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Abstract
This chapter discusses advances in SAT algorithm design, including the use
of SAT algorithms as theory drivers, classic implementations of SAT solvers,
and some theoretical aspects of SAT. Some applications to which SAT solvers
have been successfully applied are also presented. The intention is to assist
someone interested in applying SAT technology in solving some stubborn class
of combinatorial problems.

1 Introduction

The satisfiability problem (SAT) has gained considerable attention over the past
decade for two reasons. First, the performance of competitive SAT solvers has
improved enormously due to the implementation of new algorithmic concepts.
Second, so many real-world problems that are not naturally expressed as instances of
SAT can be transformed to SAT instances and solved relatively efficiently using one
of the ever-improving SAT solvers or solvers based on SAT. This chapter attempts
to clarify these successes by presenting the important advances in SAT algorithm
design as well as the classic implementations of SAT solvers. Some applications to
which SAT solvers have been successfully applied are also presented. Finally, for
the sake of developing some intuition on the subject, some classic theoretical results
are presented.

The next section of the chapter presents some logic background and notation
that will be necessary to understand and express the algorithms presented. The third
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section presents several representations for SAT instances in preparation for dis-
cussing the wide variety of SAT solver implementations that have been tried.
The fourth section presents some applications of SAT. The next two sections
present algorithms for SAT, including search and heuristic algorithms plus systems
that use SAT to manage the logic of complex computations. The seventh section
presents some theoretical results regarding k-SAT instances and relates these with
the performance of practical SAT solvers. The last section summarizes the results of
the chapter.

2 Logic

An instance of satisfiability is a propositional logic expression in conjunctive normal
form (CNF), the meaning of which is described in the next few paragraphs. The most
elementary object comprising a CNF expression is the Boolean variable, shortened
to variable in the context of this chapter. A variable takes one of two values from
the set f0; 1g. A variable v may be negated in which case it is denoted:v. The value
of :v is opposite that of v. A literal is either a variable or a negated variable. The
term positive literal is used to refer to a variable and the term negative literal is
used to refer to a negated variable. The polarity of a literal is positive or negative
accordingly.

The building blocks of propositional expressions are binary Boolean operators.
A binary Boolean operator is a function Ob W f0; 1g � f0; 1g �! f0; 1g. Often, such
functions are presented in tabular form, called truth tables, as illustrated in Fig. 10.
There are 16 possible binary operators and the most common (and useful) are _
(or), ^ (and),! (implies),$ (equivalent), and ˚ (xor, alternatively exclusive-or).
Mappings defining the common operators are shown in Fig. 1. The only interesting
unary Boolean operator, denoted : (negation), is a mapping from 0 to 1 and 1 to 0.
If :l is a literal, then ::l is the same as l .

A formula is a propositional expression consisting of literals, parentheses,
and operators which has some semantic content and whose syntax is described
recursively as follows:
1. Any single variable is a formula.
2. If  is a formula, then so is : .
3. If  1 and  2 are both formulas and O is a Boolean binary operator, then
. 1 O  2/ is a formula,  1 is called the left operand of O, and  2 is called
the right operand of O.

Formulas can be simplified by removing some or all parentheses. Parentheses
around nestings involving the same associative operators such as _, ^, and$ may
be removed. For example, . 1 _ . 2 _ 3//, .. 1 _ 2/_ 3/, and . 1 _ 2 _ 3/
are considered to be the same formula. In the case of non-associative operators
such as !, parentheses may be removed, but right associativity is then assumed.
The following is an example of a simplified formula:

.:v0 _ v1 _ :v7/ ^ .:v2 _ v3/ ^ .v0 _ :v6 _ :v7/ ^ .:v4 _ v5 _ v9/;
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v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

c0

c1

c2

c3

c4

c5

c6

c7

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 −1 0 0
0 −1 1 0 0 0 0 0 0 0
0 0 −1 1 0 0 0 0 0 0

−1 0 0 −1 0 0 0 0 1 0
1 0 0 0 0 −1 −1 0 0 0
0 0 0 0 0 −1 1 0 0 0
0 0 0 0 −1 1 0 0 0 1
1 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

((¬v0 ∨ v1 ∨ ¬v7) ∧ (¬v1 ∨ v2) ∧ (¬v2 ∨ v3) ∧ (¬v0 ∨ ¬v3 ∨ v8) ∧
(v0 ∨ ¬v6 ∨ ¬v7) ∧ (¬v5 ∨ v6) ∧ (¬v4 ∨ v5 ∨ v9) ∧ (v0 ∨ v4))

Fig. 1 A .0˙ 1/ matrix
representation and associated
CNF formula where clauses
are labeled c0, c1,. . . ,c7, from
left to right, top to bottom

Table 1 The most common
binary Boolean operators and
their mappings

Operator Symbol Mapping

Or _ f00 �! 0; 10; 01; 11 �! 1g
And ^ f00; 01; 10 �! 0; 11 �! 1g
Implies ! f10 �! 0; 00; 01; 11 �! 1g
Equivalent $ f01; 10 �! 0; 00; 11 �! 1g
XOR ˚ f00; 11 �! 0; 01; 10 �! 1g

A useful parameter associated with a formula is depth. The depth of a formula is
determined as follows:
1. The depth of a formula consisting of a single variable is 0.
2. The depth of a formula : is the depth of  plus 1.
3. The depth of a formula . 1 O  2/ is the maximum of the depth of  1 and the

depth of  2 plus 1.
A truth assignment or assignment is a set of variables all of whom have value

1. If M is an assignment and V is a set of variables, then, if v 2 V and v … M , v
has value 0. Any assignment of values to the variables of a formula induces a value
on the formula. A formula is evaluated from innermost : or parentheses out using
mappings associated with the Boolean operators that are found in Table 1.

Many algorithms that will be considered later iteratively build assignments, and
it will be necessary to distinguish variables that have been assigned a value from
those that have not been. In such cases, a variable will be allowed to hold a third
value, denoted ?, which means the variable is unassigned. This requires that the
evaluation of operations be augmented to account for ? as shown in Table 2. If
M is an assignment of values to a set of variables where at least one variable has
value ?, then M is said to be a partial assignment.

Formulas that are dealt with in this chapter often have many components of
the same type which are called clauses. Two common special types of clauses are
disjunctive and conjunctive clauses. A disjunctive clause is a formula consisting
only of literals and the operator _. If all the literals of a clause are negative
(positive), then the clause is called a negative clause (respectively, positive clause).
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Table 2 Boolean operator mappings with ?. Symbol‹ means 1 or 0

Operator Symbol Mapping

Or _ f00 �! 0; 10; 01; 11; 1?;?1 �! 1; 0?;?0;?? �! ?g
And ^ f00; 01; 10 �! 0; 11 �! 1; ‹?;?‹;?? �! ?g
Implies ! f10 �! 0; 00; 01; 11; 0? �! 1; 1?;?‹ �! ?g
Equivalent $ f01; 10 �! 0; 00; 11 �! 1; ‹?;?‹;?? �! ?g
XOR ˚ f00; 11 �! 0; 01; 10 �! 1; ‹?;?‹;?? �! ?g
Negate : f0 �! 1; 1 �! 0, ? �! ?g

In this chapter disjunctive clauses will usually be represented as sets of literals.
When it is understood that an object is a disjunctive clause, it will be referred to
simply as a clause. The following two lines show the same formula of four clauses
expressed, above, in conventional logic notation and, below, as a set of sets of
literals:

.:v0_v1 _ :v7/ ^ .:v2 _ v3/ ^ .v0 _ :v6 _ :v7/ ^ .:v4 _ v5 _ v9/

ff:v0; v1;:v7g; f:v2; v3g; fv0;:v6;:v7g; f:v4; v5; v9gg:

A conjunctive clause is a formula consisting only of literals and the operator ^.
A conjunctive clause will also usually be represented as a set of literals and called
a clause when it is unambiguous to do so. The number of literals in any clause is
referred to as the width of the clause.

Often, formulas are expressed in some normal form. Four of the most frequently
arising forms are defined as follows:

A CNF formula is a formula consisting of a conjunction of two or more
disjunctive clauses.

Given CNF formula  and L , the set of all literals in  , a literal l is said to be
a pure literal in  if l 2 L but :l … L . A clause c 2  is said to be a unit clause
if c has exactly one literal.

A k-CNF formula, k fixed, is a CNF formula restricted so that the width of each
clause is exactly k.

A Horn formula is a CNF formula with the restriction that all clauses contain at
most one positive literal. Observe that a clause .:a_:b_:c_g/ is functionally the
same as .a^b^c ! g/, so Horn formulas are closely related to logic programming.
In fact, logic programming was originally the study of Horn formulas.

A DNF formula is a formula consisting of a disjunction of two or more
conjunctive clauses.

When discussing a CNF or DNF formula  , V is used to denote its variable set
and C is used to denote its clause set. The subscripts are dropped when the context
is clear.

As mentioned earlier, evaluation of a formula is from innermost parentheses out
using the truth tables for each operator encountered and a given truth assignment.
If the formula evaluates to 1, then the assignment is called a satisfying assignment,
model, or a solution.
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There are 2n ways to assign values to n Boolean variables. Any subset of
those assignments is a Boolean function on n variables. Thus, the number of such
functions is 22

n
. Any Boolean function f on n variables can be expressed as a

CNF formula  where the set of assignments for which f has value 1 is identical
to the set of assignments satisfying  [129]. However, k-CNF formulas express
only a proper subset of Boolean functions: for example, since a width k clause
eliminates the fraction 2�k of potential models, any Boolean function comprising
more than 2n.1 � 2�k/ assignments cannot be represented by a k-CNF formula.
Similarly, all Boolean functions can be expressed by DNF formulas but not by
k-DNF formulas [129].

The partial evaluation of a given formula  is possible when a subset of its
variables are assigned values. A partial evaluation usually results in the replacement
of  by a new formula which expresses exactly those assignments satisfying  
under the given partial assignment. Write  jvD1 to denote the formula resulting
from the partial evaluation of  due to assigning value 1 to variable v. An obvious
similar statement is used to express the partial evaluation of  when v is assigned
value 0 or when some subset of variables is assigned values. For example,

.v1 _ :v2/ ^ .:v1 _ v3/ ^ .:v2 _ :v3/ jv1D1 D .v3/ ^ .:v2 _ :v3/

since .v3/^.:v2_:v3/ expresses all solutions to .v1_:v2/^.:v1_v3/^.:v2_:v3/
given v1 has value 1.

If an assignment M is such that all the literals of a disjunctive (conjunctive)
clause have value 0 (respectively, 1) underM , then the clause is said to be falsified
(respectively, satisfied) by M . If M is such that at least one literal of a disjunctive
(conjunctive) clause has value 1 (respectively, 0) under M , then the clause is said
to be satisfied (respectively, falsified) by M . If a clause evaluates to ?, then it is
neither satisfied nor falsified.

A formula  is satisfiable if there exists at least one assignment under which
 has value 1. In particular, a CNF formula is satisfiable if there exists a truth
assignment to its variables which satisfies all its clauses. Otherwise, the formula is
unsatisfiable. Every nonempty DNF formula is satisfiable, but a DNF formula that is
satisfied by every truth assignment to its variables is called a tautology. The negation
of a DNF tautology is an unsatisfiable CNF formula.

Several assignments may satisfy a given formula. Any satisfying assignment
containing the smallest number of variables of value 1 among all satisfying
assignments is called a minimal model with respect to 1. Thus, consistent with
our definition of model as a set of variables of value 1, a minimal model is a
set of variables of least cardinality. The usual semantics for Horn formula logic
programming is the minimal model semantics: the only model considered is the
(unique) minimal one.1

1Each satisfiable set of Horn clauses has a unique minimal model with respect to 1, which can
be computed in linear time by a well-known algorithm [53, 78] which is discussed in Sect. 6.2.
Implications of the minimal model semantics may be found in Sect. 6.5, among others.
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If a CNF formula is unsatisfiable but removal of any clause makes it satisfiable,
then the formula is said to be minimally unsatisfiable. Minimally unsatisfiable
formulas play an important role in understanding the difference between easy and
hard formulas.

This section ends with a discussion of formula equivalence. Three types of
equivalence are defined along with symbols that are used to represent them as
follows:
1. Equality of formulas ( 1 D  2): two formulas are equal if they are the same

string of symbols. Also “=” is used for equality of Boolean values, for example,
v D 1.

2. Logical equivalence ( 1,  2): two formulas 1 and 2 are said to be logically
equivalent if, for every assignmentM to the variables of  1 and  2, M satisfies
 1 if and only if M satisfies  2. For example, in the following expression, the
two leftmost clauses on each side of “,” force v1 and v3 to have the same value
so .v2_ v3/may be substituted for .v1_ v2/. Therefore, the expression on the left
of “,” is logically equivalent to the expression on the right.

.:v1 _ v3/ ^ .v1 _ :v3/ ^ .v1 ^ v2/, .:v1 _ v3/ ^ .v1 _ :v3/ ^ .v2 ^ v3/:

Another example is

.v1 _ :v2/ ^ .:v1 _ v3/ ^ .:v2 _ :v3/ jv1D1 , .v3/ ^ .:v2 _ :v3/:

In the second example, assigning v1 D 1 has the effect of eliminating the leftmost
clause and the literal :v1. After doing so, equivalence is clearly established.

It is important to point out the difference between  1 ,  2 and  1 $  2.
The former is an assertion that  1 and  2 are logically equivalent. The latter is
just a formula of formal logic upon which one can ask whether there exists a
satisfying assignment. The symbol “,” may not be included in a formula, and it
makes no sense to ask whether a given assignment satisfies  1 ,  2. It is easy
to show that  1 ,  2 if and only if  1 $  2 is a tautology (i.e., it is satisfied
by every assignment to the variables of  1 and  2).

Similarly, define 1 logically implies  2 ( 1)  2): for every assignmentM
to the variables in  1 and  2, if M satisfies  1, then M also satisfies  2. Thus,
 1 ,  2 if and only if  1 )  2 and  2 )  1. Also,  1 )  2 if and only if
 1 !  2 is a tautology.

3. Functional equivalence ( 1 �V  2): two formulas  1 and  2, with variable sets
V 1 and V 2 , respectively, are said to be functionally equivalent with respect to
variable base set V � V 1\V 2 if, for every assignmentMV to just the variables
of V , either:
a. There is an assignmentM1 to V 1 n V and an assignmentM2 to V 2 n V such

that MV [M1 satisfies  1 and MV [M2 satisfies  2 or
b. There is no assignment to V 1 [ V 2 which contains MV as a subset and

satisfies either  1 or  2.
The assignments MV [ M1 and MV [M2 are called extensions to the assign-
ment MV .
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The notation  1 �V  2 is used to represent the functional equivalence of
formulas  1 and  2 with respect to base set V . The notation  1 �  2 is used if
V D V 1 \ V 2 . In this case logical equivalence and functional equivalence are
the same.

For example, .:a/^ .a_b/�fag .:a/^ .a_c/ because 9b W .:a/^ .a_b/
if and only if 9c W .:a/ ^ .a _ c/. But .:a/ ^ .a _ b/ 6D .:a/ ^ .a _ c/ since
a D 0, b D 1, c D 0 satisfies .:a/ ^ .a _ b/ but falsifies .:a/ ^ .a _ c/.

Functional equivalence is useful when transforming a formula to a more useful
formula. For example, consider the Tseitin transformation [139] (Sect.5.3) which
extends resolution: for CNF formula containing variables from set V , any pair
of variables x; y 2 V , and variable z … V ,

 �V  ^ .z _ x/ ^ .z _ y/ ^ .:z _ :x _ :y/:

The term functional equivalence is somewhat of a misnomer. For any set V
of variables, �V is an equivalence relation but � is not transitive: for example,
a _ c � a _ b and a _ b� a _ :c but a _ c �6 a _ :c.
The foundational problem considered in this chapter is the satisfiability problem,

commonly called SAT. It is stated as follows:

Satisfiability (SAT)
Given: A Boolean formula  .
Question: Determine whether  is satisfied by some truth assignment to the

variables of  .
For the class of CNF, even 3-CNF, formulas, SAT is NP-hard. However, for the
class of CNF formulas of maximum width 2, SAT can be solved in linear time
using Algorithm 19 of Sect. 6.1. For the class of Horn formulas, SAT can be solved
in linear time using Algorithm 20 of Sect. 6.2. If  is a CNF formula such that
reversing the polarity of some subset of its variables results in a Horn formula, then
 is renamable Horn. Satisfiability of a renamable Horn formula can be determined
in linear time by Algorithm 21 of Sect. 6.4.

The problem of determining the satisfiability of k-CNF formulas is referred to as
k-SAT. In that context, input formulas are said to be instances of k-SAT or k-SAT
formulas.

A second problem of interest is a generalization of the common problem of
determining a minimal model for a given formula. The question of minimal models
is considered in Sect. 6.2.

Variable-Weighted Satisfiability
Given: A CNF formula and a function w W V �! ZC where w.v/ is the weight

of variable v.
Question: Determine whether  is satisfied by some truth assignment and, if so,

determine the assignmentM such that

X

v2M
w.v/ is minimized:
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A third problem of interest is the fundamental optimization version of SAT. This
problem is probably more important in terms of practical use than even SAT.
Maximum Satisfiability (MAX-SAT)
Given: A CNF formula  .
Question: Determine the assignment M that satisfies the maximum number of

clauses in  .
The following is an important variant of MAX-SAT:

Weighted Maximum Satisfiability (Weighted MAX-SAT)
Given: A CNF formula  and a function w W C �! ZC where w.c/ is the

weight of clause c 2 C .
Question: Determine the assignment M such that

X

c2 
w.c/ � sM .c/ is maximized;

where sM .c/ is 1 if clause c is satisfied byM and is 0 otherwise.

3 Representations and Structures

Algorithmic concepts are usually easier to specify and understand if a formula
or a particular part of a formula is suitably represented. Many representations
are possible for Boolean formulas, particularly when expressed as CNF or DNF
formulas. As mentioned earlier, CNF and DNF formulas will often be represented
as sets of clauses and clauses as sets of literals. In this section additional repre-
sentations are presented; these will later be used to express algorithms and explain
algorithmic behavior. Some of these representations involve only a part of a given
formula.

3.1 .0 ˙ 1/ Matrix

A CNF formula ofm clauses and n variables may be represented as anm�n .0˙1/-
matrix M where the rows are indexed on the clauses, the columns are indexed on
the variables, and a cell M.i; j / has the valueC1 if clause i contains variable j as a
positive literal, the value �1 if clause i contains variable j as a negative literal, and
the value 0 if clause i does not contain variable j as a positive or negative literal.
Figure 1 shows an example of a CNF formula and its .0˙ 1/matrix representation.

It is well known that the question of satisfiability of a given CNF formula  can
be cast as an integer program as follows:

M α C b � Z ; (1)

˛i 2 f0; 1g; for all 0 � i < n;
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where M is the .0˙ 1/ matrix representation of  , b is an integer vector with bi
equal to the number of�1 entries in row i of M , and Z is a vector of 1s. A solution
to this system of inequalities certifies  is satisfiable. In this case a model can be
obtained directly from α as ˛i is the value of variable vi . If there is no solution to
the system, then  is unsatisfiable.

In addition to the well-known matrix operations, two matrix operations that are
relevant to SAT algorithms on .0 ˙ 1/ matrix representations are applied in this
chapter. The first is column scaling: a column may be multiplied or scaled by �1
which has the effect of reversing the polarity of a single variable. Every solution
before scaling corresponds to a solution after scaling; the difference is that the values
of variables associated with scaled columns are reversed. The second is row and
column reordering: rows and columns may be permuted with the effect on a solution
being only a possible relabeling of variables taking value 1.

3.2 Binary Decision Diagrams

Binary decision diagrams [6, 103] are a general, graphical representation for
arbitrary Boolean functions. Various forms have been put into use, especially for
solving VLSI design and verification problems. A canonical form [27, 28] has been
shown to be quite useful for representing some particular, commonly occurring,
Boolean functions. An important advantage of BDDs is that the complexity of
binary and unary operations such as existential quantification, logical or, and logical
and, among others, is efficient with respect to the size of the BDD operands.
Typically, a given formula  is represented as a large collection of BDDs and
operations such as those stated above are applied repeatedly to create a single BDD
which expresses the models, if any, of  . Intermediate BDDs are created in the
process. Unfortunately, the size of intermediate BDDs may become extraordinarily
and impractically large even if the final BDD is small. So in some applications
BDDs are useful and in some they are not.

A binary decision diagram (BDD) is a rooted, directed acyclic graph. A BDD
is used to compactly represent the truth table, and therefore complete functional
description, of a Boolean function. Vertices of a BDD are called terminal if they
have no outgoing edges and are called internal otherwise. There is one internal
vertex, called the root, which has no incoming edge. There is at least one terminal
vertex, labeled 1, and at most two terminal vertices, labeled 0 and 1. Internal vertices
are labeled to represent the variables of the corresponding Boolean function. An
internal vertex has exactly two outgoing edges, labeled 1 and 0. The vertices incident
to edges outgoing from vertex v are called then.v/ and else.v/, respectively. Asso-
ciated with any internal vertex v is an attribute called index.v/ which satisfies the
properties index.v/ < minfindex.then.v//; index.else.v//g and index.v/ D index.w/
if and only if vertices v and w have the same labeling (i.e., correspond to the same
variable). Thus, the index attribute imposes a linear ordering on the variables of a
BDD. An example of a formula and one of its BDD representations is given in Fig.2.
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v3

v1

v2

v3

1 0

1 0

0
1

10

1 0

Fig. 2 The formula .v1 _ :v3/ ^ .:v1 _ v2/ ^ .:v1 _ :v2 _ v3/ represented as a BDD. The
topmost vertex is the root. The two bottom vertices are terminal vertices. Edges are directed from
upper vertices to lower vertices. Vertex labels (variable names) are shown inside the vertices. The
0 branch out of a vertex labeled v means v takes the value 0. The 1 branch out of a vertex labeled
v means v takes the value 1. The index of a vertex is, in this case, the subscript of the variable
labeling that vertex

Clearly, there is no unique BDD for a given formula. In fact, for the same
formula, one BDD might be extraordinarily large and another might be rather
compact. It is usually advantageous to use the smallest BDD possible. At least one
canonical form of BDD, called reduced ordered BDD, does this [27, 28]. The idea
is to order the variables of a formula and construct a BDD such that (1) variables
contained in a path from the root to any leaf respect that ordering and (2) each vertex
is the root of a BDD that represents a Boolean function that is unique with respect
to all other vertices. Two Boolean functions are equivalent if their reduced ordered
BDDs are isomorphic. A more detailed explanation is given in Sect. 5.9.

3.3 Implication Graph

An implication graph of a CNF formula  is a directed graph EG .V; EE/ where V
consists of one special vertex T which corresponds to the value 1, other vertices
which correspond to the literals of  , and the edge set EE such that there is an edge
hvi ; vj i 2 EE if and only if there is a clause .:vi _ vj / in  and an edge hT; vii 2 EE
(hT;:vii 2 EE) if and only if there is a unit clause .vi / (respectively, .:vi /) in  .
Figure 3 shows an example of an implication graph for a particular 2-CNF formula.

Implication graphs are most useful for, but not restricted to, 2-CNF formulas. In
this role the meaning of an edge hvi ; vj i is as follows: if variable vi is assigned the
value 1 then variable vj is inferred to have value 1, or else the clause .:vi _ vj /
will be falsified.
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T v0 ¬v0

v1 ¬v1

v2 ¬v2

v3 ¬v3

((v0) ∧ (¬v0 ∨¬ v2) ∧ (v1 ∨ v2) ∧ (¬v1 ∨¬ v3) ∧
(¬v1 ∨ v3) ∧ (v1 ∨ v3) ∧ (v0 ∨¬ v3))

Fig. 3 An implication graph
and associated 2-CNF
formula

3.4 Propositional Connection Graph

A propositional connection graph for a CNF formula  is an undirected graph
G .V;E/ whose vertex set corresponds to the clauses of  and whose edge set
is such that there is an edge fci ; cj g 2 E if and only if the clause in  represented
by vertex ci has a literal that appears negated in the clause represented by vertex
cj , and there is no other literal in ci ’s clause that appears negated in cj ’s clause.
An example of a connection graph for a particular CNF formula is given in Fig. 4.
Propositional connection graphs are a specialization of the first-order connection
graphs developed by Kowalski [102].

3.5 Variable-Clause Matching Graph

A variable-clause matching graph for a CNF formula is an undirected bipartite
graph G D .V1; V2; E/ where V1 vertices correspond to clauses and V2 vertices
correspond to variables and whose edge set contains an edge fvi ; vj g if and only if
vi 2 V1 corresponds to a variable that exists, either as positive or negative literal, in
clause vj 2 V2. An example of a variable-clause matching graph is shown in Fig. 5.

3.6 Formula Digraph

Formulas are defined recursively on Page 313. Any Boolean formula can be adapted
to fit this definition with the suitable addition of parentheses, and its structure
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{¬v0; v1;¬v7}

{¬v0;¬v3; v8}

{v0;¬v6;¬v7}

{v0; v4} {¬v4; v5; v9}

{¬v5; v6}

{¬v2; v3}

{¬v1; v2}

((¬v0 ∨ v1 ∨ ¬v7) ∧ (¬v1 ∨ v2) ∧ (¬v2 ∨ v3) ∧ (¬v0 ∨ ¬v3 ∨ v8) ∧
(v0 ∨ ¬v6 ∨ ¬v7) ∧ (¬v5 ∨ v6) ∧ (¬v4 ∨ v5 ∨ v9) ∧ (v0 ∨ v4))

Fig. 4 A propositional
connection graph and
associated CNF formula

Fig. 5 A variable-clause
matching graph and
associated CNF formula

v0 v1 v2 v3 v4

{v0;¬v2;v3} {v1;¬v2;¬v4} {¬v0;¬v2;v4}

Fig. 6 A formula digraph
and associated formula

↔

∧

↔ ∧

∨ →

→

v0 ¬ v1 v2 ¬ v3 ¬ v4

(as opposed to its functionality) can be represented by a binary rooted acyclic
digraph. In such a digraph, each internal vertex corresponds to a binary operator
or a unary operator : that occurs in the formula. A vertex corresponding to a
binary operator has two outward-oriented edges: the left edge corresponds to the
left subformula and the right edge to the right subformula operated on. A vertex
corresponding to : has one outward directed edge. The root represents the operator
applied at top level. The leaves are variables. Call such a representation a wff
digraph. An example is given in Fig. 6. An efficient algorithm for constructing a
wff digraph is given in Sect. 5.1.
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3.7 Satisfiability Index

Let  be a CNF formula and let M be its .0 ˙ 1/ matrix representation. Let
α D .˛0; ˛1; : : : ; ˛n�1/ be an n-dimensional vector of real variables. Let z be a real
variable and let Z = .z; z; : : : ; z/ be anm dimensional vector where every component
is the variable z. Finally, let b D .b0; b1; : : : ; bm�1/ be an m dimensional vector
such that for all 0 � i < m, bi is the number of negative literals in clause ci . Form
the system of inequalities

M α C b � Z ; (2)

0 � ˛i � 1 for all 0 � i < n:

The satisfiability index of is the minimum z for which no constraints of the system
are violated. For example, the CNF formula

..v1 _ :v2/ ^ .v2 _ :v3 _ v5/ ^ .v3 _ :v4 _ :v5/ ^ .v4 _ :v1//

has satisfiability index of 5/4.

3.8 And/Inverter Graphs

An AIG is a directed acyclic graph where all gate vertices have in-degree 2, all input
vertices have in-degree 0, all output vertices have in-degree 1, and edges are labeled
as either negated or not negated. Any combinational circuit can be equivalently
implemented as a circuit involving only 2-input and gates and not gates. Such a
circuit has an AIG representation: gate vertices correspond directly to the and gates,
negated edges correspond directly to the not gates, and inputs and outputs represent
themselves directly. Negated edges are typically labeled by overlaying a white circle
on the edge: this distinguishes them from non-negated edges which are unlabeled.
Examples are shown in Fig. 7.

4 Applications

This section presents a sample of real-world problems that may be viewed as, or
transformed to, instances of SAT. Of primary interest is to explore the thinking
process required for setting up logic problems and gauging the complexity of the
resulting systems. Since it is infeasible to meet this objective and thoroughly discuss
a large number of known applications, a small but varied and interesting collection
of problems are discussed.
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Fig. 7 Examples of AIGs. Edges with white circles are negated. Edges without a white circle are
not negated. (a) and gate. (b) or gate. (c) xor gate. (d) 1-bit add circuit of Fig. 9

4.1 Consistency Analysis in Scenario Projects

This application, taken from the area of scenario management [8, 54, 63], is
contributed by Feldmann and Sensen [57] of Burkhard Monien’s old PC2 group
at Universität Paderborn, Germany. A scenario consists of (i) a progression of
events from a known base situation to a possible terminal future situation and (ii) a
means to evaluate its likelihood. Scenarios are used by managers and politicians to
strategically plan the use of resources needed for solutions to environmental, social,
economic, and other such problems.

A systematic approach to scenario management due to Gausemeier, Fink, and
Schlake [62] involves the realization of scenario projects with the following
properties:
1. There is a set S of key factors. Let the number of key factors be n.
2. For each key factor si 2 S , there is a setDi D fdi:1; di:2; : : : di:mi g ofmi possible

future developments. In the language of databases, key factors are attributes and
future developments are attribute values.

3. For all 1 � i � n, 1 � k � mi , denote by .si ; di:k/ a feasible projection
of development di:k 2 Di from key factor si . For each pair of projections
.si ; di:k/, .sj ; dj:l /, a consistency value, usually an integer ranging from 0 to 4, is
defined. A consistency value of 0 typically means two projections are completely
inconsistent, a value of 4 typically means the two projections support each
other strongly, and the other values account for intermediate levels of support.
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Consistency values may be organized in a
Pn

iD1 mi �Pn
iD1 mi matrix with rows

and columns indexed on projections.
4. Projections for all key factors may be bundled into a vector x D .xs1 ; : : : ; xsn/

where xsi is a future development of key factor si , i D 1; 2; : : : ; n. In the
language of databases, a bundle is a tuple which describes an assignment of
values to each attribute.

5. The consistency of bundle x is the sum of the consistency values of all pairs
.si ; xsi /; .sj ; xsj / of projections represented by x if no pair has consistency value
of 0, and is 0 otherwise.

Bundles with greatest (positive) consistency are determined and clustered. Each
cluster is a scenario.

To illustrate, consider a simplified example from [57] which is intended to
develop likely scenarios for the German school system over the next 20 years.
It was felt by experts that 20 key factors are needed for such forecasts; to keep
the example small, only the first 10 are shown. The first five key factors and
their associated future developments are as follows: [s1] continuing education
([d1:1] lifelong learning), [s2] importance of education ([d2:1] important, [d2:2]
unimportant), [s3] methods of learning ([d3:1] distance learning, [d3:2] classroom
learning), [s4] organization and policies of universities ([d4:1] enrollment selectivity,
[d4:2] semester schedules), and [s5] adequacy of trained people ([d5:1] sufficiently
many, [d5:2] not enough).

The table in Fig. 8, called a consistency matrix, shows the consistency values for
all possible pairs of future developments. The si ; sj cell of the matrix shows the
consistency values of pairs f.si ; di:x/; .sj ; dj:y/ W 1 � x � mi; 1 � y � mj g, with
all pairs which include .si ; di:x/ on the xth row of the cell. For example, jD5j D 2

and jD2j D 2, so there are 4 numbers in cell s5; s2 and the consistency value of
.s5; d5:2/; .s2; d2:2/ is the bottom right number of that cell. That number is 0 because
experts have decided the combination of there being too few trained people (d5:2) at
the same time education is considered unimportant (d2:2) is unlikely.

It is relatively easy to compute the consistency of a given bundle from this table.
One possible bundle of future developments is f.si ; di:1/ W 1 � i � 10g. Since the
consistency value of f.s5; d5:1/; .s2; d2:1/g is 0, this bundle is inconsistent. Another
possible bundle is

f.s1; d1:1/; .s2; d2:1/; .s3; d3:1/; .s4; d4:1/; .s5; d5:2/;
.s6; d6:3/; .s7; d7:1/; .s8; d8:2/; .s9; d9:1/; .s10; d10:2/g:

Its consistency value is 120 (the sum of the 45 relevant consistency values from
the table).

Finding good scenarios from a given consistency matrix requires efficient
answers to the following questions:
1. Does a consistent bundle exist?
2. How many consistent bundles exist?
3. What is the bundle having the greatest consistency?
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4 0
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1 4
4 0
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1 3 2
2 3 4
2 3 2
2 3 1
2 3 2
2 3 2
2 3 2
2 3 2
2 3 2

4 0
2 3
0 4
4 0
4 1
2 3
3 2
2 3

4 2 1
3 2 1
1 2 3
2 3 2
3 2 3

1 2
2 3
2 3

Fig. 8 A consistency matrix for a scenario project

Table 3 Formula to determine existence of a consistent bundle

Clause of  S;D Subscript range Meaning

.:vi;j _ :vi;k/ 1 � i � n; 1 � j < k � mi �1 development/key factor

.vi;1 _ : : :_ vi;mi / 1 � i � n �1 development/key factor

.:vi;k _ :vj;l / i; j; k; l W Ci:k;j:l D 0 Consistent developments only

Finding answers to these questions is NP-hard [57]. But transforming to CNF
formulas, in some cases with weights on proposition letters, and solving a variant of
SAT are sometimes reasonable ways to tackle such problems. This context provides
the opportunity to use our vast knowledge of SAT structures and analysis to apply
an algorithm that has a reasonable chance of solving the consistency problems
efficiently. It is next shown how to construct representative formulas so that, often,
a large subset of clauses is polynomial-time solvable and the whole formula is
relatively easy to solve.

Consider, first, the question whether a consistent bundle exists for a given
consistency matrix of n key factors with mi projections for factor i , 1 � i � n. Let
Ci:k;j:l denote the consistency of the pair .si ; di:k/.sj ; dj:l / and let D D [niD1Di . For
each future development di:j , define variable vi;j which is intended to take the value
1 if and only if di;j is a future development for key attribute si . The CNF formula
 S;D with the clauses described in Table 3 then says that there is a consistent bundle.
That is, the formula is satisfiable if and only if there is a consistent bundle.
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The second question to be considered is how many consistent bundles exist for
a given consistency matrix? This is the same as asking how many satisfying truth
assignments there are for  S;D . A simple inclusion-exclusion algorithm exhibits
very good performance for some actual problems of this sort [57].

The third question is which bundle has the greatest consistency value? This
question can be transformed to an instance of the variable-weighted satisfiability
problem (defined on Page 318). The transformed formula consists of  S;D plus
some additional clauses as follows. For each pair .si ; di:k/.sj ; dj:l /, i 6D j , of
projections such that Ci;k;j;l > 0, create a new Boolean variable pi;k;j;l of weight
Ci;k;j;l and add the following subexpression to  S;D :

.:vi;k _ :vj;l _ pi;k;j;l / ^ .vi;k _ :pi;k;j;l / ^ .vj;l _ :pi;k;j;l /:

Observe that a satisfying assignment requires pi;j;k;l to have value 1 if and only
if vi;k and vj;l both have value 1, that is, if and only if the consistency value of
f.si ; di:k/; .sj ; dj;l /g is included in the calculation of the consistency value of the
bundle.

