2}}\right|=n-1$ or else the minimality of variable $v$ is violated. By Theorem 28, the fact that $\psi_{1}$ and $\psi_{2}$ are minimally unsatisfiable and the fact that $\left|\psi_{i}\right|<|\psi|, i \in\{1,2\}$, it follows that $\left|\psi_{1}\right|=\left|\psi_{2}\right|=n$. Therefore, the number of occurrences of literal $v$ in $\psi$ is one and the number of occurrences of literal $\neg v$ in $\psi$ is one.

Lemma 9 Let $\psi$ be a minimally unsatisfiable CNF formula with $n>0$ variables and $n+1$ clauses. Let $v$ be the variable of Theorem 29 and define clauses $c_{v}$ and $c_{\neg v}$ such that literal $v \in c_{v}$ and literal $\neg v \in c_{\neg v}$. Then there is no variable which appears as a positive literal in one of $c_{v}$ or $c_{\neg v}$ and as a negative literal in the other.

Proof Suppose there is a variable $w$ such that literal $w \in c_{v}$ and literal $\neg w \in c_{\bar{v}}$. By the minimality of $\psi$ and the fact that variable $v$ appears only in $c_{v}$ and $c_{\neg v}$, there exists an assignment $M$ which excludes setting a value for variable $v$ and

```
Algorithm 25.
 Min Unsat Solver (\(\psi\))
/* Input: a set of sets CNF formula \(\psi\) */
/* Output: either "munsat(1)" or "not munsat(1)" */
 Repeat the following until all variables of \(\psi\) are eliminated:
 If the difference between clauses and variables is not 1 ,
 Output "not munsat(1)."
 If no variable of \(\psi\) occurs once positively and once negatively,
 Output "not munsat(1)."
 If, for some \(v, \psi\) includes \((v) \wedge(\neg v)\) and \(|\psi|>2\),
 Output "not munsat(1)."
 Choose variable \(v\) such that \(v \in c_{v}\) and \(\neg v \in c_{\neg v}\)
 and neither literals \(v\) nor \(\neg v\) are in \(\psi \backslash\left\{c_{v}, c_{\neg v}\right\}\).
 Compute the resolvent \(\mathcal{R}_{c_{\neg v}}^{c_{v}}\) of clauses \(c_{v}\) and \(c_{\neg v}\).
 Set \(\psi \leftarrow \psi \backslash\left\{c_{v}, c_{\neg v}\right\} \cup\left\{\mathcal{R}_{c_{\neg v}}^{c_{v}}\right\}\).
 Output "munsat(1)."
```

Fig. 51 Algorithm for determining whether a CNF formula with one more clause than variable is minimally unsatisfiable
satisfies $\psi \backslash\left\{c_{v}, c_{\neg v}\right\}$. But $M$ must also satisfy either $c_{v}$, if $w$ has value 1 , or $c_{\neg v}$ if $w$ has value 0 . In the former case $M \cup\{\neg v\}$ satisfies $\psi$ and in the latter case $M \cup\{v\}$ satisfies $\psi$, a contradiction. The argument can be generalized to prove the lemma.

The next series of results shows the structure of minimally unsatisfiable formulas and how to exploit that structure for fast solutions.

Theorem 30 Let $\psi$ be a minimally unsatisfiable formula with $n>1$ variables and $n+1$ clauses. Let $v$ be the variable of Theorem 29, let $c_{v}$ be the clause of $\psi$ containing the literal $v$, and let $c_{\neg v}$ be the clause of $\psi$ containing the literal $\neg v$. Then $\psi^{\prime}=\psi \backslash\left\{c_{v}, c_{\neg v}\right\} \cup\left\{\mathcal{R}_{c_{\nu v}}^{c_{v}}\right\}$ is a minimally unsatisfiable formula with $n-1$ variables and $n$ clauses.

Proof By Lemma 9 the resolvent $\mathcal{R}_{c \rightarrow v}^{c_{v}}$ of $c_{v}$ and $c_{-v}$ exists. Moreover, $\mathcal{R}_{c \rightarrow v}^{c_{v}} \neq \emptyset$ if $n>1$ or else $\psi$ is not minimally unsatisfiable. Therefore, $\psi^{\prime}$ is unsatisfiable, contains $n-1$ variables, and has $n$ nonempty clauses. Remove a clause $c$ from $\psi \backslash\left\{c_{v}, c_{\neg_{v}}\right\}$. By the minimality of $\psi$, there is an assignment $M$ which satisfies $\psi \backslash\{c\}$. By Lemma 2, $M$ also satisfies $\psi \backslash\left\{c, c_{v}, c_{-v}\right\} \cup\left\{\mathcal{R}_{c_{-v}}^{c_{v}}\right\}$. Hence, $M$ satisfies $\psi^{\prime} \backslash\{c\}$. Now remove $c_{v}$ and $c_{\neg v}$ from $\psi$. Again, by the minimality of $\psi$, there is an assignment $M$ which satisfies $\psi \backslash\left\{c_{v}, c_{-v}\right\}$ and hence $\psi^{\prime} \backslash\left\{\mathcal{R}_{c-v}^{c_{v}}\right\}$. Thus, removing any clause from $\psi^{\prime}$ results in a satisfiable formula and the theorem is proved.

Theorem 30 implies the correctness of the polynomial-time algorithm of Fig. 51 for determining whether a CNF formula with one more clause than variable is
minimally unsatisfiable. If the output is "munsat(1)" the input formula is minimally unsatisfiable, with clause-variable difference of 1 ; otherwise, it is not.

The following results provide an interesting and useful characterization of minimally unsatisfiable formulas of the type discussed here.

Theorem 31 Let $\psi$ be a minimally unsatisfiable formula with $n>1$ variables and $n+1$ clauses. Then there exists a variable $v$, occurring once as a positive literal and once as a negative literal, and a partition of the clauses of $\psi$ into two disjoint sets $\psi_{v}$ and $\psi_{\neg v}$ such that literal $v$ only occurs in clauses of $\psi_{v}$, literal $\neg v$ only occurs in clauses of $\psi_{\neg v}$, and no variable other than $v$ that is in $\psi_{v}$ is also in $\psi_{\neg v}$ and no variable other than $v$ that is in $\psi_{\neg_{v}}$ is also in $\psi_{v}$.

Proof By induction on the number of variables. The hypothesis clearly holds for minimally unsatisfiable formulas of one variable, all of which have the form $(v) \wedge$ $(\neg v)$. Suppose the hypothesis is true for all minimally unsatisfiable CNF formulas containing $k>1$ or fewer variables and having deficiency 1 . Let $\psi$ be a minimally unsatisfiable CNF formula with $k+1$ variables and $k+2$ clauses. From Theorem 29 there is a variable $v$ in $\psi$ such that literal $v$ occurs in exactly one clause, say, $c_{v}$, and literal $\neg v$ occurs in exactly one clause, say, $c_{\neg v}$. By Lemma 9 the resolvent $\mathcal{R}_{c_{\neg v}}^{c_{v}}$ of $c_{v}$ and $c_{\neg v}$ exists and $\mathcal{R}_{c_{\nu v}}^{c_{\nu}} \neq \emptyset$ or else $\psi$ is not minimally unsatisfiable. Let $\psi^{\prime}=\left(\psi \backslash\left\{c_{v}, c_{\neg_{v}}\right\}\right) \cup\left\{\mathcal{R}_{c_{\nu v}}^{c_{v}}\right\}$. That is, $\psi^{\prime}$ is obtained from $\psi$ by resolving $c_{v}$ and $c_{\neg_{v}}$ on variable $v$. By Theorem $30 \psi^{\prime}$ is minimally unsatisfiable with $k$ variables and $k+1$ clauses. Then, by the induction hypothesis, there is a partition $\psi_{v^{\prime}}^{\prime}$ and $\psi_{\rightarrow v^{\prime}}^{\prime}$ of clauses of $\psi^{\prime}$ and a variable $v^{\prime}$ such that literal $v^{\prime}$ occurs only in one clause of $\psi_{v^{\prime}}^{\prime}$, literal $\neg v^{\prime}$ occurs only in one clause of $\psi_{\neg \nu^{\prime}}^{\prime}$, and, excluding $v^{\prime}$, there is no variable overlap between $\psi_{v^{\prime}}^{\prime}$ and $\psi_{\neg v^{\prime}}^{\prime}$. Suppose $\mathcal{R}_{c \rightarrow v}^{c_{v}} \in \psi_{\rightarrow v^{\prime}}^{\prime}$. Then $\psi_{v^{\prime}}^{\prime}$ and $\left(\psi_{\neg v^{\prime}}^{\prime} \backslash\left\{\mathcal{R}_{c_{-v}}^{c_{v}}\right\}\right) \cup\left\{c_{v}, c_{-v}\right\}$ (denoted $\psi_{v}$ and $\psi_{\neg_{v}}$, respectively) form a nonvariable overlapping partition of clauses of $\psi$ (excluding $v^{\prime}$ and $\neg v^{\prime}$ ), literal $v^{\prime}$ occurs once in a clause of $\psi_{v}$, and literal $\neg v^{\prime}$ occurs once in a clause of $\psi_{\neg v}$. A similar statement holds if $\mathcal{R}_{c \rightarrow v}^{c_{v}} \in \psi_{v^{\prime}}^{\prime}$. Therefore, the hypothesis holds for $\psi$ or any other minimally unsatisfiable formula of $k+1$ variables and $k+2$ clauses. The theorem follows.

Theorem 32 A CNF formula $\psi$ with $n$ variables and $n+1$ clauses is minimally unsatisfiable if and only if there is a refutation tree for $\psi$ in which every clause of $\psi$ labels a leaf exactly one time, every variable of $\psi$ labels exactly two edges (once as a positive literal and once as a negative literal), and every edge label of the tree appears in at least one clause of $\psi$.

Proof $(\leftarrow)$ By induction on the size of the refutation tree. Suppose there is such a refutation tree $\mathcal{T}_{\psi}$ for $\psi$. If $\mathcal{T}_{\psi}$ consists of two edges, they must be labeled $v$ and $\neg v$ for some variable $v$. In addition, each clause labeling a leaf of $\mathcal{T}_{\psi}$ must consist of one literal that is opposite to that labeling the edge the leaf is the endpoint of. Hence, $\psi$ must be $(v) \wedge(\neg v)$ which is minimally unsatisfiable.

Now suppose the theorem holds for refutation trees of $k>2$ or fewer edges and suppose $\mathcal{T}_{\psi}$ has $k+1$ edges. Let $v$ be the variable associated with the root of $\mathcal{T}_{\psi}$, and let $\psi_{v}$ and $\psi_{\neg v}$ be the sets of clauses labeling leaves in the subtree joined to the root edges labeled $v$ and $\neg v$, respectively. Define $\psi_{1}=\left\{c \backslash\{\neg v\}: c \in \psi_{v}\right\}$ and $\psi_{2}=$ $\left\{c \backslash\{v\}: c \in \psi_{\neg v}\right\}$. It is straightforward to see that the relationships between each refutation subtree rooted at a child of the root of $\mathcal{T}_{\psi}$ and $\psi_{1}$ and $\psi_{2}$ are as described in the statement of the theorem. Hence, by the induction hypothesis, $\psi_{1}$ and $\psi_{2}$ are minimally unsatisfiable. Let $c$ be a clause in $\psi_{1}$. Let $M_{1}$ be an assignment to variables of $\psi_{1}$ satisfying $\psi_{1} \backslash\{c\}$. Let $M_{2}=M_{1} \cup\{v\}$. Clearly, $M_{2}$ satisfies $\psi_{v}$ as well as all clauses of $\psi_{\neg v}$ which contain literal $v$. The remaining clauses of $\psi_{\tau_{v}}$ are a proper subset of clauses of $\psi_{2}$ and are satisfied by some truth assignment $M_{3}$ to variables of $\psi_{2}$ since $\psi_{2}$ is minimally unsatisfiable. Since the variables of $\psi_{1}$ and $\psi_{2}$ do not overlap, $M_{2} \cup M_{3}$ is an assignment satisfying $\psi_{\bar{v}} \cup \psi_{v} \backslash\{c\}$ and therefore $\psi \backslash\{c\}$. The same result is obtained if $c$ is removed from $\psi_{2}$. Thus, $\psi$ is minimally unsatisfiable.
$(\rightarrow)$ Build the refutation tree in conjunction with running Algorithm Min Unsat Solver as follows. Before running the algorithm, construct $n+1$ (leaf) nodes and distinctly label each with a clause of $\psi$. While running the algorithm, add a new (non-leaf) node each time a resolvent is computed. Unlike the case for a normal refutation tree, label the new node with the resolvent. Construct two edges from the new node to the two nodes which are labeled by the two clauses being resolved ( $c_{v}$ and $c_{\neg v}$ in the algorithm). If the pivot variable is $v$, label the edge incident to the node labeled by the clause containing $v$ (alternatively $\neg v) \neg v$ ( $v$, respectively). Continue until a single tree containing all the original leaf nodes is formed.