If weight 0 is assigned to all variables other than the pi;k;j;l’s, a maximum weight
solution specifies a maximum consistency bundle. It should be pointed out that,
although the number of clauses added to  S;D might be significant compared to the
number of clauses originally in  S;D , the total number of clauses will be linearly
related to the size of the consistency matrix. Moreover, the set of additional clauses
is a Horn subformula.2 A maximum weight solution can be found by means of a
branch-and-bound algorithm such as that discussed in Sect. 5.11.

4.2 Testing of VLSI Circuits

A classic application is the design of test vectors for VLSI circuits. At the speci-
fication level, a combinational VLSI circuit is regarded to be a function mapping
n 0-1 inputs tom 0-1 outputs.3 At the design level, the interconnection of numerous
0-1 logic gates are required to implement the function. Each connection entails an
actual interconnect point that can fail during or soon after manufacture. Failure of
an interconnect point usually causes the point to become stuck-at value 0 or 1.

Traditionally, VLSI circuit testing includes testing all interconnect points for
stuck-at faults. This task is difficult because interconnect points are encased in
plastic and are therefore inaccessible directly. The solution is to apply an input
pattern to the circuit which excites the point under test and sensitizes a path through
the circuit from the test point to some output so that the correct value at the test
point can be determined at the output.

2Horn formulas are solved efficiently (see Sect. 6.2).
3Actual circuit voltage levels are abstracted to the values 0 and 1.
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Fig. 9 A 1-bit full adder circuit
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Fig. 10 Truth tables for logic elements of a 1-bit full adder

The following example illustrates how such an input pattern and output is found
for one internal point of a 1-bit full adder: an elementary but ubiquitous functional
hardware block that is depicted in Fig. 9. For the sake of discussion, assume a given
circuit will have at most one stuck-at failure. The 1-bit full adder uses logic gates
that behave according to the truth tables in Fig. 10 where a and b are gate inputs
and c is a gate output. Suppose none of the interconnect points enclosed by the
dashed line of Fig. 9 are directly accessible, and suppose it is desired to develop a
test pattern to determine whether point w is stuck at 0. Then inputs must be set to
give point w the value 1. This is accomplished by means of the Boolean expression
 1 D .A ^ B/. The value of point w can only be observed at output Y . But this
requires point v be set to 0. This can be accomplished if either the value of C is
0 or u is 0, and u is 0 if and only if A and B have the same value. Therefore,
the Boolean expression representing sensitization of a path from w to Y is  2 D
.:C _ .A ^ B/ _ .:A ^ :B//. The conjunction  1 ^  2 is the CNF expression
.A ^ B/. This expression is satisfied if and only if A and B are set to 1. Such an
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input will cause output Y to have value 1 if w is not stuck at 0 and value 0 if w is
stuck at 0, assuming no other interconnect point is stuck at some value.

Test patterns must be generated for all internal interconnect points of a VLSI
circuit. There could be millions of these and the corresponding expressions could
be considerably more complex than that of the example above. Moreover, testing
is complicated by the fact that most circuits are not combinational: that is, they
contain feedback loops. This last case is mitigated by adding circuitry for testing
purposes only. The magnitude of the testing problem, although seemingly daunting,
is not great enough to cause major concern at this time because it seems that SAT
problems arising in this domain are usually easy. Thus, at the moment, the VLSI
testing problem is considered to be under control. However, this may change in
the near future since the number of internal points in a dense circuit is expected to
continue to increase dramatically.

4.3 Diagnosis of Circuit Faults

A natural extension of the test design discussed in Sect. 4.2 is finding a way to
automate the diagnosis of, say, bad chips, starting with descriptions of their bad
outputs. How can one reason backwards to identify likely causes of the malfunction?
Also, given knowledge that some components are more likely to fail than others,
how can the diagnosis system be tailored to suggest the most likely causes first?
The first of these questions is discussed in this section.

The first step is to write the Boolean expression representing both the normal
and abnormal behavior of the analyzed circuit. This is illustrated using the circuit of
Fig. 9. The expression is assembled in stages, one for each gate, starting with gate
3 of Fig. 9, which is an and gate. The behavior of a correctly functioning and gate
is specified in the right-hand truth table in Fig. 10. The following formula expresses
the truth table:

.a ^ b ^ c/ _ .:a ^ :b ^ c/ _ .:a ^ b ^ :c/ _ .:a ^ :b ^ :c/:

If gate 3 is possibly stuck at 0, its functionality can be described by adding variable
Ab3 (for gate 3 is abnormal) and substituting A,B , and w for a, b, and c, to get the
following abnormality expression:

.A ^ B ^ w ^ :Ab3/ _ .:A ^ :B ^ w ^ :Ab3/ _

.:A ^ B ^ :w ^ :Ab3/ _ .:A ^ :B ^ :w ^ :Ab3/ _ .:w ^ Ab3/

which has value 1 if and only if gate 3 is functioning normally for inputsA andB or
it is functioning abnormally and w is stuck at 0. The extra variable may be regarded
as a switch which allows toggling between abnormal and normal states for gate 3.
Similarly, switches Ab1; Ab2; Ab4,and Ab5 may be added for all the other gates in
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Table 4 Possible stuck-at-0 failures of 1-bit adder gates (see Fig. 9) assuming given inputs are
A D 0 and B;C D 1 and observed outputs are X; Y D 0. This is the list of assignments to �
which satisfy the abnormality predicates for the 1-bit adder. A “1” in the column for Abi means
gate i is stuck at 0

IDs Ab1 Ab2 Ab3 Ab4 Ab5

1–16 * * * * 1
17–24 * 1 * * 0
25–26 1 0 * 1 0

The symbol “*” means either “0” or “1”

the circuit, and corresponding expressions may be constructed using those switches.
Then the set

� D fAb1; Ab2; Ab3; Ab4; Ab5g
represents all possible explanations for stuck-at-0 malfunctions. The list of assign-
ments to the variables of � which satisfy the collection of abnormality expressions,
given particular inputs and observations, determines all possible combinations of
stuck-at-0 failures in the circuit. The next task is to choose the most likely failure
combination from the list. This requires some assumptions which are motivated by
the following examples.

Suppose that, during some test, inputs are set to A D 0 and B;C D 1 and
the observed output values are Y D 0 and X D 1 whereas Y D 1 and X D 0

are the correct outputs. One can reason backwards to try to determine which gates
are stuck at 0. Gate 4 cannot be stuck at 0 since its output is 1. Suppose gate 4 is
working correctly. Since the only gate that gate 4 depends on is gate 1, that gate
must be stuck. One cannot tell whether gates 2, 3, and 5 are functioning; normally it
would be assumed that they are functioning correctly until evidence to the contrary
is obtained. Thus, the natural diagnosis is gate 1 is defective (only Ab1 has value 1).

Alternatively, suppose under the same inputs it is observed that X; Y D 0.
Possibly, gates 5 and 4 are malfunctioning. If so, all other combinations of gate
outputs will lead to the same observable outputs. If gate 5 is defective but gate 4 is
good, then u D 1 so gate 1 is good, and any possible combinations of w and v lead
to the same observable outputs. If gate 5 is good and gate 4 is defective, the bad
Y value may be caused by a defective gate 2. In that case gates 1 and 3 conditions
do not affect the observed outputs. But if gate 2 is not defective, the culprit must
be gate 1. If gates 4 and 5 are good, then u D 1 so gate 2 is defective. Nothing
can be determined about the condition of gate 3 through this test. The results of this
paragraph lead to 26 abnormal� values that witness the observed outputs: these are
summarized in Table 4, grouped into three cases. In the first two of these cases, the
minimum number of gates stuck at 0 is 1.

As before, it is assumed that the set of malfunctioning gates is as small as
possible, so only those two diagnoses are considered: that is, either (i) gate 5 or
(ii) gate 2 is defective. In general, it is argued, common sense leads us to consider
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only minimal sets of abnormalities: sets, like gate 2 above, where no proper subset
is consistent with the observations. This is Reiter’s principle of parsimony [117]:

A diagnosis is a conjecture that some minimal set of components are faulty.

This sort of inference is called non-monotonic because it is inferred, above, that gate
3 was functioning correctly, since there is no evidence it was not. Later evidence
may cause that inference to be withdrawn.

Yet a further feature of non-monotonic logic may be figured into such systems;
the following illustrates the idea. Suppose it is known that one component, say,
gate 5, is the least likely to fail. Then, if there are any diagnoses in which gate
5 does not fail, it will report only such diagnoses. If gate 5 fails in all diagnoses,
then it will report all the diagnoses. Essentially, this reflects a kind of preference
relationship among diagnoses.

There is now software which automates this diagnosis process (e.g., [66]).
Although worst-case performance of such systems is provably bad, such a sys-
tem can be useful in many circumstances. Unfortunately, implementations of
non-monotonic inference are new enough that there is not yet a sufficiently large
body of standard benchmark examples.

4.4 Functional Verification of Hardware Design

Proving correctness of the design of a given block of hardware has become a
major concern due to the complexity of present day hardware systems and the
economics of product delivery time. Prototyping is no longer feasible since it
takes too much time and fabrication costs are high. Breadboarding no longer gives
reliable results because of the electrical differences between integrated circuits and
discrete components. Simulation-based methodologies are generally fast but do not
completely validate a design since there are many cases left unconsidered. Formal
verification methods can give better results, where applicable, since they will catch
design errors that may go undetected by a simulation.

Formal verification methods are used to check correctness by detecting errors
in translation between abstract levels of the design hierarchy. Design hierarchies
are used because it is impractical to design a VLSI circuit involving millions of
components at the substrate, or lowest, level of abstraction. Instead, it is more
reasonable to design at the specification or highest level of abstraction and use
software tools to translate the design, through some intermediate stages such as
the logic-gate level, to the substrate level. The functionality between a pair of
levels may be compared. In this case, the more abstract level of the pair is said
to be the specification and the other level is the implementation level of the pair. If
functionality is equivalent between all adjacent pairs of levels, the design is said to
be verified.

Determining functional equivalence (defined on Page 317) between levels
amounts to proving a theorem of the form implementation I realizes specification S
in a particular, suitable formal proof system. For illustration purposes only, consider
the 1-bit full adder of Fig. 9. Inputs A and B represent a particular bit position of
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two different binary addends. Input C is the carry due to the addition at the next
lower valued bit position. Output X is the value of the same bit position of the
sum and output Y is the carry to the next higher valued bit position. The output X
must have value 1 if and only if all inputs have value 1 or exactly one input has
value 1. The output Y has value 1 if and only if at least two out of three inputs have
value 1. Therefore, the following simple Boolean expression offers a reasonable
specification of any 1-bit full adder:

.X , .A ^ :B ^ :C/ _ .:A ^ B^:C/ _ .:A ^ :B ^ C/ _ .A ^ B ^ C// ^

.Y , .A ^ B/ _ .A ^ C/ _ .B ^ C//:

A proposed implementation of this specification is given in the dotted region of
Fig.9. Its behavior may be described by a Boolean expression that equates each gate
output to the corresponding logical function applied to its inputs. The following is
such an expression:

.u, .A ^ :B/ _ .:A ^ B// ^

.v, u ^ C/ ^

.w, A ^ B/ ^

.X , .u ^ :C/ _ .:u ^ C// ^

.Y , w _ v/:

Designate these formulas S.A;B;C;X; Y / and I .A;B;C;X; Y; u; v;w/, respec-
tively. The adder correctly implements the specification if, for all possible inputs
A;B;C 2 f0; 1g, the output of the adder matches the specified output. For any
individual inputs, A;B;C , that entails checking whether  I .A;B;C;X; Y; u; v;w/
has value 1 for the appropriate u; v;w,

 S.A;B;C;X; Y /, 9u; v;w  I .A;B;C;X; Y; u; v;w/;

where the quantification 9u; v;w is over Boolean values u; v;w. For specificA;B;C ,
the problem is a satisfiability problem: can values for u; v;w which make the formula
have value 1 be found? (Of course, it is an easy satisfiability problem in this case.)
Thus, the question of whether the adder correctly implements the specification for
all 32 possible input sequences is answered using the formula:

8A;B;C;X; Y. S.A;B;C;X; Y /, 9u; v;w  I .A;B;C;X; Y; u; v;w//;

which has a second level of Boolean quantification. Such formulas are called
quantified Boolean formulas.

The example of the 1-bit full adder shows how combinational circuits can be
verified. A characteristic of combinational circuits is that output behavior is strictly
a function of the current values of inputs and does not depend on past history.
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Table 5 The operators of temporal logic

Op. name .S; si / ˆ If and only if

p (p a variable) si .p/ D 1

Not : 1 .S; si / 6ˆ  1

And  1 ^  2 .S; si / ˆ  1 and .S; si / ˆ  2

Or  1 _  2 .S; si / ˆ  1 or .S; si / ˆ  2

Henceforth � 1 .S; sj / ˆ  1 for all states sj ; j � i

Eventually ˘ 1 .S; sj / ˆ  1 for some state sj ; j � i

Next ı 1 .S; siC1/ ˆ  1

Until  1 U  2
For some j � i;

.S; si /; .S; siC1/; : : : ; .S; sj�1/ ˆ  1;

and .S; sj / ˆ  2

However, circuits frequently contain components, such as registers, which exhibit
some form of time dependency. Such effects may be modeled by some form of
propositional temporal logic.

Systems of temporal logic have been applied successfully to the verification of
some sequential circuits including microprocessors. One may think of a sequential
circuit as possessing one of a finite number of valid states at any one time. The
current state of such a circuit embodies the complete electrical signal history of the
circuit beginning with some distinguished initial state. A change in the electrical
properties of a sequential circuit at a particular moment in time is represented as
a fully deterministic movement from one state to another based on the current
state and a change in some subset of input values only. Such a change in state is
accompanied by a change in output values.

A description of several temporal logics can be found in [149]. For illustrative
purposes, one of these is discussed below, namely, the linear time temporal logic
(LTTL). LTTL formulas take value 1 with respect to an infinite sequence of states
S D fs0; s1; s2; : : :g. States of S obey the following: state s0 is a legal initial state
of the system, state si is a legal state of the system at time step i , and every pair
si ; siC1 must be a legal pair of states. Legal pairs of states are forced by some of
the components of the formula itself (the latch example at the end of this section
illustrates this). Each state is just an interpretation of an assignment of values to a
set of Boolean variables.

LTTL is an extension of the propositional calculus that adds one binary and
three unary temporal operators which are described below and whose semantics
are outlined in Table 5 along with the standard propositional operators :, ^, and
_ (the definition of .S; si / ˆ is given below). The syntax of LTTL formulas is the
same as for propositional logic except for the additional operators.

Let  be a LTTL expression that includes a component representing satisfaction
of some desired property in a given circuit. An example of a property for a potential
JK flip-flop might be that it is eventually possible to have a value of 1 for outputQ
while input J has value 1 which has a corresponding formula ˘.J ^Q/. The event
that  has value 1 for state si in S is denoted by
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Fig. 11 A set-reset latch and complete description of signal behavior. Inputs are s and r , output
is q. The horizontal axis represents time. The vertical axis represents signal value for both inputs
and output. Values of all signals are assumed to be either 0 (low) or 1 (high) at any particular
time. Two rows for q values are used to differentiate between the cases where the initial value of q
is 0 or 1

.S; si / ˆ  :

Also, say
S ˆ  if and only if .S; s0/ ˆ  :

Finally, two LTTL formulas  1 and  2 are equivalent if, for all sequences S ,

S ˆ  1 if and only if S ˆ  2:

Our example concerns a hardware device of two inputs and one output called a
set-reset latch. The electrical behavior of such a device is depicted in Fig. 11 as a
set of six waveforms which show the value of the output q in terms of the history
of the values of inputs r and s. For example, consider waveform (a) in the Fig. 11.
This shows the value of the output q, as a function of time, if initially q, r , and s
have value 0 and then s is pulsed or raised to value 1 then some time later dropped
to value 0. The waveform shows the value of q rises to 1 some time after s does and
stays at value 1 after the value of s drops. The waveform (a) also shows that if q
has value 1 and r and s have value 0 and then r is pulsed, the value of q drops to 0.
Observe the two cases where (i) r and s have value 1 at the same moment and (ii)
q changes value after s or r pulses are not allowed. The six waveforms are enough
to specify the behavior of the latch because the device is simple enough that only
recent history matters.

The specification of this behavior is given by the LTTL formula of Table 6.
Observe that the first three expressions of Table 6 represent assumptions needed
for the latch to work correctly and do not necessarily reflect requirements that can
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Table 6 Temporal logic formula for a set-reset latch

Expressions Comments

�:.s ^ r/ No two inputs have value 1 simultaneously
�..s ^ :q/ ! ..s U q/_ �s// Input s cannot change if s is 1 and q is 0
�..r ^ q/ ! ..r U :q/_ �r// Input r cannot change if r is 1 and q is 1
�.s ! ˘q/ If s is 1, q will eventually be 1
�.r ! ˘:q/ If r is 1, q will eventually be 0
�..:q ! ..:q U s/_ �:q/// Output q rises to 1 only if s becomes 1
�..q ! ..q U r/_ �q/// Output q drops to 0 only if r becomes 1

be realized within the circuitry of the latch itself. Care must be taken to insure that
the circuitry in which a latch is placed meets those requirements.

Latch states are triples representing values of s, r , and q, respectively. Some
examples, corresponding to state sequences depicted by waveforms (a)–(f) in
Fig. 11, that satisfy the formula of Table 6 are as follows:

Sa W .h000i; h100i; h101i; h001i; h011i; h010i; h000i; : : :/
Sb W .h000i; h100i; h101i; h001i; h101i; h001i; : : :/
Sc W .h000i; h010i; h000i; h010i; h000i; : : :/
Sd W .h001i; h101i; h001i; h011i; h010i; h000i; : : :/
Se W .h001i; h101i; h001i; h101i; h001i; : : :/
Sf W .h001i; h011i; h010i; h000i; h010i; h000i; : : :/

Clearly, infinitely many sequences satisfy the formula of Table 6, so the problem
of verifying functionality for sequential circuits appears daunting. However, by
means of careful algorithm design, it is sometimes possible to produce such ver-
ifications and successes have been reported. In addition, other successful temporal
logic systems such as computation tree logic and interval temporal logic have been
introduced, along with algorithms for proving theorems in these logics. The reader
is referred to [149], �Combinatorial Optimization Techniques for Network-Based
Data Mining for details and citations.

4.5 Bounded Model Checking

Section 4.4 considered solving verification problems of the form S ˆ  1 �
S ˆ  2. If it is desired instead to determine whether there exists an S such that
S ˆ  temporal operators can be traded for Boolean variables, the sentence can be
expressed as a propositional formula, and a SAT solver applied. The propositional
formula must have the following parts:
1. Components which force the property or properties of the time-dependent

expression to hold
2. Components which establish the starting state

http://dx.doi.org/10.1007/978-1-4419-7997-1_6
http://dx.doi.org/10.1007/978-1-4419-7997-1_6
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3. Components which force legal state transitions to occur
In order for the Boolean expression to remain of reasonable size, it is generally
necessary to bound the number of time steps in which the time-dependent expression
is to be verified, thus the name bounded model checking.

As an example, consider a simple 2-bit counter whose outputs are represented by
variables v1 (LSB) and v2 (MSB). Introduce variables vi1 and vi2 whose values are
intended to be the same as those of variables v1 and v2, respectively, on the i th time
step. Suppose the starting state is the case where both v01 and v02 have value 0. The
transition relation is

Current output Next output

00 : 01
01 : 10
10 : 11
11 : 00

the i th line of which can be expressed as the following Boolean function:

.viC11 $ :vi1/ ^ .viC12 $ vi1 ˚ vi2/:

Suppose the time-dependent expression to be proved is as follows:

Can the two-bit counter reach a count of 11 in exactly three time steps?

Assemble the propositional formula having value 1 if and only if the above query
holds as the conjunction of the following three parts:
1. Force the property to hold:

.:.v01 ^ v02/ ^ :.v11 ^ v12/ ^ :.v21 ^ v22/ ^ .v31 ^ v32//:

2. Express the starting state:
.:v01 ^ :v02/:

3. Force legal transitions (repetitions of the transition relation):

.v11 $ :v01/ ^ .v12 $ v01 ˚ v02/ ^

.v21 $ :v11/ ^ .v22 $ v11 ˚ v12/ ^

.v31 $ :v21/ ^ .v32 $ v21 ˚ v22/:

Since .a $ b/, .a _ :b/ ^ .:a _ b/, the last expression can be directly turned
into a CNF expression. Therefore, the entire formula can be turned into a CNF
expression and solved with an off-the-shelf SAT solver.

The reader may check that the following assignment satisfies the above
expressions:

v01 D 0; v02 D 0; v11 D 1; v12 D 0; v21 D 0; v22 D 1; v31 D 1; v32 D 1:
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It may also be verified that no other assignment of values to vi1 and vi2, 0 � i � 3,
satisfies the above expressions. Information on the use and success of bounded
model checking may be found in [18, 36].

4.6 Combinational Equivalence Checking

The power of bounded model checking is not needed to solve the combinational
equivalence checking (CEC) problem which is to verify that two given combi-
national circuit implementations are functionally equivalent. CEC problems are
easier, in general, because they carry no time dependency and there are no feedback
loops in combinational circuits. It has recently been discovered that CEC can be
solved very efficiently, in general [92, 94, 95], by incrementally building a single-
output and/inverter graph (AIG), representing the miter [26] of both input circuits,
and checking whether the output has value 0 for all combinations of input values.
The AIG is built one vertex at a time, working from input to output. Vertices
are merged if they are found to be functionally equivalent. Vertices can be found
functionally equivalent in two ways: (1) candidates are determined by random
simulation [26, 93] and then checked by a SAT solver for functional equivalence,
and (2) candidates are hashed to the same location in the data structure representing
vertices of the AIG (for the address of a vertex to represent function, it must depend
solely on the opposite endpoints of the vertex’s incident edges, and therefore, an
address change typically takes place on a merge). AIG construction continues until
all vertices have been placed into the AIG and no merging is possible. The technique
exploits the fact that checking the equivalence of two topologically similar circuits
is relatively easy [65] and avoids testing all possible input-output combinations,
which is CoNP-hard.

In CEC the AIG is incrementally developed from gate level representations. For
example, Fig. 7a shows the AIG for an and gate, Fig. 7b shows the AIG for an or
gate, Fig.7c shows the AIG for exclusive-or, and Fig.7d shows the AIG for the adder
circuit of Fig. 9. Vertices may take 0-1 values. Values are assigned independently to
input vertices. The value of a gate vertex (a dependent vertex) is the product x1x2
where xi is either the value of the non-arrow side endpoint of incoming edge i ,
1 � i � 2, if the edge is not negated or 1 minus the value of the endpoint if it is
negated.

CEC begins with the construction of the AIG for one of the circuits as
exemplified in Fig. 12a which shows an AIG and a circuit it is to be compared
against. Working from input to output, a node of the circuit is determined to be
functionally equivalent to an AIG vertex and is merged with the vertex. The output
lines from the merged node become AIG edges outgoing from the vertex involved
in the merge. Figure 12b shows the first two nodes of the circuit being merged with
the AIG and Fig. 12c shows the completed AIG.
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Fig. 12 Creating the AIG. (a) The beginning of the equivalency check – one circuit has been
transformed to an AIG. (b) Node a of the circuit (Fig. 12a) has been merged with vertex b of the
AIG. (c) The completed AIG

CEC proceeds with the application of many random input vectors to the input
vertices of the AIG for the purpose of partitioning the vertices into potential
equivalence classes (two vertices are in the same equivalence class if they take the
same value under all random input vectors). In the case of Fig. 12c, suppose the
potential equivalence classes are f1; 2g; f3; 4g, and f5; 6g.

The next step is to use a SAT solver to verify that the equivalences actually
hold. Those that do are merged, resulting in a smaller AIG. The cycle repeats until
merging is no longer possible. If the output vertices hash to the same address,
the circuits are equivalent. Alternatively, the circuits are equivalent if the AIG is
augmented by adding a vertex corresponding to an xor gate with incident edges
connecting to the two output vertices of the AIG, and the resulting graph represents
an unsatisfiable formula, determined by using a SAT solver.

Above, CEC has been shown to check the equivalence of two combinational
circuits, but it can also be used for checking a specification against a circuit
implementation or for reverse engineering a circuit.
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4.7 Transformations to Satisfiability

It is routine in the operations research community to transform a given optimization
problem into another, solve the new problem, and use the solution to construct a
solution or an approximately optimal solution for the given problem. Usual targets
of transformations are linear programming and network flows. In some cases, where
the given problem is NP-complete, it may be more efficient to obtain a solution or
approximate solution by transformation to a satisfiability problem than by solving
directly. However, care must be taken to choose a transformation that keeps running
time down and supports low error rates. In this section a successful transformation
from network Steiner tree problems to weighted MAX-SAT problems is considered
(taken from [87]).

The network Steiner tree problem originates from the following important net-
work cost problem (see, e.g., [4]). Suppose a potential provider of communications
services wants to offer private intercity service for all of its customers. Each
customer specifies a collection of cities it needs to have connected in its own private
network. Exploiting the extraordinary bandwidth of fiber-optic cables, the provider
intends to save cable costs by piggy-backing the traffic of several customers on
single cables when possible. Assume there is no practical limit on the number
of customers piggybacked to a single cable. The provider wants an answer to
the following question: Through what cities should the cables be laid to meet all
customer connectivity requirements and minimize total cabling cost?

This problem can be formalized as follows. LetG.V;E/ be a graph whose vertex
set V D fc1; c2; c3; : : : g represents all cities and whose edge set E represents
all possible connections between pairs of cities. Let w W E �! ZC be such that
w.fci ; cj g/ is the cost of laying fiber-optic cable between cities ci and cj . Let R
be a given set of vertex-pairs fci ; cj g representing pairs of cities that must be able
to communicate with each other due to at least one customer’s requirement. The
problem is to find a minimum total weight subgraph of G such that there is a path
between every vertex-pair of R.

Consider the special case of this problem in which the set T of all vertices
occurring in at least one vertex-pair of R is a proper subset of all vertices of G
(i.e., the provider has the freedom to use as connection points cities not containing
customers’ offices) and R requires that all vertices of T be connected. This is
known as the network Steiner tree problem. An example and its optimal solution
are given in Fig.13. This problem is one of the first shown to be NP-complete [85].
The problem appears in many applications and has been extensively studied.
Many enumeration algorithms, heuristics, and approximation algorithms are known
(see [4] for a list of examples).

A feasible solution to an instance .G; T;w/ of the network Steiner tree problem
is a tree spanning all vertices of a subgraph of G which includes T . Such a
subgraph is called a Steiner tree. A transformation from .G; T;w/ to an instance
of satisfiability is a uniform method of encoding of G, T , and w by a CNF formula
 with nonnegative weights on its clauses. A necessary (feasibility) property of any
transformation is that a truth assignment to the variables of  which maximizes
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Fig. 13 An example of a network Steiner tree problem (top) and its optimal solution (bottom).
The white nodes are terminals and the numbers represent hypothetical costs of laying fiber-optic
cables between pairs of cities

the total weight of all satisfied clauses specifies a feasible solution for .G; T;w/.
A desired (optimality) property is, in addition, that feasible solution have minimum
total weight. Unfortunately, known transformations that satisfy both properties
produce formulas of size that is superlinearly related to the number of edges and
vertices in G. Such encodings are useless for large graphs. More practical linear
transformations satisfying the feasibility property are possible but these do not
satisfy the optimality property. However, it has been demonstrated that, using a
carefully defined linear transformation, one can achieve close to optimal results.

As an example, consider the linear transformation introduced in [87]. This
transformation has a positive integer parameter k which controls the quality of the
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approximation. Without losing any interesting cases, assume that G is connected. It
is also assumed that no two paths in G between the same nodes of T have the same
weight; this can be made true, if necessary, by making very small adjustments to the
weights of the edges.

Preprocessing
1. Define an auxiliary weighted graph ..T;E 0/;w0/ as follows:

Graph G0 D .T;E 0/ is the complete graph on all vertices in T .
For edge e0 D fci ; cj g ofG0, let w0.e0/ be the total cost of the minimum cost path
between ci and cj in G. (This can be found, e.g., by Dijkstra’s algorithm).

2. LetW be a minimum-cost spanning tree of .G0;w0/. It is intended to choose, for
each edge fci ; cj g of W , (all the edges on) one entire path in .G;w/ between
ci and cj to be included in the Steiner tree. This will produce a Steiner tree for
T;G, although perhaps not a minimum-cost tree, as long as no cycles in G are
included.

For some prespecified, fixed k: Find the k minimum-cost paths in G between
ci and cj (again, e.g., by a variation of Dijkstra’s algorithm); call them
Pi;j;1; : : : ; Pi;j;k . Thus, the algorithm will choose one of these k paths between
each pair of elements of W .

The Formula
The output of the preprocessing step is a tree W spanning all vertices of T . Each
edge fci ; cj g 2 W represents one of the paths Pi;j;1; : : : ; Pi;j;k in G. The treeW ,
the list of edges in G, the lists of edges comprising each of the k shortest paths
between pairs of vertices ofW , and the number k are input to the transformation
step. The path weights are not needed by the transformation step and are therefore
not provided as an input. The transformation is then carried out as shown in
Table 7. In the table, E is the set of edges of G and I is any number greater than
the sum of the weights of all edges of G.
A maximum weight solution to a formula of Table 7 must satisfy all non-unit

clauses because the weights assigned to those clauses are so high. Satisfying those
clauses corresponds to choosing all the edges of at least one path between pairs
of vertices in the list. Therefore, since the list represents a spanning tree of G0, a
maximum weight solution specifies a connected subgraph of G which includes all
vertices of T .

On the other hand, the subgraph must be a tree. If there is a cycle in the subgraph,
then there is more than one path from a T vertex u to a non-T vertex v, so there is
a shorter path that may be substituted for one of the paths going from u through v
to some T vertex. Choosing a shorter path is always possible because it will still be
one of the k shortest. Doing so removes at least one edge and cycle. This process
may be repeated until all cycles are broken and the number of edges remaining is
minimal for all T vertices to be connected. Due to the unit clauses, all edge variables
whose values are not set to 1 by an assignment add their edge weights to that of the
formula. Therefore, the maximum weight solution contains only edges forced by p
variables and must specify a Steiner tree.
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Table 7 Transformation from an instance of the network Steiner tree problem to a CNF formula.
The instance has already been preprocessed to spanning treeW plus lists of k shortest paths Pi;j;x ,
1 � x � k, corresponding to edges fci ; cj g ofW . The edges of the original graph are given as set
E . Boolean variables created expressly for the transformation are defined at the top and clauses are
constructed according to the middle chart. Weights are assigned to clauses as shown at the bottom.
The number I is chosen to be greater than the sum of all weights of edges in E

Variable Subscript range Meaning

ei;j Edge fci ; cj g 2 E fci ; cj g 2 the Steiner tree
pi;j;l fci ; cj g 2 W , 1 � l � k Pi;j;l � the Steiner tree
Clause Subscript range Meaning
.:ei;j / fci ; cj g 2 E ei;j 62 Steiner tree
.pi;j;1 _ : : :_ pi;j;k / fci ; cj g 2 W Include at least one of k shortest paths

between ci , cj
.:pi;j;l _ em;n/ fcm; cng 2 Pi;j;l Include all edges of that path
Clause Weight Significance
.:ei;j / w.fi; j g/ Maximize weights of edges not included
.pi;j;1 _ : : :_ pi;j;k / I Force connected subgraph ofG containing

all vertices of T
.:pi;j;l _ em;n/ I Force connected subgraph ofG containing

all vertices of T

A maximum weight solution specifies an optimal Steiner tree only if k is
sufficiently large to admit all the shortest paths in an optimal solution. Generally
this is not practical since too large a k will cause the transformation to be too large.
However, good results can be obtained even with k values up to 30.

Once the transformation to satisfiability is made, an incomplete algorithm such
as Walksat (see Sect. 5.8.1) or even a branch-and-bound variant (see Sect. 5.11) can
be applied to obtain a solution. The reader is referred to [87] for empirical results
showing speed and approximation quality.

4.8 Boolean Data Mining

The field of data mining is concerned with discovering hidden structural information
in databases; it is a form of (or variant of) machine learning. In particular, it is
concerned with finding hidden correlations among apparently weakly related data.
For example, a credit card company might look for patterns of charging purchases
that are frequently correlated with using stolen credit card numbers. Using this data,
the company can look more closely at suspicious patterns in an attempt to discover
thefts before they are reported by the card owners.

Many of the methods for data mining involve essentially numerical calculations.
However, others work on Boolean data. Typically, the relevant part of the database
consists of a set B of m Boolean n-tuples (plus keys to distinguish tuples, which
presumably are unimportant here). Each of these n attributes might be the results of
some monitoring equipment or experts’ answers to questions.
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Some of the tuples in B are known to have some property; the others are known
not to have the property. Thus, what is known is a partially defined Boolean function
fB of the n variables. An important problem is to predict whether tuples to be added
later will have the same property. This amounts to finding a completely defined
Boolean function f which agrees with fB at every value for which it is defined.
Frequently, the goal is also to find such an f with, in some sense, a simple definition:
such a definition, it is hoped, will reveal some interesting structural property or
explanation of the data points.

For example, binary vectors of dimension two describing the condition of an
automobile might have the following interpretation:

Vector Value Overheating Coolant level

00 0 No Low
01 0 No Normal
10 0 Yes Low
11 1 Yes Normal

where the value associated with each vector is 1 if and only if the automobile’s
thermostat is defective.

One basic method is to search for such a function f with a relatively short
disjunctive normal form (DNF) definition. An example formula in DNF is

.v1 ^ v2 ^ :v3/ _ .:v1 ^ v4/ _ .v3 ^ v4 ^ v5 ^ v6/ _ .:v3/:

DNF formulas have the same form as that of CNF formulas except that the positions
of the ^’s and the _’s are reversed. In this case the formula is in 4-DNF since each
disjunct contains at most 4 conjuncts. Each term, for example, .v1 ^ v2 ^:v3/ is an
implicant: whenever it is true, the property holds.

There is extensive research upon the circumstances under which, when some
random sample points fB from an actual Boolean function f are supplied, a
program can, with high probability, learn a good approximation to f within
reasonable time (e.g., [140]). Of course, if certain additional properties of f are
known or assumed, more such functions f can be determined.

Applications are driving interest in the field. The problem has become more
interesting due to the use of binarization which allows nonbinary data sets to be
transformed to binary data sets [25]. Such transformations allow the application of
special binary tools for cause-effect analysis that would otherwise be unavailable
and may even sharpen explainability. For example, for a set of 290 data points
containing 9 attributes related to Chinese labor productivity, it was observed in [24]
that the short clause

Not in the northwest region and time is later than 1987,

where time ranges over the years 1985–1994, explains all the data and the clause

SOE is at least 71.44% and time is earlier than 1988,
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where SOEmeans state-owned enterprises, explains 94 % of the data. The technique
of logical analysis of data has been successfully applied to inherently nonbinary
problems of oil exploration, psychometric analysis, and economics, among others.

5 General Algorithms

In this section some algorithms for solving various SAT problems are presented.
Most of these algorithms operate on CNF formulas. Therefore, the following
efficient transformation to CNF formulas is needed to demonstrate the general
applicability of these algorithms.