The graph constructed has all the properties of the refutation tree as stated in the theorem. It must include one or more trees since each clause, original or resolvent, is used one time in computing a resolvent. Since two edges are added for each new non-leaf node and $n$ new non-leaf nodes are added, there must be $2 n+1$ nodes and $2 n$ edges in the structure. Hence, it must be a single tree. Any clause labeling a node contains all literals in clauses labeling leaves beneath that node minus all literals of pivot variables beneath and including that node. In addition, the label of the root is $\emptyset$. Therefore, all literals of a clause labeling a leaf are a subset of the complements of edge labels on a path from the root to that leaf. Obviously, the complement of each edge label appears at least once in leaf clauses.

An example of such a minimally unsatisfiable formula and corresponding refutation tree is shown in Fig. 52.

Now, attention is turned to the case of minimally unsatisfiable formulas with deficiency $\delta>1$. Algorithms for recognizing and solving minimally unsatisfiable formulas in time $n^{O(k)}$ were first presented in [98] and [58]. The fixed-parameter tractable algorithm that is presented in [134] is discussed here.

Let $\psi$ be a CNF formula with $m$ clauses and $n$ variables. The deficiency of $\psi$ is the difference $m-n$. Each subformula of $\psi$ has its own deficiency, namely, the difference between the number of clauses of the subformula and the number of variables it contains. The maximum deficiency of $\psi$ is then the maximum of the deficiencies of all its subformulas. If, for every nonempty subset $V^{\prime}$ of variables


Fig. 52 A minimally unsatisfiable CNF formula $\psi$ of six variables and seven clauses and a corresponding refutation tree. Edge labels are variable assignments (e.g., $\neg v_{1}$ means $v_{1}$ has value 0 ). Each leaf is labeled with a clause that is falsified by the assignment indicated by the path from the root to the leaf
of $\psi$, there are at least $\left|V^{\prime}\right|+q$ clauses $C \subset \psi$ such that some variable of $V^{\prime}$ is contained in $C$, then $\psi$ is said to be $q$-expanding. The following four lemmas are stated without proof.

Lemma 10 The maximum deficiency of a formula can be determined in polynomial time.

Lemma 11 Let $\psi$ be a minimally unsatisfiable CNF formula which has $\delta$ more clauses than variables. Then the maximum deficiency of $\psi$ is $\delta$.

Lemma 12 Let $\psi$ be a minimally unsatisfiable formula. Then for every nonempty set $V^{\prime}$ of variables of $\psi$, there is at least one clause $c \in \psi$ such that some variable of $V^{\prime}$ occurs in $c$.

Lemma 13 Let $\psi$ be a CNF formula with maximum deficiency $\Delta$. A maximum matching of the bipartite variable-clause graph $G_{\psi}$ of $\psi$ does not cover $\Delta$ clause vertices.

Lemma 13 is important because it is used in the next lemma and because it shows that the maximum deficiency of a CNF formula can be computed with a $O\left(n^{3}\right)$ matching algorithm.

Lemma 14 Let $\psi$ be a 1-expanding CNF formula with maximum deficiency $\delta$. Let $\psi^{\prime} \subset \psi$ be a subformula of $\psi$. Then the maximum deficiency of $\psi^{\prime}$ is less than $\delta$.

Proof It is necessary to show that for any subset $\psi^{\prime} \subset \psi$, if the number of variables contained in $\psi^{\prime}$ is $n^{\prime}$, then $\left|\psi^{\prime}\right|-n^{\prime}<\delta$. Let $G_{\psi}$ be the bipartite variable-clause graph of $\psi$. In what follows symbols will be used to represent clause vertices in $G_{\psi}$ and clauses in $\psi$ interchangeably. Choose a clause $c \in \psi \backslash \psi^{\prime}$. Let $M_{G_{\psi}}$ be a maximum matching on $G_{\psi}$ that does not cover vertex $c$. There is always one such matching because, by hypothesis, every subset of variable vertices has a neighborhood which is larger than the subset, and this allows $c$ 's cover to be moved to another clause vertex, if necessary. Let $C$ be the set of all clause vertices of $G_{\psi}$ that are not covered by $M_{G_{\psi}}$. By Lemma $13|C|=\delta$ so since $c \notin \psi^{\prime},\left|C \cap \psi^{\prime}\right|<\delta$. Since $M_{G_{\psi}}$ matches every clause vertex in $\psi^{\prime} \backslash C$ to a variable that is in $\psi^{\prime}$, the number of clauses in $\psi^{\prime} \backslash C$ must be no bigger than $n^{\prime}$. Therefore, $\left|\psi^{\prime}\right|-n^{\prime} \leq\left|\psi^{\prime}\right|-\left|\psi^{\prime} \backslash C\right|$. But $\left|\psi^{\prime}\right|-\left|\psi^{\prime} \backslash C\right|$ is the number of clauses in $C \cap \psi^{\prime}$ which is less than $\delta$.

Theorem 33 ([134]) Let $\psi$ be a CNF formula with maximum deficiency $\delta$. The satisfiability of $\psi$ can be determined in time $O\left(2^{\delta} n^{3}\right)$ where $n$ is the number of variables in $\psi$.

Proof Let $m$ be the number of clauses in $\psi$. By hypothesis, $m \leq n+\delta$. Let $G=\left(V_{1}, V_{2}, E\right)$ be the variable-clause matching graph for $\psi$. Find a maximum matching $M_{G}$ for $G$. Since $n m \leq n(n+\delta)=O\left(n^{2}\right)$, this can be done in $O\left(n^{3}\right)$ time by the well-known Hopcroft-Karp maximum cardinality matching algorithm for bipartite graphs [40]. The next step is to build a refutation tree for $\psi$ of depth $\delta$.

Theorem 34 ([134]) Let $\psi$ be a minimally unsatisfiable CNF formula with $\delta$ more clauses than variables. Then $\psi$ can be recognized as such in time $O\left(2^{\delta} n^{4}\right)$ where $n$ is the number of variables in $\psi$.

Proof By Lemma 11 the maximum deficiency of $\psi$ is $\delta$ which, by Lemma 13, can be checked in $O\left(n^{3}\right)$ time. Since, by Lemma 14, the removal of a clause from $\psi$ reduces the maximum deficiency of $\psi$, the algorithm inferred by Theorem 33 may be used to check that, for each $c \in \psi, \psi \backslash\{c\}$ is satisfiable. The algorithm may also be used to check that $\psi$ is unsatisfiable. Since the algorithm is applied $m+1$ times and $m=n+\delta$, the complexity of this check is $O\left(2^{\delta} n^{4}\right)$. Therefore, the entire check takes $O\left(2^{\delta} n^{4}\right)$ time.

### 6.11 Bounded Resolvent Length Resolution

This class is considered here because it is a counterpoint to minimally unsatisfiable formulas. A CNF formula $\psi$ is k-BRLR if Algorithm BRLR of Fig. 53 either generates all resolvents of $\psi$ or returns unsatisfiable.

## Algorithm 26.

```
BRLR \((\psi, k)\)
/* Input: a set of sets CNF formula \(\psi \quad\) */
/* Output:"unsatisfiable,""satisfiable," or "give up" */
Repeat the following until some statement outputs a value:
 If there are clauses \(c_{1}, c_{2} \in \psi\) that resolve to \(\mathcal{R}_{c_{2}}^{c_{1}} \notin \psi,\left|\mathcal{R}_{c_{2}}^{c_{1}}\right| \leq k\)
 Set \(\psi \leftarrow \psi \cup \mathcal{R}_{c_{2}}^{c_{1}}\).
 Otherwise, if \(\emptyset \notin \psi\) do the following:
 If all resolvents have been generated then Output "satisfiable".
 Otherwise, Output "give up".
 If \(\emptyset \in \psi\), Output "unsatisfiable."
```

Fig. 53 Finding a $k$-bounded refutation

Algorithm BRLR implements a simplified form of $k$-closure [144]. It repeatedly applies the resolution rule to a CNF formula with the restriction that all resolvents are of size no greater than some fixed $k$. In other words, the algorithm finds what are sometimes called " $k$-bounded" refutations.

For a given CNF formula with $n$ variables and $m$ clauses, the worst-case number of resolution steps required by the algorithm is

$$
\sum_{i=1}^{k} 2^{i}\binom{n}{i}=2^{k}\binom{n}{k}(1+O(k / n))
$$

This essentially reflects the product of the cost of finding a resolvent and the maximum number of times a resolvent is generated. The latter is $2^{k}\binom{n}{k}$. The cost of finding a resolvent depends on the data structures used in implementing the algorithm.

For every clause, maintain a linked list of literals it contains, in order by index, and a linked list of possible clauses to resolve with such that the resolvent has no greater than $k$ literals. Maintain a list $\mathcal{T}$ of matrices of dimension $n \times 2,\binom{n}{2} \times 4, \ldots,\binom{n}{k} \times 2^{k}$ such that each cell has value 1 if and only if a corresponding original clause of $\psi$ or resolvent exists at any particular iteration of the algorithm. Also, maintain a list of clauses that may resolve with at least one other clause to generate a new resolvent: the list is threaded through the clauses. Assume a clause can be accessed in constant time and a clause can access its corresponding cell in $\mathcal{T}$ in constant time by setting a link just one time as the clause is scanned the first time or created as a resolvent.

Initially, set to 1 all the cells of $\mathcal{T}$ which correspond to a clause of $\psi$ and set all other cells to 0 . Over $\binom{m}{2}$ pairs of clauses, use $2 L$ literal comparisons to determine whether the pair resolves. If so and their resolvent has $k$ or fewer literals and the cell in $\mathcal{T}$ corresponding to the resolvent has value 0 , then set the cell to 1 , add a link to the clause lists of the two clauses involved, and add to the potential resolvent
list any of the two clauses that is not already threaded through it. This accounts for complexity $O\left(L m^{2}\right)$.

During an iteration, select a clause $c_{1}$ from the potential resolvent list. Scan through $c_{1}$ 's resolvent list checking whether the cell of $\mathcal{T}$ corresponding to the other clause, $c_{2}$, has value 1 . If so, delete $c_{2}$ from $c_{1}$ 's list. If $c_{1}$ 's list is scanned without finding a cell of value 0 , delete $c_{1}$ from the potential resolvent list and try the next clause in the potential resolvent list. When some clause is paired with another having a cell of value 0 in $\mathcal{T}$, a new resolvent is generated. In this case, construct a new clause and create a resolvent list for the clause by checking for resolvents with all existing clauses.

### 6.12 Comparison of Classes

This section provides some intuition about the relative size and scope of the easy classes discussed above.

Observe that the SLUR, q-Horn, nested, and matched classes are incomparable; the class of $q$-Horn formulas without unit clauses is subsumed by the class of linear autark formulas and SLUR is incomparable with the linear autark formulas. All the other classes considered above are contained in one or more of the three. For example, Horn formulas are in the intersection of the q-Horn and SLUR classes and all 2-SAT formulas are q-Horn.

Any Horn formula with more clauses than distinct variables is not matched, but is both SLUR and q-Horn.

The following is a matched and q-Horn formula but is not a SLUR formula:

$$
\left(v_{1} \vee \neg v_{2} \vee v_{4}\right) \wedge\left(v_{1} \vee v_{2} \vee v_{5}\right) \wedge\left(\neg v_{1} \vee \neg v_{3} \vee v_{6}\right) \wedge\left(\neg v_{1} \vee v_{3} \vee v_{7}\right)
$$

In particular, in Algorithm SLUR, initially choosing 0 values for $v_{4}, v_{5}, v_{6}$, and $v_{7}$ leaves an unsatisfiable formula with no unit clauses. To verify q-Horn membership, set $\alpha_{1}=\alpha_{2}=\alpha_{3}=1 / 2$ and the remaining $\alpha$ 's to 0 in (2).

The following formula is matched and SLUR but is not $q$-Horn:

$$
\left(\neg v_{2} \vee v_{3} \vee \neg v_{5}\right) \wedge\left(\neg v_{1} \vee \neg v_{3} \vee v_{4}\right) \wedge\left(v_{1} \vee v_{2} \vee \neg v_{4}\right)
$$

In particular, the satisfiability index of this formula is $4 / 3$. To verify SLUR membership, observe that in Algorithm SLUR no choice sequence leads to an unsatisfiable formula without unit clauses.

The following formula is nested but not q -Horn (minimum $Z$ is $5 / 4$ ):

$$
\left(\neg v_{3} \vee \neg v_{4}\right) \wedge\left(v_{3} \vee v_{4} \vee \neg v_{5}\right) \wedge\left(\neg v_{1} \vee v_{2} \vee \neg v_{3}\right) \wedge\left(v_{1} \vee v_{3} \vee v_{5}\right)
$$

The following formula is nested but not SLUR (choose $v_{3}$ first, use the branch where $v_{3}$ is 0 to enter a situation where satisfaction is impossible):

$$
\left(v_{1} \vee v_{2}\right) \wedge\left(v_{1} \vee \neg v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee v_{4}\right) \wedge\left(\neg v_{1} \vee \neg v_{4}\right)
$$

The following is a linear autark formula that is not q -Horn ( $\boldsymbol{\alpha}=\langle 0.5,-0.5,0\rangle$ and the minimum $Z$ is $3 / 2$ ):

$$
\left(v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(\neg v_{1} \vee \neg v_{2} \vee \neg v_{3}\right) .
$$

The following is SLUR but is not a linear autark formula (by symmetry, any variable choice sequence in SLUR leads to the same result which is a satisfying assignment and only $\boldsymbol{\alpha}=\langle 0,0,0\rangle$ satisfies the inequality of (14)):

$$
\left(\neg v_{1} \vee v_{2} \vee v_{3}\right) \wedge\left(v_{1} \vee \neg v_{2} \vee v_{3}\right) \wedge\left(v_{1} \vee v_{2} \vee \neg v_{3}\right) \wedge\left(\neg v_{1} \vee \neg v_{2} \vee \neg v_{3}\right)
$$

The following formula is minimally unsatisfiable with one more clause than variable but is not 3-BRLR:

```
(v0\vee v
```



```
(v6}\vee\mp@subsup{v}{7}{}\vee\mp@subsup{v}{49}{})\wedge(\mp@subsup{v}{6}{}\vee\neg\mp@subsup{v}{7}{}\vee\neg\mp@subsup{v}{56}{})\wedge(\neg\mp@subsup{v}{6}{}\vee\mp@subsup{v}{8}{}\vee\mp@subsup{v}{60}{})\wedge(\neg\mp@subsup{v}{6}{}\vee\neg\mp@subsup{v}{8}{}\vee\mp@subsup{v}{62}{})
(v9\vee v
(v12}\vee\mp@subsup{v}{13}{}\vee\mp@subsup{v}{50}{})\wedge(\mp@subsup{v}{12}{}\vee\neg\mp@subsup{v}{13}{}\vee\mp@subsup{v}{57}{})\wedge(\neg\mp@subsup{v}{12}{}\vee\mp@subsup{v}{14}{}\vee\neg\mp@subsup{v}{60}{})\wedge(\neg\mp@subsup{v}{12}{}\vee\neg\mp@subsup{v}{14}{}\vee\mp@subsup{v}{62}{})
(v15}\vee\mp@subsup{v}{16}{}\vee\neg\mp@subsup{v}{50}{})\wedge(\mp@subsup{v}{15}{}\vee\neg\mp@subsup{v}{16}{}\vee\mp@subsup{v}{57}{})\wedge(\neg\mp@subsup{v}{15}{}\vee\mp@subsup{v}{17}{}\vee\neg\mp@subsup{v}{60}{})\wedge(\neg\mp@subsup{v}{15}{}\vee\neg\mp@subsup{v}{17}{}\vee\mp@subsup{v}{62}{})
(v18}\vee\mp@subsup{v}{19}{}\vee\mp@subsup{v}{51}{})\wedge(\mp@subsup{v}{18}{}\vee\neg\mp@subsup{v}{19}{}\vee\neg\mp@subsup{v}{57}{})\wedge(\neg\mp@subsup{v}{18}{}\vee\mp@subsup{v}{20}{}\vee\neg\mp@subsup{v}{60}{})\wedge(\neg\mp@subsup{v}{18}{}\vee\neg\mp@subsup{v}{20}{}\vee\mp@subsup{v}{62}{})
```



```
(v24\vee\mp@subsup{v}{25}{}\vee\mp@subsup{v}{52}{})\wedge(\mp@subsup{v}{24}{}\vee\neg\mp@subsup{v}{25}{}\vee\mp@subsup{v}{58}{})\wedge(\neg\mp@subsup{v}{24}{}\vee\mp@subsup{v}{26}{}\vee\mp@subsup{v}{61}{})\wedge(\neg\mp@subsup{v}{24}{}\vee\neg\mp@subsup{v}{26}{}\vee\neg\mp@subsup{v}{62}{})\wedge
(v27}\vee\mp@subsup{v}{28}{}\vee\neg\mp@subsup{v}{52}{})\wedge(\mp@subsup{v}{27}{}\vee\neg\mp@subsup{v}{28}{}\vee\mp@subsup{v}{58}{})\wedge(\neg\mp@subsup{v}{27}{}\vee\mp@subsup{v}{29}{}\vee\mp@subsup{v}{61}{})\wedge(\neg\mp@subsup{v}{27}{}\vee\neg\mp@subsup{v}{29}{}\vee\neg\mp@subsup{v}{62}{})
(v30}\vee\mp@subsup{v}{31}{}\vee\mp@subsup{v}{53}{})\wedge(\mp@subsup{v}{30}{}\vee\neg\mp@subsup{v}{31}{}\vee\neg\mp@subsup{v}{58}{})\wedge(\neg\mp@subsup{v}{30}{}\vee\mp@subsup{v}{32}{}\vee\mp@subsup{v}{61}{})\wedge(\neg\mp@subsup{v}{30}{}\vee\neg\mp@subsup{v}{32}{}\vee\neg\mp@subsup{v}{62}{})
```



```
(v36}\vee\mp@subsup{v}{37}{}\vee\mp@subsup{v}{54}{})\wedge(\mp@subsup{v}{36}{}\vee\neg\mp@subsup{v}{37}{}\vee\mp@subsup{v}{59}{})\wedge(\neg\mp@subsup{v}{36}{}\vee\mp@subsup{v}{38}{}\vee\neg\mp@subsup{v}{61}{})\wedge(\neg\mp@subsup{v}{36}{}\vee\neg\mp@subsup{v}{38}{}\vee\neg\mp@subsup{v}{62}{})
```



```
(v42}\vee\mp@subsup{v}{43}{}\vee\mp@subsup{v}{55}{})\wedge(\mp@subsup{v}{42}{}\vee\neg\mp@subsup{v}{43}{}\vee\neg\mp@subsup{v}{59}{})\wedge(\neg\mp@subsup{v}{42}{}\vee\mp@subsup{v}{44}{}\vee\neg\mp@subsup{v}{61}{})\wedge(\neg\mp@subsup{v}{42}{}\vee\neg\mp@subsup{v}{44}{}\vee\neg\mp@subsup{v}{62}{})
(v45}\vee\mp@subsup{v}{46}{}\vee\neg\mp@subsup{v}{55}{})\wedge(\mp@subsup{v}{45}{}\vee\neg\mp@subsup{v}{46}{}\vee\neg\mp@subsup{v}{59}{})\wedge(\neg\mp@subsup{v}{45}{}\vee\mp@subsup{v}{47}{}\vee\neg\mp@subsup{v}{61}{})\wedge(\neg\mp@subsup{v}{45}{}\vee\neg\mp@subsup{v}{47}{}\vee\neg\mp@subsup{v}{62}{})
```

This formula was obtained from a complete binary refutation tree, variables $v_{0}$ to $v_{47}$ labeling edges of the bottom two levels and $v_{48}$ to $v_{62}$ labeling edges of the top four levels. Along the path from the root to a leaf, the clause labeling that leaf contains all variables of the bottom two levels and one variable of the top four levels. Thus, resolving all clauses in a subtree rooted at variable $v_{3 i}, 0 \leq i \leq 15$, leaves a resolvent of four literals, all taking labels from edges in the top four levels.

To any $k$-BRLR formula $\psi$ that is unsatisfiable, add another clause arbitrarily using the variables of $\psi$. The result is a formula that is not minimally satisfiable.

The above ideas can be extended to show that each of the classes contains a formula that is not a member of any of the others. These examples may be extended to infinite families with the same properties.

The subject of comparison of classes will be revisited in Sect. 6.13 using probabilistic measures to determine relative sizes of the classes.

### 6.13 Probabilistic Comparison of Incomparable Classes

Formulas that are members of certain polynomial-time solvable classes that have been considered in this section appear to be much less frequent than formulas that can usually be solved efficiently by some variant of DPLL. This statement is supported by a probabilistic analysis of these classes where a random formula is an instance of $k$-SAT with $m$ clauses chosen uniformly and without replacement from all possible width $k$ clauses taken from $n$ variables. A few examples may help to illuminate. In what follows $\psi$ is used to denote a random $k$-SAT formula.

Consider the class of Horn formulas (Sect. 6.2) first. The probability that a randomly generated clause is Horn is $(k+1) / 2^{k}$, so the probability that $\psi$ is Horn is $\left((k+1) / 2^{k}\right)^{m}$. This tends to 0 as $m$ tends to $\infty$ for any fixed $k$. For a hidden Horn formula (Sect. 6.3), regardless of switch set, there are only $k+1$ out of $2^{k}$ ways ( $k$ ways to place a positive literal and 1 way to place only negative literals) that a random clause can become Horn. Therefore, the expected number of successful switch sets is $2^{n}\left((k+1) / 2^{k}\right)^{m}$. This tends to 0 for increasing $m$ and $n$ if $m / n>$ $1 /\left(k-\log _{2}(k+1)\right)$. Therefore, by Markov's inequality, $\psi$ is not hidden Horn, with probability tending to 1 , if $m / n>1 /\left(k-\log _{2}(k+1)\right)$. Even when $k=3$, this is $m / n>1$. This bound can be improved considerably by finding complex structures that imply a formula cannot be hidden Horn. Such a structure is presented next.