5.1 Efficient Transformation to CNF Formulas

An algorithm due to Tseitin [139] efficiently transforms an arbitrary Boolean
formula � to a CNF formula such that  has a model if and only if � has a model
and if a model for  exists, it is a model for �. The transformation is important
because it supports the general use of many of the algorithms which are described
in following sections and require CNF formulas as input.

The transformation can best be visualized graphically. As discussed in Sect. 3.6,
any Boolean formula � can be represented as a binary rooted acyclic digraph W�

where each internal vertex represents some operation on one or two operands (an
example is given in Fig. 6). Associate with each internal vertex x of W� a new
variable vx not occurring in �. If x represents a binary operator Ox , let vl and vr
be the variables associated with the left and right endpoints, respectively, of the
two outward-oriented edges of x (vl and vr may be variables labeling internal or
leaf vertices). If x represents the operator :, then call the endpoint of the outward-
oriented edge vg. For each internal vertex x of W� , write

vx , .vl Ox vr / if Ox is binary or
vx , :vg if vertex x represents :.

For each equivalence there is a short, functionally equivalent CNF expression.
The table of Fig. 14 shows the equivalent CNF expression for all 16 possible binary
operators where each bit pattern in the left column expresses the functionality of an
operator for each of four assignments to vl and vr , in increasing order, from 00 to
11. The equivalent CNF expression for : is .vg _ vx/ ^ .:vg _ :vx/.

The target of the transformation is a CNF formula consisting of all clauses in
every CNF expression from Fig. 14 that corresponds to an equivalence expressed at
a non-leaf vertex ofW� plus a unit clause that forces the root expression to evaluate
to 1. For example, the expression of Fig. 6, namely,

v0 $ ..:v0 $ .v1 _ :v2// ^ .v1 _ :v2/ ^ .:v2 ! :v3 ! v4//;
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Ox Equivalent CNF Expression Comment

0000 (¬vx) vx ⇔ 0
1111 (vx) vx ⇔ 1
0011 (vl ∨ ¬vx) ∧ (¬vl ∨ vx)
1100 (vl ∨ vx) ∧ (¬vl ∨ ¬vx) vx ⇔ ¬vl

0101 (vr ∨ ¬vx) ∧ (¬vr ∨ vx)
1010 (vr ∨ vx) ∧ (¬vr ∨ ¬vx)
0001 (vl ∨ ¬vx) ∧ (vr ∨ ¬vx) ∧ (¬vl ∨ ¬vr ∨ vx) vx ⇔ (vl ∧ vr)
1110 (vl ∨ vx) ∧ (vr ∨ vx) ∧ (¬vl ∨ ¬vr ∨ ¬vx) vx ⇔ (¬vl ∨ ¬vr)
0010 (¬vl ∨ ¬vx) ∧ (vr ∨ ¬vx) ∧ (vl ∨ ¬vr ∨ vx)
1101 (vl ∨ vx) ∧ (¬vr ∨ vx) ∧ (¬vl ∨ vr ∨ ¬vx) vx ⇔ (vl → vr)
0100 (vl ∨ ¬vx) ∧ (¬vr ∨ ¬vx) ∧ (¬vl ∨ vr ∨ vx)
1011 (¬vl ∨ vx) ∧ (vr ∨ vx) ∧ (vl ∨ ¬vr ∨ ¬vx) vx ⇔ (vl ← vr)
1000 (¬vl ∨ ¬vx) ∧ (¬vr ∨ ¬vx) ∧ (vl ∨ vr ∨ vx) vx ⇔ (¬vl ∧ ¬vr)
0111 (¬vl ∨ vx) ∧ (¬vr ∨ vx) ∧ (vl ∨ vr ∨ ¬vx) vx ⇔ (vl ∨ vr)

1001
(vl∨¬vr∨¬vx)∧(¬vl∨vr∨¬vx)∧
(¬vl ∨ ¬vr ∨ vx) ∧ (vl ∨ vr ∨ vx)

vx ⇔ (vl ↔ vr)

0110
(¬vl ∨vr ∨vx)∧(vl ∨¬vr ∨vx)∧
(vl∨vr∨¬vx)∧(¬vl∨¬vr∨¬vx)

vx ⇔ (vl ⊕ vr)

Fig. 14 CNF expressions equivalent to vx , .vl Ox vr / for Ox as shown

transforms to

.v0 _ vx1/ ^ .:v0 _ :vx1/ ^

.v2 _ vx2/ ^ .:v2 _ :vx2/ ^

.v3 _ vx3/ ^ .:v3 _ :vx3/ ^

.:v1 _ vx4/ ^ .:vx2 _ vx4/ ^ .v1 _ vx2 _ :vx4/ ^

.vx3 _ vx5/ ^ .:v4 _ vx5/ ^ .:vx3 _ v4 _ :vx5/ ^

.vx1 _ :vx4 _ :vx6/ ^ .:vx1 _ vx4 _ :vx6/ ^ .:vx1 _ :vx4 _ vx6/^

.vx1 _ vx4 _ vx6/ ^ .vx2 _ vx7/ ^ .:vx5 _ vx7/ ^ .:vx2 _ vx5 _ :vx7/ ^

.vx4 _ :vx8/ ^ .vx7 _ :vx8/ ^ .:vx4 _ :vx7 _ vx8/ ^

.vx6 _ :vx9/ ^ .vx8 _ :vx9/ ^ .:vx6 _ :vx8 _ vx9/ ^

.v0 _ :vx9 _ :vx10/ ^ .:v0 _ vx9 _ :vx10/ ^ .:v0 _ :vx9 _ vx10/^

.v0 _ vx9 _ vx10/ ^ .vx10/:

where each line except the last corresponds to an internal vertex xi of W� of Fig. 6,
i increasing from 1 in left-to-right and bottom-to-top order, and the new variables
labeling those vertices are vx1; : : : ; vx10 correspondingly. The last line forces the root
expression to evaluate to 1. The algorithm of Fig. 15 expresses these ideas formally.
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Fig. 15 Algorithm for transforming a formula to a functionally equivalent CNF formula

For simplicity, it is assumed that the input is a formula with syntax consistent with
that described on Page 313.

The next lemma and theorems show that the algorithm correctly transforms a
given expression to a CNF formula and the size of the target formula is linearly
related to the size of the original expression.
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Lemma 1 Let O be any binary Boolean operator except the two trivial ones
that evaluate to 0 or 1 regardless of the value of their operands. Given for-
mulas  1 and  2, variables v1 2 V 1 n V 2 and v2 2 V 2 n V 1 , and some
base set V such that  1 jv1D1 �V  1 jv1D0 and  2 jv2D1 �V  2 jv2D0,

.v1 O v2/ ^  1 ^  2 �V :.v1 O v2/ ^  1 ^  2.

Proof It must be shown that for every truth assignment MV to V (1) if there is an
extension that satisfies  1,  2, and .v1 O v2/, then there is an extension that satisfies
 1,  2, and :.v1 O v2/ and (2) if there is an extension that satisfies  1,  2, and
:.v1 O v2/, then there is an extension that satisfies  1,  2, and .v1 O v2/. It is only
necessary to take care of (1) since a similar argument applies for (2).

Assume there is an extension M1 that satisfies  1,  2, and .v1 O v2/. From
 1 jv1D1 �V 1 jv1D0 and  2 jv2D1 �V 2 jv2D0 and the fact that M1 satisfies both
 1 and 2, all four extensions identical toM1 except in v1 and v2 will satisfy 1 and
 2. One of those will also satisfy :.v1 O v2/ since O is nontrivial. Hence, if there
is an extension to MV that satisfies  1,  2, and .v1 O v2/, there is also an extension
that satisfies  1,  2, and :.v1 O v2/. �

Theorem 1 Let � be a formula and V� D fv0; v1; : : : ; vn�1g the set of n variables
contained in it. The output of Algorithm 1 on input � represents a CNF formula  ,
written .v0/ if � has no operators and otherwise written .vi / ^  � , n � i , where
clause .vi / is due to the line “Set   ffPop Sgg” and  � is such that  � jviD1
�V�  � jviD0.4 In addition,  �V��. That is, any truth assignmentMV� 	 V� is a

model for � if and only if there is a truth assignment M1 	 fvn; vnC1; : : : ; vig such
that MV� [M1 is a model for  .

Proof The output is a set of sets of variables and therefore represents a CNF
formula. The line “Set   ffPop Sgg” is reached after all input symbols are
read. This happens only after either the “Evaluate ‘:s’ ” block or the “Push S  s”
line. In the former case, vi is left at the top of the stack. In the latter case, s must
be v0, in the case of no operators, or vi from execution of the “Evaluate ‘.vOw/’ ”
block immediately preceding execution of the “Push S  s” line (otherwise, the
input is not a formula). Therefore, either v0 or vi is the top symbol of S when “Set
  ffPop Sgg” is executed so fv0g or fvig is a clause of  .

Formulas  0 and  may be shown to have the stated properties by induction on
the depth of the input formula �. For improved clarity, � is used instead of �V �0

below.
The base case is depth 0. In this case � is the single variable v0 and n D 1.

The line “Push S  s” is executed in the first Repeat block, then the line “Set
  ffPop Sgg” is executed so  D ffv0gg. Since L D ;, execution terminates.
Obviously,  D � so both hypotheses are satisfied.

4The meaning of � is given on Page 318.
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For the induction step, suppose � is a formula of positive depth k C 1 and the
hypotheses hold for all formulas of depth k or less. It is next shown that they also
hold for �. Consider first the case � D :�0 (�0 has depth k). Algorithm 1 stacks :
in the line “Push S  s” and then, due to the very next line, proceeds as though
it were operating on �0. The algorithm reaches the same point it would have if �0
were input. However, in this case, : and a variable are on the stack. This requires
one pass through the “Evaluate ‘:s’ ” block which adds “vi , :s” to L and leaves
vi as the only symbol in S . Thus, upon termination,

 D .vi / ^  � D .vi / ^ .vi�1 _ vi / ^ .:vi�1 _ :vi / ^  �0

and vi is not in  �0 . Hence,

 � jviD1 D ..vi�1 _ vi / ^ .:vi�1 _ :vi // jviD1 ^  �0

D .:vi�1/ ^  �0

� .vi�1/ ^  �0 (by the induction hypothesis and Lemma 1, Page 348)

D ..vi�1 _ vi / ^ .:vi�1 _ :vi // jviD0 ^  �0

D  � jviD0 :

Next, it is shown that  �� for this case. The expression .vi /^ � can evaluate
to 1 only when the value of vi is 1. Therefore,

 D .vi / ^  � �  � jviD1
D .:vi�1/ ^  �0

� .vi�1/ ^  �0 (from above)

� �0 (by  �� induction hypothesis)

� �:

Finally, consider the case that � D .�l O �r/ (�l and �r have depth at most k).
The algorithm stacks a “(” then, by the inductive hypothesis and the recursive
definition of a formula, completes operations on �a which results in  �l in L. The
line “Set   ffPop Sgg” is avoided because there are still unread input symbols.
Thus, there are two symbols on the stack at this point: a “(” which was put there
initially and a variable. The symbolO is read next and pushed on S by the line “Push
S  s.” Then  �r is put in L, but again the line “Set   ffPop Sgg” is avoided
because there is still a “)” to be read. Thus, the stack now contains “(;” a variable,
say, vl ; an operator symbol O; and another variable, say, vr . The final “)” is read
and the “Evaluate ‘.vOw/’ ” section causes the stack to be popped, v, .vlOvr / to
be added to L, and variable vi to be put on S (in the final iteration of the first loop).
Therefore, upon termination,
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 D .vi / ^  � D .vi / ^ .vi , .vl O vr // ^  �l ^  �r ;

where .vl /^ �l is what the algorithm output represents on input �l and .vr /^ �r
is represented by the output on input �r (some clauses may be duplicated to exist
both in  �l and  �r ). Then,

 � jviD1 D .vi , .vl O vr // jviD1 ^ �l ^  �r
D .vl O vr / ^  �l ^  �r
� : .vl O vr / ^  �l ^  �r (induction hypothesis and Lemma 1)

D .vi , .vl O vr // jviD0 ^ �l ^  �r
D  � jviD0 :

It remains to show  � � for this case. By the induction hypothesis,  �l jvlD1
�  �l jvlD0. Therefore, for a given truth assignment MV� , if there is an extension

such that vl has value 1 (0) and  �l has value 0, then there is always an extension
such that vl has value 0 (1), respectively, and �l has value 1. Since, by the induction
hypothesis, �l �.vl / ^  �l , there is always an extension such that  �l has value 1
and vl has the same value as �l . The same holds for vr and �r . Therefore,

 D .vi / ^  � �  � jviD1
D ..vi / ^ .vi , .vl O vr /// jviD1 ^ �l ^  �r
� .vl O vr / ^  �l ^  �r
� .�l O �r/� �: ut

Theorem 2 Algorithm 1 produces a representation using a number of symbols that
is no greater than a constant times the number of symbols the input formula has if
there are no double negations in the input formula.

Proof Each binary operator in the input string accounts for a pair of parentheses in
the input string plus itself plus a literal. Hence, if there are m binary operators, the
string has at least 4m symbols.

If there are m binary operators in the input string, m new variables associated
with those operators will exist in  due to the Append of the “Evaluate ‘.vOw/’ ”
block. For each, at most 12 symbols involving literals, 12 involving operators (both
^ and _ represented as “,”), and 8 involving parentheses (represented as “f” “g”)
are added to  (see Fig. 14), for a total of at most 32m symbols. At most m C n
new variables associated with negations are added to  (both original variables and
new variables can be negated) due to the Append of the “Evaluate ‘:s’ ” block.
For each, at most 4 literals, 4 operators, and 4 parentheses are added to  (from
fvi ; vj g; f:vi ;:vj g), for a total of 12.mCn/ symbols. Therefore, the formula output
by Algorithm 1 has at most 44mC 12n symbols.
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Since n� 1 � m, 44mC 12n � 56mC 12. Therefore, the ratio of symbols of  
to � is not greater than .56mC 12/=4m D 14C 3=m < 17. ut

The next result shows that the transformation is computed efficiently.

Theorem 3 Algorithm 1 has O.m/ worst-case complexity if input formulas do not
have double negations, where m is the number of operators, and one symbol is used
per parenthesis, operator, and variable.

Proof Consider the first Repeat block. Every right parenthesis is read once from
the input, is never stacked, and results in an extra loop of the Repeat block due to
the line “Set s  vi” in the first Otherwise block. Since all other symbols are
read once during an iteration of the Repeat block, the number of iterations of this
block is the number of input symbols plus the number of right parentheses. Since the
number of operators (m) must be at least one fifth of the number of input symbols,
the number of iterations of the Repeat block is no greater than 10m. Since all lines
of the Repeat block require unit time, the complexity of the block is O.m/.

The second Repeat block checks items in L, in order, and for each makes one
of a fixed number of substitutions in which the number of variables is bounded
by a constant. An item is appended to L every time a : or right parenthesis is
encountered, and there is one right parenthesis for every binary operator. Thus,
there are m items in L and the complexity of the second Repeat block is O.m/.
Therefore, the complexity of the algorithm is O.m/. ut

If � contains duplicate subformulas, the output will consist of more variables
and CNF blocks than are needed to represent a CNF formula equivalent to �. This
is easily remedied by implementing L as a balanced binary search tree keyed on
vl , vr , and O and changing the Append to a tree insertion operation. If, before
insertion in the “Evaluate ‘.vOw/’ ” block, it is discovered that “vj , .vOw/”
already exists in L for some vj , then s can be set to vj , i need not be incremented,
and the insertion can be avoided. A similar change can be made for the “Evaluate
‘:s’ ” block. With L implemented as a balanced binary search tree, each query and
each insertion would take at most log.m/ time since L will contain no more than
m items. Hence, the complexity of the algorithm with the improved data structure
would be O.m log.m//.

As a final remark, there is no comparable, efficient transformation from a formula
to a DNF formula.

5.2 Resolution

Resolution is a general procedure that is primarily used to certify that a given CNF
formula is unsatisfiable, but can also be used to find a model, if one exists. The
idea originated as consensus in [20] and [129] (ca. 1937) and was applied to DNF
formulas in a form exemplified by the following:

.x ^ y/ _ .:x ^ z/, .x ^ y/ _ .:x ^ z/ _ .y ^ z/:
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Consensus in DNF was rediscovered in [120] and [116] (ca. 1954) where it was
given its name. A few years later its dual, as resolution in propositional logic, was
applied to CNF (M. Davis and H. Putnam, 1958, Computational methods in the
propositional calculus, unpublished report), for example,

.x _ y/ ^ .:x _ z/, .x _ y/ ^ .:x _ z/ ^ .y _ z/:

The famous contribution of Robinson [118] in 1965 was to lift resolution to first-
order logic.

Let c1 and c2 be disjunctive clauses such that there is exactly one variable v
that occurs negated in one clause and unnegated in the other. Then, the resolvent
of c1 and c2, denoted by Rc1

c2
, is a disjunctive clause which contains all the literals

of c1 and all the literals of c2 except for v or its complement. The variable v is
called a pivot variable. If c1 and c2 are treated as sets, their resolvent is fl W l 2
c1 [ c2 n fv;:vgg.

The usefulness of resolvents derives from the following Lemma.

Lemma 2 Let be a CNF formula represented as a set of sets. Suppose there exists
a pair c1; c2 2  of clauses such that Rc1

c2
…  exists. Then  ,  [ fRc1

c2
g.

Proof Clearly, any assignment that does not satisfy CNF formula cannot satisfy a
CNF formula which includes a subset of clauses equal to  . Therefore, no satisfying
assignment for  implies none for  [ fRc1

c2
g.

Now suppose M is a model for  . Let v be the pivot variable for c1 and c2.
Suppose v 2 M . One of c1 or c2 contains:v. That clause must also contain a literal
that has value 1 under M or else it is falsified by M . But that literal exists in the
resolvent Rc1

c2
, by definition. Therefore, Rc1

c2
is satisfied by M and so is  [ fRc1

c2
g.

A similar argument applies if v …M . ut
The resolution method makes use of Lemma 2 and the fact that a clause

containing no literals cannot be satisfied by any truth assignment. A resolution
algorithm for CNF formulas is presented in Fig. 16. It uses the notion of pure literal
(Page 315) to help find a model, if one exists. Recall, a literal is pure in formula  
if it occurs in  , but its complement does not occur in  . If the algorithm outputs
unsatisfiable, then the set of all resolvents generated by the algorithm is a resolution
refutation for the input formula.

Theorem 4 Let  be a CNF formula represented as a set of sets. The output of
Algorithm 2 on input is unsatisfiable, if and only if  is unsatisfiable. If the output
is a set of variables, then it is a model for  .

Proof If the algorithm returns unsatisfiable, one resolvent is the empty clause.
From Lemma 2 and the fact that an empty clause cannot be satisfied,  is
unsatisfiable.

If the algorithm does not return “unsatisfiable” the Otherwise block is entered
because new resolvents cannot be generated from  . Next, a Repeat block to
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Fig. 16 Resolution algorithm for CNF formulas

remove clauses containing pure literals is executed, followed by a final Repeat
block which adds some variables to M .

Consider the result of the Repeat block on pure literals. All the clauses removed
in this block are satisfied by M because all variables associated with negative pure
literals are absent fromM and all variables associated with positive pure literals are
in M . Call the set of clauses remaining after this Repeat block  0. Now, consider
the final Repeat block. If  0 D ;, then all clauses are satisfied by M from the
previous Repeat block, and M1Wi will never falsify a clause for any i . In that case
M is returned and is a model for  . So suppose  0 6D ;. The only way a clause
can be falsified by M1W1 is if it is fv1g. In that case, the line “SetM  M [ fvig”
changesM to satisfy that clause. The clause f:v1g …  0 because otherwise it would
have resolved with fv1g to give ; 2  which violates the hypothesis that the pure
literal Repeat block was entered. Therefore, no clauses are falsified byM1W1 at the
beginning of the second iteration of the Repeat block when M1W2 is considered.

Assume the general case that no clause is falsified for M1Wi�1 at the beginning
of the i th iteration of the final Repeat block. A clause c1 will be falsified by M1Wi
but not by M1Wi�1 if it contains literal vi , which cannot be a pure literal that was
processed in the previous Repeat block. Then, the line “Set M  M [ fvig”
changesM to satisfy c1 without affecting any previously satisfied clauses. However,
it is possible that a clause that was not previously satisfied becomes falsified by the
change. If there were such a clause c2, it must contain literal:vi and no other literal
in c2 would have a complement in c1; otherwise, it would already have been satisfied
by M1Wi�1. That means  , before the pure literal Repeat block, would contain
Rc1
c2

. Moreover, Rc1
c2

could not be satisfied by M1Wi�1 because such an assignment
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would have satisfied c1 and c2. But then Rc1
c2

must be falsified by M1Wi�1 because it
contains literals associated only with variables v1; : : : ; vi�1. But this is impossible
by the inductive hypothesis. It follows that the line “Set M  M [ fvig” does
not cause any clauses to be falsified and that no clause is falsified forM1Wi . Since no
clause is falsified byM1Wn, all clauses must be satisfied byM which is then a model.
The statement of the theorem follows. ut

Resolution is a powerful tool for mechanizing the solution to variants of SAT.
However, in the case of an unsatisfiable input formula, since the resolution algorithm
offers complete freedom to choose which pair of clauses to resolve next, it can be
difficult to control the total number of clauses resolved and therefore the running
time of the algorithm. The situation in the case of satisfiable input formulas is far
worse since the total number of resolvents generated can be quite large even when
a certificate of satisfiability can be generated quite quickly using other methods.

It is easy to find examples of formulas on which the resolution algorithm may
perform poorly or well, depending on the order of resolvents, and one infinite family
is presented here. Let there be n normal variables fv0; v1; : : : ; vn�1g and n � 1
selector variables fz1; z2; : : : ; zn�1g. Let each clause contain one normal variable
and one or two selector variables. For each 0 � i � n � 1, let there be one clause
with vi and one with :vi . The selector variables allow the clauses to be chained
together by resolution to form any n-literal clause consisting of normal variables.
Therefore, the number of resolvents generated could be as high as 2O.n/ although
the input length is O.n/. The family of input formulas is specified as follows:

ffv0;:z1g; fz1; v1;:z2g; fz2; v2;:z3g; : : : ; fzn�2; vn�2;:zn�1g; fzn�1; vn�1g;
f:v0;:z1g; fz1;:v1;:z2g; : : : ; fzn�2;:vn�2;:zn�1g; fzn�1;:vn�1gg:

The number of resolvents generated by the resolution algorithm greatly depends
on the order in which clauses are chosen to be resolved. Resolving vertically, the
0th column adds resolvent f:z1g. This resolves with the clauses of column 1 to add
fv1;:z2g and f:v1;:z2g, and these two add resolvent f:z2g. Continuing, resolvents
f:z3g,. . . ,f:zn�1g are added. Finally, f:zn�1g resolves with the two clauses of
column n � 1 to generate resolvent ; showing that the formula is unsatisfiable.
The total number of resolutions executed is O.n/ in this case. On the other hand,
resolving horizontally (resolve one clause of column 0 with a clause of column 1,
then resolve the resolvent with a clause from column 2, and so on), all 2n n-literal
clauses of normal variables can be generated before ; is.

The number of resolution steps executed on a satisfiable formula can be outra-
geous. Remove column n � 1 from the above formulas. They are then satisfiable.
But that is not known until 2O.n/ resolutions fail to generate ;.

This example may suggest that something is wrong with resolution and that it
should be abandoned in favor of faster algorithms. While this is reasonable for
satisfiable formulas, it may not be for unsatisfiable formulas. As illustrated by
Theorem 5, in the case of providing a certificate of unsatisfiability, the resolution
algorithm can always simulate the operation of many other algorithms in time
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bounded by a polynomial on input length. So the crucial problem for the resolution
algorithm, when applied to unsatisfiable formulas, is determining the order in
which clauses should be resolved to keep the number of resolvents generated at
a minimum. A significant portion of this chapter deals with this question. However,
first consider an extension to resolution that has shown improved ability to admit
short refutations.

5.3 Extended Resolution

In the previous section it was shown that the size of a resolution refutation can vary
enormously depending on the order in which resolvents are formed. That is, for at
least one family of formulas, there are both exponentially long and linearly long
refutations. But for some families of formulas, nothing shorter than exponential size
resolution refutations is possible. However, the simple idea of extended resolution
can sometimes yield short refutations in such cases.

Extended resolution is based on a result of Tseitin [139] who showed that, for
any pair of variables v, w in a given CNF formula  , the following expression may
be appended to  :

.z _ v/ ^ .z _ w/ ^ .:z _ :v _ :w/; (3)

where z is a variable that is not in  . From Fig. 14 this is equivalent to

z$ .:v _ :w/;

which means either v and w both have value 1 (then z D 0) or at least one of v or w
has value 0 (then z D 1). Observe that as long as z is never used again, any of the
expressions of Fig. 14 can be used in place of or in addition to (3). More generally,

z$ f .v1; v2; : : : ; vk/

can be used as well where f is any Boolean function of arbitrary arity. Judicious
use of such extensions can result in polynomial size refutations for problems that
have no polynomial size refutations without extension, a notable example being the
pigeonhole formulas.

By adding variables not in  , one obtains, in linear time, a satisfiability-
preserving translation from any propositional expression to CNF with at most a
constant factor blowup in expression size as shown in Sect. 5.1.

5.4 Davis-Putnam Resolution

The Davis-Putnam procedure (DPP) [51] is presented here mainly for historical
reasons. In DPP, a variable v is chosen and then all resolvents with v as pivot are
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generated. When no more such resolvents can be generated, all clauses containing v
or :v are removed and the cycle of choosing a variable, generating resolvents, and
eliminating clauses is repeated to exhaustion. The fact that it works is due to the
following result.

Lemma 3 Let  be a CNF formula. Perform the following operations:

 1   .
Choose any variable v from  1.
Repeat the following until no new resolvents with v as pivot can be
added to  1:

If there is a pair of clauses c1; c2 2  1 such that Rc1
c2

with v
as pivot exists and Rc1

c2
…  1,

 1   1 [ fRc1
c2
g.

 2   1.
Repeat the following while there is a clause c 2  2 such that v 2 c
or :v 2 c:
 2   2 n fcg.

Then  is satisfiable if and only if  2 is satisfiable.

Proof By Lemma 2  1 is functionally equivalent to  . Since removing clauses
cannot make a satisfiable formula unsatisfiable, if  and therefore  1 is satisfiable,
then so is  2.

Now, suppose is unsatisfiable. Consider any pair of assignmentsM (without v)
and M [ fvg. Either both assignments falsify some clause not containing v or :v
or else all clauses not containing v or :v are satisfied by both M and M [ fvg.
In the former case, some clause common to  and  2 is falsified by M , so both
formulas are falsified by M . In the latter case, M must falsify a clause c1 2  
containing v, and M [ fvg must falsify a clause containing :v. Then the resolvent
Rc1
c2
2  2 is falsified by M . Therefore, since every assignment falsifies  ,  2 is

unsatisfiable. ut
Despite the apparent improvement in the management of clauses over the

resolution algorithm, DPP is not considered practical. However, it has spawned
some other commonly used variants, especially the next algorithm to be discussed.

5.5 Davis-Putnam Loveland Logemann Resolution

Here a reasonable implementation of the key algorithmic idea in DPP is presented.
The idea is to repeat the following: choose a variable, take care of all resolutions
due to that variable, and then erase clauses containing it. The algorithm, called
DPLL [52], is shown in Fig. 17. It was developed when Loveland and Logemann
attempted to implement DPP but found that it used too much RAM. So they changed
the way variables are eliminated by employing the splitting rule: assignments are
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Fig. 17 DPLL algorithm for CNF formulas

recursively extended by one variable in both possible ways, looking for a satisfying
assignment. Thus, DPLL is of the divide-and-conquer family of algorithms.

The DPLL algorithm of Fig. 17 is written iteratively instead of recursively for
better comparison with other algorithms to be discussed later. Omitted is a formal
proof of the fact that the output of DPLL on input  is unsatisfiable if and only if  
is unsatisfiable, and if the output is a set of variables, then it is a model for  . The
reader may consult [52] for details.

A common visualization of the flow of control of DPLL and similar algorithms
involves a graph structure known as a search tree. Since search trees will be used
several times in this chapter to assist in making some difficult points clear, this
concept is explained here. A search tree is a rooted acyclic digraph where each
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v0

v1 v2

v4 v1 v3

{v0; v4} {v0;¬v4} v3 {v1;¬v2} {v2; v3} {v2;¬v3}

{¬v2; v3} {¬v0;¬v2;¬v3}

¬v0 v0

v1 v2 ¬v2

¬v4 v4 ¬v1 v1 ¬v3 v3

¬v3 v3

{{v0; v4}; {v0;¬v4}; {v0; v1}; {v1;¬v2}; {¬v2; v3};
{¬v0;¬v1;¬v2}; {¬v0;¬v2;¬v3}; {v2;¬v3}; {v2; v3}}

Fig. 18 A DPLL refutation tree for the above CNF formula

vertex has out-degree at most 2 and in-degree 1 except for the root. Each internal
vertex represents some Boolean variable and each leaf may represent a clause or
may have no affiliation. If an internal vertex represents variable v and it has two
outward-oriented edges, then one is labeled v and the other is labeled:v; if it has one
outward-oriented edge, that edge is labeled either v or :v. All vertices encountered
on a path from root to a leaf represent distinct variables. The labels of edges on such
a path represent a truth assignment to those variables: :v means set the value of v
to 0 and v means set the value of v to 1.

The remaining details are specific to a particular CNF formula  which is input
to the algorithm modeled by the search tree. A leaf is such that the partial truth
assignment represented by the path from the root either minimally satisfies all
clauses of  or minimally falsifies at least one clause of  . In the latter case, one
of the clauses falsified becomes the label for the leaf. If  is unsatisfiable, all leaves
are labeled and the search tree is a refutation tree. A fully labeled refutation tree
modeling one possible run of DPLL on a particular unsatisfiable CNF formula is
shown in Fig. 18. With reference to Fig. 17, a path from the root to any vertex
represents the state of VP at some point in the run. For a vertex with out-degree 2,
the left edge label is a tagged literal. For vertices with out-degree 1, the single edge
label is a pure literal.

The DPLL algorithm is a performance compromise. Its strong point is that sets
of resolvents are constructed incrementally, allowing some sets of clauses and
resolvents to be entirely removed from consideration long before the algorithm
terminates. But this is offset by the weakness that some freedom in choosing the
order of forming resolvents is lost, so more resolvents may have to be generated.
Applied to a satisfiable formula, DPLL can be a huge winner over the resolution
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algorithm: if the right choices for variable elimination are made, models may be
found inO.n/ time. However, for an unsatisfiable formula it is not completely clear
which algorithm performs best generally. Theorem 5 below shows that if there is
a short DPLL refutation for a given unsatisfiable formula, then there must be a
short resolution refutation for the same formula.5 But, in [7] a family for formulas
for which a shortest resolution proof is exponentially smaller than the smallest
DPLL refutation is presented. These facts seem to give the edge to resolution. On
the other hand, it may actually be relatively easy to find a reasonably short DPLL
refutation but very hard to produce an equally short or shorter resolution refutation.
An important determining factor is the order in which variables or resolutions are
chosen, and the best order is often sensitive to structural properties of the given
formula. For this reason, quite a number of choice heuristics have been studied and
some results on these are presented later in this chapter.

Many modern SAT solvers augment DPLL with other features such as restarts
and conflict-driven clause learning. The refutation complexity of a solver so
modified is then theoretically similar to that of resolution. More will be said about
this in subsequent sections.

This section concludes with the following classic result.

Theorem 5 Suppose DPLL is applied to a given unsatisfiable CNF formula  and
suppose the two lines “Set  dC1  fc � f:lg W c 2  d ; l … cg” are together
executed p times. Then there is a resolution refutation in which no more than p=2
resolvents are generated.

Proof Run DPLL on  and, in parallel, generate resolvents from clauses of  and
other resolvents. At most one resolvent will be generated every time the test “If
VP D ;” succeeds or the line “Pop l  VP ” is executed and l is neither tagged
nor a pure literal. But this is at most half the number of times  dC1 is set. Hence,
when DPLL terminates on an unsatisfiable formula, at most p=2 resolvents will be
generated. Next, it is shown how to generate resolvents and show that ; is a resolvent
of two of them.

The idea can be visualized as a series of destructive operations on a DPLL
refutation tree. Assume clauses in  label leaves as discussed on Page 358. Repeat
the following: if there are two leaf siblings, replace the subtree of the two siblings
and their parent either with the resolvent of the leaf clauses, if they resolve, or with
the leaf clause that is falsified by the assignment represented by the path from root
to the parent (there must be one if  is unsatisfiable); otherwise, there is a pair
of vertices consisting of one leaf and a parent, so replace this pair with the leaf.
Replacement entails setting the edge originally pointing to the parent to point to the
replacement vertex. Eventually, the tree consists of a root only and its label is the
empty clause.

5See [39] for other results along these lines.
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This visualization is implemented as follows. Define a stack S and set S  ;.
The stack will hold clauses of  and resolvents. Run DPLL on  . In parallel,
manipulate S as follows:
1. The test “If ; 2  d”:

Whenever this test succeeds, there is a clause c 2  whose literals can only
be complements of those in VP so push S  c.

2. The line “Pop l  VP ”:
Immediately after execution of this line, if l is not tagged and is not a pure
literal, then do the following. Pop c1  S and pop c2  S . If c1 and c2 can
resolve, push S  Rc1

c2
; otherwise, at least one of c1 or c2, say, c1, does not

contain l or :l , so push S  c1.
3. The line “If VP D ;, Output ‘unsatisfiable.’ ”:

The algorithm terminates so pop c1  S , pop c2  S , and form the resolvent
ct D Rc1

c2
.

We claim that, when the algorithm terminates, ct D ;.
To prove this claim, it is shown that when c1 and c2 are popped in Step 2, c2

contains literals that are only complementary to those of a subset of VP [ flg and
c1 contains literals that are only complementary to those of a subset of VP [ f:lg,
and if l is a pure literal in the same step, then c1 contains literals complementary to
those of a subset of VP . Since VP D ; when c1 and c2 are popped to form the final
resolvent, ct , it follows that ct D ;.

By induction on the maximum depth of stacking of c2 and c1. The base case
has c2 and c1 as clauses of  . This can happen only if c2 had been stacked in
Step 1 then Step 2 was executed and then c1 was stacked soon after in Step 1. It
is straightforward to check that the hypothesis is satisfied in this case.