The following result for q -Horn formulas (Sect. 6.5) is taken from [59]. For $p=\lfloor\ln (n)\rfloor \geq 4$, call a set of $p$ clauses a c-cycle if all but two literals can be removed from each of $p-2$ clauses, all but three literals can be removed from two clauses, the variables can be renamed, and the clauses can be reordered in the following sequence:

$$
\begin{align*}
& \left(v_{1} \vee \neg v_{2}\right) \wedge\left(v_{2} \vee \neg v_{3}\right) \wedge \ldots \wedge\left(v_{i} \vee \neg v_{i+1} \vee v_{p+1}\right) \wedge  \tag{18}\\
& \ldots \wedge\left(v_{j} \vee \neg v_{j+1} \vee \neg v_{p+1}\right) \wedge \ldots \wedge\left(v_{p} \vee \neg v_{1}\right),
\end{align*}
$$

where $v_{i} \neq v_{j}$ if $i \neq j$. Use the term cycle to signify the existence of cyclic paths through clauses which share a variable: that is, by jumping from one clause to another clause only if the two clauses share a variable, one may eventually return to the starting clause. Given a c-cycle $\mathcal{C} \subset \psi$, if no two literals removed from $\mathcal{C}$ are the same or complementary, then $\mathcal{C}$ is called a $q$-blocked $c$-cycle.

If $\psi$ has a q-blocked c-cycle, then it is not q -Horn. Let a q -blocked c -cycle in $\psi$ be represented as above. Develop satisfiability index inequalities (2) for $\psi$. After rearranging terms in each, a subset of these inequalities is as follows

$$
\begin{align*}
& \alpha_{1} \leq Z-1+\alpha_{2}-\ldots  \tag{19}\\
& \ldots \\
& \alpha_{i} \leq Z-1+\alpha_{i+1}-\alpha_{p+1}-\ldots
\end{align*}
$$

$$
\begin{align*}
& \alpha_{j} \leq Z-1+\alpha_{j+1}-\left(1-\alpha_{p+1}\right)-\ldots \\
& \ldots  \tag{20}\\
& \alpha_{p} \leq Z-1+\alpha_{1}-\ldots
\end{align*}
$$

From inequalities (19) to (20), it can be deduced that

$$
\alpha_{1} \leq p Z-p+\alpha_{1}-\left(1-\alpha_{p+1}+\alpha_{p+1}\right)-\ldots
$$

or

$$
0 \leq p Z-p-1+\ldots
$$

where all the terms in $\ldots$ are nonpositive. Thus, all solutions to (19) through (20) require $Z>(p+1) / p=1+1 / p=1+1 /\left\lfloor\ln ^{2} n\right\rfloor>1+1 / n^{\beta}$ for any fixed $\beta<1$. This violates the requirement (Theorem 19) that $Z \leq 1$ in order for $\psi$ to be q -Horn.

The expected number of $q$-blocked c-cycles can be found and the second moment method applied to give the following result.

Theorem 35 A random $k$-SAT formula is not $q$-Horn, with probability tending to 1 , if $m / n>4 /\left(k^{2}-k\right)$.

For $k=3$ this is $m / n>2 / 3$.
A similar analysis yields the same results for hidden Horn, SLUR, CCbalanced, or extended Horn classes. The critical substructure which causes $\psi$ not to be SLUR is called a crisscross loop. An example is shown in Fig. 54 as a propositional connection graph. Just one crisscross loop in $\psi$ prevents it from being SLUR. Comparing Fig. 54 and expression (18), it is evident that both the SLUR and q-Horn classes are vulnerable to certain types of cyclic structures. Most other polynomial-time solvable classes are similarly vulnerable to cyclic structures of various kinds. But random $k$-SAT formulas are constructed without consideration of such cyclic structures: at some point as $m / n$ is increased, cycles begin to appear in $\psi$ in abundance, and when this happens, cycles that prevent membership in one of the above named polynomial-time solvable classes also show up. Cycles appear in abundance when $m / n>1 / O\left(k^{2}\right)$. It follows that a random $k$-SAT formula is not a member of one of the above named polynomial-time solvable classes, with probability tending to 1 , when $m / n>1 / O\left(k^{2}\right)$. By contrast, simple polynomial-time procedures will solve a random $k$-SAT formula with high probability when $m / n<2^{k} / O(k)$. The disappointing conclusion that many polynomial-time solvable classes are relatively rare among random $k$-SAT formulas because they are vulnerable to cyclic structures is given added perspective by considering the class of matched formulas.

A $k$-CNF formula is a matched formula (see Page 415) if there is a total matching in its variable-clause matching bipartite graph: a property that is not affected by cyclic structures as above. A probabilistic analysis tells us that a random $k$-SAT


Fig. 54 A criss-cross loop of $t=3 p+2$ clauses represented as a propositional connection graph. Only cycle literals are shown in the nodes; padding literals, required for $k \geq 3$ and different from cycle literals, are present but are not shown
generator produces many more matched formulas than SLUR or q-Horn formulas. Let $Q \subset \psi$ be any subset of clauses of $\psi$. Denote by $\mathbf{V}(Q)$ the neighborhood of $Q$ : that is, the set of variables that occur in $Q$. Then $\mathbf{V}(Q)$ is the set variables corresponding to a subset of vertices in $V_{2}$ of $G_{\psi}$ that are adjacent to the vertices in $V_{2}$ that correspond to clauses in $Q$. Denote the deficiency of $Q$ by $\Delta(Q)$. From the definition of deficiency (Page 430), $\Delta(Q)=|Q|-|\mathbf{V}(Q)|$. A subset $Q \subset \psi$ is said to be deficient if $\Delta(Q)>0$. The following theorem is well known.

Theorem 36 (Hall's Theorem [70]) Given a bipartite graph with vertex sets $V_{1}$ and $V_{2}$, a matching that includes every vertex of $V_{1}$ exists if and only if no subset of $V_{1}$ is deficient.

Theorem 37 Random $k$-SAT formulas are matched formulas with probability tending to 1 if $m / n<r(k)$ where $r(k)$ is given by the following table [59].

| $k$ | $r(k)$ |
| :--- | :--- |
| 3 | 0.64 |
| 4 | 0.84 |
| 5 | 0.92 |
| 6 | 0.96 |
| 7 | 0.98 |
| 8 | 0.990 |
| 9 | 0.995 |
| 10 | 0.997 |

Theorem 37 may be proved by finding a lower bound on the probability that a corresponding random variable-clause matching graph has a total matching. By Theorem 36 it is sufficient to prove an upper bound on the probability that there exists a deficient subset of clause vertices, and then show that the bound tends to 0 for $m / n<r(k)$ as given in the theorem. This bound is obtained by the first moment method, that is, by finding the expected number of deficient subsets.

The results in this subsection up to this point are interesting for at least two reasons. First, Theorem 37 says that random $k$-SAT formulas are matched formulas with high probability if $m / n<r(k)$ which is approximately 1 . But, by Theorem 35 and similar results, a random $k$-SAT formula is almost never a member of one of the well-studied classes mentioned earlier unless $m / n<1 / O\left(k^{2}\right)$. As already pointed out, this is somewhat disappointing and surprising because all the other classes were proposed for rather profound reasons, usually reflecting cases when corresponding instances of integer programming present polytopes with some special properties. Despite all the theory that helped establish these classes, the matched class, mostly ignored in the literature because it is so trivial in nature, turns out to be, in some probabilistic sense, much bigger than all the others.

Second, the results provide insight into the nature of larger polynomial-time solvable classes of formulas. Classes vulnerable to cyclic structures appear to be handicapped relative to classes that are not. In fact, the matched class has been generalized considerably to larger polynomial-time solvable classes such as linear autarkies $[97,145]$ which are described in Sect. 6.9 and biclique satisfiable formulas of Sect. 6.7.

But there is disappointing news concerning linear autarkies. Consider the test for satisfiability that is implied by Theorem 27: find the satisfiability index $z$ of the given formula and compare against the width, say, $k$, of the formula's shortest clause; if $z<k / 2$, then the formula is satisfiable. This test is based on the fact that Algorithm LinAut, Page 422, will output $\psi^{\prime}=\emptyset$ on anyformula for which $z<k / 2$.

Theorem 38 The above test for satisfiability does not succeed on a random $k$-SAT formula $\psi$ with probability tending to 1 as $m, n \rightarrow \infty$ and $m / n>1$.

## $7 \quad$ The $k$-SAT Problem

The previous sections present SAT algorithm designs and applications. Those sections are intended for people who use SAT technology, want to find out more about what is going on under the hood, and may want to experiment with new algorithm designs to suit particular problems. Those sections may also be useful to people who find SAT interesting and want to see what others have accomplished before trying out their new ideas. This section complements those sections. The success of SAT algorithms is somewhat mysterious owing to the very simple and cumbersome representation of constraints in conjunctive normal form. Is there any particular reason that SAT solvers can often perform so well, defying normal, reasonable intuition? Why can a few tweaks to SAT algorithms result in orders of magnitude performance improvements? Theoretical results have contributed partial answers to such questions and have even influenced the design of SAT solvers. Section 6 presents some of these results. This section highlights some others. In particular, the results of this section apply to the $k$-SAT problem. In this section a $k$-SAT formula is a Boolean formula expressed in conjunctive normal form where each clause has exactly $k$ distinct literals, no two of which
are complementary. A random $k$-SAT formula (restated from Sect. 6.13) is a Boolean formula in conjunctive normal form with $m$ clauses, each of which is chosen uniformly and without replacement from all possible width $k$ clauses taken from $n$ variables. The clause density of a random $k$-SAT formula is the ratio $m / n$.

The theoretical results on $k$-SAT are best understood in terms of the so-called satisfiability threshold $r_{k}$ which is the limiting clause density below which random $k$-SAT formulas are nearly always satisfiable and above which random $k$-SAT formulas are nearly always unsatisfiable. In [1,2] the second moment method was applied to a variant of $k$-SAT to show that $r_{k}=2^{k} \log 2-O(k)$. In Sect. 6.13 several algorithms that are designed to solve subclasses of CNF formulas were analyzed with respect to random $k$-SAT formulas. It was shown that none of these algorithms could solve a significant proportion of random $k$-SAT formula if density is greater than 1.

Non- or limited backtracking variants of DPLL have been analyzed with respect to random $k$-SAT formulas with results that are significantly better than and equally insightful to those of Sect. 6.13. In [32-34] it was shown that DPLL will nearly always solve a random $k$-SAT formula if $m / n<O\left(2^{k} / k\right)$. The analysis can be visualized as a system of clause flows between nodes that represent a collection of clauses of widths from 1 to $k$. Each node holds a number of clauses of a particular width and on every iteration there is some average flow out of a node as clauses are satisfied and literals are falsified. The outward flow due to falsified literals becomes an inward flow to a node holding clauses of one fewer literal. The reason for the $k$ in the denominator of the right side becomes apparent from this analysis: the average flow of clauses into the node representing unit clauses rises above 1 if $m / n=\omega\left(2^{k} / k\right)$, and since only 1 clause is removed from that node in one iteration, on average, the number of unit clauses rises and eventually it becomes likely that a complementary pair of unit clauses exists in the partially assigned formula. These results may be made to apply to any myopic algorithm (i.e., a straight line algorithm whose distribution of expressions corresponding to a particular coalesced state under the spectral coalescence of states) can be expressed by its spectral components alone: that is, by the number of clauses of width $i$, for all $1 \leq i \leq k$, and the number of assigned variables. But in [3] it is shown that no myopic algorithm can succeed in solving random 3-SAT formulas with high probability if $m / n>3.26$. However, using a non-myopic greedy algorithm, $m / n$ may be as high as 3.52 before finding solutions becomes unlikely $[69,83,84]$. Note this is well below the presumed threshold $r_{3}=4.26$ and is also well inside the range of densities for which Walksat and Survey Propagation do a good job of solving random 3-SAT formulas.