Suppose the hypothesis holds for maximum depth up to k and consider a situation
where the maximum depth of stacking is k C 1. There are two cases. First, suppose
l is a pure literal. Then neither l nor :l can be in c1 so, by the induction hypothesis,
all of the literals of c1 must be complementary to literals of VP . Second, suppose
l is not tagged and not a pure literal. Then c1 and c2 are popped. By the induction
hypothesis, c1 contains only literals complementary to some in VP [ f:lg and c2
contains only literals complementary to some in VP [flg. Therefore, if they resolve,
the pivot must be l and the resolvent contains only literals complementary to some
in VP . If they do not resolve, by the induction hypothesis, one must not contain l
or :l . That one has literals only complementary to those of VP , so the hypothesis
holds in this case. ut

5.6 Conflict-Driven Clause Learning

Early SAT solvers used refinements and enhancements to DPLL to solve SAT
instances. Recently, these refinements and enhancements have been standardized
and developed into a parameterized algorithm. This algorithm is far enough removed
from DPLL that it is commonly referred to as conflict-driven clause learning
(CDCL) [119, 130, 131].
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The reasons for the increased solving power and efficiency of modern SAT
solvers lie in specialized CDCL techniques tailored to support core CDCL op-
erations such as binary constraint propagation (BCP) and heuristic computation.
Each technique on its own is not very impressive but, when all of these techniques
are fitted together in the DPLL framework, orders of magnitude improvement can
be seen. For example, conflict clause learning helps to create a dynamic search
space that is DAG-like instead of treelike as was the case for early DPLL-based
algorithms [16]. This technique, when used in conjunction with dynamic restarts, is
as strong as general resolution and exponentially more powerful than DPLL [16].
The combination of such techniques has allowed SAT solvers to be used practically
in a wide range of fields such as bioinformatics [107], cryptography [110, 132],
and planning [46, 151] as well as on many hard combinatorial problems such as
van der Waerden numbers [100, 101]. Also, the recent integration of SAT-based
techniques with theory solvers (this technology is named SMT [126] – details are
given in Sect. 5.7) is enabling push-button solutions to industrial strength problems
that previously required expert human interaction to solve (e.g., see [77]).

Two chapters in the Handbook of Satisfiability [19] cover CDCL extensively.
The reader is referred to [50] and [131] for details. The remainder of this section
highlights the main points.

5.6.1 Conflict Analysis
DPLL explores both sides of a choicepoint before backtracking over it. This is
called chronological backtracking and is not generally conducive to good SAT
solving because it is often the case that the same conflict exists on both sides
of a choicepoint. Analyzing the conflict on one side may prevent re-computation
of the same conflict on the other side, in which case the choicepoint can be
backjumped over. Performing conflict analysis in the framework of DPLL enables
nonchronological backtracking, which, in effect, works to counteract bad decisions
made by the search heuristic.

Conflict analysis is often depicted in terms of an implication graph, though, in
practice, the implication graph is not actually built. In modern SAT solvers, new
clauses are generated by resolution steps ordered by the current search tree path.
Specifically, a conflict is reached when two asserting clauses infer opposing literals
during BCP. These two clauses can be resolved together to create a new clause called
a conflict clause. This clause will either be the empty clause (in which case the
formula is unsatisfiable) or it will, if evaluated under the current partial assignment,
be falsified. Consider the most recently assigned literal in the conflict clause. If
the literal was assigned by an asserting clause, the conflict clause and the asserting
clause are resolved, creating a new conflict clause, and the process is repeated. If
the literal was assigned by a choicepoint, the current search tree up to the literal
is undone and the value assigned by the choicepoint is flipped. All new conflict
clauses may be safely added to the original CNF formula (i.e., learned) because
they are logical consequences of the original formula [130]. Learning conflict
clauses helps to prune the search space by preventing re-exploration of shared search
structure, especially when used in conjunction with restarts. Also, prior to adding



362 J. Franco and S. Weaver

newly learned clauses, it may be beneficial to attempt to minimize the clauses by
performing a restricted version of resolution with other asserting clauses [15, 143].

There is at least one special case to consider when learning conflict clauses. If a
conflict clause contains only one literal at the current decision level, called a unique
implication point (UIP), the search state can backjump to the second most recently
assigned literal in the clause. This will cause the UIP literal to be naturally inferred
via BCP [112] and has the effect of promoting those parts of the search tree relevant
to the current conflict.

Conflict analysis is also used to generate resolution proofs of unsatisfiable
instances. In the same way that an assignment to a satisfiable instance acts as a
polynomial-time checkable certificate that an instance is satisfiable, a resolution
proof acts as a certificate of unsatisfiability, checkable in linear time and space on the
number of learned clauses (though the number of learned clauses can be exponential
on the number of variables in the best case). More information on this topic can be
found in [15, 150], and [142].

5.6.2 Conflict Clause Memory Management
Not all derived conflict clauses can be stored. Too many conflict clause increases
the overhead of finding an applicable one, and too few conflict clauses reduce the
chance that a good one can be found to prune the search space. Therefore, the size
of the conflict clause database, what goes into it, and how long entries should stay
there have been well studied. The number of conceivable schemes is quite large.
A good one was recently discovered and reported in [11]. In that paper the learned
clause measure LBD (for literals blocks distance) is defined to be the number of
different levels at which literals of a clause were assigned values as choicepoints up
to the current assignment. A small LBD suggests a learned clause that was useful
in generating a long sequence of unit resolutions. It was found in experiments on
all SAT-Race ’06 benchmarks that 40 % of unit resolutions occur in clauses of
LBD = 2 versus 20 % on 2-literal clauses, and generally, the lower the LBD, the
more significant the contribution to BCP. Due to this, the following cleaning strategy
was proposed: remove half of the learned clauses, not including a class of easy
discovered clauses of least LBD, every 20000C 500 
 x conflicts, where x is the
number of times this operation has been performed before on the current input.
Adding this strategy to existing solvers resulted in a significant improvement in
performance.

Many other ideas for determining the life of conflict clauses have been proposed
and tried. Several of these are mentioned in [131] near the end of the chapter.

5.6.3 Lazy Structures
An important aspect of CDCL associated with performance has to do with main-
taining data structures that store solver state. The degree to which these structures
are managed lazily has an impact on the optimal choice of other solver mechanisms.
For example, lazy structures result in faster backtracking, so “the authors of Chaff
proposed to always stop clause learning at the first UIP” and “always take the
backtrack step” [131]. In addition, the implementation of BCP and conflict analysis
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is influenced by the implementation of lazy structures. Using lazy structures, the
fact that a clause becomes satisfied by a state change may not be reported to
solver mechanisms immediately or even at all. This presents potential savings by
preventing some unnecessary computation and does not affect the correctness of the
solver. Next, in this section the classic notion of watched literals [112] is used to
illustrate this point.

Suppose a clause is stored as a sequence of literals and suppose the number of
literals is at least 2. For each clause, assign two pointers each pointing to one of
the literals but both pointing to different literals of the clause. The literals pointed
to are called watched literals and are distinguished in name as the first and second
watched literal. The following properties are maintained always:
1. A clause is satisfied if and only if its first watched literal has value 1.
2. A clause is falsified if and only if its first and second watched literals have

value 0.
3. A clause is unit if and only if one watched literal is unassigned and the other has

value 0.
4. A clause is unassigned and not unit if and only if both watched literals are

unassigned.
Initially, a clause is unassigned and the pointers are pointing to arbitrary literals.
If a clause is unassigned, not unit, and a literal other than the second watched
literal takes value 1, then that literal becomes the first watched literal. If the literal
taking value 1 is the second watched literal, the first and second watched literals are
swapped. If both watched literals are unassigned and one of them takes value 0, a
check must be made to determine whether the clause has another unassigned literal.
If it does not, the clause becomes a unit clause and the single unassigned literal takes
value 1 and becomes the first watched literal swapping title, if necessary, with the
watched literal of value 0. Otherwise, the pointer referencing the recently assigned
watched literal gets set to point to the unassigned literal that was found during the
check. The search for an unassigned literal can proceed in any direction among the
literals of the clause. Observe that the watched literal pointers do not have to be reset
on backtrack. Further savings are obtained by associating a level and value field with
every literal: when a clause is satisfied or falsified, it is the level and value of the first
watched literal that is set. Since watched literals do not change during backtrack,
this information represents clause status as well. Earlier schemes for managing
clause status during backtrack associate level and value fields with clauses and
require searching the literals of a clause to determine status. Thus, implementing the
watched literal concept results in much less backtracking overhead and significantly
increases the number of backtracks handled per second.

As can be observed from the above discussion, watched literals are useful
in reacting to single-variable inferences. But more advanced techniques look at
multivariable inferences, for example, two-variable equivalence. Watched literals
cannot help in this case. Additional clause references, of course, may be used to
support these advances [141] at added expense. Another idea [106] is to maintain an
order of assigned literals in a clause by nondecreasing level, while the unassigned
literals remain watched as above. As a variable is assigned a value, it is sifted into
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its proper place in the ordered list. The problem with this idea is that all literals in
the ordered list may need to be visited on a backtrack.

5.6.4 CDCL Heuristics
Lazy data structures can drastically increase the speed of BCP, but since the current
state of the search is not readily available, traditional heuristics such as MOMs
(see [60] for a complete discussion), Jeroslow-Wang [80], and Johnson [81] cannot
be used. The first CDCL heuristic is the variable state independent decaying sum
(VSIDS) [112] heuristic. VSIDS maintains one counter per literal in the SAT
instance, initialized to the number of clauses each literal occurs in. VSIDS branches
on the literal with the highest count, though this requires sorting the counters, which
is expensive, and so is only done periodically. When a new clause is learned, the
counts for each literal in the clause are incremented. Also periodically, the counters
are halved. This heuristic and many similar variants efficiently glean information
from learned clauses to guide the solver towards unsatisfiable cores, enabling
modern solvers to solve large SAT instances (millions of variables and clauses) that
have small resolution proofs.

5.6.5 Restarts
Conflict-directed heuristics can sometimes cause a solver to focus too heavily on one
particular region of the search space, leading to heavy-tailed runtime distribution
(where progress seems to exponentially decrease the longer a solver runs). One
way to positively modify this behavior [68] is to restart. A dynamic restart [76, 88]
clears a solver’s current partial assignment; heuristic information and learned
clauses are kept, and a short preprocessing phase where the learned clause database
is garbage collected may typically follow a restart. As reported empirically in the
literature, “it is advantageous to restart often” [50].

5.7 Satisfiability Modulo Theories

Despite highly significant and broad advances to SAT solver design, there are still
many problems for which DPLL and CDCL variants are a challenge. For example,
it is well known that verifying correctness of arithmetic circuits is generally difficult
for SAT solvers. The problem is that datapath operations are over a fixed bit-width
and, beyond modular arithmetic, some operations such as multiplication are not
linear and particularly vexing for SAT solvers. An accepted method, called bit-
blasting, for dealing with small bit-widths is to describe operations as propositional
formulas over vectors of Boolean variables, convert to CNF using the results of
Sect. 5.1, and solve with a SAT solver. But it is doubtful that bit-blasting is going to
be universally practical for 64-bit or even 32-bit logic. As another, more universally
occurring example, SAT solvers have a difficult time handling cardinality constraints
and, more generally, constraints comparing numeric expressions. To mitigate these
and other problems, a significant body of research has studied the use of a SAT
solver to manage a collection of special purpose solvers for first order theories,
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(set-evidence! true)
(define f::(-> int int))
(define g::(-> int int))
(define a::int)
(assert (forall (x::int) (= (f x) x)))
(assert (forall (x::int) (= (g (g x)) x)))
(assert (/= (g (f (g a))) a))
(check)

Fig. 19 An SMT instance
with uninterpreted functions
and quantifiers

(set-evidence! true)
(define b1::(bitvector 8))
(define b2::(bitvector 8))
(define v1::(bitvector 8))
(assert (= v1 (mk-bv 8 39)))
(define v2::(bitvector 8))

(assert (= (bv-mul b1 (mk-bv 8 17)) b2))
(assert (= (bv-add (bv-shift-right0 b2 2) v2) v1))
(check)

Fig. 20 An SMT instance
with bit-vector expressions

including bit-vector arithmetic. This extension of SAT has found applications
in hardware verification, software model checking and testing, and vulnerability
detection, among other applications, and is called Satisfiability Modulo Theories
or SMT.

A formal specification of SMT is not given here; the reader is invited to
check [12] for the syntax and semantics of SMT-LIB, the official documented
language of SMT solvers. Most importantly, with respect to SAT, an instance of
SMT is a formula in first-order logic where uninterpreted functions are admitted
and Boolean variables are used to tie predicates from disparate theories and allow a
SAT solver to decide the consistency of the constraints of the instance. The scope of
SMT is made apparent through the SMT examples shown in Figs. 19 and 20. The
examples are expressed in a lisp-like language that is native to YICES [55], one of
the leading available SMT solvers, and may actually be input to YICES.

In Fig. 19, f and g are uninterpreted functions: note that only their signatures,
namely, a single int as input and an int as output, are defined in the second
and third lines. However, the fifth and sixth lines force f(x)=x, g(y)=x, and
g(x)=y for all integers. This is inconsistent with the seventh line which requires,
for any integer a, that g(f(g(a))), which is g(g(a)) and therefore a from
the above, is not equal to a. On this input YICES returns unsat. If /= (not
equal) is changed to =, YICES returns unknown with the following interpre-
tation: a=2, g(2)=1, f(1)=1, g(1)=a2. The first and eighth lines are
YICES-specific directives.

Figure 20 shows constraints expressed in terms of bit-vector operations. This
instance is satisfied by 8-bit numbers b1 and v2 such that multiplying b1 by 17,
shifting right by 2 bits, and adding v2 result in 39.
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YICES output on this example is as follows:

sat
(= v1 0b00100111)
(= b1 0b01110110)
(= b2 0b11010110)
(= v2 0b11110010)

That is, b1 is 118 and v2 is 242, which is one of many possible solutions.
Clearly, admitting bit-vector operations is important as it makes circuit design

and verification problems easier to express and solve: trying to express the
constraints of such problems as a CNF formula is unnatural and time-and-space
consuming. A special solver for the theory of bit-vector arithmetic and logic may
be developed to handle bit-vector predicates such as those in Fig. 20. Other theory
solvers may be designed to handle other problems that are difficult for CNF solvers.
Examples of such theories, including the theory of bit-vectors, are as follows:
1. Linear arithmetic (LA): constraints are equations or inequalities involving ad-

dition and subtraction over rational variables, constants, or constants times
variables.

2. Uninterpreted functions (UF): all uninterpreted function, constant, and predicate
symbols together with Leibniz’s law that allows substitution of equals for equals.

3. Difference arithmetic: this is linear arithmetic restricted to equations or inequal-
ities of the form x � y � c where x and y are variables and c is a constant.

4. Nonlinear arithmetic: constraints are like linear arithmetic except that variables
may be multiplied by other variables.

5. Arrays: array constraints ensure that the value of a memory location does not
change unless a specific write operation on that location with a different value
is executed and that a value written to a location may be accessed by a read
operation. Symbols of this theory might be select and store with semantics
given by the following:

select.store.v; i; e/; j / D if i D j then e else select.v; j /
store.v; i;select.v; i // D v
store.store.v; i; e/; i; f / D store.v; i; f /
i 6D j ) store.store.v; i; e/; j; f / D store.store.v; j; f /; i; e/,

where select.v; j / means read the j th value from array v and store.v; i; e/
means store the value e into the i th element of array v.

6. Lists: symbols of this theory might be car, cdr, cons, and atom with
semantics given by the following:

car.cons.x; y// D x
cdr.cons.x; y// D y
:atom.x/) cons.car.x/;cdr.x// D x
:atom.cons.x; y//
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7. Fixed-width bit-vectors: the main reason for including a bit-vector theory is to
remove the burden of solving bit-level formulas from the SAT solver. As seen in
Fig. 20, constraints are expressed at word level and may involve any machine-
level operations on words.

8. Recursive data types: this is an abstraction for common data structures that may
be defined recursively such as linked lists and for common data types that may
be defined recursively such as a tree or the natural numbers.
It is not within the scope of this chapter to discuss the construction of decision

procedures for theories. The interested reader may begin a search for such informa-
tion by consulting [13]. The remainder of this section will show how a SAT solver
can be made to interact with constraints from several theories.

Some definitions are given now to make the procedures to be discussed later
easier to express and analyze. A first-order formula is an expression consisting of a
set V of variables and symbols .; /;:;_;^;!; 9;8; a set P of predicate symbols;
a set F of function symbols, each with associated positive arity; and a set C 	 F
of constant symbols which are just 0-arity function symbols, for example, x or f .
A signature, denoted †, is a subset of F [ P . A first-order structure A specifies
a semantics for the above: that is, a domain A of elements, mappings of every n-
ary function symbol f 2 ˙ to a total function f A W An 7! A and mappings of
every n-ary predicate symbol p 2 ˙ to a relation pA � An. The symbols 9 and
8 are quantifiers and the scope of one of these is the entire formula. A sentence
is a formula all of whose variables are bound by a quantifier (i.e., the formula has
no free variables) and therefore evaluates either to true or false, depending on the
structure it is evaluated over. A formula is a ground formula if it has no variables.
Observe that x C 1 � y has no variables because x and y are constants in the
theory of linear arithmetic and is therefore a ground formula. Denote .A; ˛/ ˆ �

to mean the sentence � evaluates to true in structure A under variable assignment
˛ W V 7! AjV j. Sentence � is said to be satisfiable in A if .A; ˛/ ˆ � for some
˛. Sentence � is said to be valid in A if .A; ˛/ ˆ � for every ˛. If A is finite, the
question .A; ˛/ ˆ � for some ˛ and given � is decidable. However, for infinite
structures, the question may be undecidable.

A theory T is a set of first-order sentences expressed in the language of some
signature†. Equality is implicit in the theories mentioned earlier so their signatures
do not contain the symbolD. A model of T is a structure A in which every sentence
of T is valid. Denote by T ˆ � the condition where A is a model for T and
.A; ˛/ ˆ � for all ˛. Then � is said to be T -valid. Let ? denote a formula that is
not satisfied by any structure. Then � is said to be T -satisfiable if T [ f�g j6D?,
also written T; � j6D?. T -validity and T -satisfiability are seen as dual concepts since
T;:� ˆ? if and only if T ˆ �.

One is generally interested in combining theories: that is, proving that statements
with terms from more than one theory are valid over those combined theories.
Suppose, for two theories T1 of ˙1 and T2 of ˙2, there exist procedures P1 and P2
that determine whether a given formula �1 expressed in the language of ˙1 is T1-
valid and whether a given formula �2 expressed in the language of ˙2 is T2-valid,
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respectively. It is generally not possible to the solve the problem of determining
whether f�1g [ f�2g in the language of ˙1 [˙2 is .T1 [ T2/-valid with P1 and P2.
However, it can be under some modest restrictions that usually do not get in the way
in practice. These restrictions will be assumed for the rest of this section and are as
follows: theories T1 and T2 are decidable, ˙1 \ ˙2 D ;, and T1 and T2 are stably
infinite – let C be an infinite set of constants not in signature † and define a theory
T of† to be stably infinite if every T -satisfiable ground formula of signature˙[C
is satisfiable in a model of T with an infinite domain of elements.

By the duality noted above, the validity problem can be treated as a satisfiability
problem where it is more conveniently solved. Suppose � is a formula that is
logically equivalent to a DNF formula withm conjuncts�i;1^�i;2, i 2 f1; 2; : : : ; mg,
where �i;1 and �i;2 are expressed in the language of˙1[C and˙2[C , respectively,
and C is a set of constants that are shared by �i;1 and �i;2. Terms �i;1 ^ �i;2 are
said to be in pure form. Clearly, � is .T1 [ T2/-unsatisfiable if and only if for all
i 2 f1; 2; : : : ; mg, �i;1 ^ �i;2 is .T1 [ T2/-unsatisfiable. It is desirable to use P1 and
P2 individually to determine this. By Craig’s interpolation lemma [45], a pure-form
term �i;1 ^ �i;2 is .T1 [ T2/-unsatisfiable if and only if there is a formula  , called
an interpolant, whose free variables are a subset of the free variables contained in
both �i;1 and �i;2 such that T1; �i;1 ˆ  and T2; �i;2;  ˆ?. Finding an interpolant
is a primary goal of an SMT solver and the subject of much of the remainder of this
section, the exposition of which is strongly influenced by Klaedtke [90]. Although
combining only two theories is considered here, the process generalizes to more
than two theories.

The first step in combining theories is to produce a pure-form formula from �.
This is accomplished by introducing variables to C which remove the dependence
on objects from an alien theory through substitution. More specifically, suppose
function f 2 ˙1 and one of its arguments t is a term, possibly a constant, expressed
in ˙2. Then create a new w, set C D C [ fwg, add a new constraint w D t , and
replace t by w in the argument list of f . Similarly, for predicates p 2 ˙1, p 2 ˙2

and function f 2 ˙2. If there is a constraint s D t where s 2 ˙1 and t 2 ˙2,
then create a new w, and replace the constraint with w D s and w D t . If there is
a constraint s 6D t , then add a new w1 and new w2 and replace the constraint with
w1 D s, w2 D t , and w1 6D w2. For example, consider

� D fx � y; y � x C car.cons.0; x//; p.h.x/ � h.y//; :p.0/g;

which mixes uninterpreted functions, linear arithmetic, and lists. For this �, C D
fx; yg. The constraint on the left need not be touched because it only contains
symbols from linear arithmetic. The subterm h.x/ � h.y/ is mixed, so create new
constants g1 D h.x/ and g2 D h.y/ and substitute g1 � g2 for h.x/ � h.y/. The
term p.g1 � g2/ is mixed, so create constant g3 D g1 � g2 and substitute. The
remaining term p.g3/ has no alien subterms. The symbol 0 is alien to the theory of
uninterpreted functions. Hence, create g4 D 0 and substitute making the rightmost
constraint:p.g4/, and changing the list theory subterm to car.cons.g4; x//, both
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of which may be left alone. However, the second constraint from the left is still
mixed, so create g5 D car.cons.g4; x// and substitute. This leaves

C D fx; y; g1; g2; g3; g4; g5g, (Shared constants)
�1 D fx � y; y � x C g5; g3 D g1 � g2; g4 D 0g, (LA)
�2 D fg1 D h.x/; g2 D h.y/; p.g4/ D false; p.g3/ D trueg, (UF)
�3 D fg5 D car.cons.g4; x//g, (Lists)

so � has become a pure formula whose constraints are partitioned according to the
theories of linear arithmetic, uninterpreted functions, and lists and are tied by newly
created constants and equality constraints.

The next step is to propagate inferred equalities between the partitioned sections.
First, this is illustrated using the above example, then a general procedure for
propagation is presented. By the first axiom of the theory of lists, the constraint
g5 D car.cons.g4; x// infers g4 D g5. This propagates to section LA where
g5 D 0 is inferred. Then y � x is inferred and x D y is inferred from x � y and
y � x. The inferred constraint x D y propagates to section UF where g1 D g2
is inferred. Propagating back to LA infers g3 D 0 and finally g3 D g4. But this
contradicts UF constraints which say p.g3/ D true and p.g4/ D false. Hence,
the conclusion is that � is unsatisfiable in the combined theories of linear arithmetic,
lists, and uninterpreted functions. Observe that �1, �2, and �3 are all satisfiable in
their respective theories.

Figure 21 shows an algorithm for determining satisfiability of a formula
�1 ^ �2 that is in pure form with �1 of signature ˙1 [ C , �2 of signature ˙2 [ C ,
C a set of shared constants, and ˙1 \ ˙2 D ; and assumes there exist decision
procedures P1 and P2 for theories T1 and T2 over ˙1 and ˙2, respectively. It is
straightforward to generalize this to any number of theories; it is also possible to
use the generalized algorithm to decide any mixed theory formula by converting to
DNF in pure form and applying the algorithm to the conjuncts separately. Step 1
applies decision proceduresP1 and P2 to �1 and �2. Both P1 and P2 not only decide
whether their respective theories are consistent but also infer the maximum number
of equalities from �1 and �2 within their respective theories. If no inconsistencies are
found, these inferences are propagated out of their theories and the step is repeated;
otherwise, unsatisfiable is returned. Step 2 does a case split in case a disjunction
of equalities is inferred by one of the partitioned sets of constraints. Step 3 returns
“satisfiable” if nothing else can be inferred and no inconsistencies between current
sets �1 and �2 have been discovered. The algorithm always terminates since the
number of shared constants is finite and the number of equalities added is directly
related to that number. The algorithm closely follows the algorithm of the original
Nelson-Oppen paper [113].

Completeness of Algorithm 4 is not difficult to see. Soundness is proved by
observing that the algorithm produces an interpolant for �1 and �2: namely, the
residue of �1 ^ �2. The residue of a formula �, denoted Res.�/, is the strongest
collection of equalities between constants that are inferred by the formula. The
important property of residues is that if �1 and �2 are formulas whose signatures
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Fig. 21 Combined theory solver for two theories

overlap only in constants, then Res.�1 ^ �2/ is logically equivalent to Res.�1/ ^
Res.�2/. Thus, the residue of the conjunction of all formulas derived within each
theory is the conjunction of the residues of formulas for each theory. The algorithm
returns “satisfiable” only if all theories are consistent and no additional equalities of
constants can be inferred. In this case the residues of all theories are satisfiable. It
may be observed that the conjunction of the residues is therefore satisfiable. Hence,
the residue of the conjunction of theories is satisfiable. This means if the algorithm
returns satisfiable, then �1 ^ �2 is satisfiable.

The purpose of this section is to acquaint the reader with procedures that
comprise SMT solver implementations. As such, much has been left out. This
chapter has not considered elimination of the purification step by shifting the burden
of handling alien terms to the theory solvers themselves, application of theory
specific rewrites, Shostak’s theories and method, and how to lift the requirement
of stably infinite theories for completeness by propagating cardinality constraints
in addition to equalities. Nelson-Oppen only works for quantifier free formulas, but
there are some techniques for allowing quantifiers which are not discussed here. For
more information about these topics, the reader may start by consulting [13].
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5.8 Stochastic Local Search

In DPLL and CDCL variants, a search for a satisfying assignment proceeds by
extending a partial assignment as long as no constraint is falsified. In stochastic
local search (SLS), there is a “current” complete assignment at every point in the
search: if some clauses are not satisfied by the current assignment, one of a set of
functions, each designed to create a new assignment from the given formula and
current assignment, is applied according to some probability schedule to determine
a new current assignment. This process continues until either all clauses are satisfied
or until some function determines it is time to give up. Thus, SLS algorithms are
generally incomplete and are not typically designed to provide a certificate for an
unsatisfiable formula. A main strength of SLS algorithms is that they admit “long
jumps” through the search space and thereby avoid the condition of becoming mired
in an unnecessarily long exploration of a search subspace, particularly that for
which all search trajectories lead to a local minimum number of satisfied clauses:
deterministic solvers must take special measures to avoid that condition. On the
other hand, it is difficult for SLS solvers to use the systematic tabulation and learning
techniques that have made the deterministic variants successful.

5.8.1 Walksat
A successful early implementation of SLS for SAT is Walksat [127]. The Walksat
algorithm is shown in Fig.22. It is safe to assume that all clauses in the input formula
 have at least two literals since elementary and prudent preprocessing of  would
have assigned a value to any variable in a unit clause to satisfy that clause and would
have propagated the effect of that change to the remainder of  .

This algorithm has a few interesting features worth pointing out. One is the
probability p which is used to choose a variable whose value should be reversed
(from now on the word flipped is used to mean just this): whether a random literal
or the one whose flipped value results in the minimum number of satisfied clauses
that become falsified. Experiments suggest the optimal value for p depends on and
is sensitive to the particular class of problem the algorithm is applied to [89]. For
example, it has been found that p D 0:57 is best for random 3-SAT formulas6 and
this point sits at the minimum of an upward facing, cup-shaped curve with steeply
increasing slopes on either side of the minimum. A second interesting feature is that
a flip is chosen randomly only if there is not a variable in c which does not break
any satisfied clauses. Thus, emphasizing positive movement to the goal of satisfying
the most clauses as early as possible, Walksat has weakened some of the protection
against loop stagnation that random flips provide. A third feature is the parameter
mf which limits exploration of a local search space: if significant progress is not
being made for a while, then exploration of this local space terminates and a long
jump to a different local search space is made and search resumed. This restart

6Random 3-SAT formulas are defined in Sect. 7, Page 440.
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Fig. 22 Walksat

mechanism compensates for the possible problem nonrandom flips may get into as
mentioned above. Walksat may be applied to MAX-SAT problems. A version for
weighted MAX-SAT problems is available [86].

5.8.2 Novelty Family
Novelty [109] is a variant of Walksat that uses a more sophisticated variable
selection algorithm. Once a falsified clause c is chosen, a score is computed for
each variable v represented in c, based on the total number of satisfied clauses that
would result if v were flipped. If the variable with highest score is not the variable
that was most recently flipped, it is flipped now. Otherwise, it becomes the flipped
variable with probability 1 � p or the second highest scoring variable becomes the
flipped variable with probability p.

Although Novelty is an improvement over Walksat in many empirical cases,
it has the problem that its inner loop may not terminate for a given M [73].
Novelty+ is a slight modification that eliminates this problem by introducing a
second probability wp: a variable is randomly selected from c and flipped with
probability wp and otherwise the Novelty flip heuristic is applied. It is reported
that wp D 0:01 is sufficient to eliminate the non-termination problem [75] (i.e.,
a solution will be found with arbitrarily high probability, if one exists, even if
mt D 1, as long as mf is set arbitrarily high).
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Adaptive Novelty+ provides one more tweak to the Walksat/Novelty+ approach:
the noise parameter p is allowed to vary during search. It has been mentioned above
that algorithm performance is sensitive to p: thus, the optimal value for p depends
significantly on the particular class of input formulas. Adaptive Novelty+ [74]
attempts to mitigate this problem. If p is increased, the probability of inner loop
stagnation is reduced. If p is decreased, the ability of the algorithm to follow a
gradient to a solution is improved. These two counteracting conditions are thought
to explain the sensitivity of p to problem domain. Adaptive Novelty+ begins at
p D 0 and witnesses a rapid improvement in the number of clauses satisfied.
When stagnation is detected, p is increased. Such increases continue periodically
until stagnation is overcome and then p is reduced. The cycle is continued until
termination. Stagnation is detected when it is noticed that an objective function
has not changed over a certain number of steps, called the Stagnation Detection
Interval. The usual objective function is the number of satisfied clauses. One specific
adaptation strategy is the following:

Stagnation Detection Interval: m=6,m = number of clauses
Incremental increase in p: p D p C .1� p/ 
 0:2
Incremental decrease in p: p D p � 0:4 
 p

The asymmetry between increases and decreases in p is motivated by the fact that
detecting search stagnation is computationally more expensive than detecting search
progress and that it is advantageous to approximate optimal noise levels from above
rather than from below [74]. After p has been reset, the current objective function
value is stored and becomes the basis for detecting stagnation. Observe that the
factors 1/6, 0.4, and 0.2 are parameters that could be adjusted, but according to [74],
performance appears to be less sensitive to these parameters than it is to p.

5.8.3 Discrete Lagrangian Methods
Discrete Lagrangian methods are another class of SLS algorithms which control the
ability of a search to escape a subspace that contains a local minimum [128]. Let
 D fc1; c2; : : : ; cmg be a CNF formula with clauses c1; : : : ; cm; let V D fv W 9 c 2
 s:t: v 2 c or :v 2 cg; and attach labels to variables to write V D fv1; v2; : : : ; vng.
Define for all ci 2  and vj 2 V as follows:

Qi;j .vj / D
8
<

:

1 � vj if vj 2 ci
vj if :vj 2 ci
1 otherwise.

Let x be an n-dimensional 0-1 vector where xj holds the value of variable vj , and
let Ci.x/ D Qn

jD1 Qi;j .vj /. Define

N.x/ D
mX

iD1
Ci.x/:
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Then N.x/ is the number of unsatisfied clauses in  under the assignment x.
Consider the following optimization problem:

minimize over x 2 f0; 1gn N.x/ D
mX

iD1
Ci .x/

subject to Ci.x/ D 0 8i 2 f1; 2; : : : ; mg:

The objective function (the first line of the above) is enough to specify the SAT
problem. The extra constraints are added to guide the search. In particular, the extra
constraints help bring the search out of a local minimum.

The above overconstrained optimization problem may be converted to an un-
constrained optimization problem by applying a Lagrange multiplier �i to each
constraint Ci.x/ and adding the result to the objective function. Writing � to
represent the vector h�1; : : : ; �mi of Lagrange multipliers and C.x/ to represent the
vector hC1.x/; : : : ; Cm.x/i, define

L.x; �/ D N.x/C �TC.x/;

where x 2 f0; 1gn and �i can be real valued. A saddle point (x�; ��) of L.x; �/ is
defined to satisfy the following condition:

L.x�; �/ � L.x�; ��/ � L.x; ��/

for all � sufficiently close to �� and for all x whose Hamming distance between x�
and x is 1. The discrete Lagrangian method (DLM) for solving CNF SAT can be
defined as a set of equations which update x and �:

xkC1 D xk ��xL.x
k; �k/

�kC1 D �k C C.xk/;

where �xL.x; �/ is the discrete gradient operator with respect to x such that
�xL.x; �/ D hı1; ı2; : : : ; ıni, 81�i�nıi 2 f�1; 0; 1g, P1�i�n jıi j D 1, and
.x � �xL.x; �// 2 f0; 1gn (i.e., �xL.x; �/ identifies a variable to be flipped and
x � �xL.x; �/ is a neighbor of x – i.e., at Hamming distance 1 from x). There
are two ways to calculate �xL.x; �/. One way, termed greedy, replaces the current
assignment with a neighboring assignment leading to the maximum decrease in the
Lagrangian function value. Another way, termed hill climbing, replaces the current
assignment with a neighboring assignment that leads to a decrease in the value of
the Lagrangian function. Both involve some local search in the neighborhood of the
current assignment, but for every greedy update, the complexity of this search is
O.n/, whereas the hill-climbing update generally is less expensive.
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Fig. 23 Discrete Lagrangian method

An algorithmic sketch of DLM is shown in Fig. 23. The parameter � controls
the magnitude of the changes to �i . A value of � D 1 is reported to be sufficient
for many benchmarks, but a smaller � has resulted in improved performance for
some difficult ones. Experiments have shown that � should not be updated every
time the current assignment is replaced. This is because the changes in L.x; �/ are
usually very small and relatively larger changes in � can overcompensate causing
the search to become lost. Therefore, the DLM algorithm contains a line stating that
a condition must be satisfied before � can be updated. One possibility is that � is not
updated until �xL.x; �/ D 0. When that happens, the local minimum is reached
and the change in � is needed to jump to a different section of the search space. This
strategy may cause a problem if a search-space plateau is entered. In that case, it
will be prudent to change � sooner. For improved variants of DLM, see [147, 148].

5.9 Binary Decision Diagrams

Binary decision diagrams (BDDs) as graphs were discussed in Sect. 3.2. In this
section the associated BDD data structure and efficient operations on that data
structure are discussed. Attention is restricted to reduced ordered binary decision
diagrams (ROBDDs) due to its compact, efficient, canonical properties.

The following is a short review of Sect. 3.2. A ROBDD is a BDD such that
(1) there is no vertex v such that then.v/ D else.v/ and (2) the subgraphs of
two distinct vertices v and w are not isomorphic. A ROBDD represents a Boolean
function uniquely in the following way (symbol v will represent both a vertex of a
ROBDD and a variable labeling a vertex). Define f .v/ recursively as follows:
1. If v is the terminal vertex labeled 0, then f .v/ D 0.
2. If v is the terminal vertex labeled 1, then f .v/ D 1.
3. Otherwise, f .v/ D .v ^ f .then.v/// _ .:v ^ f .else.v///.
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Fig. 24 Procedure for finding a node or creating and inserting it

Then f .root.v// is the function represented by the ROBDD. A Boolean function
has different ROBDD representations, depending on the variable order imposed by
index, but there is only one ROBDD for each ordering. Thus, ROBDDs are known
as a canonical representation of Boolean functions. From now on BDD will be used
to refer to a ROBDD.

A data structure representing a BDD consists of an array of Node objects (or
nodes), each corresponding to a BDD vertex and each containing three elements: a
variable label v, then.v/, and else.v/, where the latter two elements are BDD array
indices. The first two nodes in the BDD array correspond to the 0 and 1 terminal
vertices of a BDD. For both, then.::/ and else.::/ are empty. Denote by terminal.1/
and terminal.0/ the BDD array locations of these nodes. All other nodes fill up the
remainder of the BDD array in the order they are created. A node that is not in the
BDD array can be created and added to the BDD array, and its array index returned
in constant time. A hashtable, commonly referred to as a unique table, is maintained
for the purpose of finding a node’s array location given v; then.v/; else.v/. If there is
no corresponding entry in the hashtable, a new node is created and recorded in the
hashtable with key v; then.v/; else.v/. A single procedure called findOrCreateNode
takes v; then.v/; else.v/ as arguments and returns the BDD array index of a
node, either a newly created one or an existing one. This procedure is shown
in Fig. 24.

The main BDD construction operation is to find and attach two descendant nodes
(then.v/ and else.v/) to a parent node (v). The procedure findOrCreateNode is
used to ensure that no two nodes in the final BDD data structure represent the same
function. The procedure for building a BDD data structure is buildBDD, shown in
Fig. 25. It is assumed that variable indices match the value of index applied to that
variable (thus, i D index.vi /). The complexity of buildBDD is proportional to the
number of nodes that must be created. In all interesting applications, many BDDs
are constructed. But they may all share the BDD data structure above. Thus, a node
may belong to many BDDs.
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Fig. 25 Algorithm for building a BDD: invoked using buildBDD(f ,1)

Fig. 26 Operations reduce1 and reduce0

The operations reduce1 and reduce0, shown in Fig. 26, are used to describe
several important BDD operations in subsequent sections. Assuming v is the root
of the BDD representing f , the operation reduce1.v; f / returns f constrained by
the assignment of 1 to variable v and reduce0.v; f / returns f constrained by the
assignment of 0 to the variable v.

Details on performing the common binary operations of ^ and _ on BDDs will
be ignored here. The reader may refer to [9] for detailed descriptions. Here, it is
only mentioned that, using a dynamic programming algorithm, the complexity of
these operations is proportional to the product of the sizes of the operands and the
size of the result of the operation can be that great as well. Therefore, using ^
alone, for example (as so many problems would require), could lead to intermediate
structures that are too large to be of value. This problem is mitigated somewhat by
operations of the kind discussed in the next four subsections, particularly existential
quantification.

The operations considered next are included not only because they assist BDD-
oriented solutions but mainly because they can assist search-oriented solutions
when used properly. For example, if inputs are expressed as a collection of BDDs,
then they may be preprocessed to reveal information that may be exploited later,
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Fig. 27 Algorithm for existentially quantifying variable v away from BDD f . The _ denotes the
or of BDDs

during search. In particular, inferences7 may be determined and used to reduce input
complexity. The discussion of the next four sections emphasizes this role.

5.9.1 Existential Quantification
A Boolean function which can be written

f .v; Ex/ D .v ^ h1.Ex// _ .:v ^ h2.Ex//

can be replaced by
f .Ex/ D h1.Ex/ _ h2.Ex/;

where Ex is a list of one or more variables. There is a solution to f .Ex/ if and only
if there is a solution to f .v; Ex/, so it is sufficient to solve f .Ex/ to get a solution
to f .v; Ex/. Obtaining f .Ex/ from f .v; Ex/ is known as existentially quantifying v
away from f .v; Ex/. This operation is efficiently handled if f .v; Ex/ is represented
by a BDD. However, since most interesting BDD problems are formulated as
a conjunction of functions and therefore as conjunctions of BDDs, existentially
quantifying away a variable v succeeds easily only when just one of the input BDDs
contains v. Thus, this operation is typically used together with other BDD operations
for maximum effectiveness. The algorithm for existential quantification is shown
in Fig. 27.

If inferences can be revealed in preprocessing, they can be applied immediately
to reduce input size and therefore reduce search complexity. Although existential
quantification can, by itself, uncover inferences (see, e.g., Fig. 28), those same
inferences are revealed during BDD construction if inference lists for each node are
built and maintained. Therefore, a more effective use of existential quantification is

7Finding inferences is referred to in the BDD literature as finding essential values to variables, and
a set of inferences (a conjunction of literals) is referred to as a cube.
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v1

v2 v2

v3 v3

0 1

1⇒
v3

0 1

0
1 1

0

0 1 1
0

v1

v2

v3

0 1

v1

1 0

⇒
v2

0
1

0

1
1 0

1 0

Fig. 28 Two examples of
existentially quantifying a
variable away from a
function. Functions are
represented as BDDs on the
left. Variable v3 is
existentially quantified away
from the top BDD leaving 1,
meaning that regardless of
assignments given to
variables v1 and v2 , there is
always an assignment to v3
which satisfies the function.
Variable v2 is existentially
quantified away from the
bottom BDD leaving the
inference v1 D 1

in support of other operations, such as strengthening (see Sect. 5.9.5), to uncover
those inferences that cannot be found during BDD construction or in tandem with
^ to retard the growth of intermediate BDDs.

Existential quantification, if applied as a preprocessing step prior to search, can
increase the number of choicepoints expanded per second but can increase the
size of the search space. The increase in choicepoint speed is because existentially
quantifying a variable away from the function has the same effect as branching from
a choicepoint in both directions. Then overhead is reduced by avoiding heuristic
computations. However, search-space size may increase since the elimination of a
variable can cause subfunctions that had been linked only by that variable to become
merged with the result that the distinction between the subfunctions becomes
blurred. This is illustrated in Fig.29. The speedup can overcome the lost intelligence
but it is sometimes better to turn it off.

5.9.2 Reductions and Inferences
Consider the truth tables corresponding to two BDDs f and c over the union of
variable sets of both f and c. Build a new BDD g with variable set no larger than the
union of the variable sets of f and c and with a truth table such that on rows which
c maps to 1, g maps to the same value that f maps to and on other rows g maps to
any value, independent of f . It should be clear that f ^ c and g ^ c are identical so
g can replace f in a collection of BDDs without changing its solution space.

There are at least three reasons why this might be done. The superficial reason is
that g can be made smaller than f . A more important reason is that inferences can
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v1
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v3 v6

v4 v5 v7 v8
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0
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1 0 01

1
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1 0 01
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v7 v8 v7 v8

1 0

1

0
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1

0
01
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Fig. 29 Existential
quantification can cause
blurring of functional
relationships. The top
function is seen to separate
variables v6, v7, and v8 from
v3 , v4, and v5 if v2 is chosen
during search first.
Existentially quantifying v2
away from the top function
before search results in the
bottom function in which no
such separation is
immediately evident. Without
existential quantification, the
assignment v1 D 0, v2 D 1,
v3 D 1 reveals the inference
v4 D 1. With existential
quantification the assignment
must be augmented with
v7 D 0 and v8 D 0 (but v2 is
no longer necessary) to get
the same inference

be discovered. The third reason is that BDDs can be removed from the collection
without loss. Consider, for example, BDDs representing functions

f D .v1 _ :v2 _ v3/ ^ .:v1 _ v2/ and

c D .v1 _ :v2/:

Let a truth table row be represented by a 0-1 vector which reflects assignments
of variables indexed in increasing order from left to right. Let g have the same
truth table as f except for row h011i which c maps to 0 and g maps to 1. Then
g D .v1 $ v2/ and f ^ c is the same as g ^ c but g is smaller than f . As an
example of discovering inferences, consider
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v1

v3 v2

v4

1 0

⇓

0 1

1
0

01

1 0

v1

v3

1 0

1

0

1 0

f = (v1 → v2) ∧ (¬v1 → (¬v3 ∧ v4))

c = (v1 ∨ v3) g = (v1) ∧ (v2)

v1

v2

1 0

1

0
1 0

⇒

Fig. 30 A call to restrict.f; c/ returns the BDD g shown on the right. In this case inferences
v1 D 1 and v2 D 1 are revealed. The symbol ⇓ denotes the operation

f D .v1 ! v2/ ^ .:v1 ! .:v3 ^ v4// and

c D .v1 _ v3/:

Let g have the same truth table as f except g maps rows h0001i and h0101i to 0,
as does c. Then g D .v1/ ^ .v2/ which reveals two inferences. The BDDs for f , c,
and g of this example are shown in Fig. 30. The example showing BDD elimination
is deferred to Theorem 6, Sect. 5.9.4.

Clearly, there are numerous strategies for creating g from f and c and replacing
f with g. An obvious one is to have g map to 0 all rows that c maps to 0.
This strategy, which will be called zero-restrict in this chapter, turns out to have
weaknesses. Its obvious dual, which has g map to 1 all rows that c maps to 0,
is no better. For example, applying zero-restrict to f and c of Fig. 32 produces
g D :v3 ^ .v1 _ .:v1 ^ :v2// instead of the inference g D :v3 which is obtained
from a more intelligent replacement strategy. An alternative approach, one of many
possible ones, judiciously chooses some rows of g to map to 1 and others to map to
0 so that g’s truth table reflects a logic pattern that generates inferences. The truth
table of c has many 0 rows and this is exploited. Specifically, c maps rows h010i,
h011i, h101i, and h111i to 0. The more intelligent strategy lets g map rows h011i
and h111i to 0 and rows h010i and h101i to 1. Then g D :v3.

Improved replacement strategies might target particular truth table patterns, for
example, equivalences, or they might aim for inference discovery. Since there is
more freedom to manipulate g if the truth table of c has many zeros, it is important to
choose c as carefully as the replacement strategy. This is illustrated by the examples
of Figs. 31 and 32 where, in the first case, no inference is generated but after f
and c are swapped, an inference is generated. The next two subsections show two
replacement strategies that are among the more commonly used.

5.9.3 Restrict
The original version of restrict is what is called zero-restrict above. That is, the
original version of restrict is intended to remove paths to terminal.1/ from f
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⇓
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f = (v1 ∨ ¬v2) ∧ (¬v1 ∨ ¬v3) c = (v2 ∨ ¬v3)

⇒
v1

v3 v2

1 0

1 0

0
1 0 0 1 1 0

1

Fig. 31 A call to restrict.f; c/ results in no change

⇓

v1

v3 v2

1 0

1 0

0
1 0

1

v2

v3

1 0

1

0

0 1

c = (v1 ∨ ¬v2) ∧ (¬v1 ∨ ¬v3)f = (v2 ∨ ¬v3) g = (¬v3)

⇒
v3

1 0

0 1

Fig. 32 Reversing the roles of f and c in Fig. 31, a call to restrict.f; c/ results in the inference
g D :v3 as shown on the right. In this case, the large number of 0 truth table rows for c was
exploited to advantage

that are made irrelevant by c. The idea was introduced in [43]. In this chapter an
alternative version which is implemented as Algorithm 11 of Fig. 33 is considered.
Use the symbol ⇓ to denote the restrict operator. Then g D f ⇓ c is the result
of zero-restrict after all variables in c that are not in f are existentially quantified
away from c. Figures 30–32 show examples that were referenced in the previous
subsection.

Procedure restrict is similar to a procedure called generalized cofactor (gcf)
or constrain (see the next subsection for a description). Both restrict.f; c/ and
gcf.f; c/ agree with f on interpretations where c is satisfied but are generally
somehow simpler than f . Procedure restrict can be useful in preprocessing because
the BDDs produced from it can never contain more variables than the BDDs they
replace.

On the negative side, it can, in odd cases, cause a garbling of local information.
Moreover, although restrict may reveal some of the inferences that strengthening
would (see below), it can still cause the number of search choicepoints to increase.
Both these issues are related: restrict can spread an inference that is evident in one
BDD over multiple BDDs (see Fig. 34 for an example).

5.9.4 Generalized Cofactor
The generalized cofactor operation, also known as constrain, is denoted here by j
and implemented as gcf (Algorithm 12) in Fig. 35. It takes BDDs f and c as input
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Fig. 33 Algorithm for restricting a BDD f by a BDD c

v1

v3 v2

1 0

01

1 1

v1

v3

1 0

0

1

0 0
1 0

f = (v1 ∨ ¬v2) ∧ (¬v1 ∨ v3) c = (¬v1 ∨ v3) g = (v1 ∨ ¬v2)

v1

v2

0 1

0

1
1 0

⇒
⇓

Fig. 34 A call to restrict.f; c/ spreads an inference that is evident in one BDD over multiple
BDDs. If v3 is assigned 0 in f , then v1 D 0 and v2 D 0 are inferred. After replacing f with
g D restrict.f; c/, to get the inference v2 D 0 from the choice v3 D 0, visit c to get v1 D 0 and
then g to get v2 D 0. Thus, restrict can increase work if not used properly. In this case, restricting
in the reverse direction leads to a better result

and produces g D f jc by sibling substitution. BDD g may be larger or smaller
than f , but, more importantly, systematic use of this operation can result in the
elimination of BDDs from a collection. Unfortunately, by definition, the result of
this operation depends on the underlying BDD variable ordering, so it cannot be
regarded as a logical operation. It was introduced in [42].

BDD g is a generalized cofactor of f and c if for any truth assignment t , g.t/ has
the same value as f .t 0/ where t 0 is the nearest truth assignment to t that maps c to 1.
The notion of nearest truth assignment depends on a permutation � of the numbers
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Fig. 35 Algorithm for finding a greatest common cofactor of a BDD

1; 2; : : : ; n which states the variable ordering of the input BDDs. Represent a truth
assignment to n variables as a vector in f0; 1gn and, for truth assignment t , let ti
denote the i th bit of the vector representing t . Then the distance between two truth
assignments t 0 and t 00 is defined as

Pn
iD1 2n�i .t 0�i ˚ t 00�i /. One pair of assignments

is nearer to each other than another pair if the distance between that pair is less.
It should be evident that distances between pairs are unique for each pair.

For example, Fig. 36 shows BDDs f and c under the variable ordering given by
� D h1; 2; 3; 4i. For assignment vectors h
 
 01i, h
 
 10i, and h
 
 11i (where

 is a wildcard meaning 0 or 1), gcf.f; c/, shown as the BDD at the bottom of
Fig. 36, agrees with f since those assignments cause c to evaluate to 1. The closest
assignment to h0000i, h0100i, h1000i, and h1100i causing c to evaluate to 1 is
h0001i, h0101i, h1001i, and h1101i, respectively. On all these inputs gcf.f; c/ has
value 1, which the reader can check in Fig. 36.

The following expresses the main property of j that makes it useful.

Theorem 6 Given BDDs f1; : : : ; fk , for any 1 � i � k, f1 ^ f2 ^ : : : ^ fk is
satisfiable if and only if .f1jfi / ^ : : : ^ .fi�1jfi / ^ .fiC1jfi/ ^ : : : ^ .fkjfi / is
satisfiable. Moreover, any assignment satisfying the latter can be mapped to an
assignment that satisfies f1 ^ : : : ^ fk .

Proof If it can be shown that

.f1jfi / ^ : : : ^ .fi�1jfi/ ^ .fiC1jfi / ^ : : : ^ .fkjfi / (4)
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is satisfiable if and only if

.f1jfi / ^ � � � ^ .fi�1jfi/ ^ .fiC1jfi / ^ : : : ^ .fkjfi / ^ fi (5)

is satisfiable, then, since (5) is equivalent to f1^ : : :^fk , the first part of the theorem
will be proved. Suppose (5) is satisfied by truth assignment t . That t represents
a truth table row that fi maps to 1. Clearly that assignment also satisfies ( 4).
Suppose no assignment satisfies (5). Then all assignments for which fi maps to
1 do not satisfy (4) since otherwise (5) would be satisfied by any that do. Only truth
assignments t which fi maps to 0 need to be considered. Each .fj jfi / in (4) and (5)
maps to the same value that fj maps the nearest truth assignment, say, r , to t that
satisfies fi . But r cannot satisfy (5) because it cannot satisfy (4) by the argument
above. Hence, there is no truth assignment falsifying fi but satisfying (4) so the first
part is proved.

For the second part, observe that any truth assignment that satisfies (4) and (5) also
satisfies fi^: : :^fk , so it is only necessary to consider assignments t that satisfy (4)
but not (5). In that case, by construction of .fj jfi/, the assignment that is nearest to
t and satisfies fi also satisfies .fj jfi /. That assignment satisfies f1 ^ : : : ^ fk . ut

This means that, for the purposes of a solver, generalized cofactoring can be
used to eliminate one of the BDDs among a given conjoined set of BDDs: the
solver finds an assignment satisfying gcf.f1; fi /^ : : :^gcf.fk; fi / and then extends
the assignment to satisfy fi ; otherwise, the solver reports that the instance has no
solution. However, unlike restrict, generalized co-factoring cannot by itself reduce
the number of variables in a given collection of BDDs. Other properties of the gcf
operation, all of which are easy to show, are:
1. f D c^gcf.f; c/ _ :c^gcf.f;:c/.
2. gcf.gcf.f; g/; c/ D gcf.f; g ^ c/.
3. gcf.f ^ g; c/ D gcf.f; c/^ gcf.g; c/.
4. gcf.f ^ c; c/ D gcf.f; c/.
5. gcf.f ^ g; c/ D gcf.f; c/^ gcf.g; c/.
6. gcf.f _ g; c/ D gcf.f; c/_ gcf.g; c/.
7. gcf.f _ :c; c/ D gcf.f; c/.
8. gcf.:f; c/ D : gcf.f; c/.
9. If c and f have no variables in common and c is satisfiable, then gcf.f; c/ D f .

Care must be taken when cofactoring in both directions (exchanging f for c).
For example, f ^ g ^ h cannot be replaced by .gjf /^ .f jg/^ h since the former
may be unsatisfiable when the latter is satisfiable.

Examples of the application of gcf are shown in Figs. 36 and 37. Figure 36
illustrates the possibility of increasing BDD size. Figure 37 presents the same
example after swapping v1 and v3 under the same variable ordering and shows
that the result produced by gcf is sensitive to variable ordering. Observe that the
functions produced by gcf in both figures have different values under the assignment
v1 D 1, v2 D 1, and v3 D 0. Thus, the function returned by gcf depends on the
variable ordering as well.
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f = (v1 → ¬v2) ∨ (¬v1 → v3) c = (v2 ∨ v3)

gcf(f; c) = (v1 → ¬v2) ∨ (¬v1 → (v2 → v3))

Fig. 36 Generalized cofactor
operation on f and c as
shown. In this case the result
is more complicated than f .
The variable ordering is
v1 < v2 < v3

5.9.5 Strengthen
This binary operation on BDDs helps reveal inferences that are missed by restrict
due to its sensitivity to variable ordering. Given two BDDs, b1 and b2, strengthening
conjoins b1 with the projection of b2 onto the variables of b1: that is, b1 ^ 9Ev b2,
where Ev is the set of variables appearing in b2 but not in b1. Strengthening each
bi against all other bj s sometimes reveals additional inferences or equivalences.
Algorithm strengthen is shown in Fig. 38. Figure 39 shows an example.

Strengthening provides a way to pass important information from one BDD to
another without causing a size explosion. No size explosion can occur because,
before b1 is conjoined with b2, all variables in b2 that do not occur in b1 are
existentially quantified away. If an inference (of the form v D 1, v D 0, v D w, or
v D :w) exists due to just two BDDs, then strengthening those BDDs against each
other (pairwise) can move those inferences, even if originally spread across both
BDDs, to one of the BDDs. Because strengthen shares information between BDDs,
it can be thought of as sharing intelligence and strengthening the relationships
between functions; the added intelligence in these strengthened functions can be
exploited by a smart search heuristic. It has been found empirically that strengthen
usually decreases the number of choicepoints when a particular search heuristic is
employed, but sometimes it causes more choicepoints. It may be conjectured this is
due to the delicate nature of some problems where duplicating information in the
BDDs leads the heuristic astray.
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1
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f = (v3 → ¬v2) ∨ (¬v3 → v1)

c = (v1 ∨ v2)

gcf(f; c) = (v1 ∧ (v2 → ¬v3))

Fig. 37 Generalized cofactor operation on the same f and c of Fig.36 and with the same variable
ordering but with v1 and v3 swapped. In this case the result is less complicated than f and the
assignment fv1; v2g causes the output of gcf in this figure to have value 1, whereas the output of
gcf in Fig. 36 has value 0 under the same assignment

Fig. 38 Algorithm for strengthening a BDD by another
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Strengthening example: Existentially quantify v1 away from b2...
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0 1⇒
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Fig. 39 : : : then conjoin the two BDDs. Inference v3 D 0 is revealed

Procedure strengthen may be applied to CNF formulas and in this case it is
the same as applying Davis-Putnam resolution selectively on some of the clauses.
When used on more complex functions, it is clearer how to use it effectively as the
clauses being resolved are grouped with some meaning. Evidence for this comes
from bounded model checking examples.

This section concludes by mentioning that for some classes of problems,
resolution has polynomial complexity, while strictly BDD manipulations require
exponential time, and for other classes of problems, resolution has exponential
complexity, while BDD manipulations require polynomial time [67].

5.10 Decompositions

The variable elimination methods of Sects. 5.5 and 5.11 recursively decompose a
given formula  into overlapping subformulas  1 and  2 such that the solution to
 can be inferred from the solutions to  1 and  2. The decompositions are based
on occurrences of a selected variable v in clauses of  and each subformula has at
least as many clauses as those of  which contain neither literal v nor literal :v.
Intuitively, the speed of the methods usually depends on the magnitude of the size
reduction from  to  1 and  2. However, it is often the case that the number of
occurrences of most variables in a formula or subformula is small which usually
means small size reductions for most variables. For example, the average number
of occurrences of a variable in a random k-SAT formula8 of m clauses developed

8Random k-SAT formulas are defined in Sect. 7, Page 440.
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from n variables is km=n: so, if k D 3 andm=n is, say, 4, then the average number
of occurrences of a randomly chosen variable is only 12. Hence, the methods often
suffer computational inadequacies which can make them unusable in some cases.
On the positive side, such methods can be applied to any CNF formula.

But there are other decomposition methods that sacrifice some generality for
the sake of producing subformulas of relatively small size. Truemper’s book [138]
presents quite a few of these, all of which are capable of computationally efficient
solutions to some problems that would be considered difficult for the more general
variable elimination methods. This section presents one of these, called monotone
decomposition, for illustration and because it is related to material that is elsewhere
in this chapter.

5.10.1 Monotone Decomposition
Let CNF formula  of m clauses and n variables be represented as a m � n
.0 ˙ 1/-matrix M (defined in Sect. 3.1). A monotone decomposition of M is
a permutation of rows and columns of M and the multiplication by �1 of some or
all of its columns, referred to below as a column scaling, resulting in a partition into
four submatrices as follows:

0

@
A1 E

D A2

1

A ; (6)

where the submatrix A1 has at most oneC1 entry per row; the submatrix D contains
only�1 or 0 entries; the submatrix A2 has no restrictions other than the three values
of �1,C1, and 0 for each entry; and the submatrix E has only 0 entries.

The submatrix A1 represents a Horn formula. In Sect. 6.2 Horn formulas are
shown to have the following two important properties: they are solved efficiently,
for example, by Algorithm 20 of Fig. 46, and, by Theorem 15, there is always
a unique minimum model for a satisfiable Horn formula. The second property
means there is always a satisfying assignmentM such that, for any other satisfying
assignment M 0, the variables that have value 1 according to M 0 are a superset of
the variables set to 1 according to M (more succinctly, M 	 M 0). This property,
plus the nature of submatrices D and E , effectively allows a split of the problem
of determining the satisfiability of  into two independent problems: namely,
determine satisfiability for the Horn formula represented by A1 and determine
satisfiability for the subformula represented by A2. The algorithm of Fig. 40 shows
this in more detail. The following theorem proves correctness of this algorithm:

Theorem 7 Let CNF formula  be represented as a monotone decomposition
.0 ˙ 1/-matrix. On input  , Algorithm 14 outputs “unsatisfiable” if and only if
 is unsatisfiable, and if  is satisfiable, then the output set M1 [M2 is a model
for  .
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Fig. 40 Algorithm for determining satisfiability of a monotone decomposition

Proof Clearly, if Horn formula A1 is unsatisfiable, then so is  . So suppose there
is a modelM1 for A1 and consider the rows of A2 remaining after rows common to
those of D which are satisfied by M1 are removed. Since M1 is a unique minimum
model for A1, no entries of D are +1, and since variables of A1 are distinct from
variables of A2, no remaining row of A2 can be satisfied by any model for A1.
Therefore, if these rows of A2 are unsatisfiable, then so is  . On the other hand, if
these rows are satisfied by modelM2, then clearly,M1 [M2 is a model for  . �

A .0 ˙ 1/ matrix M representing CNF formula  may have more than
one monotone decomposition. Of particular interest is the maximum monotone
decomposition of M , that is, the monotone decomposition of  such that A1 has
the greatest number of rows and columns. A monotone decomposition is said to be
maximal with respect to the dimensions of A1. The following theorem says a unique
maximal monotone decomposition is always possible.

Theorem 8 Any .0˙1/matrix M has a unique maximal monotone decomposition.

Proof Suppose M has two distinct maximal monotone decompositions, say, M1

and M2. Let A1
i , A2

i , and Di , i 2 f1; 2g, be the partition of M, after column scaling,
corresponding to Mi (see the partition (6) on page 389). Construct a new partition
M0 of M into A01, A02, and D0 such that A01 includes all rows and columns of A1

1

and A1
2. For those columns of M0 that are also columns of A1

1, use a column scaling
that is exactly the same as the one used in M1. For all other columns, use the same
scaling as in M2. The submatrix of A01 that includes rows and columns of A1

1 is
the same as A1

1 because the scaling of those columns is the same as for M1. The
submatrix of A01 including rows of A1

1 and columns not in A1
1 must be a 0 submatrix

by the monotone decomposition M1. The submatrix of A01 including columns of
A1
1 and no rows of A1

1 must contain only 0 or �1 entries due to the M1 scaling and
the submatrix including neither columns or rows of A1

1 must be Horn due to M2

column scaling. It follows that submatrix A01 is Horn (at most one +1 in each row).
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It is similarly easy to check that the submatrix of M0 consisting of rows of A01 and
columns other than those of A01 is 0 and that the submatrix of M0 consisting of
columns of A01 and rows other than those of A01 contains no +1 entries. It follows
that M0 is a monotone decomposition. Since A1

1 � A01 and A1
2 � A01, neither M1

nor M2 is a maximal monotone decomposition in violation of the hypothesis. The
theorem follows. ut

From Theorem 8 there is always a maximum monotone decomposition for M .
A maximum monotone decomposition is useful because (1) A1, representing

a Horn formula, is as large as possible so A2 is as small as possible; (2) Horn
formulas may be efficiently solved by Algorithm 20 and (3) a maximum monotone
decomposition can be found efficiently, as will now be shown.

A maximum monotone decomposition can be found using Algorithm 15 of
Fig. 41. The algorithm completes one or more stages where each stage produces
a proper monotone decomposition of some matrix. All submatrices change dimen-
sions during the algorithm, so primes are used as in E 0 to refer to the current
incantation of corresponding submatrices. Initially, that matrix is M . At the end
of a stage, if the algorithm needs another stage to produce a bigger decomposition,
A02 of the current stage becomes the entire input of the next stage and the next stage
proceeds independently of previous stages. This can be done since the operation
to be mentioned next does not multiply by �1 any of the rows and columns of
the A01 and D0 matrices of previous stages. The important operation is to move
a nonpositive column that intersects A02 to just right of the border of the current
stage’s A01 matrix, move the border of A01 and D0 to the right by one column, tag
and move the rows containing 1 on the right boundary of the changed D0 up to just
below the border of A01, and finally lower the border of A01 and E 0 down to include
the tagged rows. Doing so keeps A01 Horn and D0 nonpositive and enlarges A01.
If no nonpositive column exists through A02, no column can be made nonpositive
through A02 by a �1 multiplication, and the initial moved column is not multiplied
by �1, then the initial moved column of the stage is multiplied by �1 and the stage
is restarted.

Because of the following theorem, backtracking is limited to just one per stage
and is used only to try to decompose with the initial moved column of the stage
multiplied by �1.

Theorem 9 Refer to Algorithm 15 for specific variable names and terms:
1. If z is not a nonpositive column in E 0 and z multiplied by �1 is not nonpositive in

E 0, then there is no monotone decomposition at the current stage with the initial
moved column v of the stage left as is.

2. If multiplying v by �1 also fails because a z cannot be made nonpositive in E 0,
then not only does z block a monotone decomposition but multiplying any of the
other columns in A01 except v by �1 blocks a monotone decomposition as well.

Proof
1. There is no way to extend the right boundary of A01 and stay Horn while making

E 0 0 because column z prevents it.
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Fig. 41 Algorithm for finding the maximum monotone decomposition of a .0˙ 1/ matrix
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2. Consider columns in A01 first. The proof is by induction on the number of
columns processed in A01. The base case has no such column: that is, A01 only
contains the column v and is trivially satisfied. For the inductive step, change the
column scaling to 1 for all columns and run the algorithm in the same column
order it had been when it could not continue. Assume the hypothesis holds to k
columns and consider processing at the k C 1st column, call it column x. At this
point A01 has one 1 in each row, D0 is nonpositive, and since x is multiplied by
1, it is nonzero and nonpositive through E 0. If there is a monotone decomposition
where x is multiplied by �1, then x goes through A1 of that decomposition. The
multiplication by �1 changes the nonzero nonpositive elements of x through
E 0 to nonzero nonnegative elements. Therefore, at least one of these elements,
say, in row r , is +1. But A1 of the decomposition must have a +1 in each row,
so it must be that row r has this +1 in, say, column c, a column of A01 that
is multiplied by �1. But c cannot be the same as v since v multiplied by �1
blocks a monotone decomposition by hypothesis. On the other hand, if c is not
v, then by the inductive hypothesis c cannot be multiplied by �1 in a monotone
decomposition. Therefore, by contradiction, there is no monotone decomposition
and the hypothesis holds to k C 1 columns.
Now consider column z. No scaling of column z can make z nonpositive in E 0.
Then that part of z that goes through E 0 has �1 and 1 entries. The hypothesis
follows from the same induction argument as above. ut

Any column blocking a monotone decomposition need never be checked again.
The algorithm keeps track of blocking columns with set N , the long-term record

of blocking columns, and set L, the temporary per stage record. If column indicator
w is placed in N , it means the unmultiplied column w blocks, and if :w is placed in
N , it means column w multiplied by �1 blocks.

The algorithm has quadratic complexity. Complexity can be made linear by
running the two possible starting points of each stage, namely, using column v as is
and multiplying column v by �1, concurrently, and breaking off computation when
one of the two succeeds.

A formula  which has a maximum monotone decomposition where A2 is a
member of an efficiently solved subclass of satisfiability obviously may be solved
efficiently by Algorithm 14 if A2 can efficiently be recognized as belonging to such
a subclass. Section 6 discusses several efficiently solved subclasses of satisfiability
problems which may be suitable for testing. If A2 represents a 2-SAT formula
(see Sect. 6.1), then  is said to be q-Horn. The class of q-Horn formulas was
discovered and efficiently solved in [21, 22], and it was the results of that work
that led to the development of maximum monotone decompositions [137].

5.10.2 Autarkies and Safe Assignments
Definition 1 An assignment to a set of variables is said to be autark or an autarky if
all clauses that contain at least one of those variables are satisfied by the assignment.
We will call a set of variables that is associated with an autarky an autark set.
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If all clauses satisfied by an autarky are removed from a CNF formula , then the
resulting formula is equivalent in satisfiability to  . A simple example of an autark
set is a collection of one or more pure literals. A simple decomposition is to remove
all clauses that contain pure literals. One can do the same for any autarky. However,
discovering autarkies can be expensive. In some cases, though, an autarky can be
found in polynomial time. This is treated in Sect. 6.9.

A similar decomposition exists for BDDs. Let f be a Boolean function and let
f jv (f j:v) denote the function obtained by setting variable v to 1 (respectively, 0).

Lemma 4 ([146]) Given a conjunction of BDDs f D f1 ^ : : : ^ fm and variable
v occurring in one or more BDDs of f , let f 0 be the conjunction of all BDDs in f
which contain v. Let f 0

v D :.f 0 jv/ ^ .f 0 j:v/. Let f 0:v D .f 0 jv/ ^ :.f 0 j:v/.
1. If f 0

v has value 0, then f jv is satisfiable if and only if f is satisfiable.
2. If f 0:v has value 0, then f j:v is satisfiable if and only if f is satisfiable.

Lemma 4 states that if any of the BDDs in f are falsified or if all of the
BDDs in f are satisfied by setting v to 1 (respectively, 0), then it is safe to make
that assignment because the satisfiability of f does not change by doing so. We
emphasize that the safe value for v is not necessarily inferred. This lemma provides
a way to test whether a safe value exists for a variable, that is, if f 0

v .f
0:v/ has value

0, then it is safe to set v to 1 (0) in f . However, to use this lemma directly requires
conjoining all BDDs containing v, and from Sect. 5.9, this could be expensive. In
pursuit of an efficient method for finding safe assignments, Lemma 4 may be used
to derive the following weaker result:

Theorem 10 ([146]) Given a conjunction of BDDs f D f1^ : : :^fm and variable
v occurring in one or more BDDs of f , let f 0 be the conjunction of all BDDs
in f which contain v. Without loss of generality, suppose f 0 D f1 ^ : : : ^ fn
where n � m. Let f 0

v D .:.f1jv/ ^ f1j:v/ _ : : : _ .:.fnjv/ ^ fnj:v/. Let f 0:v D
.f1jv ^ :.f1j:v// _ : : : _ .fnjv ^ :.fnj:v//.
1. If f 0

v has value 0, then f jv is satisfiable if and only if f is satisfiable.
2. If f 0:v has value 0, then f j:v is satisfiable if and only if f is satisfiable.

According to Theorem 10, a safe assignment may be found without having to
conjoin BDDs containing v. This is practical when BDDs are fairly small and is
more practical than conjoining BDDs if v appears in many of them. However, it is
possible that a safe assignment discovered using Lemma 4 may be undiscoverable
using Theorem 10.

The following is the corresponding theorem for safe assignments involving more
than one variable:

Theorem 11 ([146]) Given a conjunction of BDDs f D f1 ^ : : :^ fm and a set of
variables V D fv1; : : : ; vkg each occurring in one or more BDDs of f , let f 0 be the
conjunction of all BDDs in f which contain at least one of the variables in V . Let
M D fM1; : : : ;M2k g be the set of all possible truth assignments to the variables
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in V . Without loss of generality, suppose f 0 D f1 ^ : : :^ fn where n � m. 81�i�2k
if .:.f 0 jMi / ^ .f 0 jM1 _ : : : _ f 0 jM

2k
// has value 0, then f jMi is satisfiable if

and only if f is satisfiable.

It is straightforward to turn Theorems 10 and 11 into an algorithm, but this is not
done here because numerous variants to speed up the search are possible and it is
impractical to list all of them.