Analyses have been performed on the unsatisfiable side of the threshold as well. In particular, the probability that the length of a shortest resolution proof (this includes DPLL algorithms) is bounded by a polynomial in $n$ when $m / n>c_{k}^{\prime} 2^{k}$, $c_{k}^{\prime}$ some constant, and $\lim _{m, n \rightarrow \infty} m / n=O(1)$ tends to 0 [17,35]. But, if $m$ is great enough, a random $k$-SAT formula can, with high probability, be efficiently
proven to have no solution. For example, if $m / n=\Theta\left(n^{k-1}\right)$, the probability that there exist $2^{k}$ clauses containing the same variables spanning all different literal complementation patterns tends to 1 , and since such a pattern can be identified in polynomial time and certifies there is no solution, random expressions can be proven not to have a solution with probability tending to 1 in this case. The best resolution can do is not much different from $m / n=\Theta\left(n^{k-1}\right)$ [14]. This lack of success has led to investigation of alternatives to resolution. A notable example is to cast SAT as a Hitting Set problem and sum the number of variables that are forced to be set to 1 and the number that are forced to be set to 0 . If this sum can be shown to be greater than $n$ in polynomial time, a short proof of unsatisfiability follows. This idea has been applied to random $k$-SAT and yields a polynomial-time algorithm that nearly always proves unsatisfiability when $m / n=n^{k / 2+o(1)-1}$ or greater, a considerable improvement over resolution results [64]. This may be regarded as an example of how probabilistic analysis has driven the search for improved, alternative algorithms.

Theoretical results on random $k$-SAT have provided a visual record of the nature of problems that are hard for some algorithms and not for others. If one were to produce a figure in which formulas appear as points at some distance above the figure floor, where distance is measured in the number of clauses that must be falsified for any assignments and where points are connected to other points which are close in terms of Hamming distance, one would see one or more inverted hills, some of which may actually touch the floor. Each hill reaches a local minimum called a local energy minimum (a contribution from physicists who have studied this). When clause density is low, there exists a single local energy minimum. Then as density is increased, there is a sudden change to several local minima. Finally, there is another jump where exponentially many local minima materialize. The first jump occurs at $m / n=O\left(2^{k}\right)$, and the second jump occurs at $m / n=O\left(2^{k}\right)$. Thus, it is not surprising that so many algorithms perform miserably on unsatisfiable formulas with density just above the transition point. Presumably, as density is increased further, these local minima coalesce (since the minima cannot go below 0 ), and verifying unsatisfiability becomes easy again. Theoretical results corroborate this [14, 64].

Theoretical results have revealed performance upper bounds on solving $k$-SAT. The algorithms that are inferred by these results are not considered practical, at least not on their own, and are surprisingly simple. For example, consider the probabilistic algorithm of Fig. 55. The analysis of [123] shows that this algorithm almost always terminates in time that is within a polynomial factor of $1.334^{n}$ for any 3-SAT input, of $1.5^{n}$ for any 4-SAT input, of $1.6^{n}$ for any 5-SAT input, and so on. These complexities, although not considered to represent efficient algorithms, are far below the $2^{n}$ complexity of a brute force search. Other results followed. Notably, the bound for 3-SAT was lowered to $1.324^{n}$ by combining Schöning's algorithm with the probabilistic algorithm of [115] in a nontrivial way [79], and the best probabilistic bound is currently $O\left(2^{n\left(1-\frac{1}{\ln \left(\frac{n}{n}\right)+o \ln (\ln (m)}\right)}\right)$ [48].

```
ProbSat (\(\psi\))
/* Input: \(\psi\) is a set of sets of literals representing a CNF formula,
/* \(\quad \psi\) contains \(m\) clauses taken from variable set \(V,|V|=n\)
 Randomly choose \(M \subseteq V . \quad /^{*} M\) is a truth assignment
 \(\psi=\{c \in \psi\) : for all \(l \in c\), if \(l\) is positive \(l \notin M\), otherwise \(l \in M\}\).
 Repeat the following \(3 n\) times:
 If \(\psi=\emptyset\), stop and return "satisfiable"
 Randomly choose \(c \in \psi\).
 Randomly choose \(l \in c\).
 If \(l\) is positive, \(M=M \cup\{l\}\) else \(M=M \backslash\{\neg l\}\).
 \(\psi=\{c \in \psi:\) for all \(l \in c\), if \(l\) is positive \(l \notin M\), otherwise \(l \in M\}\).
 return "unknown."
```

Fig. 55 Probabilistic algorithm of Schöning

Upper bounds have also been obtained for deterministic algorithms. An early upper bound of $O\left(\alpha_{k}^{n} \cdot|\psi|\right)$ was obtained in (B. Monien and E. Speckenmeyer, 1979, 3-Satisfiability is testable in $O\left(1.62^{r}\right)$ steps, Unpublished manuscript) [111] for a simple algorithm that seeks and eliminates autarkies (Page 393) when possible. The factor $\alpha_{k}^{n}$ bounds the Fibonacci-like recursion

$$
\begin{aligned}
& T_{k}(1)=T_{k}(2)=\ldots=T_{k}(k-1)=1 \text { and } \\
& T_{k}(n)=T_{k}(n-1)+T_{k}(n-2)+\ldots+T_{k}(n-k+1), \text { for } n \geq k
\end{aligned}
$$

where $T_{k}(n)$ expresses the worst-case complexity for solving $k$-SAT in this manner. For example, $\alpha_{3} \geq 1.681, \alpha_{4} \geq 1.8393$, and $\alpha_{5} \geq 1.9276$. Specifically, the algorithm looks for a shortest clause $c=\left\{l_{1} \vee \ldots \vee l_{|c|}\right\}$ in the current formula $\psi$. If $c$ has $k-1$ or fewer literals, then $\psi$ is split into at most $k-1$ subformulas according to the following subassignments:

$$
\begin{aligned}
\text { (1) } l_{1} & =1 \\
\text { (2) } l_{1} & =0, l_{2}=1 \\
& \ldots \\
& \ldots c \mid) \\
l_{1} & =l_{2}=\ldots=l_{|c|-1}=0, l_{|c|}=1
\end{aligned}
$$

If all clauses $c$ of $\phi$ have length $k$, then $\phi$ is split into $k$ subformulas as described, and each subformula either contains a clause of length at most $k-1$ or one of the resulting subformulas only contains clauses of length $k$. In the latter case, the corresponding subassignment is autark (Page 393), that is, all clauses containing these variables are satisfied by this subassignment, thereby pruning a branch of the search space. Numerous results reducing the deterministic upper bounds followed. The best deterministic bound for solving $k$-SAT is $O\left(\left(2-\frac{2}{k+1}\right)^{n}\right)$ [49]. For CNF formulas of unrestricted clause length, the best worst-case time bound for
a deterministic algorithm is $O\left(2^{n\left(1-\frac{1}{\log (2 m)}\right)}\right)$ [47]. The algorithm was obtained by derandomizing a probabilistic algorithm of [124].

## 8 Other Topics

Several significant topics are not treated in this chapter. There are experimental algorithms that control the space of solutions with linear or quadratic cuts. The Handbook on Satisfiability [19] is a good source of information about these. Several probabilistic algorithms other than those presented here have been proposed, for example, simulated annealing and genetic algorithm variants. These were omitted in favor of more influential varieties. Message passing algorithms such as Survey Propagation have been omitted as they seem to have a special niche. More general constraint programming algorithms have been omitted as the focus here is strictly on SAT. The use of SAT in non-monotonic settings was mentioned in the applications section, but the topic is too broad to cover adequately in this chapter so stable models, well-founded semantics, and answer set programming algorithms, among others, have been omitted.

## 9 Conclusion

Resolution continues to be the foundation for modern SAT solvers. Resolution alone is inadequate for most inputs. However, advances known collectively as conflictdriven clause learning, plus advanced search and cache heuristics, have resulted in CNF solvers that are quite useful in a variety of roles related to problems in combinatorial optimization. One of the most useful roles of SAT to date is to support solvers of mixed logic systems, known as Satisfiability Modulo Theory solvers.

Resolution-based solvers are gaining in performance and are replacing reduced ordered binary decision diagrams in some roles. Gröbner bases applied to SAT promise to replace resolution-based algorithms in significantly many roles, but this has not happened yet because producing an optimal order of operations has remained illusive. The same can be said for other algebraic systems such as cutting planes. For awhile it seemed stochastic local search algorithms would replace resolution-based algorithms in many roles, but this has not happened due to the advances in conflict-driven clause learning noted above and because local search techniques, as developed, are not able to prove unsatisfiability.

Some classes of SAT are solvable in polynomial time. There are many such classes and many of those have been analyzed over the years. Using a probabilistic measure, the scope of such classes seems limited.

Theoretical analyses illustrate the reasons why some algorithms work under certain circumstances. Theoretical results have been used to design new algorithms such as the probabilistic algorithm presented in this chapter. Theoretical results also reveal upper bounds on algorithm performance.

## Glossary

Algorithm: (328, 336, 340)
A specific set of instructions for carrying out a procedure or solving a problem, usually with the requirement that the algorithm terminate at some point.
Boolean Function: (316)

A mapping $\{0,1\} \times\{0,1\} \times \ldots \times\{0,1\} \mapsto\{0,1\}$. If the dimension of the domain is $n$, the number of possible functions is $2^{2^{n}}$.
Clause: (314, also see Formula, CNF)
In CNF formulas a clause is a disjunction of literals such as the following: ( $\bar{a} \vee b \vee c \vee d$ ). A clause containing only negative (positive) literals is called a negative clause (alternatively, a positive clause). In this chapter a disjunction of literals is also written as a set such as this: $\{\bar{a}, b, c, d\}$. Either way, the width of a clause is the number of literals it contains. In logic programming a clause is an implication such as the following: $(a \wedge b \wedge c \rightarrow g)$. In this chapter, if a formula is a conjunction or disjunction of expressions, each expression is said to be a clause.
Clause Width: (see Clause)
Edge: (see Graph)
Endpoint: (338, 338, 345, 415, 416, 429)
One of two vertices spanned by an edge. See Graph.
Formula, DNF: (344)
DNF stands for disjunctive normal form. Let a literal be a variable or a negated variable. Let a conjunctive clause be a single literal or a conjunction of two or more literals (see Clause). A DNF formula is an expression of the form $C_{1} \vee C_{2} \vee \ldots C_{m}$ where each $C_{i}, 1 \leq i \leq m$, is a conjunctive clause: that is, a DNF formula is a disjunction of some number $m$ of conjunctive clauses. A conjunctive clause evaluates to true under an assignment of values to variables if all its literals has value true under the assignment.
Formula, CNF: (327, 329, 340, 313)
CNF stands for conjunctive normal form. Let a literal be a variable or a negated variable. Let a disjunctive clause be a single literal or a disjunction of two or more literals (see Clause). A CNF formula is an expression of the form $C_{1} \wedge C_{2} \wedge \ldots C_{m}$ where each $C_{i}, 1 \leq i \leq m$, is a disjunctive clause: that is, a CNF formula is a conjunction of some number $m$ of disjunctive clauses. In this chapter a disjunctive clause, sometimes called a clause when the context is clear, is regarded to be a set of literals and a CNF formula to be a set of clauses. Thus, the following is an example of how a CNF formula is expressed in this chapter.

$$
\{\{\bar{a}, b\},\{a, c, d\},\{c, \bar{d}, \bar{e}\}\}
$$

A CNF formula is said to be satisfied by an assignment of values to its variables if the assignment causes all its clauses to evaluate to true. A clause evaluates to true under an assignment of values to variables if at least one of its literals has value true under the assignment.

Formula, Horn: $(315,328)$
A CNF formula in which every clause has at most one positive literal. Satisfiability of Horn formulas can be determined in linear time [53, 78]. Horn formulas have the remarkable property that, if satisfiable, there exists a unique minimum satisfying assignment with respect to the value true. In other words, the set of all variables assigned value true in any satisfying assignment other than the unique minimum one includes the set of variables assigned value true in the minimum one.
Formula, Minimally Unsatisfiable: (317)
An unsatisfiable CNF formula such that removal of any clause makes it satisfiable.
Formula, Propositional or Boolean: (327, 336, 340, 342, 315)
A Boolean variable is a formula. If $\psi$ is a formula, then $(\psi)$ is a formula. If $\psi$ is a formula, then $\neg \psi$ is a formula. If $\psi_{1}$ and $\psi_{2}$ are formulas and $\mathcal{O}_{b}$ is a binary Boolean operator, then $\psi_{1} \mathcal{O}_{b} \psi_{2}$ is a formula. In some contexts other than logic programming, $\bar{a}$ or $\bar{\psi}$ is used instead of $\neg a$ or $\neg \psi$ to denote negation of a variable or formula. Formulas evaluate to true or false depending on the operators involved. Precedence from highest to lowest is typically from parentheses, to $\neg$, to binary operators. Association, when it matters as in the case of $\rightarrow$ (implies), is typically from right to left.
Graph: (340)
A mathematical object composed of points known as vertices or nodes and lines connecting some (possibly empty) subset of them, known as edges. Each edge is said to span the vertices it connects. If weights are assigned to the edges, then the graph is a weighted graph. Below is an example of a graph and a weighted graph.


Graph, Directed: (321)
A graph in which some orientation is given to each edge.
Graph, Directed Acyclic: $(324,321,320)$
A directed graph such that, for every pair of vertices $v_{a}$ and $v_{b}$, there is not both a path from $v_{a}$ to $v_{b}$ and a path from $v_{b}$ to $v_{a}$.
Graph, Rooted Directed Acyclic: $(324,321,320)$
A connected, directed graph with no cycles such that there is exactly one vertex, known as the root, whose incident edges are all oriented away from it.

## Literal: (313 see also Formula, CNF)

A Boolean variable or the negation of a Boolean variable. In the context of a formula, a negated variable is called a negative literal and an unnegated variable is called a positive literal.

Logic Program, Normal: (315)
A formula consisting of implicational clauses. That is, clauses have the form $(a \wedge b \wedge c \rightarrow g)$ where atoms to the left of $\rightarrow$ could be positive or negative literals.
Maximum Satisfiability (MAX-SAT): ()
The problem of determining the maximum number of clauses of a given CNF formula that can be satisfied by some truth assignment.
Model, Minimal Model: (316)
For the purposes of this chapter, a model is a truth assignment satisfying a given formula. A minimal model is such that a change in value of any true variable causes the assignment not to satisfy the formula. See also Formula, Horn.
$\mathcal{N P}$-hard: (327)
A very large class of difficult combinatorial problems. There is no known polynomial-time algorithm for solving any $\mathcal{N} \mathcal{P}$-hard problem, and it is considered unlikely that any will be found. For a more formal treatment of this topic, see M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of $\mathcal{N} \mathcal{P}$-completeness, W.H. Freeman, San Francisco, 1979.
Operator, Boolean: (334, 313, 345)
A mapping from binary Boolean vectors to $\{0,1\}$. Most frequently used binary operators are

| Or | $\vee:$ | $\{00 \mapsto 0 ; 10,01,11 \mapsto 1\}$ |
| ---: | :---: | :--- |
| And | $\wedge:$ | $\{00,01,10 \mapsto 0 ; 11 \mapsto 1\}$ |
| Implies | $\rightarrow:$ | $\{1 \mapsto 0 ; 00,01,11 \mapsto 1\}$ |
| Equivalent | $\leftrightarrow:$ | $\{01,10 \mapsto 0 ; 00,11 \mapsto 1\}$ |
| XOR | $\oplus:$ | $\{00,11 \mapsto 0 ; 01,10 \mapsto 1\}$ |

out of the 16 possible mappings. A Boolean operator $\mathcal{O}$ shows up in a formula like this: $\left(v_{l} \mathcal{O} v_{r}\right)$ where $v_{l}$ is called the left operand of $\mathcal{O}$ and $v_{r}$ is called the right operand of $\mathcal{O}$. Thus, the domain of $\mathcal{O}$ is a binary vector whose first component is the value of $v_{l}$ and whose second component is the value of $v_{r}$. In the text patterns of 4 bits are sometimes used to represent an operator: the first bit is the mapping from 00 , the second from 01 , the third from 10 , and the fourth from 11. Thus, the operator 0001 applied to $v_{l}$ and $v_{r}$ has the same functionality as $\left(v_{l} \wedge v_{r}\right)$, the operator 0111 has the same functionality as $\left(v_{l} \vee v_{r}\right)$, and the operator 1101 has the same functionality as $\left(v_{l} \rightarrow v_{\underline{r}}\right)$. The only meaningful unary operator is $\neg:\{1 \mapsto 0 ; 0 \mapsto 1\}$. Sometimes $\bar{a}$ or $\bar{\psi}$ is written for $\neg a$ or $\neg \psi$ where $a$ is a variable and $\psi$ is a formula.
Operator, Temporal: $(334,334)$
An operator used in temporal logics. Basic operators include henceforth $\left(\square \psi_{1}\right)$, eventually $\left(\diamond \psi_{1}\right)$, next $\left(\circ \psi_{1}\right)$, and until $\left(\psi_{1} \mathcal{U} \psi_{2}\right)$.
Satisfied Clause: see Formula, CNF
Satisfiability (SAT): $(327,330,340)$
The problem of deciding whether there is an assignment of values to the variables of a given Boolean formula that makes the formula true. In 1971, Cook showed that the general problem is NP-complete even if restricted to CNF formulas containing clauses of width 3 or greater or if the Boolean operators are restricted
to any truth-functionally complete subset. However, many efficiently solved subclasses are known.
State: (334, 334, 336)
A particular assignment of values to the parameters of a system.
Subgraph: (340, 340, 342)
A graph whose vertices and edges form subsets of the vertices and edges of a given graph where an edge is contained in the subset only if both its endpoints are.
Unit Clause: (342)
A clause consisting of one literal. See also Clause in the glossary.
Variable, Propositional or Boolean: (330, 340, 342))
An object taking one of two values $\{0,1\}$.

## Vertex: see Graph

Vertex Weighted Satisfiability: (328)
The problem of determining an assignment of values to the variables of a given CNF formula, with weights on the variables, that satisfies the formula and maximizes the sum of the weights of true variables. The problem of finding a minimal model for a given satisfiable formula is a special case.)
Weighted Maximum Satisfiability: $(340,342)$
The problem of determining an assignment of values to the variables of a given CNF formula, with weights on the clauses, which maximizes the sum of the weights of satisfied clauses.

Acknowledgements We thank John S. Schlipf for his help in writing some of the text, particularly the sections on the diagnosis of circuit faults and Binary Decision Diagrams. We especially appreciate John's attention to detail which was quite valuable to us.

## Cross-References

- Hardness and Approximation of Network Vulnerability
- Probabilistic Verification and Non-approximability
- Steiner Minimal Trees: An Introduction, Parallel Computation, and Future Work