5.11 Branch and Bound

The DPLL algorithm of Fig. 17 is sequential in nature. At any point in the search,
only one node, representing a partial assignment M1W, of the search tree is active:
that is, open to exploration. This means exploration of a promising branch of the
search space may be delayed for a potentially considerable period until search finally
reaches that branch. Branch and bound aims to correct this to some extent. In branch
and bound, quite a few nodes of the search space may be active at any point in the
search. Each of the active nodes has a number l.M1W/ which is an aggregate estimate
of how close the assignment represented at a node is to a solution or confirms that
assignment cannot be extended to a best solution. Details concerning how l.M1W/ is
computed will follow. A variable v is chosen for assignment from the subformula
of the active node of lowest l value and that node is expanded. The expansion
eliminates one active node and may create up to two others, one for each value
to v. To help control the growth of active nodes, branch and bound maintains a
monotonically decreasing number u for preventing nodes known to be unfruitful
from becoming active. If the l value of any potential active node is greater than u, it
is thrown out and not made active. Eventually, there are no active nodes left and the
algorithm completes.

Branch and bound is intended to solve more problems than SAT, one of the most
important being MAX-SAT (Page 319). It requires a function g .M1W/ which maps
a given formula and partial or total truth assignmentM1W to a nonnegative number.
The objective of branch and bound is to return an assignment M such that g .M/

is minimum over all truth assignments, partial or complete. That is,

M W 8X ; g .X/ � g .M/:

For example, if g .M1W/ is just the number of clauses in  M1W , then branch and
bound seeks to find M which satisfies the greatest number of clauses, maybe all.

Branch and bound discovers and discards search paths that are known to be
fruitless, before they are explored, by means of a heuristic function h. M1W/ where
 M1W is obtained from  by removing clauses satisfied by and literals falsified by
M1W. The heuristic function returns a nonnegative number which, when added to
g .M1W/, is a lower bound on g. X/ over all possible extensions X to M1W. That
sum is the l.M1W/ that was referred to above. That is,
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Fig. 42 Classic branch-and-bound procedure adapted to satisfiability

l.M1W/ D h. M1W/C g .M1W/ � minfg .X/ W X is an extension of M1Wg:

The algorithm maintains a number u that records the lowest g value that has been
seen so far during search. If partial assignment M1Wi is extended by one variable
to M1WiC1 and g .M1WiC1/ < u then u, is updated to that value and M1WiC1, the
assignment that produced that value, is saved as M . In that case, l.M1WiC1/ must
also be less than u because it is less than g .M1WiC1/. But if l.M1WiC1/ > u, then
there is no chance, by definition of l.M1W/, that any extension to M1WiC1 will yield
the minimum g . Hence, if that test succeeds, the node that would correspond to
M1WiC1 is thrown out, eliminating exploration of that branch.

The algorithm in its general form for satisfiability is shown in Fig. 42 as
Algorithm 16. A priority queueP is used to hold all active nodes as pairs where each
pair contains a reduced formula and its corresponding partial assignment. Pairs are
stored in P in increasing order of l.M1W/. It is easy to see, by definition of l.M1W/,
that no optimal assignment gets thrown out. It is also not difficult to see that, given
two heuristic functions h1 and h2, if h1. M1W/ � h2. M1W/ for allM , then the search
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explored using h1 will be no larger than the search space explored using h2. Thus,
to keep the size of the search space down, as tight a heuristic function as possible
is desired. However, since overall performance is most important and since tighter
heuristic functions typically mean more overhead, it is sometimes more desirable to
use a weaker heuristic function which generates a larger search space in less time.
Section 5.12.2 shows how linear programming relaxations of integer programming
representations of search nodes can be used as heuristic functions. This section
concludes with an alternative to illustrate what else is possible.

Recall the problem of variable-weighted satisfiability which was defined in
Sect. 2: given CNF formula  and positive weights on variables, find a satisfying
assignment for  , if one exists, such that the sum of weights of variables of value
1 is minimized. Let  M1W be defined as above and let Q M1W

be a subset of positive
clauses of  M1W such that no variable appears twice in Q M1W

. For example, Q M1W
might look like this:

.v1 _ v3 _ v7/ ^ .v2 _ v6/ ^ .v4 _ v5 _ v8/:

A strictly lower bound on the minimum weight solution over all extensions to M1W
is g .M1W/ C h. M1W/, the sum of the weights of the minimum weight variable
in each of the clauses of Q M1W

. Clearly, this is not a very tight bound. But it is
computationally fast to acquire this bound, and the trade-off of accuracy for speed
often favors this approach [61], particularly when weight calculations are made
incrementally. Additionally, there are some tricks that help to find a good Q M1W

.
For example, a greedy approach may be used as follows: choose a positive clause
c with variables independent of clauses already in Q M1W

and such that the ratio of
the weight of the minimum weight variable in c to the number of variables in c
is maximum [108]. The interested reader can consult [108] and [41] for additional
ideas.

5.12 Algebraic Methods

A collection of Boolean constraints may be expressed as a system of algebraic
equations or inequalities which has a solution if and only if the constraints are
satisfiable. The attraction of these methods is that, in some cases, a single algebraic
operation can simulate a large number of resolution operations. The problem is
that it is not always obvious how to choose the optimal sequence of operations to
take advantage of this, and often performance is disappointing due to nonoptimal
choices.

5.12.1 Gröbner Bases Applied to SAT
It is interesting that at the same time resolution was being developed and understood
as a search tool in the 1960s, an algebraic tool for computing a basis for highly
nonlinear systems of equations was introduced: the basis it found was given the
name Gröbner basis and the tool was called the Gröbner basis algorithm [29].
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But it was not until the mid-1990s that Gröbner bases crossed paths with satisfi-
ability when it was shown that Boolean expressions can be written as systems of
multilinear equations which a simplified Gröbner basis algorithm can solve using a
number of derivations that is guaranteed to be within a polynomial of the minimum
number possible [37]. Also in that paper, it is shown that the minimum number of
derivations cannot be much greater than, and may sometimes be far less than, the
minimum number needed by resolution. Such powerful results led the authors to
say “these results suggest the Gröbner basis algorithm might replace resolution as a
basis for heuristics for NP-complete problems.”

This has not happened, perhaps partly because of the advances in the devel-
opment of CNF SAT solvers in the 1990s and partly because, as is the case for
resolution, it is generally difficult to find a minimum sequence of derivations leading
to the desired conclusion. However, the complementary nature of algebraic and
logic methods makes them an important alternative to resolution. Generally, in the
algebraic world, problems that can be solved essentially using Gaussian elimination
with a small or modest increase in the degree of polynomials are easy. A classic
example where this is true is the systems of equations involving only the exclusive-
or operator. By contrast, just expressing the exclusive-or of n variables in CNF
requires 2n�1 clauses.

In the algebraic proof system outlined here, facts are represented as multilinear
equations and new facts are derived a database of existing facts using rules described
below. Let hc0; c1; : : : ; c2n�1i be a 0-1 vector of 2n coefficients. For 0 � j < n, let
bi;j be the j th bit in the binary representation of the number i . An input to the proof
system is a set of equations of the following form:

2n�1X

iD0
civ

bi;0
1 v

bi;1
2 : : : v

bi;n�1
n D 0; (7)

where all variables vi can take value 0 or 1, and addition is taken modulo 2. An
equation of the form (7) is said to be multilinear. A product ti D vbi;01 vbi;12 : : : vbi;n�1

n ,
for any 0 � i � 2n � 1, will be referred to as a multilinear term or simply a term.
The degree of ti , denoted deg.ti /, is

P
0�j<n bi;j . A term that has a coefficient of

value 1 in an equation is said to be a nonzero term of that equation.
New facts may be derived from known facts using the following rules:

1. Any even sum of like nonzero terms in an equation may be replaced by 0. Thus,
v1v2 C v1v2 reduces to 0 and 1C 1 reduces to 0. This reduction rule is needed to
eliminate terms when adding two equations (see below).

2. A factor v2 in a term may be replaced by v. This reduction rule is needed to ensure
terms remain multilinear after multiplication (see below).

3. An equation of the form (7) may be multiplied by a term, and the resulting
equation may be reduced to the form (7) by rule 2 above. Thus, v3v4.v1Cv3 D 0/
becomes v1v3v4 C v3v4 D 0.

4. Two equations may be added to produce an equation that may be reduced by
rule 1 above to the form (7). Examples will be given below.
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An equation that is created by rule 3 or 4 is said to be derived. All derived equations
are reduced by rules 1 and 2 before being added to the proof.

Observe that the solution spaces of two equations are complementary if they
differ only in that c0 D 0 for one and c0 D 1 for the other. For example, the sets of
solutions for the two equations

v1v2v3 C v1v2 C v2v3 C v1 C 1 D 0 and

v1v2v3 C v1v2 C v2v3 C v1 D 0

are complementary.
It is left as evident that performing operations rules 3 and 4 with reduc-

tions rules 1 and 2 as needed results in a set of derived equations whose solution
space is a superset of the original set. The set of all possible derived equations has a
solution space which is identical to that of the original set of equations.

Theorem 12 The equation 1 D 0 is always derivable using rules 3 and 4 (and
implicitly rules 1 and 2) from an inconsistent input set of multilinear equations and
never derived from a consistent set.

Proof Assume 1 D 0 is not one of the input equations. Suppose 1 D 0 is derived
from a consistent input set. Then two equations were added to derive 1 D 0. But
the solution space of both must be complementary and therefore the solution space
of the entire system must be empty. That is not possible since application of rules 3
and 4 does not reduce the solution space below that of the original set of equations,
and there is at least one solution because the input set is consistent.

Suppose 1 D 0 is not derivable from an inconsistent input set. Re-index terms,
with the term of degree 0 taking the lowest index, and construct a sequence of
derivations such that no two derived equations have the same nonzero term. If the
derivation cannot continue to the lowest (0th) term, then the resulting system of
equations is linearly independent and therefore must have a solution. But that is
impossible by assumption.

Re-indexing is as follows: terms of degree i all have higher index than terms of
degree j if i > j ; among terms of the same degree, the order of index is decided
lexicographically. Call the equations  and create set B , initially empty. Repeat
the following until  is empty. Pick an equation e of  that has the highest index,
nonzero term. As long as there is an equation g in B whose highest nonzero term
has the same index as the highest index nonzero term of e, replace e with e C g. If
0 D 0 is not produced, add e to B . This ensures B remains linearly independent.
Create as many as n new equations by multiplying e by every variable and add
those equations to  that have never been in  . This sets up the addition of e with
all other equations inB . When is empty, all original equations have been replaced
by equations with the same solution space and are such that no two of them have the
same highest index nonzero term. ut
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Next some examples of inputs are shown and then two short derivations. The
CNF clause

.v1 _ v2 _ v3/

is represented by the equation

v1.1C v2/.1C v3/C v2.1C v3/C v3 C 1 D 0;

which may be rewritten

v1v2v3 C v1v2 C v1v3 C v2v3 C v1 C v2 C v3 C 1 D 0:

The reader can verify this from the truth table for the clause. Negative literals in a
clause are handled by replacing variable symbol v with .1 C v/. For example, the
clause

.:v1 _ v2 _ v3/

is represented by

.1C v1/.1C v2/.1C v3/C v2.1C v3/C v3 C 1 D 0;

which reduces to

v1v2v3 C v1v2 C v1v3 C v1 D 0: (8)

As can be seen, just the expression of a clause introduces nonlinearities. However,
this is not the case for some Boolean functions. For example, the exclusive-or
formula

v1 ˚ v2 ˚ v3 ˚ v4

is represented by
v1 C v2 C v3 C v4 C 1 D 0:

An equation representing a BDD (Sect. 5.9) can be written directly from the BDD
as a sum of algebraic expressions constructed from paths to 1 because each path
represents one or more rows of a truth table and the intersection of rows represented
by any two paths is empty. Each expression is constructed incrementally while
tracing a path as follows: when a 1 branch is encountered for variable v, multiply
by v, and when a 0 branch is encountered for variable v, multiply by .1 C v/.
Observe that for any truth assignment, at most one of the expressions has value
1. The equation corresponding to the BDD at the upper left in Fig. 28 is

.1C v1/.1C v2/.1C v3/C .1C v1/v2v3 C v1.1C v2/v3 C v1v2 C 1 D 0;
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which reduces to

v1 C v2 C v3 C v1v2v3 D 0:

Since there is a BDD for every Boolean function, this example illustrates the fact
that a single equation can represent any complex function. It should be equally clear
that a single equation addition may have the same effect as many resolution steps.

Addition of equations and the Gaussian-elimination nature of algebraic proofs is
illustrated by showing steps that solve the following simple formula:

.v1 _ :v2/ ^ .v2 _ :v3/ ^ .v3 _ :v1/: (9)

The equations corresponding to (9) are expressed below as (1), (2), and (3). All
equations following those equations are derived as stated on the right.

v1v2 Cv2 = 0 (1)
v2v3 Cv3 = 0 (2)

v1v3 Cv1 = 0 (3)

v1v2v3 +v2v3 = 0 .4/( v3 � .1/
v1v2v3 Cv3 = 0 .5/( .4/C .2/
v1v2v3 Cv1v3 = 0 .6/( v1 � .2/
v1v2v3 Cv1 = 0 .7/( .6/C .3/
v1v2v3 Cv1v2 = 0 .8/( v2 � .3/
v1v2v3 Cv2 = 0 .9/( .8/C .1/

v1 Cv2 = 0 .10/( .9/C .7/
v1 Cv3 = 0 .11/( .5/C .7/

The solution is given by the bottom two equations which state that v1 D v2 D v3.
If, say, the following two clauses are added to (9)

.:v1 _ :v2/ ^ .v3 _ v1/;

the equation v1Cv2C1 D 0 could be derived. Adding this to (10) would give 1 D 0
which proves that no solution exists.

Ensuring a derivation of reasonable length is difficult. One possibility is to
limit derivations to equations of bounded degree where the degree of a term t ,
deg.t/, is defined in the proof of Theorem 12 and the degree of an equation is
degree.e/ D maxfdeg.t/ W t is a nonzero term in eg. An example is Algorithm 17
of Fig. 43 which is adapted from [37]. In the algorithm terms are re-indexed as
in Theorem 12. Then first non-zero(ei) is used to determine the highest index of
a nonzero term of ei . The function reduce.e/ is an explicit statement that says
reduction rules 1 and 2 are applied as needed to produce a multilinear equation.
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Fig. 43 Simple algebraic algorithm for SAT

This section concludes by comparing equations and the algebraic method with
BDDs and BDD operations. Consider an example taken from Sect. 5.9. Equations
corresponding to f and c in Fig. 31 are

f W v1v3 C v2 C v1v2 D 0
c W v2v3 C v3 D 0:

Multiply f by v2v3 to get v2v3 D 0 which adds with c to get v3 D 0, the inference
that is missed by restrict.f; c/ in Fig. 31. The inference can be derived from BDDs
by reversing the role of f and c as shown in Fig. 32. Consider what multiplying
f by v2v3 and adding to c means in the BDD world. The BDD representing v2v3,
call it d , consists of two internal nodes v2 and v3, a path to 0 following only 1
branches, and all other paths terminating at 1. Every path that terminates at 1 in f
also terminates at 1 in d . Therefore, d ^ c can safely be added as a BDD as long as
f remains. But it is easy to check that d ^ c is simply v3 D 0.

The process used in the above example can be applied more generally. All that
is needed is some way to create a best factor d from f and c. This is something a
generalized cofactor, which is discussed in Sect. 5.9.4, can sometimes do. However,
the result of finding a generalized cofactor depends on BDD variable ordering. For
the ordering v1 < v2 < v3, the generalized cofactor g D gcf.f; c/ turns out to be
.v1 _ :v2 _ v3/ ^ .:v2 _ :v3/ which is different from d in the leading clause but
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is sufficient to derive the inference when conjoined with c. By the definition of gcf,
since f ^ c D g ^ c, g may replace f – this is not the case for d above.

Existentially quantifying v away from a BDD has a simple counterpart in algebra:
just multiply two polynomials, one with restriction v D 1 and the other with
restriction v D 0. For example, the BDD of Fig. 28 may be expressed as

v1v2v3 C v1v3 C v1 C 1 D 0:

The equations under restrictions v2 D 1 and v2 D 0, respectively, are

v1 C 1 D 0 and v1v3 C v1 C 1 D 0:

The result of existential quantification is

.v1 C 1/.v1v3 C v1 C 1/ D v1 C 1 D 0;

which reveals the same inference. As with BDDs, this can be done only if the
quantified variable is in no other equation.

The counterpart to strengthening is just as straightforward. The BDDs of Fig. 39
have equation representations

b2 W v1v3 C v2 C v1v2 D 0
b1 W v3 C v2v3 D 0:

Existentially quantify v1 away from b2 to get v2v3 D 0 and add this to b1 to get
v3 D 0.

5.12.2 Integer Programming
An integer program models the problem of maximizing or minimizing a linear
function subject to a system of linear constraints, where all n variables are integral:

maximize or minimize c α (10)

subject to Mα � b

l � α � u

˛i integral; 1 � i � n;

where M is a constraint matrix, c is a linear objection function, b is a constant
vector, and α is a variable vector.

The integer programming problem and its relaxation to linear programming are
very well studied, and a large body of techniques have been developed to assist in
establishing an efficient solution to (10). They are divided into the categories of
preprocessing and solving. However, an important third aspect concerns the matrix
M that is used to model a given instance.
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Modeling is important because the effective solution of integer programs often
entails the use of linear programming relaxations. A solution to such a relaxation
generally provides a bound on the actual solution, and the relaxation of one
formulation of the input may provide a tighter bound than another. Generally, the
tighter the bound, the better.

For example, consider two formulations of the pigeonhole problem. The pigeon-
hole problem is as follows: can n C 1 pigeons be placed in n holes so that no
two pigeons are in the same hole? Define Boolean variables vi;j , 1 � i � n,
1 � j � n C 1 with the interpretation that vi;j will take the value 1 if and only
if pigeon j is in hole i and otherwise will take value 0. The following equations,
one per pigeon, express the requirement that every pigeon is to be assigned to a
single hole:

nX

iD1
vi;j D 1; 1 � j � nC 1; (11)

and the following inequalities express the requirement that two pigeons cannot
occupy the same hole:

vi;j C vi;k � 1; 1 � i � n; 1 � j < k � nC 1: (12)

There is no solution to this system of equations and inequalities. Relaxing integrality
constraints, there is a solution at vi;j D 1=n for all i; j . If running the algorithm to
be shown later, practically complete enumeration is necessary before finally it is
determined that no solution exists [82]. However, the requirement that at most one
pigeon is in a hole may alternatively be represented by

nC1X

jD1
vi;j � 1; 1 � i � n: (13)

which may be used instead of (12). The new constraints are much tighter than (12)
and the system (11) and (13) is easily solved [82].

The purpose of preprocessing is to reformulate a given integer program and
tighten its linear programming relaxation. In the process it may eliminate redundant
constraints and may even be able to discover unsatisfiability.

6 Algorithms for Easy Classes of CNF Formulas

For certain classes of CNF formulas, the satisfiability problem is known to be solved
efficiently by specially designed algorithms. Some classes, such as the 2-SAT and
Horn classes are quite important because they show up in real applications and
others are quite interesting because results on these add to our understanding of
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Fig. 44 Unit resolution for CNF formulas

the structural properties that make formulas hard or easy. Such an understanding
can help develop a search heuristic that will obtain a solution more efficiently. In
particular, knowledge that a large subset of clauses of a given formula belongs to
some easy class of formulas can help reduce the size of the search space needed
to determine whether some partial truth assignment can be extended to a solution.
Because CNF formulas are so rich in structure, much space in this section is devoted
to a few special cases. Hopefully this will help to fully appreciate the possibilities.
In particular, results on minimally unsatisfiable and nested formulas are greatly
detailed.

The reader may have the impression that the number of polynomial-time solvable
classes is quite small due to the famous dichotomy theorem of Schaefer [121]. But
this is not the case. Schaefer proposed a scheme for defining classes of propositional
formulas with a generalized notion of clause. He proved that every class definable
within his scheme was either NP -complete or polynomial-time solvable, and he
gave criteria to determine which. But not all classes can be defined within his
scheme. The class of Horn formulas can be but several others, which will be
described in this section, including q-Horn, extended Horn, CC-balanced, and
SLUR cannot be so defined. The reason is that Schaefer’s scheme is limited to
classes that can be recognized in log space.

Below, some of the more notable easy classes and algorithms for solving them
are presented. A crucial component of many of these algorithms is unit resolution.
An implementation is given in Fig. 44.

6.1 2-SAT

Every clause of a 2-SAT formula contains at most two literals. A given 2-SAT
formula  may be solved efficiently by constructing the implication graph EG 
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Fig. 45 Algorithm for determining satisfiability of 2-CNF formulas

of  (see Sect. 3.3) and traversing its vertices, ending either at a cycle containing
complementary literals or with no additional vertices to explore. The algorithm of
Fig. 45 implicitly does this.

Unit resolution drives the exploration of strongly connected components of EG .
The initial application of unit resolution, if necessary, is analogous to traversing all
vertices reachable from the special vertex F . Choosing a literal l arbitrarily and
temporarily assigning it the value 1 after unit resolution completes is analogous to
starting a traversal of some strongly connected component with another round of
unit resolution. If that round completes with an empty clause, a contradiction exists
so l is set to 0, � and M are reset to what they were just before l was set to 1, and
exploration resumes. If an empty clause is encountered before the entire component
is visited (i.e., while there still exist unit clauses), then the formula is unsatisfiable.
Otherwise, the value of l is made permanent and so are values that were given to
other variables during traversal of the component. This process repeats until the
formula is found to be unsatisfiable or all components have been explored. The
variable named s keeps track of whether variable l has been given one value or two,
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the variable M 0 holds the temporary assignments to variables during traversal of a
component, and the variables �0 and l 0 save the point to return to if a contradiction
is found. This algorithm is adapted from [56].

The next two theorems are stated without proof.

Theorem 13 On input CNF formula , Algorithm 2-SAT Solver outputs “unsatis-
fiable” if and only if  is unsatisfiable, and if it outputs a set M , thenM is a model
for  . ut

Theorem 14 On input CNF formula  containing m clauses and n variables,
Algorithm 2-SAT Solver has O.mC n/ worst-case complexity. ut

6.2 Horn Formulas

A CNF formula is Horn if every clause in it has at most one positive literal. This class
is widely studied, in part because of its close association with logic programming.
To illustrate, a Horn clause .:v1 _ :v2 _ : : : _ :vi _ v/ is equivalent to the rule
v1 ^ v2 ^ : : : ^ vi ! v or the implication v1 ! v2 ! : : : ! vi ! v. However, the
notion of causality is generally lost when translating from rules to Horn formulas.

The following states an important property of Horn formulas.

Theorem 15 Every Horn formula has a unique minimum model.

Proof Let be a Horn formula. LetM be a minimal model for , that is, a smallest
subset of variables of value 1 that satisfies  . Choose any v 2 M . Since M n fvg is
not a model for , there must be a clause c 2  such that positive literal v 2 c. Since
all other literals of c are negative and M is minimal, all assignments not containing
v cannot satisfy c and therefore . It follows that all models other thanM must have
cardinality greater than jM j. Hence, M is a unique minimum model for  . ut

The satisfiability of Horn formulas can be determined in linear time using unit
resolution [53, 78, 125]. One of several possible variants is shown in Fig. 46.

Theorem 16 Given Horn formula  as input, Algorithm Horn Solver outputs
“unsatisfiable” if and only if  is unsatisfiable, and if it outputs a set of variables
M , then M is a unique minimum model for  .

Proof When Algorithm Horn Solver completes with output set M , all remaining
clauses have at least one negative literal. Since none of the remaining clauses are
null and since v added to M serves to falsify negative literals, at least one of the
remaining negative literals in a remaining clause has not been added to M and
is therefore satisfied by M . Therefore, all remaining clauses are satisfied by M .
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Fig. 46 Algorithm for determining satisfiability of Horn formulas

A clause is removed when adding v to M only because it contains literal v.
Therefore, all removed clauses are satisfied by M . Hence,M satisfies  .

Suppose M is not the unique minimum model for  . Then, for some variable v,
the assignmentM nfvg satisfies  . Variable v was added toM because some clause
c 2  containing positive literal v became a unit clause after all variables associated
with the negative literals of c were placed in M . But thenM n fvg cannot satisfy c.
Therefore,M is the unique minimum model.

Now suppose the algorithm outputs unsatisfiable but there is a model for  . Let
M 0 be the unique minimum model. Run the algorithm until reaching the point at
which an empty clause is generated. Let this happens on the i th iteration of the
Repeat block and let  0 be the set of all clauses removed up to the test for an empty
clause on the i�first iteration. Let v be the last variable added to M and c be the
unit clause from which it was obtained. Clearly, 0 is Horn andM nfvg is its unique
minimum model. M 0 must contain all variables of M n fvg since it is the unique
minimum model for  . Therefore, it cannot contain fvg. But then c is not satisfied
by M 0, a contradiction. ut

Algorithm Horn Solver is only useful if the input formula is known to be Horn.
It is easy to see that this can be checked in linear time.

6.3 Renamable Horn Formulas

Given CNF formula  and variable subset V 0
 	 V , define swi tch. ; V 0

 / to be
the formula obtained from  by reversing the polarity of all occurrences of v and
:v in  for all v 2 V 0

 . If there exists a V 0
 	 V such that swi tch. ; V 0

 / is Horn,
then  is said to be renamable Horn or hidden Horn.
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Renamable Horn formulas can be recognized and solved in O.j j/ time
[10, 104]. Algorithm SLUR on Page 410 solves renamable Horn formulas in linear
time.

6.4 Linear Programming Relaxations

Let M be a .0˙ 1/matrix representing a CNF formula . If M has a particular
structure, it is possible to solve the inequalities (1) with non-integer constraints
0 � ˛i � 1 to obtain a solution to  either directly or by rounding. Notable classes
based on particular matrix structures are the extended Horn formulas and what in
this chapter are called the CC-balanced formulas.

The class of extended Horn formulas was introduced by Chandru and
Hooker [31] who were looking for conditions under which a linear programming
relaxation could be used to find solutions to propositional formulas. It is based on a
theorem of Chandrasekaran [30] which characterizes sets of linear inequalities for
which 0-1 solutions can always be found (if one exists) by rounding a real solution
obtained using an LP relaxation. Extended Horn formulas can be expressed as linear
inequalities that belong to this family of 0-1 problems.

For the sake of clarity, an equivalent graph theoretic definition is presented here.
A formula  is in the class of extended Horn formulas if one can construct a rooted
directed tree T , called an extended Horn tree, indexed on the variables of  such
that, for every clause c 2  :
1. All the positive literals of c are consecutive on a single path of T .
2. There is a partition of the negative literals of c into sets N1;N2 : : : ; Nnc , where
nc is at least 1, but no greater than the number of negative literals of c, such that
for all 1 � i � nc , all the variables of Ni are consecutive on a single path of T .

3. For at most one i , the path in T associated withNi begins at the vertex in T from
which the path associated with positive literals begins.

4. For all remaining i , the path in T associated with Ni begins at the root of T .
Disallowing negative paths that do not originate at the root (point 3 above) gives

a subclass of extended Horn called simple extended Horn [133]. Extended Horn
formulas can be solved in polynomial time by Algorithm SLUR on Page 410 [122].

Chandru and Hooker showed that unit resolution alone can determine whether or
not a given extended Horn formula is satisfiable. This is due to the following two
properties of an extended Horn formula:
1. If  is extended Horn and has no unit clauses, then  is satisfiable.
2. If  is extended Horn and v is a variable in  , then
 1 D fc � fvg W c 2  ;:v … cg and  2 D fc � f:vg W c 2  ; v … cg
are both extended Horn.

Chandru and Hooker proposed an algorithm that finds a model for a satisfiable
extended Horn formula. First, apply unit resolution, setting values of unassigned
variables to 1/2 when no unit clauses remain. Then round the result by a matrix
multiplication. Their algorithm cannot, however, be reliably applied unless it is
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Fig. 47 Algorithm for determining satisfiability of SLUR formulas

known that a given formula is extended Horn. Unfortunately, the problem of
recognizing extended Horn formulas is not known to be solved in polynomial
time. As will be shown later in this section, this problem has become moot since
Algorithm SLUR solves extended Horn formulas in linear time without the need
for recognition.

The class of CC-balanced formulas has been studied by several researchers
(see [38] for a detailed account of balanced matrices and a description of CC-
balanced formulas). The motivation for this class is the question, for SAT, when do
linear programming relaxations have integer solutions? A formula  with .0 ˙ 1/
matrix representationM is CC-balanced if in every submatrix of M with exactly
two nonzero entries per row and per column, the sum of the entries is a multiple of
4 (this definition is taken from [138]). Recognizing that a formula is CC-balanced
takes linear time. However, the recognition problem is moot because Algorithm
SLUR solves CC-balanced formulas in linear time without the need for recognition.

As alluded to above, both extended Horn and CC-balanced formulas are subsets
of a larger efficiently solved class of formulas solved by single lookahead unit
resolution [122] (SLUR). The SLUR class is peculiar in that it is defined based
on an algorithm rather than on properties of formulas. Algorithm SLUR of Fig. 47
selects variables sequentially and arbitrarily and considers a one-level lookahead,
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under unit resolution, of both possible values that the selected variable can take.
If unit resolution does not result in an empty clause in one direction, the assignment
corresponding to that value choice is made permanent and variable selection
continues. If all clauses are satisfied after a value is assigned to a variable (and
unit resolution is applied), the algorithm returns a satisfying assignment. If unit
resolution, applied to the given formula or to both subformulas created from
assigning values to the selected variable on the first iteration, results in a clause that
is falsified, the algorithm reports that the formula is unsatisfiable. If unit resolution
results in falsified clauses as a consequence of both assignments of values to the
selected variable on any iteration except the first, the algorithm reports that it has
given up.

A formula is in the class SLUR if, for all possible sequences of selected variables,
Algorithm SLUR does not give up on that formula. Observe that due to the
definition of this class, the question of class recognition is avoided.

The worst-case complexity of Algorithm SLUR, as written, is quadratic in
the length of the input formula. The complexity is dominated by the execution of
fc�fvg W c 2  ;:v … cg, fc�f:vg W c 2  ; v … cg, and the number of unit clauses
eliminated by unit resolution. The total number of times a clause is checked and
a literal removed due to the first two expressions is at most the number of literals
existing in the given formula if the clauses are maintained in a linked list indexed
on the literals. However, the same unit clause may be removed by unit resolution on
successive iterations of the Repeat block of Algorithm SLUR since once branch of
execution is always cut. This causes quadratic worst-case complexity.

A simple modification to Algorithm SLUR brings the complexity down to linear
time: run both calls of unit resolution simultaneously, alternating execution of their
Repeat blocks. When one terminates without an empty clause in its output formula,
abandon the other call.

Theorem 17 Algorithm SLUR has O.j j/ worst-case complexity if both calls to
unit resolution are applied simultaneously and one call is immediately abandoned
if the other finishes first without falsifying a clause.

Proof For reasons mentioned above, only the number of steps used by unit
resolution is considered. The number of times a literal from a unit clause is chosen
and satisfied clauses and falsified literals removed in non-abandoned calls of unit
resolution is O.j j/ since no literal is chosen twice. Since the Repeat blocks of
abandoned and non-abandoned calls alternate, the time used by abandoned calls is
no greater than that used by non-abandoned ones. Thus, the worst-case complexity
of Algorithm SLUR, with the interleave modification, is O.j j/. ut

All Horn, renamable Horn, extended Horn, and CC-balanced formulas are in
the class SLUR. Thus, an important outcome of the results on SLUR is the
observation that no special preprocessing or testing is needed for some of the special
polynomial-time solvable classes of SAT when using a reasonable variant of the
DPLL algorithm.
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A limitation of all the classes of this section is they do not represent many
interesting unsatisfiable formulas. There are several possible extensions to the
SLUR class which improve the situation. One is to add a 2-SAT solver to the
unit resolution steps of Algorithm SLUR. This extension is at least able to
handle all 2-SAT formulas which is something Algorithm SLUR cannot do. It can
be elegantly incorporated due to the following observation: whenever Algorithm
SLUR completes a sequence of unit resolutions and if at that time the remaining
clauses are nothing but a subset of the original clauses (which they would have to
be if all clauses have at most two literals), then effectively the algorithm can start
all over. That is, if fixing of a variable to both values leads to an empty clause,
then the formula has been proved to be unsatisfiable. Thus, one need not augment
Algorithm SLUR by the 2-SAT algorithm, because the 2-SAT algorithm (at least
one version of it) does exactly what the extended algorithm does. Another extension
of Algorithm SLUR is to allow a polynomial number of backtracks, giving up if
at least one branch of the search tree does not terminate at a leaf where a clause
is falsified. This enables unsatisfiable formulas with short search trees to be solved
efficiently by Algorithm SLUR.

6.5 q-Horn Formulas

This class of propositional formulas was developed in [22] and [23]. The class of
q-Horn formulas may be characterized as a special case of maximum monotone
decomposition of matrices [137, 138]. Express a CNF formula of m clauses and n
variables as an m � n .0 ˙ 1/-matrix M. In the monotone decomposition of M,
columns are scaled by�1 and the rows and columns are partitioned into submatrices
as follows:

 
A1 E
D A2

!
;

where the submatrix A1 has at most oneC1 entry per row; the submatrix D contains
only�1 or 0 entries; the submatrix A2 has no restrictions other than the three values
of �1, C1, and 0 for each entry; and the submatrix E has only 0 entries. If A1 is
the largest possible over columns, then the decomposition is a maximum monotone
decomposition. If the maximum monotone decomposition of M is such that A2 has
no more than two nonzero entries per row, then the formula represented by M is
q-Horn.

Truemper [138] shows that a maximum monotone decomposition for a matrix
associated with a q-Horn formula can be found in linear time (this is discussed in
Sect. 5.10.1). Once a q-Horn formula is in its decomposed form, it can be solved in
linear time by Algorithm q-Horn Solver of Fig. 48.

Theorem 18 Given q-Horn formula  , Algorithm q-Horn Solver outputs
“unsatisfiable” if and only if  is unsatisfiable, and if  is satisfiable, then the
output set M1 [M2 is a model for  .
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Fig. 48 Algorithm for determining satisfiability of q-Horn formulas

Proof Clearly, if Horn formula A1 is unsatisfiable, then so is  . Suppose A2 is
unsatisfiable after rows whose columns in D are removed because they are satisfied
by M1. Since M1 is a unique minimum model for A1 and no entries of D are +1,
no remaining row of A2 can be satisfied by any model for A1. Therefore,  is
unsatisfiable in this case. The set M1 [M2 is a model for  if it is output since M1

satisfies rows in A1 andM2 satisfies rows in A2. ut
An equivalent definition of q-Horn formulas comes from the following.

Theorem 19 A CNF formula is q-Horn if and only if its satisfiability index is no
greater than 1.

Proof Let  be a q-Horn formula with variable set V and suppose jV j D n.
Let M be a monotone decomposition for  . Let na be such that for 0 � i < na,
column i of M coincides with submatrices A1 and D and for na � i < n, column
i coincides with submatrix A2. Form the inequalities (2) from M . Assign value 1
to all ˛i , 0 � i < na, and value 1/2 to all ˛i , na � i < n. This satisfies 0 � ˛i � 1
of system (2). Since rows of A1 have nonzero entries in columns 0 to na�1 only and
at most one of those is +1, the maximum sum of the elements of the corresponding
row of inequality (2) is 1. Since all rows of D and A2 have at most two nonzero
entries in columns na to n � 1 and no +1 entries in columns 0 to na � 1, the sum of
elements of a corresponding row of inequality (2) has maximum value 1 too. Thus,
inequality (2) is satisfied with z D 1.

Now, suppose  has satisfiability index I which is no greater than 1. Choose
values for all ˛i terms such that inequality (2) is satisfied for z D I . Let � be a
permutation of the columns of M so that ˛�i � ˛�j if and only if i < j . Form
M0

 fromM by permuting columns according to � . Let nb be such that ˛�i < 1=2
for 0 � i < nb and 1=2 � ˛�i for nb � i < n. Scale columns 0 through nb � 1 of
M0

 by �1. Then inequality (2), using M0
 for M , is satisfied with z D I and
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1=2 � ˛i for all 0 � i < n. It follows that each row of M0
 can have at most two

+1 entries or else the elements of the corresponding row of inequality (2) sums to
greater than 1. Consider all rows of M0

 with two +1 entries and mark all columns
that contain at least one of those entries. Let � be a permutation of the columns
of M0

 so that all marked columns have higher index than all unmarked columns.
Form M00

 from M0
 by permuting columns according to � and permuting rows so

that all rows with only 0 entries in marked columns are indexed lower than rows
with at least one nonzero entry in a marked column. Let nc be such that columns nc
to n�1 in M00

 are exactly the marked columns. The value of ˛��i , nc � i < n, must
be exactly 1/2 or else the elements of some row of inequality (2) must sum to greater
than 1. It follows that the number of nonzero entries in columns nc to n � 1 in any
row of M00

 must be at most two or else the elements of some row of the inequality
sum to greater than 1. By construction of M00

 , every row can have at most one +1
entry in columns 0 to nc � 1. Hence, M00

 is a monotone decomposition for  . ut
The following result from [23] is also interesting in light of Theorem 19. It is

stated without proof.

Theorem 20 The class of all formulas with a satisfiability index greater than
1C 1=n�, for any fixed � < 1, is NP-complete. ut

There is an almost obvious polynomial-time solvable class larger than that of the
q-Horn formulas: namely, the class of formulas which have a satisfiability index no
greater than 1C a ln.n/=n, where a is any positive constant. The M matrix for any
formula in this class can be scaled by �1 and partitioned as follows:

0

@
A1 E B1

D A2 B2

1

A ;

where submatrices A1, A2, E , and D have the properties required for q-Horn
formulas and the number of columns in B1 and B2 is no greater than O.ln.n//.
Satisfiability for such formulas can be determined in polynomial time by solving
the q-Horn system obtained after substitution of each of 2O.ln.n// partial truth
assignments to the variables of B1 and B2.

6.6 Matched Formulas

The matched formulas have been considered in the literature (see [136]) but not ex-
tensively studied, probably because this seems to be a rather useless and small class
of formulas. Our interest in matched formulas is to provide a basis of comparison
with other, well-known, well-studied classes. Let G .V1; V2; E/ be the variable-
clause matching graph (see Sect. 3.5) for CNF formula  , where V1 is the set of
clause vertices and V2 is the set of variable vertices. A total matching with respect
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to V1 is a subset of edges E 0 	 E such that no two edges in E 0 share an endpoint
but every vertex v 2 V1 is an endpoint for some edge in E 0. Formula  is a matched
formula if its variable-clause matching graph has a total matching with respect to V1.
A matched formula is trivially satisfied: for each edge e 2 E 0, assign the variable
represented by the variable vertex in e a value that satisfies the clause represented by
the clause vertex in e. The comparison with other classes is discussed in Sect. 6.12.

6.7 Generalized Matched Formulas

The class of matched formulas has been generalized by Szeider [135]. Let
G .V1; V2; E/ be the variable-clause matching graph of  as above. Let V 0

1 	 V1
and V 0

2 	 V2 and suppose the subgraph G0
 .V

0
1 ; V

0
2 ; E

0/ induced by V 0
1 and V 0

2 is
complete: that is, for every pair of vertices v1 2 V 0

1 and v2 2 V 0
2 , there is an edge

e 2 E 0. Call such a subgraph a biclique.

Theorem 21 Let G .V1; V2; E/ be the variable-clause graph for  . Let
fX1;X2; : : : ; Xrg be a collection of bicliques in G .V1; V2; E/ and suppose (1)
the number of clause vertices in X1 is less than 2 raised to the number of variable
vertices in Xi , 1 � i � r; (2) every v1 2 V1 (representing a clause) is in some Xi ,
1 � i � r; and (3) every v2 2 V2 (representing a variable) is in at most one Xi ,
1 � i � r . Then  is satisfiable.

Proof Let V Xi be the variables represented by vertices of Xi and let CXi be the
clauses represented by the remaining vertices of Xi . Remove from all c 2 CXi all
literals not associated with variables of V Xi . Since Xi is complete, the number of
literals in c is jV Xi j and the number of assignments to the variables of V Xi which
are falsified by c is 1. By condition (1), the total number of falsifying assignments
for CXi is less than all possible assignments to V Xi ; hence, some assignment
satisfies CXi . By condition (3), V Xi \ V Xj D ;, i 6D j , so satisfying assignments
for both CXi and CXj cannot conflict. By condition (2), every clause in  is in
some biclique and is therefore satisfied by some assignment. ut

Clause width is typically fixed. In that case, a model for a formula satisfying the
conditions of Theorem 21 can be found in time linear in the number of clauses of
 . If the bicliques of G are all single edges, then  is a matched formula.

Unfortunately, the problem of recognizing a generalized matched formula is
NP -complete, even for 3-CNF formulas.

6.8 Nested and Extended Nested Satisfiability

The complexity of nested satisfiability, inspired by Lichtenstein’s theorem of planar
satisfiability [105], has been studied in [91]. Index all variables in a CNF formula
consecutively from 1 to n and let positive and negative literals take the index of
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their respective variables. A clause ci is said to straddle another clause cj if the
index of a literal of cj is strictly between two indices of literals of ci . Two clauses
are said to overlap if they straddle each other. A formula is said to be nested if no
two clauses overlap. For example, the following formula is nested:

.v6 _ :v7 _ v8/ ^ .v2 _ v4/ ^ .:v6 _ :v9/ ^ .v1 _ :v5 _ v10/:

The class of nested formulas is quite limited in size. A variable cannot show up
in more than one clause of a nested formula where its index is strictly between the
greatest and least of the clause: otherwise, two clauses overlap. Therefore, a nested
formula of m clauses and n variables has at most 2m C n literals. Thus, no CNF
formula consisting of k-literal clauses is a nested formula unlessm=n < 1=.k� 2/.
This particular restriction will be understood better from the probabilistic
perspective taken in Sect. 6.13. Despite this, the class of nested formulas is not
contained in either of the SLUR or q-Horn classes as shown in Sect. 6.12. This adds
credibility to the potential usefulness of the algorithm presented here. However,
our main interest in nested formulas is due to an enlightening analysis and efficient
dynamic programming solution which appears in [91] and is presented here.

Strong dependencies between variables of nested formulas may be exploited for
fast solutions. In a nested formula, if clause ci straddles clause cj , then cj does
not straddle ci , and if clause ci straddles clause cj and clause cj straddles ck , then
ci straddles ck . Thus, the straddling relation induces a partial order on the clauses
of a nested formula. It follows that the clauses can be placed in a total ordering
using a standard linear time algorithm for topologically sorting a partial order: in
the total ordering, a given clause does not straddle any clauses following it. In the
example above, if clauses are numbered c0 to c3 from left to right, c2 straddles c0,
c3 straddles c1 and c2, and no other clause straddles any other, so these clauses are
in the desired order already.

Once clauses are topologically sorted into a total order, the satisfiability question
may be solved in linear time by a dynamic programming approach where clauses are
processed one at a time, in order. The idea is to maintain a partition of variables as a
list of intervals such that all variables in any clause seen so far are in one interval. As-
sociated with each interval are fourD values that express the satisfiability of corre-
sponding processed clauses under all possible assignments of values to the endpoints
of the interval. As more clauses are considered, intervals join and D values are
assigned. By introducing two extra variables, v0 and vnC1 and an extra clause .v0 _
vnC1/ which straddles all others and is the last one processed, there is one interval
Œv0; vnC1	 remaining at the end. A D value associated with that interval determines
satisfiability for the given formula. What remains is to determine how to develop
the interval list and associated D values incrementally. This task is made easy by
the fact that a variable which appears in a clause c with index strictly between the
highest and lowest indices of variables in c never appears in a following clause.

An efficient algorithm for determining the satisfiability of nested formulas is
shown in Fig. 49. The following lemma is needed to prove correctness. The actual
dependence of h values on i is not shown to prevent the notation from going out of
control. However, from the context, this dependence should be clear.
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Fig. 49 Algorithm for determining satisfiability of nested formulas
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Lemma 5 Assume, at the start of any iteration 0 � i � m of the outer Repeat loop
of Algorithm Nested Solver, that

D D fDh0;h1 .
;
/;Dh1;h2 .
:
/; : : : ;Dhk ;hkC1
.
;
/g;

where h0 D 0 and hkC1 D nC 1. Let

 ip;pCjDfc W c 2 fc0; : : : ; ci�1g; hp � minIndex.c/ < maxIndex.c/ � hpCj g;

for any 0 � j � k � p C 1. Then the following hold:
1. At the start of iteration i of the outer Repeat loop, each variable in ci is the

same as one of fvh0 ; vh1 ; : : : ; vhkC1
g, and for every clause c 2 fc0; : : : ; ci�1g,

there exists an 0 � r � k such that all the variables of c have index between hr
and hrC1. Moreover, for every hr and hhC1, there is at least one clause whose
minimum indexed variable has index hr and whose maximum indexed variable
has index hrC1.

2. At the start of iteration i of the outer Repeat loop, Dhj ;hjC1
.s; t/, 0 � j � k,

has value 1 if and only if  ij;jC1 is satisfiable with variable vhj set to value s
and variable vhjC1

set to value t .
3. At the start of iteration 0 � j < q � p of the main inner Repeat loop,
Ehp;hpCj

.s; t/ has value 1 if and only if  ip;pCj [ fflx W lx 2 ci ; x � hpCj gg is
satisfiable with variable vhp set to value s and variable vhpCj

set to value t .
4. At the start of iteration 0 � j < q � p of the main inner Repeat loop,
Ghp;hpCj

.s; t/ has value 1 if and only if  ip;pCj [ fflx W lx 2 ci ; x � hpCj gg
is not satisfiable, but  ip;pCj is satisfiable with variable hp set to value s and
variable vhpCj

set to value t .

Proof Consider point 1. At the start of iteration 0 of the outer Repeat loop, point 1
holds because all variables are in the set fh0; : : : ; hnC1g. Suppose point 1 holds at
the beginning of iteration i . As a result of the topological sort, ci cannot be straddled
by any clause in fc0 : : : ci�1g. If one variable of ci is indexed strictly between hr
and hrC1, by point 1, there is a clause in fc0; : : : ; ci�1g whose variable indices are as
high as hrC1 and as low as hr . But such a clause would straddle ci . Hence, for every
variable v 2 ci , v 2 fvhp ; vhpC1

; : : : ; vhq g. Since the last line of the outer Repeat
loop replaces all Dhp;hpC1

: : : Dhq�1;q with Dhp;hq , point 1 holds at the beginning of
iteration i C 1 of the outer loop.

Consider point 2. At the start of iteration i D 0, all defined variables are
Dj;jC1.
;
/, 0 � j � n, and these have value 1. From the definition of  ip;j ,
 0j;jC1 D ;. Thus, point 2 holds before iteration i D 0. Suppose point 2 holds
at the start of iteration i . Since ci contains no variables indexed less than hp or
greater than hq and all Dhr ;hrC1

.
;
/ are unchanged by the algorithm for r < p

and r � q, then these D values are correct for iteration i C 1 (but the subscripts on
h values change because there are fewer D variables on the next iteration). So, due
to the short inner Repeat loop following the main inner Repeat loop, point 2 holds
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at the start of iteration i C 1 if Ehp;hq .s; t/ has value 1 if and only if  ip;q [ fci g
is satisfiable with variable vhp set to value s and variable vhq set to value t . This is
shown below, thus taking care of point 2.

Assume, during iteration i of the outer loop and before the start of the main
inner loop, that points 1 and 2 hold. Consider the iteration j D 0 of the main inner
loop. As above,  0�;� D ;. Moreover, by point 1, flx W lx 2 c0; x � hpg D flhpg
so  0p;p [ fflhpgg D fflhpgg. There is no satisfying assignment for this set if the
value of the highest and lowest indexed variables of c0 are opposite each other
since the highest and lowest indexed variables are the same. Accordingly,Ep;p.s; t/
and Gp;p.s; t/ are set to 0 in the algorithm when s and t are of opposite value.
However, if s D t D 1 and if lhp D vhp , then  0p;p [ ffvhpgg is satisfiable.
Accordingly, Ep;p.1; 1/ is set to 1 and Gp;p.1; 1/ is set to 0 in the algorithm.
Otherwise, if s D t D 1 and lhp D :vhp , then  0p;p [ ff:vhpgg is unsatisfiable.
Accordingly,Ep;p.1; 1/ is set to 0 andGp;p.1; 1/ is set to 1 in the algorithm. Similar
reasoning applies to the case s D t D 0. Thus, points 3 and 4 hold for the case
j D 0.

Now consider iteration i of the outer loop and iteration j > 0 of the main inner
loop. Assume, at the start of iteration j � 1, that points 3 and 4 hold. Points 1
and 2 hold from before since no changes to these occur in the main inner loop. Let
c
j�1
i D flx W lx 2 ci ; x � p C j � 1g be the subset of literals of ci that have index

no greater than hpCj�1. From Point 1, for every clause c 2 fc0; : : : ; ci�1g, there
exists a positive integer 0 � r � k such that all variables of c have index between
hr and hrC1. It follows that

 ip;pCj [ fcj�1
i g D . ip;pCj�1 [ fcj�1

i g/[  ipCj�1;pCj ;

and . ip;pCj�1 [ fcj�1
i g/ \  ipCj�1;pCj D ;. For the sake of visualization, define

 1 D  ip;pCj�1 and  2 D  ipCj�1;pCj . At most one variable, namely, vhpCj�1
, is

common to both 1 and 2. Hence, when vhpCj�1
is set to some value, the following

holds: both 1[fcj�1
i g and 2 are satisfiable if and only if ip;pCj[fcj�1

i g is satisfi-

able. Now consider ip;pCj [fcji g. Since every variable of ci has an index matching

one of fhp; hpC1; : : : ; hqg, cji n cj�1
i , either is the empty set or fvhpCj

g or f:vhpCj
g.

Therefore, given vhpCj�1
,  ip;pCj�1 [ fcji g is satisfiable if and only if either both

 1 [ fcj�1
i g and  2 are satisfiable or  1 and  2 are satisfiable,  1 [ fcj�1

i g is
unsatisfiable, but  1[fcj�1

i [flg is satisfiable where l 2 fvhpCj
;:vhpCj

g or flg D
;. But since l does not occur in 1, 1[fcj�1

i g can be unsatisfiable with 1 and 1[
fcj�1
i [ flg satisfiable only for assignments which satisfy l . Then, by hypothesis,

the association of the E and G variables with  ip;pCj�1 and  ipCj�1;pCj , and
the assignments to E and G in the main inner loop of Algorithm 23, the
values of E and G match points 3 and 4 for the j th iteration of the main inner
loop.
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From point 3, upon completion of the main inner loop, Ehp;hq .s; t/ has value 1
if and only if  ihp;hq [ fci g is satisfiable. This matches the hypothesis of point 2,
thereby completing the proof that point 2 holds. ut

Corollary 1 Algorithm Nested Solver correctly determines satisfiability for a
given nested formula.

Proof Algorithm Nested Solver determines  is satisfiable if and only if
D0;nC1.1; 1/ has value 1. But, from Lemma 5, D0;nC1.1; 1/ has value 1 if and
only if  [ fv0; vnC1g is satisfiable and v0 and vnC1 are set to value 1. The corollary
follows. ut

The operation of Nested Solver is demonstrated by means of an example taken
from [91]. Suppose the algorithm is applied to a nested formula containing the
following clauses which are shown in proper order after the topological sort:

.v1_v2/^.v2_v3/^.:v2_:v3/^.v3_v4/^.v3_:v4/^.:v3_v4/^.:v1_v2_v4/:

The following table shows the D values that have been computed prior to the start
of iteration 6 of the outer loop of the algorithm. The columns show s; t values and
the rows show variable intervals.

D�;�.s; t / 0, 0 0, 1 1, 0 1, 1

1; 2 0 1 1 1
2; 3 0 1 1 0
3; 4 0 0 0 1

Such a table could result from the following set of processed clauses at the head
of the topological order (and before c): processing clause c, using the initial values
and recurrence relations for E and G variables given above, produces values as
shown in the following tables.

Ep;pCj .s; t / 0, 0 0, 1 1, 0 1, 1

1; 1 1 0 0 0
1; 2 0 1 0 1
1; 3 1 0 1 0
1; 4 0 0 0 1

Gp;pCj .s; t / 0, 0 0, 1 1, 0 1, 1

1; 1 0 0 0 1
1; 2 0 0 1 0
1; 3 0 0 0 1

The last line of the E table holds the newD values for the interval Œv1; v4	 as shown
by the following table.



Algorithms for the Satisfiability Problem 421

D�;�.s; t / 0, 0 0, 1 1, 0 1, 1

1; 4 0 0 0 1

Linear time is achieved by careful data structure design and from the fact that no
more than 2mC n literals exist in a nested formula.

Theorem 22 Algorithm Nested Solver has worst-case time complexity that is
linear in the size of  . ut

The question of whether the variable indices of a given formula can, in linear
time, be permuted to make the formula nested appears to be open.

An extension to nested satisfiability has been proposed in [72]. The details are
skipped. This extension can be recognized and solved in linear time. For details, the
reader is referred to [72].

6.9 Linear Autark Formulas

This class is based on the notion of an autark assignment which was introduced
in [111]. Repeating the definition from Page 393, an assignment to a set of variables
is an autark assignment if all clauses that contain at least one of those variables are
satisfied by the assignment. An autark assignment provides a means to partition the
clauses into two groups: one that is satisfied by the autark assignment and one that
is completely untouched by that assignment. Therefore, autark assignments provide
a way to reduce a formula to one that is equivalent in satisfiability.

The following shows how to find an autark assignment in polynomial
time. Let CNF formula  of m clauses and n variables be represented
as a .0 ˙ 1/ matrix M . Let α be an n-dimensional real vector with
components ˛1; ˛2; : : : ; ˛n. Consider the following system of inequalities:

M α � 0; (14)

α 6D 0:

Theorem 23 ([145]) A solution to (14) implies an autark assignment for  .

Proof Create the autark assignment as follows: if ˛i < 0 then assign vi D 0, and if
˛i > 0 then assign vi D 1, if ˛i D 0 then keep vi unassigned. It is shown that either
a clause is satisfied by this assignment or it contains only unassigned variables.

For every clause, by (1), it is necessary to satisfy the following:

a1v1 C a2v2 C : : :C anvn � 1 � b; (15)
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where ai factors are 0, �1, or +1 and the number of negative ai terms is b. Suppose
α is a solution to (14). Write an inequality of (14) as follows:

a1˛1 C a2˛2 C : : :C an˛n � 0: (16)

Suppose at least one term, say, ai˛i , is positive. If ˛i is positive, then ai D 1 so,
with vi D 1 and since there are at most b terms of value �1, the left side of (15)
must be at least 1 � b. On the other hand, if ˛i is negative, then ai D �1, vi D 0,
and the product ai vi in (15) is 0. Since there are b � 1 negative factors left in (15),
the left side must be at least 1 � b. Therefore, in either case, inequalities of the
form (16) with at least one positive term represent clauses that are satisfied by the
assignment corresponding to α.

Now consider the case where no terms in (16) are positive. Since the left side
of (16) is at least 0, there can be no negative terms either. Therefore, all the variables
for the represented clause are unassigned. �

A formula  for which the only solution to (14) is α = 0 is said to be linear
autarky-free.

System (14) is an instance of linear programming and can therefore be solved
in polynomial time. Hence, an autark assignment, if one exists, can be found in
polynomial time.

Algorithm LinAut of Fig.50 is the central topic of study in this section and it will
be used to define a polynomial-time solvable class of formulas called linear autarky
formulas. The algorithm repeatedly applies an autark assignment as long as one can
be found by solving (14). In a departure from [145], the algorithm begins with a call
to Unit Resolution to eliminate all unit clauses. This is done to remove some awk-
wardness in the description of linear autarky formulas that will become clear shortly.

The following states an important property of Algorithm LinAut.

Lemma 6 Let  be a CNF formula that is input to Algorithm LinAut and let  0
be the formula that is output. If  0 D ; then  is satisfiable and αS transforms to
a satisfying assignment for  .

Proof An autark assignment t to  0 induces a partition of clauses of  0 into those
that are satisfied by t and those that are untouched by t . Due to the independence
of the latter group, a satisfying assignment for that group can be combined with
the autark assignment for the former group to satisfy  0. If there is no satisfying
assignment for either group, then  0 cannot be satisfiable. Therefore, since each
iteration finds and applies an autark assignment (via α), if  0 D ; then the
composition of the autark assignments of each iteration is a satisfying assignment
for  . ut
The algorithm has polynomial-time complexity. In some cases it solves its input
formula.
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Fig. 50 Repeated decomposition of a formula using autark assignments. VP is the set of variables
whose values are set in partial assignment P . Output real vector αS can be transformed to a truth
assignment as described in the proof of Theorem 23

Theorem 24 Let  be Horn or renamable Horn. If  is satisfiable, then LinAut
returns an αS that transforms to a solution of  as described in the proof of
Theorem 23, and the formula returned by LinAut is ;. If  is unsatisfiable, LinAut
returns “unsatisfiable.”

Proof Horn or renamable Horn formula  is unsatisfiable only if there is at least
one positive unit clause in  . In this case Unit Resolution. / will output a formula
containing ; and LinAut will output unsatisfiable. Otherwise, Unit Resolution. /
outputs a Horn or renamable Horn formula  0 with no unit clauses and a partial
assignment P which is recorded in αS . In the next paragraph, it will be shown that
any such Horn or renamable Horn formula is not linear autarky-free, so there exists
an autark assignment for it. By definition, the clauses that remain after the autark
assignment is applied must be Horn or renamable Horn. Therefore, the Repeat loop
of LinAut must continue until there are no clauses left. Then, by Lemma 6, αS

transforms to a satisfying assignment for  .
Now it is shown that there is always an α 6D 0 that solves (14). Observe that any

Horn formula without unit clauses has at least one negative literal in every clause.
Therefore, some all-negative vector α of equal components solves (14). In the case
of renamable Horn, the polarity of α components in the switch set is reversed to get
the same result. Therefore, there is always at least one autark assignment for a Horn
or renamable Horn formula. Note that Algorithm LinAut may find an α that does
not zero out all rows, so the Repeat loop may have more than 1 iteration, but since
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the reduced formula  is Horn or renamable Horn, there is always an α 6D 0 that
solves (14) for the clauses that are left. ut

The following Horn formula would violate Theorem 24 if the call to Unit
Resolution had not been added to LinAut:

.v1/ ^ .v2/ ^ .v3/ ^ .v1 _ :v2 _ :v3/ ^ .:v1 _ v2 _ :v3/ ^ .:v1 _ :v2 _ v3/:

This formula is satisfied with variables set to 1 but is linear autarky-free.

Theorem 25 If  is a 2-SAT formula that is satisfiable, then LinAut outputs an αS

that represents a solution of  and the formula output by LinAut is ;.

Proof In this case Unit Resolution. / outputs  and causes no change to αS .
The only nonzero autark solutions to M α � 0 have the following clausal
interpretation: choose a literal in a clause and assign its variable a value that
satisfies the clause; for all non-satisfied clauses that contain the negation of that
literal, assign a value to the variable of the clause’s other literal that satisfies that
clause; continue the process until some clause is falsified or no variable is forced
to be assigned a value to satisfy a clause. This is one iteration of Algorithm 2-SAT
Solver, so since  is satisfiable, the process never ends in a falsified clause. Since
what is left is a satisfiable 2-SAT formula, this step is repeated until ; is output. As
in the proof of Theorem 24, αS transforms to a satisfying assignment for  . ut
If  is an unsatisfiable 2-SAT formula, then LinAut. / will output an unsatisfiable
2-SAT formula.

The class of linear autarky formulas is the set of CNF formulas on which the
application of LinAut either outputs unsatisfiable or a formula that is ; or a linear
autarky-free 2-SAT formula. In the middle case, the input formula is satisfiable; in
the other two cases, it is unsatisfiable. Observe that in the last case, it is unnecessary
to solve the remaining 2-SAT formula.

Theorem 26 All q-Horn formulas are linear autark formulas.

Proof Apply LinAut to q-Horn formula  . Then a linear autarky-free q-Horn
formula is output. Assume that all clauses in the output formula have at least 2
literals – this can be done because all clauses of  0 entering the Repeat loop for
the first time have at least 2 literals and any subsequent autark assignment would
not introduce a clause that is not already in  0. The rows and columns of M 0

representing the output q-Horn formula  0 may be permuted, and columns may
be scaled by �1 to get a form as shown on Page 389 where A1 represents a Horn
formula, D is nonpositive, and A2 represents a 2-SAT formula. Construct vector
α as follows. Assign equal negative values to all ˛i where i is the index of a column
through A1 (reverse the value if the column had been scaled by �1) and 0 to all
other ˛i . Then, since there are at least as many positive as negative entries in every
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row through A1, the product of any of those rows, unscaled, and α is greater than 0.
Since there are only negative entries in rows through D and all the entries through
columns of A2 multiply by ˛i values that are 0, the product of any of the rows
through D, unscaled, and α is also positive. Therefore, α shows that  0 is not
linear autarky-free, a contradiction. It follows that A1 D D D ; and the output
formula is either 2-SAT or ;. If it is 2-SAT, it must be unsatisfiable as argued in
Theorem 25. ut
The relationship between linear autarky-free formulas and the satisfiability index
provides a polynomial-time test for the satisfiability of a given CNF formula.

Theorem 27 If the shortest clause of a CNF formula  has width k and if the
satisfiability index of  is less than k=2, then  is satisfiable.

Proof This is seen more clearly by transforming variables as follows. Define real
n-dimensional vector β with components

ˇi D 2˛i � 1 for all 0 � i < n:

The satisfiability index ( 2) for the transformed variables may be expressed, by
simple substitution, as follows:

M β � 2Z � l ; (17)

where l is an n-dimensional vector expressing the number of literals in all clauses
and Z D hz; z; : : : ; zi. The minimum z that satisfies (17) is the satisfiability index
of  . Apply Algorithm LinAut to  which, by hypothesis, has shortest clause
of width k. The algorithm removes rows, so z can only decrease and k can only
increase. Therefore, if z < k=2 for  , it also holds for the  0 that is output by
LinAut. Suppose  0 6D ;. Formula  0 is linear autarky-free so the only solution to
0 � M 0β is β = 0 which implies 0 � 2Z � l . Since the shortest clause of  0
is at least k, it follows that k=2 � z. This contradicts the hypothesis that z < k=2.
Therefore,  0 D ; and, by Lemma 6, the input formula is satisfiable. ut
The effectiveness of this test on random k-CNF formulas9 will be discussed in
Sect. 6.13.

6.10 Minimally Unsatisfiable Formulas

An unsatisfiable CNF formula is minimally unsatisfiable if removing any clause
results in a satisfiable formula. The class of minimally unsatisfiable formulas is

9Random k-SAT formulas are defined in Sect. 7, Page 440
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easily solved if the number of clauses exceeds the number of variables by a fixed
positive constant k. This difference is called the formula’s deficiency. This section
begins with a discussion of the special case where deficiency is 1, then considers
the case of any fixed deficiency greater than 1. The discussion includes some useful
properties which lead to an efficient solver for this case and helps explain the
difficulty of resolution methods for many CNF formulas.

The following result was proved in one form or another by several people
(e.g., [5, 99]). A simple argument due to Truemper is presented.

Theorem 28 If  is a minimally unsatisfiable CNF formula with jV j D n

variables, then the number of clauses in  must be at least nC 1.

Proof Let  be a minimally unsatisfiable CNF formula with n C 1 clauses.
Suppose jV j � n C 1. Let G .V1; V2; E/ be the variable-clause matching graph
for  (see Sect. 3.5) where V1 is the set of clause vertices and V2 is the set of
variable vertices. There is no total matching with respect to V1 since this would
imply  is satisfiable, a contradiction. Therefore, by Hall’s Theorem [70] (stated
as Theorem 36 in Sect. 6.13), there is a subset V 0

 	 V1 with neighborhood smaller
than jV 0

 j. Let V 0
 be such a subset of maximum cardinality. Define 1 to be the CNF

formula consisting of the clauses of corresponding to the neighborhood of V 0
 . By

the minimality property of  ,  1 must be satisfiable. Delete from  the clauses of
 1 and from the remaining clauses all variables occurring in  1. Call the resulting
CNF formula  2. There must be a matching of the clauses of  2 into the variables
of  2 since otherwise V 0

 and therefore  1 were not maximal in size. Hence,  2 is
satisfiable. But if  1 and  2 are satisfiable, then so is  , a contraction. ut
Most of the remaining ideas of this section have been inspired by Oliver
Kullmann [96].

A saturated minimally unsatisfiable formula  is a minimally unsatisfiable
formula such that adding any literal l , existing in a clause of  , to any clause of  
not already containing l or :l results in a satisfiable formula. The importance of
saturated minimally unsatisfiable formulas is grounded in the following lemma.

Lemma 7 Let  be a saturated minimally unsatisfiable formula and let l be a
literal from  . Then

 0 D fc n f:lg W c 2  ; l … cg
is minimally unsatisfiable. In other words, if satisfied clauses and falsified literals
due to l taking value 1 are removed from  , what is left is minimally unsatisfiable.

Proof Formula  0 is unsatisfiable if  is; otherwise, there is an assignment which
sets l to 1 and satisfies  . Suppose there is a clause c 2  0 such that  0 n fcg is
unsatisfiable. Clause c must contain a literal l 0 that is neither l nor :l . Construct
 00 by adding l 0 to all clauses of  containing :l . Since  is saturated, there
is a truth assignment M satisfying  00 and therefore  0 with literals l 0 added as
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above. Assignment M must set l 0 to 1; otherwise,  0 n fcg is satisfiable. Then,
adjusting M so the value of l is 0 gives an assignment which also satisfies  0, a
contradiction. ut

The following is a simple observation that is needed to prove Theorem 29 below.

Lemma 8 Every variable of a minimally unsatisfiable formula occurs positively
and negatively in the formula.

Proof Let  be any minimally unsatisfiable formula. Suppose there is a positive
literal l such that 9c 2  W l 2 c and 8c 2  ;:l … c. Let  1 D fc W c 2  ; l … cg.
Let  2 D  n  1 denote the clauses of  which contain literal l . Clearly, j 2j > 0.
Then, by definition of minimal unsatisfiability,  1 is satisfiable by some truth
assignment M . Hence, M [ flg satisfies  1 [  2 D  . This contradicts the
hypothesis that  is unsatisfiable. A similar argument applies if literal l is negative,
proving the lemma. ut

Theorem 29 Let  be a minimally unsatisfiable formula with n > 0 variables, and
n C 1 clauses. Then there exists a variable v 2 V such that the literal v occurs
exactly one time in  and the literal :v occurs exactly one time in  .

Proof If  is not saturated, there is some set of literals already in  that may be
added to clauses in  to make it saturated. Doing so does not change the number of
variables and clauses of  . So suppose from now on that  is a saturated minimally
unsatisfiable formula with n variables and n C 1 clauses. Choose a variable v
such that the sum of the number of occurrences of literal v and literal :v in  is
minimum. By Lemma 8, the number of occurrences of literal v in  is at least one
and the number of occurrences of literal :v in  is at least one. By Lemma 7,

 1 D fc n f:vg W c 2  ; v … cg and  2 D fc n fvg W c 2  ;:v … cg

are minimally unsatisfiable. Clearly, jV 1 j D jV 2 j D n � 1 or else the minimality
of variable v is violated. By Theorem 28, the fact that  1 and  2 are minimally
unsatisfiable and the fact that j i j < j j, i 2 f1; 2g, it follows that j 1j D j 2j D n.
Therefore, the number of occurrences of literal v in  is one and the number of
occurrences of literal :v in  is one. ut

Lemma 9 Let  be a minimally unsatisfiable CNF formula with n > 0 variables
and nC 1 clauses. Let v be the variable of Theorem 29 and define clauses cv and
c:v such that literal v 2 cv and literal :v 2 c:v. Then there is no variable which
appears as a positive literal in one of cv or c:v and as a negative literal in the other.

Proof Suppose there is a variable w such that literal w 2 cv and literal :w 2 cNv.
By the minimality of  and the fact that variable v appears only in cv and c:v,
there exists an assignment M which excludes setting a value for variable v and
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Fig. 51 Algorithm for determining whether a CNF formula with one more clause than variable is
minimally unsatisfiable

satisfies  n fcv; c:vg. But M must also satisfy either cv, if w has value 1, or c:v

if w has value 0. In the former case M [ f:vg satisfies  and in the latter case
M [ fvg satisfies  , a contradiction. The argument can be generalized to prove the
lemma. ut

The next series of results shows the structure of minimally unsatisfiable formulas
and how to exploit that structure for fast solutions.

Theorem 30 Let  be a minimally unsatisfiable formula with n > 1 variables
and n C 1 clauses. Let v be the variable of Theorem 29, let cv be the clause of  
containing the literal v, and let c:v be the clause of  containing the literal :v.
Then  0 D  n fcv; c:vg [ fRcv

c:v
g is a minimally unsatisfiable formula with n � 1

variables and n clauses.

Proof By Lemma 9 the resolvent Rcv
c:v

of cv and c:v exists. Moreover, Rcv
c:v
¤ ;

if n > 1 or else  is not minimally unsatisfiable. Therefore,  0 is unsatisfiable,
contains n � 1 variables, and has n nonempty clauses. Remove a clause c from
 n fcv; c:vg. By the minimality of  , there is an assignment M which satisfies
 nfcg. By Lemma 2,M also satisfies  nfc; cv; c:vg[fRcv

c:v
g. Hence,M satisfies

 0 nfcg. Now remove cv and c:v from . Again, by the minimality of , there is an
assignmentM which satisfies  n fcv; c:vg and hence  0 n fRcv

c:v
g. Thus, removing

any clause from  0 results in a satisfiable formula and the theorem is proved. ut
Theorem 30 implies the correctness of the polynomial-time algorithm of Fig. 51

for determining whether a CNF formula with one more clause than variable is
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minimally unsatisfiable. If the output is “munsat(1)” the input formula is minimally
unsatisfiable, with clause-variable difference of 1; otherwise, it is not.