## Recommended Reading

1. D. Achlioptas, C. Moore, The asymptotic order of the random $k$-SAT thresholds, in 43rd Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 2002)
2. D. Achlioptas, Y. Peres, The threshold for random $k$-SAT is $2^{k} \log 2-O(k)$ J. Am. Math. Soc. 17, 947-973 (2004)
3. D. Achlioptas, G. Sorkin, Optimal myopic algorithms for random 3-SAT, in 41st Annual Symposium on Foundations of Computer Science, Redondo Beach, California (IEEE Computer Society, Los Alamitos, 2000), pp. 590-600
4. A. Agrawal, P. Klein, R. Ravi, When trees collide: an approximation algorithm for the generalized Steiner problem on networks. SIAM J. Comput. 24, 440-456 (1995)
5. R. Aharoni, N. Linial, Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. J. Comb. Theory A 43, 196-204 (1986)
6. S.B. Akers, Binary decision diagrams. IEEE Trans. Comput. C-27, 509-516 (1978)
7. M. Alekhnovich, J. Johannsen, T. Pitassi, A. Urquhart, An exponential separation between regular and general resolution. Theory Comput. 3, 81-102 (2007). http://theoryof computing.org
8. R. Amara, A.J. Lipinski, Business Planning for an Uncertain Future: Scenarios \& Strategies (Elsevier, Amsterdam, 1983)
9. H. Andersen, An introduction to binary decision diagrams. Technical report, Department of Information Technology, Technical University of Denmark, 1998
10. B. Aspvall, Recognizing disguised NR(1) instances of the satisfiability problem. J. Algorithms 1, 97-103 (1980)
11. G. Audemard, L. Simon, Predicting learnt clauses quality in modern SAT solvers, in Proceedings of the 21st International Joint Conference on Artificial Intelligence, Pasadena, CA, 2009, pp. 399-404
12. C. Barrett, A. Stump, C. Tinelli, The SMT-LIB Standard: Version 1.2. Linked from http:// combination.cs.uiowa.edu/smtlib/
13. C. Barrett, R. Sebastiani, S.A. Sanjit, C. Tinelli, Satisfiability Modulo Theories, in Handbook of Satisfiability, ed. by A. Biere, M. Heule, H. van Maaren, T. Walsh (IOS Press, Amsterdam, 2009), pp. 825-886
14. P. Beame, R.M. Karp, T. Pitassi, M. Saks, On the complexity of unsatisfiability proofs for random $k$-CNF formulas, in 30th Annual Symposium on the Theory of Computing (Association for Computing Machinery, New York, 1998), pp. 561-571
15. P. Beame, H. Kautz, A. Sabharwal, Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. 22, 319-351 (2004)
16. P. Beame, H. Kautz, A. Sabharwal, Understanding the power of clause learning, in Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 2007, pp. 1194-1201
17. E. Ben-Sasson, A. Wigderson, Short proofs are narrow - resolution made simple. J. Assoc. Comput. Mach. 48, 149-169 (2001)
18. A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without BDDs. Lect. Notes Comput. Sci. 1579, 193-207 (1999)
19. A. Biere, M. Heule, H. van Maaren, T. Walsh (eds.) Handbook of Satisfiability (IOS Press, Amsterdam, 2009)
20. A. Blake, Canonical expressions in Boolean algebra. Ph.D. Dissertation, Department of Mathematics, University of Chicago, 1937
21. E. Boros, Y. Crama, P.L. Hammer, Polynomial-time inference of all valid implications for Horn and related formulae. Ann. Math. Artif. Intell. 1, 21-32 (1990)
22. E. Boros, P.L. Hammer, X. Sun, Recognition of q-Horn formulae in linear time. Discret. Appl. Math. 55, 1-13 (1994)
23. E. Boros, Y. Crama, P.L. Hammer, M. Saks, A complexity index for satisfiability problems. SIAM J. Comput. 23, 45-49 (1994)
24. E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, E. Mayoraz, I. Muchnik, An implementation of logical analysis of data. RUTCOR Research Report RRR 04-97, RUTCOR, Rutgers University, 1996
25. E. Boros, P.L. Hammer, T. Ibaraki, A. Kogan, Logical analysis of numerical data. Math. Program. 79, 163-190 (1997)
26. D. Brand, Verification of large synthesized designs, in Proceeding of the International Conference on Computer Aided Design (IEEE Computer Society Press, Los Alamitos, 1993), pp. 534-537
27. R.E. Bryant, Graph-based algorithms for Boolean function manipulation. IEEE Trans. Comput. C-35, 677-691 (1986)
28. R.E. Bryant, Symbolic Boolean manipulation with ordered binary decision diagrams. ACM Comput. Surv. 24, 293-318 (1992)
29. B. Buchberger, An algorithm for finding a basis for the residue of a class ring of a zerodimensional polynomial ideal. Ph.D. Thesis, Universität Innsbruck, Institut für Mathematik, 1965
30. R. Chandrasekaran, Integer programming problems for which a simple rounding type of algorithm works, in Progress in Combinatorial Optimization, ed. by W. Pulleyblank (Academic, Toronto, 1984), pp. 101-106
31. V. Chandru, J.N. Hooker, Extended Horn sets in propositional logic. J. Assoc. Comput. Mach. 38, 205-221 (1991)
32. M.-T. Chao, J. Franco, Probabilistic analysis of two heuristics for the 3-Satisfiability problem. SIAM J. Comput. 15, 1106-1118 (1986)
33. M.-T. Chao, J. Franco, Probabilistic analysis of a generalization of the unit-clause literal selection heuristics for the $k$-satisfiability problem. Inf. Sci. 51, 289-314 (1990)
34. V. Chvátal, B. Reed, Mick gets some (the odds are on his side), in 33th Annual Symposium on Foundations of Computer Science, Pittsburgh, Pennsylvania (IEEE Computer Society, Los Alamitos, 1992), pp. 620-627
35. V. Chvátal, E. Szemerédi, Many hard examples for resolution. J. Assoc. Comput. Mach. 35, 759-768 (1988)
36. E. Clarke, A. Biere, R. Raimi, Y. Zhu, Bounded model checking using satisfiability solving. Form. Methods Syst. Des. 19(1), 7-34 (2001)
37. M. Clegg, J. Edmonds, R. Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, in 28th ACM Symposium on the Theory of Computing (ACM, Philadelphia, 1996), pp. 174-183
38. M. Conforti, G. Cornuéjols, A. Kapoor, K. Vušković, M.R. Rao, Balanced matrices, in Mathematical Programming: State of the Art, ed. by J.R. Birge, K.G. Murty, BraunBrumfield, United States. Produced in association with the 15th International Symposium on Mathematical Programming (University of Michigan, Ann Arbor, 1994)
39. S.A. Cook, R.A. Reckhow, Corrections for "On the Lengths of Proofs in the Propositional Calculus." SIGACT News (ACM Special Interest Group on Automata and Computability Theory) 6 (1974)
40. T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edn. (MIT/McGraw-Hill, 2001)
41. O. Coudert, On solving covering problems, in Proceedings of the 33rd Design Automation Conference (IEEE Computer Society, Los Alimitos, 1996), pp. 197-202
42. O. Coudert, J.C. Madre, A unified framework for the formal verification of sequential circuits, in Proceedings of the 1990 International Conference on Computer-Aided Design (ICCAD '90) (IEEE Computer Society, Los Alamitos, 1990), pp. 126-129
43. O. Coudert, C. Berthet, J.C. Madre, Verification of synchronous sequential machines based on symbolic execution. Lect. Notes Comput. Sci. 407, 365-373 (1990). Springer
44. Y. Crama, P.L. Hammer, T. Ibaraki, Cause-effect relationships and partially defined Boolean functions. Ann. Oper. Res. 16, 299-326 (1998)
45. W. Craig, Linear reasoning: a new form of the Herbrand-Gentzen theorem. J. Symb. Logic 22(3), 250-268 (1957)
46. J.M. Crawford, A.B. Baker, Experimental results on the application of satisfiability algorithms to scheduling problems, in Proceedings of the National Conference on Artificial Intelligence (AAAI/MIT, Menlo Park, 1994), pp. 1092-1097
47. E. Dantsin, A. Wolpert, Derandomization of Schuler's algorithm for SAT, in 6th International Conference on the Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 2919 (Springer, New York, 2004), pp. 69-75
48. E. Dantsin, A. Wolpert, An improved upper bound for SAT, in 8th International Conference on the Theory and Applications of Satisfiability Testing. Lecture Notes in Computer Science, vol. 3569 (Springer, New York, 2005), pp. 400-407
49. E. Dantsin, A. Goerdt, E.A. Hirsch, R. Kannan, J. Kleinberg, C. Papadimitriou, P. Raghavan, U. Schöning, A deterministic $(2-2 /(k+1))^{n}$ algorithm for $k$-SAT based on local search. Theor. Comput. Sci. 289, 69-83 (2002)
50. A. Darwiche, K. Pipatsrisawat, Complete algorithms, in Handbook of Satisfiability, ed. by A. Biere, M. Heule, H. van Maaren, T. Walsh (IOS Press, Amsterdam, 2009), pp. 99-130
51. M. Davis, H. Putnam, A computing procedure for quantification theory. J. ACM 7, 201-215 (1960)
52. M. Davis, G. Logemann, D. Loveland, A machine program for theorem proving. Commun. ACM 5, 394-397 (1962)
53. W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of propositional Horn formulae. J. Logic Program. 1, 267-284 (1984)
54. C. Ducot, G.J. Lubben, A typology for scenarios. Future 12, 51-57 (1980)
55. B. Dutertre, L. de Moura, A Fast Linear-Arithmetic Solver for $\operatorname{DPLL}(T)^{*}$. Lecture Notes in Computer Science, vol. 4144 (Springer, Berlin/Heidelberg, 2006), pp. 81-94
56. S. Even, A. Itai, A. Shamir, On the complexity of timetable and multi-commodity flow problems. SIAM J. Comput. 5, 691-703 (1976)
57. R. Feldmann, N. Sensen, Efficient algorithms for the consistency analysis in scenario projects. Technical Report, Universität Paderborn, Germany, 1997
58. H. Fleischner, O. Kullmann, S. Szeider, Polynomial-time recognition of minimal unsatisfiable formulas with fixed clause-variable difference. Theor. Comput. Sci. 289(1), 503-516 (2002)
59. J. Franco, A. Van Gelder, A perspective on certain polynomial time solvable classes of satisfiability. Discret. Appl. Math. 125(2-3), 177-214 (2003)
60. J.W. Freeman, Improvements to propositional satisfiability search algorithms. Ph.D. Thesis, University of Pennsylvania, Computer and Information Science, 1995
61. Z. Fu, S. Malik, Solving the minimum-cost Satisfiability problem using SAT based branch-and-bound search, in Proceedings of the International Conference on Computer Aided Design (Association for Computing Machinery, New York, 2006), pp. 852-859
62. J. Gausemeier, A. Fink, O. Schlake, Szenario-Management (Carl Hanser Verlag, MünchenWien, 1995)
63. M. Godet, Scenarios and Strategic Management (Butterworths Publishing (Pty) Ltd., South Africa, 1987)
64. A. Goerdt, M. Krivelevich, Efficient Recognition of Random Unsatisfiable $k$-SAT Instances by Spectral Methods. Lecture Notes in Computer Science, vol. 2010 (Springer, Berlin, 2001), pp. 294-304
65. E. Goldberg, Y. Novikov, How Good Can a Resolution Based SAT-Solver Be? Lecture Notes in Computer Science, vol. 2919 (Springer, Berlin, 2003), pp. 35-52
66. E. Grégoire, B. Mazure, L. Saïs, Logically-complete local search for propositional non-monotonic knowledge bases, in Proceedings of the 7th International Workshop on Non-monotonic Reasoning, Trente, 1998, pp. 37-45
67. J.F. Groote, H. Zantema, Resolution and Binary Decision Diagrams cannot simulate each other polynomially, in Perspectives of System Informatics: 4th International Andrei Ershov Memorial Conference, ed. by D. Bjorner, M. Broy, A.V. Zamulin. Lecture Notes in Computer Science, vol. 2244 (Springer, New York, 2001), pp. 33-38
68. S. Haim, T. Walsh, Restart strategy selection using machine learning techniques, in Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing, Swansea, UK, 2009, pp. 312-325
69. M.T. Hajiaghayi, G.B. Sorkin, The satisfiability threshold of random 3-SAT is at least 3.52 . Available from http://arxiv.org/pdf/math.CO/0310193
70. P. Hall, On representatives of subsets. J. Lond. Math. Soc. 10, 26-30 (1935)
71. P.L. Hammer, Partially defined Boolean functions and cause-effect relationships, in Proceedings of the International Conference on Multi-Attribute Decision Making Via OR-Based Expert Systems, University of Passau, Passau, Germany, 1986
72. P. Hansen, B. Jaumard, G. Plateau, An extension of nested satisfiability. Les Cahiers du GERAD, G-93-27, 1993
73. H.H. Hoos, On the run-time behaviour of stochastic local search algorithms for SAT, in Proceedings of the 16th National Conference on Artificial Intelligence (AAAI/MIT, Menlo Park, 1999), pp. 661-666
74. H.H. Hoos, An adaptive noise mechanism for WalkSAT, in Proceedings of the National Conference on Artificial Intelligence (AAAI/MIT, Menlo Park, 2002), pp. 655-660
75. H.H. Hoos, D.A.D. Tompkins, Adaptive Novelty+. Technical Report, Computer Science Department, University of British Columbia, 2007. Available from: http://www. satcompetition.org/2007/adaptnovelty.pdf
76. J. Huang, The effect of restarts on the efficiency of clause learning, in Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003, pp. 2318-2323
77. W. Hunt, S. Swords, Centaur technology media unit verification, in Proceedings of the International Conference on Computer Aided Design (Association for Computing Machinery, Grenoble, 2009), pp. 353-367
78. A. Itai, J. Makowsky, On the complexity of Herbrand's theorem. Working paper 243, Department of Computer Science, Israel Institute of Technology, 1982
79. K. Iwama, S. Tamaki, Improved upper bounds for 3-SAT, in 15th ACM-SIAM Symposium on Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia, 2003), pp. 328-328
80. R.E. Jeroslow, J. Wang, Solving propositional satisfiability problems. Ann. Math. AI 1, 167-187 (1990)
81. D.S. Johnson, Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256-278 (1974)
82. E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12(1), 2-23 (2000)
83. A.C. Kaporis, L.M. Kirousis, E.G. Lalas, The probabilistic analysis of a greedy satisfiability algorithm, in 10th Annual European Symposium on Algorithms, Rome, Italy, 2002
84. A.C. Kaporis, L.M. Kirousis, E.G. Lalas, Selecting complementary pairs of literals. Electron. Notes Discret. Math. 16(1), 1-24 (2004)
85. R.M. Karp, Reducibility among combinatorial problems, in Complexity of Computer Computations, ed. by R.E. Miller, J.W. Thatcher (Plenum, New York, 1972), pp. 85-103
86. H. Kautz, B. Selman, MAXWalkSat. Available from: http://www.cs.rochester.edu/~kautz/ walksat/
87. H. Kautz, B. Selman, Y. Jiang, Stochastic Search for Solving Weighted MAX-SAT Encodings of Constraint Satisfaction Problems (AT\&T Laboratories, Murray Hill, 1998, Preprint)
88. H. Kautz, E. Horvitz, Y. Ruan, C. Gomes, B. Selman, Dynamic restart policies, in Proceedings of the National Conference on Artificial Intelligence (AAAI/MIT, Menlo Park, 2002), pp. 674-681
89. H. Kautz, A. Sabharwal, B. Selman, Incomplete algorithms, in Handbook of Satisfiability, ed. by A. Biere, M. Heule, H. van Maaren, T. Walsh (IOS Press, Amsterdam, 2009), pp. 185-204
90. F. Klaedtke, Decision Procedures for Logical Theories, Lecture 12: Combining Decision Procedures: Nelson-Oppen, Department of Computer Science, ETH Zurich, 2006
91. D. Knuth, Nested satisfiability. Acta Inform. 28, 1-6 (1990)
92. F. Krohm, A. Kuehlmann, Equivalence checking using cuts and heaps, in Proceedings of the $34^{\text {th }}$ Design Automation Conference (IEEE Computer Society, Los Alimitos, 1997), pp. 263-268
93. F. Krohm, A. Kuehlmann, A. Mets, The use of random simulation in formal verification, in Proceedings of the IEEE International Conference on Computer Design (IEEE Computer Society, Los Alimitos, 1997), pp. 371-376
94. A. Kuehlmann, Dynamic transition relation simplification for bounded property checking, in Proceeding of the IEEE International Conference on Computer Aided Design (IEEE Computer Society, Los Alamitos, 2004), pp. 50-57
95. A. Kuehlmann, V. Paruthi, F. Krohm, M.K. Ganai, Robust Boolean reasoning for equivalence checking and functional property verification. IEEE Trans. Comput. Aided Des. 21(12), 1377-1394 (2002)
96. O. Kullmann, A first summary on minimal unsatisfiable clause-sets. Technical report, University of Toronto, June, 1998
97. O. Kullmann, Investigations on autark assignments. Discret. Appl. Math. 107, 99-137 (2000)
98. O. Kullmann, An application of Matroid theory to the SAT problem, in Proceedings of the $15^{\text {th }}$ Annual IEEE Conference on Computational Complexity (IEEE, 2000), pp. 116-124
99. H. Kleine Büning, On the minimal unsatisfiability problem for some subclasses of CNF, in Abstracts of 16th Int'l Symposium on Mathematical Programming, Lausanne, 1997
100. M. Kouril, J. Franco, Resolution tunnels for improved SAT solver performance, in Proceedings of the 8th International Conference on Theory and Applications of Satisfiability Testing, St. Andrews, UK, 2005, pp. 136-141
101. M. Kouril, J. Paul, The van der Waerden Number W(2, 6) Is 1132. Exp. Math. 17(1), 53-61 (2008)
102. R.A. Kowalski, A proof procedure using connection graphs. J. ACM 22, 572-595 (1974)
103. C.Y. Lee, Representation of switching circuits by binary decision programs. Bell Syst. Tech. J. 38, 985-999 (1959)
104. H.R. Lewis, Renaming a set of clauses as a Horn set. J. Assoc. Comput. Mach. 25, 134-135 (1978)
105. D. Lichtenstein, Planar formulae and their uses. SIAM J. Comput. 11, 329-343 (1982)
106. I. Lynce, J.P.M. Silva, Efficient data structures for backtrack search SAT solvers. Ann. Math. Artif. Intell. 43(1), 137-152 (2005)
107. I. Lynce, J.P.M. Silva, SAT in Bioinformatics: making the Case with Haplotype Inference, in Proceedings of the 9th International Conference on Theory and Applications of Satisfiability Testing, Seattle, WA, 2006, pp. 136-141
108. V.M. Manquinho, J.P.M. Silva, Search pruning techniques in SAT-based branch-and-bound algorithms for the binate covering problem. IEEE Trans. CAD Integr. Circuits Syst. 21(5), 505-516 (2002)
109. D. McAllester, B. Selman, H. Kautz, Evidence for invariants in local search, in Proceedings of the 14th National Conference on Artificial Intelligence (AAAI/MIT, Menlo Park, 1997), pp. 321-326
110. I. Mironov, L. Zhang, Applications of SAT solvers to cryptanalysis of hash functions, in Proceedings of the 9th International Conference on Theory and Applications of Satisfiability Testing, Seattle, WA, 2006, pp. 102-115
111. B. Monien, E. Speckenmeyer, Solving satisfiability in less than $2^{n}$ steps. Discret. Appl. Math. 10, 287-295 (1985)
112. M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang, S. Malik, Chaff: engineering an efficient SAT solver, in Proceedings of the 38th Design Automation Conference, Las Vegas, NV, USA, 2001, pp. 530-535
113. G. Nelson, D.C. Oppen, Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245-257 (1979)
114. D.C. Oppen, Complexity, convexity and combinations of theories. Theor. Comput. Sci. 12, 291-302, 1980
115. R. Paturi, P. Pudlák, M.E. Saks, F. Zane, An improved exponential-time algorithm for k-SAT, in 39th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1998)
116. W.V.O. Quine, A way to simplify truth functions. Am. Math. Mon. 62, 627-631 (1955)
117. R. Reiter, A theory of diagnosis from first principles. Artif. Intell. 32, 57-95 (1987)
118. J.A. Robinson, A machine-oriented logic based on the resolution principle. J. ACM 12, 23-41 (1965)
119. L. Ryan, Efficient algorithms for clause-learning SAT solvers. Masters Thesis, Simon Fraser University, 2004
120. E.W. Samson, B.E. Mills, Circuit minimization: algebra and algorithms for new Boolean canonical expressions. Air Force Cambridge Research Center Technical Report 54-21, 1954
121. T.S. Schaefer, The complexity of satisfiability problems, in Proceedings of $10^{\text {th }}$ Annual ACM Symposium on Theory of Computing (ACM, New York, 1978), pp. 216-226
122. J.S. Schlipf, F. Annexstein, J. Franco, R. Swaminathan, On finding solutions for extended Horn formulas. Inf. Process. Lett. 54, 133-137 (1995)
123. U. Schöning, A probabilistic algorithm for $k$-SAT and constraint satisfaction problems, in 40th Annual Symposium on Foundations of Computer Science (IEEE Computer Society, Los Alamitos, 1999), pp. 410-414
124. R. Schuler, An algorithm for the satisfiability problem of formulas in conjunctive normal form. J. Algorithms 54(1), 40-44 (2005)
125. M.G. Scutella, A note on Dowling and Gallier's top-down algorithm for propositional Horn satisfiability. J. Logic Program. 8, 265-273 (1990)
126. R. Sebastiani, Lazy Satisfiability Modulo Theories. J. Satisfiability Boolean Model. Comput. 3(3-4), 141-224 (2007)
127. B. Selman, H. Kautz, B. Cohen, Local search strategies for satisfiability testing, in Cliques, Coloring, and Satisfiability: The Second DIMACS Implementation Challenge, ed. by D.S. Johnson, M.A. Trick (American Mathematical Society, Providence, 1996), pp. 521-532
128. Y. Shang, B.W. Wah, A discrete Lagrangian-based global search method for solving satisfiability problems. J. Glob. Optim. 12(1), 61-100 (1998)
129. C.E. Shannon, A symbolic analysis of relay and switching circuits. Masters Thesis, Massachusetts Institute of Technology, 1940. Available from http://hdl.handle.net/1721.1/11173
130. J.P.M. Silva, K.A. Sakallah, GRASP - a new search algorithm for satisfiability, in Proceedings of the 1996 International Conference on Computer-Aided Design (ICCAD '96) (IEEE Computer Society, Los Alamitos, 1996), pp. 220-227
131. J.P.M. Silva, I. Lynce, S. Malik, Conflict-driven clause learning SAT solvers, in Handbook of Satisfiability, ed. by A. Biere, M. Heule, H. van Maaren, T. Walsh (IOS Press, Amsterdam, 2009), pp. 131-153
132. E.W. Smith, D.L. Dill, Automatic formal verification of block Cipher implementations, in Proceedings of the Formal Methods in Computer-Aided Design Conference, Portland, Oregon, 2008, pp. 1-7
133. R.P. Swaminathan, D.K. Wagner, The arborescence-realization problem. Discret. Appl. Math. Comb. Oper. Res. Comput. Sci. 59(3), 267-283 (1995)
134. S. Szeider, Minimal unsatisfiable formulas with bounded clause-variable difference are fixed-parameter tractable. J. Comput. Syst. Sci. 69, 656-674 (2004)
135. S. Szeider, Generalizations of matched CNF formulas. Ann. Math. Artif. Intell. 43(1), 223-238 (2005)
136. C.A. Tovey, A simplified NP-complete satisfiability problem. Discret. Appl. Math. 8, 85-89 (1984)
137. K. Truemper, Monotone decomposition of matrices. Technical Report UTDCS-1-94, University of Texas at Dallas, 1994
138. K. Truemper, Effective Logic Computation (Wiley, New York, 1998)
139. G.S. Tseitin, On the complexity of derivations in propositional calculus, in Structures in Constructive Mathematics and Mathematical Logic, Part II, ed. by A.O. Slisenko (Nauka, Moscow, 1968), pp. 115-125 (translated from Russian)
140. L.G. Valiant, A theory of the learnable. Commun. ACM 27, 1134-1142 (1984)
141. A. Van Gelder, Generalizations of watched literals for backtracking search, in Seventh International Symposium on Artificial Intelligence and Mathematics, 2002
142. A. Van Gelder, Verifying propositional unsatisfiability: Pitfalls to avoid, in Proceedings of the 10th International Conference on Theory and Applications of Satisfiability Testing, Lisbon, Portugal, 2007, pp. 328-333
143. A. Van Gelder, Improved conflict-clause minimization leads to improved propositional proof traces, in Proceedings of the 12th International Conference on Theory and Applications of Satisfiability Testing, Swansea, UK, 2009, pp. 141-146
144. A. Van Gelder, Y.K. Tsuji, Satisfiability testing with more reasoning and less guessing, in Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, ed. by D.S. Johnson, M. Trick (American Mathematical Society, Providence, 1996)
145. H. van Maaren, A short note on some tractable classes of the Satisfiability problem. Inf. Comput. 158(2), 125-130 (2000)
146. S. Weaver, J. Franco, J. Schlipf, Extending existential quantification in conjunctions of BDDs. J. Satisfiability Boolean Model. Comput. 1, 89-110 (2006)
147. Z. Wu, B.W. Wah, Trap escaping strategies in discrete Lagrangian methods for solving hard satisfiability and maximum satisfiability problems, in Proceedings of the 16th National Conference on Artificial Intelligence (AAAI/MIT, Menlo Park, 1999), pp. 673-678
148. Z. Wu, B.W. Wah, An efficient global-search strategy in discrete Lagrangian methods for solving hard satisfiability problems, in Proceedings of the 17th National Conference on Artificial Intelligence (AAAI/MIT, Menlo Park, 2000), pp. 310-315
149. M. Yoeli, Formal Verification of Hardware Design (IEEE Computer Society, Los Alamitos, 1988)
150. L. Zhang, S. Malik, Validating SAT solvers using an independent resolution-based checker: practical implementations and other applications, in Proceedings of the Conference on Design, Automation and Test in Europe, Washington, DC, USA, 2003, pp. 880-885
151. H. Zhang, D. Li, H. Shen, A SAT based scheduler for tournament schedules, in Proceedings of the 7th International Conference on Theory and Applications of Satisfiability Testing, Vancouver, BC, 2004

[^0]:    ${ }^{1}$ Each satisfiable set of Horn clauses has a unique minimal model with respect to 1 , which can be computed in linear time by a well-known algorithm [53,78] which is discussed in Sect. 6.2. Implications of the minimal model semantics may be found in Sect. 6.5, among others.

[^1]:    ${ }^{2}$ Horn formulas are solved efficiently (see Sect. 6.2).
    ${ }^{3}$ Actual circuit voltage levels are abstracted to the values 0 and 1.

[^2]:    ${ }^{4}$ The meaning of $\leftrightharpoons$ is given on Page 318.

[^3]:    ${ }^{5}$ See [39] for other results along these lines.

[^4]:    ${ }^{6}$ Random 3-SAT formulas are defined in Sect. 7, Page 440.

[^5]:    ${ }^{7}$ Finding inferences is referred to in the BDD literature as finding essential values to variables, and a set of inferences (a conjunction of literals) is referred to as a cube.

[^6]:    ${ }^{8}$ Random $k$-SAT formulas are defined in Sect. 7, Page 440.

[^7]:    ${ }^{9}$ Random $k$-SAT formulas are defined in Sect. 7, Page 440