The following results provide an interesting and useful characterization of
minimally unsatisfiable formulas of the type discussed here.

Theorem 31 Let  be a minimally unsatisfiable formula with n > 1 variables and
n C 1 clauses. Then there exists a variable v, occurring once as a positive literal
and once as a negative literal, and a partition of the clauses of  into two disjoint
sets  v and  :v such that literal v only occurs in clauses of  v, literal :v only
occurs in clauses of  :v, and no variable other than v that is in  v is also in  :v

and no variable other than v that is in  :v is also in  v.

Proof By induction on the number of variables. The hypothesis clearly holds for
minimally unsatisfiable formulas of one variable, all of which have the form .v/ ^
.:v/. Suppose the hypothesis is true for all minimally unsatisfiable CNF formulas
containing k > 1 or fewer variables and having deficiency 1. Let  be a minimally
unsatisfiable CNF formula with kC1 variables and kC2 clauses. From Theorem 29
there is a variable v in  such that literal v occurs in exactly one clause, say, cv, and
literal :v occurs in exactly one clause, say, c:v. By Lemma 9 the resolvent Rcv

c:v

of cv and c:v exists and Rcv
c:v
6D ; or else  is not minimally unsatisfiable. Let

 0 D . n fcv; c:vg/ [ fRcv
c:v
g. That is,  0 is obtained from  by resolving cv and

c:v on variable v. By Theorem 30  0 is minimally unsatisfiable with k variables
and k C 1 clauses. Then, by the induction hypothesis, there is a partition  0

v0 and
 0

:v0 of clauses of  0 and a variable v0 such that literal v0 occurs only in one clause
of  0

v0 , literal :v0 occurs only in one clause of  0
:v0 , and, excluding v0, there is

no variable overlap between  0
v0 and  0

:v0 . Suppose Rcv
c:v
2  0

:v0 . Then  0
v0 and

. 0
:v0 n fRcv

c:v
g/ [ fcv; c:vg (denoted  v and  :v, respectively) form a nonvariable

overlapping partition of clauses of  (excluding v0 and :v0), literal v0 occurs
once in a clause of  v, and literal :v0 occurs once in a clause of  :v. A similar
statement holds if Rcv

c:v
2  0

v0 . Therefore, the hypothesis holds for  or any other
minimally unsatisfiable formula of k C 1 variables and k C 2 clauses. The theorem
follows. ut

Theorem 32 A CNF formula  with n variables and n C 1 clauses is minimally
unsatisfiable if and only if there is a refutation tree for  in which every clause of
 labels a leaf exactly one time, every variable of  labels exactly two edges (once
as a positive literal and once as a negative literal), and every edge label of the tree
appears in at least one clause of  .

Proof ( ) By induction on the size of the refutation tree. Suppose there is such
a refutation tree T for  . If T consists of two edges, they must be labeled v and
:v for some variable v. In addition, each clause labeling a leaf of T must consist
of one literal that is opposite to that labeling the edge the leaf is the endpoint of.
Hence,  must be .v/ ^ .:v/ which is minimally unsatisfiable.
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Now suppose the theorem holds for refutation trees of k > 2 or fewer edges and
suppose T has kC1 edges. Let v be the variable associated with the root of T , and
let  v and  :v be the sets of clauses labeling leaves in the subtree joined to the root
edges labeled v and :v, respectively. Define  1 D fc n f:vg W c 2  vg and  2 D
fc n fvg W c 2  :vg. It is straightforward to see that the relationships between each
refutation subtree rooted at a child of the root of T and  1 and  2 are as described
in the statement of the theorem. Hence, by the induction hypothesis,  1 and  2 are
minimally unsatisfiable. Let c be a clause in  1. Let M1 be an assignment to vari-
ables of 1 satisfying 1nfcg. LetM2 D M1[fvg. Clearly,M2 satisfies v as well as
all clauses of :v which contain literal v. The remaining clauses of  :v are a proper
subset of clauses of  2 and are satisfied by some truth assignment M3 to variables
of  2 since  2 is minimally unsatisfiable. Since the variables of  1 and  2 do not
overlap,M2[M3 is an assignment satisfying Nv[ vnfcg and therefore nfcg. The
same result is obtained if c is removed from  2. Thus,  is minimally unsatisfiable.

(!) Build the refutation tree in conjunction with running Algorithm Min Unsat
Solver as follows. Before running the algorithm, construct n C 1 (leaf) nodes and
distinctly label each with a clause of  . While running the algorithm, add a new
(non-leaf) node each time a resolvent is computed. Unlike the case for a normal
refutation tree, label the new node with the resolvent. Construct two edges from
the new node to the two nodes which are labeled by the two clauses being resolved
(cv and c:v in the algorithm). If the pivot variable is v, label the edge incident to
the node labeled by the clause containing v (alternatively :v) :v (v, respectively).
Continue until a single tree containing all the original leaf nodes is formed.

The graph constructed has all the properties of the refutation tree as stated in the
theorem. It must include one or more trees since each clause, original or resolvent,
is used one time in computing a resolvent. Since two edges are added for each new
non-leaf node and n new non-leaf nodes are added, there must be 2nC 1 nodes and
2n edges in the structure. Hence, it must be a single tree. Any clause labeling a node
contains all literals in clauses labeling leaves beneath that node minus all literals of
pivot variables beneath and including that node. In addition, the label of the root is
;. Therefore, all literals of a clause labeling a leaf are a subset of the complements
of edge labels on a path from the root to that leaf. Obviously, the complement of
each edge label appears at least once in leaf clauses. ut
An example of such a minimally unsatisfiable formula and corresponding refutation
tree is shown in Fig. 52.

Now, attention is turned to the case of minimally unsatisfiable formulas with
deficiency ı > 1. Algorithms for recognizing and solving minimally unsatisfiable
formulas in time nO.k/ were first presented in [98] and [58]. The fixed-parameter
tractable algorithm that is presented in [134] is discussed here.

Let  be a CNF formula with m clauses and n variables. The deficiency of  
is the difference m � n. Each subformula of  has its own deficiency, namely, the
difference between the number of clauses of the subformula and the number of
variables it contains. The maximum deficiency of  is then the maximum of the
deficiencies of all its subformulas. If, for every nonempty subset V 0 of variables
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¬v1 v1

¬v2 v2 ¬v3 v3

¬v4 v4 ¬v5 v5

¬v6 v6

(v1 ∨ v2) (¬v2)

(¬v1 ∨ ¬v4) (¬v1 ∨ v5) (¬v3 ∨ ¬v5)

(v3 ∨ v4 ∨ v6) (¬v1 ∨ v4 ∨ ¬v6)

= (v1 ∨ v2) ∧ (¬v2) ∧ (v3 ∨ v4 ∨ v6) ∧ (¬v1 ∨ v4 ∨ ¬v6) ∧
(¬v1 ∨ ¬v4) ∧ (¬v1 ∨ v5) ∧ (¬v3 ∨ ¬v5)

Fig. 52 A minimally unsatisfiable CNF formula  of six variables and seven clauses and a
corresponding refutation tree. Edge labels are variable assignments (e.g., :v1 means v1 has
value 0). Each leaf is labeled with a clause that is falsified by the assignment indicated by the
path from the root to the leaf

of  , there are at least jV 0j C q clauses C 	  such that some variable of V 0 is
contained in C , then  is said to be q-expanding. The following four lemmas are
stated without proof.

Lemma 10 The maximum deficiency of a formula can be determined in polynomial
time. ut

Lemma 11 Let  be a minimally unsatisfiable CNF formula which has ı more
clauses than variables. Then the maximum deficiency of  is ı. ut

Lemma 12 Let  be a minimally unsatisfiable formula. Then for every nonempty
set V 0 of variables of  , there is at least one clause c 2  such that some variable
of V 0 occurs in c. ut

Lemma 13 Let  be a CNF formula with maximum deficiency �. A maximum
matching of the bipartite variable-clause graph G of  does not cover � clause
vertices. ut

Lemma 13 is important because it is used in the next lemma and because it shows
that the maximum deficiency of a CNF formula can be computed with a O.n3/
matching algorithm.
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Lemma 14 Let  be a 1-expanding CNF formula with maximum deficiency ı. Let
 0 	  be a subformula of  . Then the maximum deficiency of  0 is less than ı.

Proof It is necessary to show that for any subset 0 	  , if the number of variables
contained in  0 is n0, then j 0j � n0 < ı. Let G be the bipartite variable-clause
graph of  . In what follows symbols will be used to represent clause vertices in
G and clauses in  interchangeably. Choose a clause c 2  n  0. Let MG be a
maximum matching on G that does not cover vertex c. There is always one such
matching because, by hypothesis, every subset of variable vertices has a neighbor-
hood which is larger than the subset, and this allows c’s cover to be moved to another
clause vertex, if necessary. Let C be the set of all clause vertices of G that are not
covered by MG . By Lemma 13 jC j D ı so since c …  0, jC \  0j < ı. Since
MG matches every clause vertex in  0 nC to a variable that is in  0, the number of
clauses in  0 nC must be no bigger than n0. Therefore, j 0j � n0 � j 0j � j 0 nC j.
But j 0j � j 0 n C j is the number of clauses in C \  0 which is less than ı. ut

Theorem 33 ([134]) Let  be a CNF formula with maximum deficiency ı. The
satisfiability of  can be determined in time O.2ın3/ where n is the number of
variables in  .

Proof Let m be the number of clauses in  . By hypothesis, m � n C ı. Let
G D .V1; V2; E/ be the variable-clause matching graph for  . Find a maximum
matchingMG forG. Since nm � n.nCı/ D O.n2/, this can be done inO.n3/ time
by the well-known Hopcroft-Karp maximum cardinality matching algorithm for
bipartite graphs [40]. The next step is to build a refutation tree for of depth ı. ut

Theorem 34 ([134]) Let  be a minimally unsatisfiable CNF formula with ı more
clauses than variables. Then  can be recognized as such in time O.2ın4/ where n
is the number of variables in  .

Proof By Lemma 11 the maximum deficiency of  is ı which, by Lemma 13, can
be checked in O.n3/ time. Since, by Lemma 14, the removal of a clause from  

reduces the maximum deficiency of  , the algorithm inferred by Theorem 33 may
be used to check that, for each c 2  ,  n fcg is satisfiable. The algorithm may
also be used to check that  is unsatisfiable. Since the algorithm is applied mC 1
times andm D nC ı, the complexity of this check is O.2ın4/. Therefore, the entire
check takes O.2ın4/ time. ut

6.11 Bounded Resolvent Length Resolution

This class is considered here because it is a counterpoint to minimally unsatisfiable
formulas. A CNF formula  is k-BRLR if Algorithm BRLR of Fig. 53 either
generates all resolvents of  or returns unsatisfiable.
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Fig. 53 Finding a k-bounded refutation

Algorithm BRLR implements a simplified form of k-closure [144]. It repeatedly
applies the resolution rule to a CNF formula with the restriction that all resolvents
are of size no greater than some fixed k. In other words, the algorithm finds what
are sometimes called “k-bounded” refutations.

For a given CNF formula with n variables andm clauses, the worst-case number
of resolution steps required by the algorithm is

kX

iD1
2i

 
n

i

!
D 2k

 
n

k

!
.1CO.k=n//:

This essentially reflects the product of the cost of finding a resolvent and the maxi-
mum number of times a resolvent is generated. The latter is 2k

�
n
k

�
. The cost of find-

ing a resolvent depends on the data structures used in implementing the algorithm.
For every clause, maintain a linked list of literals it contains, in order by index,

and a linked list of possible clauses to resolve with such that the resolvent
has no greater than k literals. Maintain a list T of matrices of dimension
n � 2; �n

2

� � 4; : : : ; �n
k

� � 2k such that each cell has value 1 if and only if a
corresponding original clause of  or resolvent exists at any particular iteration of
the algorithm. Also, maintain a list of clauses that may resolve with at least one
other clause to generate a new resolvent: the list is threaded through the clauses.
Assume a clause can be accessed in constant time and a clause can access its
corresponding cell in T in constant time by setting a link just one time as the clause
is scanned the first time or created as a resolvent.

Initially, set to 1 all the cells of T which correspond to a clause of  and set all
other cells to 0. Over

�
m
2

�
pairs of clauses, use 2L literal comparisons to determine

whether the pair resolves. If so and their resolvent has k or fewer literals and the
cell in T corresponding to the resolvent has value 0, then set the cell to 1, add a
link to the clause lists of the two clauses involved, and add to the potential resolvent
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list any of the two clauses that is not already threaded through it. This accounts for
complexityO.Lm2/.

During an iteration, select a clause c1 from the potential resolvent list. Scan
through c1’s resolvent list checking whether the cell of T corresponding to the other
clause, c2, has value 1. If so, delete c2 from c1’s list. If c1’s list is scanned without
finding a cell of value 0, delete c1 from the potential resolvent list and try the
next clause in the potential resolvent list. When some clause is paired with another
having a cell of value 0 in T , a new resolvent is generated. In this case, construct a
new clause and create a resolvent list for the clause by checking for resolvents with
all existing clauses.

6.12 Comparison of Classes

This section provides some intuition about the relative size and scope of the easy
classes discussed above.

Observe that the SLUR, q-Horn, nested, and matched classes are incomparable;
the class of q-Horn formulas without unit clauses is subsumed by the class of linear
autark formulas and SLUR is incomparable with the linear autark formulas. All
the other classes considered above are contained in one or more of the three. For
example, Horn formulas are in the intersection of the q-Horn and SLUR classes and
all 2-SAT formulas are q-Horn.

Any Horn formula with more clauses than distinct variables is not matched, but
is both SLUR and q-Horn.

The following is a matched and q-Horn formula but is not a SLUR formula:

.v1 _ :v2 _ v4/ ^ .v1 _ v2 _ v5/ ^ .:v1 _ :v3 _ v6/ ^ .:v1 _ v3 _ v7/:

In particular, in Algorithm SLUR, initially choosing 0 values for v4, v5, v6, and v7
leaves an unsatisfiable formula with no unit clauses. To verify q-Horn membership,
set ˛1 D ˛2 D ˛3 D 1=2 and the remaining ˛’s to 0 in (2).

The following formula is matched and SLUR but is not q-Horn:

.:v2 _ v3 _ :v5/ ^ .:v1 _ :v3 _ v4/ ^ .v1 _ v2 _ :v4/:

In particular, the satisfiability index of this formula is 4/3. To verify SLUR
membership, observe that in Algorithm SLUR no choice sequence leads to an
unsatisfiable formula without unit clauses.

The following formula is nested but not q-Horn (minimumZ is 5/4):

.:v3 _ :v4/ ^ .v3 _ v4 _ :v5/ ^ .:v1 _ v2 _ :v3/ ^ .v1 _ v3 _ v5/:

The following formula is nested but not SLUR (choose v3 first, use the branch
where v3 is 0 to enter a situation where satisfaction is impossible):
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.v1 _ v2/ ^ .v1 _ :v2 _ v3/ ^ .:v1 _ v4/ ^ .:v1 _ :v4/:

The following is a linear autark formula that is not q-Horn (α = h0:5;�0:5; 0i
and the minimum Z is 3/2):

.v1 _ v2 _ v3/ ^ .:v1 _ :v2 _ :v3/:

The following is SLUR but is not a linear autark formula (by symmetry, any
variable choice sequence in SLUR leads to the same result which is a satisfying
assignment and only α = h0; 0; 0i satisfies the inequality of (14)):

.:v1 _ v2 _ v3/ ^ .v1 _ :v2 _ v3/ ^ .v1 _ v2 _ :v3/ ^ .:v1 _ :v2 _ :v3/:

The following formula is minimally unsatisfiable with one more clause than
variable but is not 3-BRLR:

.v0 _ v1 _ v48/^ .v0 _ :v1 _ v56/^ .:v0 _ v2 _ v60/^ .:v0 _ :v2 _ v62/^

.v3 _ v4 _ :v48/^ .v3 _ :v5 _ v56/^ .:v3 _ v5 _ v60/^ .:v3 _ :v5 _ v62/^

.v6 _ v7 _ v49/^ .v6 _ :v7 _ :v56/^ .:v6 _ v8 _ v60/^ .:v6 _ :v8 _ v62/^

.v9 _ v10 _ :v49/^ .v9 _ :v10 _ :v56/^ .:v9 _ v11 _ v60/^ .:v9 _ :v11 _ v62/^

.v12 _ v13 _ v50/^ .v12 _ :v13 _ v57/^ .:v12 _ v14 _ :v60/^ .:v12 _ :v14 _ v62/^

.v15 _ v16 _ :v50/^ .v15 _ :v16 _ v57/^ .:v15 _ v17 _ :v60/^ .:v15 _ :v17 _ v62/^

.v18 _ v19 _ v51/^ .v18 _ :v19 _ :v57/^ .:v18 _ v20 _ :v60/^ .:v18 _ :v20 _ v62/^

.v21 _ v22 _ :v51/^ .v21 _ :v22 _ :v57/^ .:v21 _ v23 _ :v60/^ .:v21 _ :v23 _ v62/^

.v24 _ v25 _ v52/^ .v24 _ :v25 _ v58/^ .:v24 _ v26 _ v61/^ .:v24 _ :v26 _ :v62/^

.v27 _ v28 _ :v52/^ .v27 _ :v28 _ v58/^ .:v27 _ v29 _ v61/^ .:v27 _ :v29 _ :v62/^

.v30 _ v31 _ v53/^ .v30 _ :v31 _ :v58/^ .:v30 _ v32 _ v61/^ .:v30 _ :v32 _ :v62/^

.v33 _ v34 _ :v53/^ .v33 _ :v34 _ :v58/^ .:v33 _ v35 _ v61/^ .:v33 _ :v35 _ :v62/^

.v36 _ v37 _ v54/^ .v36 _ :v37 _ v59/^ .:v36 _ v38 _ :v61/^ .:v36 _ :v38 _ :v62/^

.v39 _ v40 _ :v54/^ .v39 _ :v40 _ v59/^ .:v39 _ v41 _ :v61/^ .:v39 _ :v41 _ :v62/^

.v42 _ v43 _ v55/^ .v42 _ :v43 _ :v59/^ .:v42 _ v44 _ :v61/^ .:v42 _ :v44 _ :v62/^

.v45 _ v46 _ :v55/^ .v45 _ :v46 _ :v59/^ .:v45 _ v47 _ :v61/^ .:v45 _ :v47 _ :v62/:

This formula was obtained from a complete binary refutation tree, variables v0
to v47 labeling edges of the bottom two levels and v48 to v62 labeling edges of the
top four levels. Along the path from the root to a leaf, the clause labeling that leaf
contains all variables of the bottom two levels and one variable of the top four
levels. Thus, resolving all clauses in a subtree rooted at variable v3i , 0 � i � 15,
leaves a resolvent of four literals, all taking labels from edges in the top four levels.

To any k-BRLR formula  that is unsatisfiable, add another clause arbitrarily
using the variables of  . The result is a formula that is not minimally satisfiable.

The above ideas can be extended to show that each of the classes contains a
formula that is not a member of any of the others. These examples may be extended
to infinite families with the same properties.

The subject of comparison of classes will be revisited in Sect. 6.13 using
probabilistic measures to determine relative sizes of the classes.
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6.13 Probabilistic Comparison of Incomparable Classes

Formulas that are members of certain polynomial-time solvable classes that have
been considered in this section appear to be much less frequent than formulas
that can usually be solved efficiently by some variant of DPLL. This statement is
supported by a probabilistic analysis of these classes where a random formula is an
instance of k-SAT with m clauses chosen uniformly and without replacement from
all possible width k clauses taken from n variables. A few examples may help to
illuminate. In what follows  is used to denote a random k-SAT formula.

Consider the class of Horn formulas (Sect. 6.2) first. The probability that a
randomly generated clause is Horn is .k C 1/=2k, so the probability that  is Horn
is ..kC1/=2k/m. This tends to 0 asm tends to1 for any fixed k. For a hidden Horn
formula (Sect. 6.3), regardless of switch set, there are only k C 1 out of 2k ways
(k ways to place a positive literal and 1 way to place only negative literals) that
a random clause can become Horn. Therefore, the expected number of successful
switch sets is 2n..k C 1/=2k/m. This tends to 0 for increasing m and n if m=n >
1=.k� log2.kC 1//. Therefore, by Markov’s inequality, is not hidden Horn, with
probability tending to 1, if m=n > 1=.k � log2.k C 1//. Even when k D 3, this is
m=n > 1. This bound can be improved considerably by finding complex structures
that imply a formula cannot be hidden Horn. Such a structure is presented next.

The following result for q-Horn formulas (Sect. 6.5) is taken from [59]. For
p D bln.n/c � 4, call a set of p clauses a c-cycle if all but two literals can be
removed from each of p � 2 clauses, all but three literals can be removed from
two clauses, the variables can be renamed, and the clauses can be reordered in the
following sequence:

.v1 _ :v2/ ^ .v2 _ :v3/ ^ : : : ^ .vi _ :viC1 _ vpC1/ ^ (18)

: : : ^ .vj _ :vjC1 _ :vpC1/ ^ : : : ^ .vp _ :v1/;

where vi 6D vj if i 6D j . Use the term cycle to signify the existence of cyclic
paths through clauses which share a variable: that is, by jumping from one clause
to another clause only if the two clauses share a variable, one may eventually return
to the starting clause. Given a c-cycle C 	  , if no two literals removed from C are
the same or complementary, then C is called a q-blocked c-cycle.

If  has a q-blocked c-cycle, then it is not q-Horn. Let a q-blocked c-cycle in
 be represented as above. Develop satisfiability index inequalities (2) for  . After
rearranging terms in each, a subset of these inequalities is as follows

˛1 � Z � 1C ˛2 � : : : (19)

: : :

˛i � Z � 1C ˛iC1 � ˛pC1 � : : :
: : :
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˛j � Z � 1C ˛jC1 � .1 � ˛pC1/� : : :
: : :

˛p � Z � 1C ˛1 � : : : : (20)

From inequalities (19) to (20), it can be deduced that

˛1 � pZ � p C ˛1 � .1� ˛pC1 C ˛pC1/ � : : :

or
0 � pZ � p � 1C : : :

where all the terms in : : : are nonpositive. Thus, all solutions to (19) through (20)
requireZ > .pC1/=p D 1C1=p D 1C1=bln2nc > 1C1=nˇ for any fixed ˇ < 1.
This violates the requirement (Theorem 19) thatZ � 1 in order for to be q-Horn.

The expected number of q-blocked c-cycles can be found and the second moment
method applied to give the following result.

Theorem 35 A random k-SAT formula is not q-Horn, with probability tending
to 1, if m=n > 4=.k2 � k/. ut

For k D 3 this is m=n > 2=3.
A similar analysis yields the same results for hidden Horn, SLUR, CC-

balanced, or extended Horn classes. The critical substructure which causes  
not to be SLUR is called a crisscross loop. An example is shown in Fig. 54 as
a propositional connection graph. Just one crisscross loop in  prevents it from
being SLUR. Comparing Fig. 54 and expression (18), it is evident that both the
SLUR and q-Horn classes are vulnerable to certain types of cyclic structures.
Most other polynomial-time solvable classes are similarly vulnerable to cyclic
structures of various kinds. But random k-SAT formulas are constructed without
consideration of such cyclic structures: at some point as m=n is increased,
cycles begin to appear in  in abundance, and when this happens, cycles
that prevent membership in one of the above named polynomial-time solvable
classes also show up. Cycles appear in abundance when m=n > 1=O.k2/.
It follows that a random k-SAT formula is not a member of one of the above
named polynomial-time solvable classes, with probability tending to 1, when
m=n > 1=O.k2/. By contrast, simple polynomial-time procedures will solve
a random k-SAT formula with high probability when m=n < 2k=O.k/.
The disappointing conclusion that many polynomial-time solvable classes are
relatively rare among random k-SAT formulas because they are vulnerable to
cyclic structures is given added perspective by considering the class of matched
formulas.

A k-CNF formula is a matched formula (see Page 415) if there is a total matching
in its variable-clause matching bipartite graph: a property that is not affected by
cyclic structures as above. A probabilistic analysis tells us that a random k-SAT
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Fig. 54 A criss-cross loop of t D 3pC2 clauses represented as a propositional connection graph.
Only cycle literals are shown in the nodes; padding literals, required for k � 3 and different from
cycle literals, are present but are not shown

generator produces many more matched formulas than SLUR or q-Horn formulas.
Let Q 	  be any subset of clauses of  . Denote by V.Q/ the neighborhood
of Q: that is, the set of variables that occur in Q. Then V.Q/ is the set variables
corresponding to a subset of vertices in V2 of G that are adjacent to the vertices
in V2 that correspond to clauses in Q. Denote the deficiency of Q by �.Q/.
From the definition of deficiency (Page 430), �.Q/ D jQj � jV.Q/j. A subset
Q 	  is said to be deficient if �.Q/ > 0. The following theorem is well
known.

Theorem 36 (Hall’s Theorem [70]) Given a bipartite graph with vertex sets V1
and V2, a matching that includes every vertex of V1 exists if and only if no subset of
V1 is deficient. ut

Theorem 37 Random k-SAT formulas are matched formulas with probability
tending to 1 if m=n < r.k/ where r.k/ is given by the following table [59].

k r.k/

3 0.64
4 0.84
5 0.92
6 0.96
7 0.98
8 0.990
9 0.995
10 0.997

ut

Theorem 37 may be proved by finding a lower bound on the probability that
a corresponding random variable-clause matching graph has a total matching.
By Theorem 36 it is sufficient to prove an upper bound on the probability that
there exists a deficient subset of clause vertices, and then show that the bound
tends to 0 for m=n < r.k/ as given in the theorem. This bound is obtained
by the first moment method, that is, by finding the expected number of deficient
subsets.
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The results in this subsection up to this point are interesting for at least two
reasons. First, Theorem 37 says that random k-SAT formulas are matched formulas
with high probability ifm=n < r.k/ which is approximately 1. But, by Theorem 35
and similar results, a random k-SAT formula is almost never a member of one of the
well-studied classes mentioned earlier unless m=n < 1=O.k2/. As already pointed
out, this is somewhat disappointing and surprising because all the other classes were
proposed for rather profound reasons, usually reflecting cases when corresponding
instances of integer programming present polytopes with some special properties.
Despite all the theory that helped establish these classes, the matched class, mostly
ignored in the literature because it is so trivial in nature, turns out to be, in some
probabilistic sense, much bigger than all the others.

Second, the results provide insight into the nature of larger polynomial-time
solvable classes of formulas. Classes vulnerable to cyclic structures appear to be
handicapped relative to classes that are not. In fact, the matched class has been
generalized considerably to larger polynomial-time solvable classes such as linear
autarkies [97,145] which are described in Sect. 6.9 and biclique satisfiable formulas
of Sect. 6.7.

But there is disappointing news concerning linear autarkies. Consider the test
for satisfiability that is implied by Theorem 27: find the satisfiability index z of
the given formula and compare against the width, say, k, of the formula’s shortest
clause; if z < k=2, then the formula is satisfiable. This test is based on the fact that
Algorithm LinAut, Page 422, will output 0 D ; on anyformula for which z < k=2.

Theorem 38 The above test for satisfiability does not succeed on a random k-SAT
formula  with probability tending to 1 as m; n!1 andm=n > 1. ut

7 The k-SAT Problem

The previous sections present SAT algorithm designs and applications. Those
sections are intended for people who use SAT technology, want to find out more
about what is going on under the hood, and may want to experiment with new
algorithm designs to suit particular problems. Those sections may also be useful to
people who find SAT interesting and want to see what others have accomplished
before trying out their new ideas. This section complements those sections. The
success of SAT algorithms is somewhat mysterious owing to the very simple and
cumbersome representation of constraints in conjunctive normal form. Is there
any particular reason that SAT solvers can often perform so well, defying normal,
reasonable intuition? Why can a few tweaks to SAT algorithms result in orders
of magnitude performance improvements? Theoretical results have contributed
partial answers to such questions and have even influenced the design of SAT
solvers. Section 6 presents some of these results. This section highlights some
others. In particular, the results of this section apply to the k-SAT problem.
In this section a k-SAT formula is a Boolean formula expressed in conjunctive
normal form where each clause has exactly k distinct literals, no two of which
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are complementary. A random k-SAT formula (restated from Sect. 6.13) is a
Boolean formula in conjunctive normal form with m clauses, each of which is
chosen uniformly and without replacement from all possible width k clauses
taken from n variables. The clause density of a random k-SAT formula is the
ratio m=n.

The theoretical results on k-SAT are best understood in terms of the so-called
satisfiability threshold rk which is the limiting clause density below which random
k-SAT formulas are nearly always satisfiable and above which random k-SAT
formulas are nearly always unsatisfiable. In [1, 2] the second moment method was
applied to a variant of k-SAT to show that rk D 2k log 2�O.k/. In Sect.6.13 several
algorithms that are designed to solve subclasses of CNF formulas were analyzed
with respect to random k-SAT formulas. It was shown that none of these algorithms
could solve a significant proportion of random k-SAT formula if density is greater
than 1.

Non- or limited backtracking variants of DPLL have been analyzed with respect
to random k-SAT formulas with results that are significantly better than and equally
insightful to those of Sect. 6.13. In [32–34] it was shown that DPLL will nearly
always solve a random k-SAT formula if m=n < O.2k=k/. The analysis can be
visualized as a system of clause flows between nodes that represent a collection of
clauses of widths from 1 to k. Each node holds a number of clauses of a particular
width and on every iteration there is some average flow out of a node as clauses
are satisfied and literals are falsified. The outward flow due to falsified literals
becomes an inward flow to a node holding clauses of one fewer literal. The reason
for the k in the denominator of the right side becomes apparent from this analysis:
the average flow of clauses into the node representing unit clauses rises above 1 if
m=n D !.2k=k/, and since only 1 clause is removed from that node in one iteration,
on average, the number of unit clauses rises and eventually it becomes likely that a
complementary pair of unit clauses exists in the partially assigned formula. These
results may be made to apply to any myopic algorithm (i.e., a straight line algorithm
whose distribution of expressions corresponding to a particular coalesced state
under the spectral coalescence of states) can be expressed by its spectral components
alone: that is, by the number of clauses of width i , for all 1 � i � k, and the
number of assigned variables. But in [3] it is shown that no myopic algorithm can
succeed in solving random 3-SAT formulas with high probability if m=n > 3:26.
However, using a non-myopic greedy algorithm, m=n may be as high as 3.52
before finding solutions becomes unlikely [69, 83, 84]. Note this is well below the
presumed threshold r3 D 4:26 and is also well inside the range of densities for
which Walksat and Survey Propagation do a good job of solving random 3-SAT
formulas.

Analyses have been performed on the unsatisfiable side of the threshold as well.
In particular, the probability that the length of a shortest resolution proof (this
includes DPLL algorithms) is bounded by a polynomial in n when m=n > c0

k2
k,

c0
k some constant, and limm;n!1m=n D O.1/ tends to 0 [17, 35]. But, if m is

great enough, a random k-SAT formula can, with high probability, be efficiently



Algorithms for the Satisfiability Problem 441

proven to have no solution. For example, if m=n D ‚.nk�1/, the probability that
there exist 2k clauses containing the same variables spanning all different literal
complementation patterns tends to 1, and since such a pattern can be identified in
polynomial time and certifies there is no solution, random expressions can be proven
not to have a solution with probability tending to 1 in this case. The best resolution
can do is not much different from m=n D ‚.nk�1/ [14]. This lack of success has
led to investigation of alternatives to resolution. A notable example is to cast SAT
as a HITTING SET problem and sum the number of variables that are forced to be
set to 1 and the number that are forced to be set to 0. If this sum can be shown to
be greater than n in polynomial time, a short proof of unsatisfiability follows. This
idea has been applied to random k-SAT and yields a polynomial-time algorithm
that nearly always proves unsatisfiability when m=n D nk=2Co.1/�1 or greater, a
considerable improvement over resolution results [64]. This may be regarded as an
example of how probabilistic analysis has driven the search for improved, alternative
algorithms.

Theoretical results on random k-SAT have provided a visual record of the nature
of problems that are hard for some algorithms and not for others. If one were to pro-
duce a figure in which formulas appear as points at some distance above the figure
floor, where distance is measured in the number of clauses that must be falsified
for any assignments and where points are connected to other points which are close
in terms of Hamming distance, one would see one or more inverted hills, some
of which may actually touch the floor. Each hill reaches a local minimum called
a local energy minimum (a contribution from physicists who have studied this).
When clause density is low, there exists a single local energy minimum. Then as
density is increased, there is a sudden change to several local minima. Finally, there
is another jump where exponentially many local minima materialize. The first jump
occurs at m=n D O.2k/, and the second jump occurs at m=n D O.2k/. Thus, it is
not surprising that so many algorithms perform miserably on unsatisfiable formulas
with density just above the transition point. Presumably, as density is increased
further, these local minima coalesce (since the minima cannot go below 0), and
verifying unsatisfiability becomes easy again. Theoretical results corroborate this
[14, 64].

Theoretical results have revealed performance upper bounds on solving k-SAT.
The algorithms that are inferred by these results are not considered practical, at
least not on their own, and are surprisingly simple. For example, consider the
probabilistic algorithm of Fig. 55. The analysis of [123] shows that this algorithm
almost always terminates in time that is within a polynomial factor of 1:334n for
any 3-SAT input, of 1:5n for any 4-SAT input, of 1:6n for any 5-SAT input, and so
on. These complexities, although not considered to represent efficient algorithms,
are far below the 2n complexity of a brute force search. Other results followed.
Notably, the bound for 3-SAT was lowered to 1:324n by combining Schöning’s
algorithm with the probabilistic algorithm of [115] in a nontrivial way [79], and the

best probabilistic bound is currently O

�
2
n.1� 1

ln. mn /CO ln.ln.m/
/
�

[48].
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Fig. 55 Probabilistic algorithm of Schöning

Upper bounds have also been obtained for deterministic algorithms. An early
upper bound ofO.˛nk � j j/ was obtained in (B. Monien and E. Speckenmeyer, 1979,
3-Satisfiability is testable in O.1:62r/ steps, Unpublished manuscript) [111] for a
simple algorithm that seeks and eliminates autarkies (Page 393) when possible. The
factor ˛nk bounds the Fibonacci-like recursion

Tk.1/ D Tk.2/ D : : : D Tk.k � 1/ D 1 and

Tk.n/ D Tk.n � 1/C Tk.n � 2/C : : :C Tk.n � k C 1/; for n � k;

where Tk.n/ expresses the worst-case complexity for solving k-SAT in this manner.
For example, ˛3 � 1:681, ˛4 � 1:8393, and ˛5 � 1:9276. Specifically, the
algorithm looks for a shortest clause c D fl1 _ : : : _ ljcjg in the current formula
 . If c has k � 1 or fewer literals, then  is split into at most k � 1 subformulas
according to the following subassignments:

.1/ l1 D 1

.2/ l1 D 0; l2 D 1
: : :

jcj/ l1 D l2 D : : : D ljcj�1 D 0; ljcj D 1:

If all clauses c of � have length k, then � is split into k subformulas as described,
and each subformula either contains a clause of length at most k � 1 or one of
the resulting subformulas only contains clauses of length k. In the latter case, the
corresponding subassignment is autark (Page 393), that is, all clauses containing
these variables are satisfied by this subassignment, thereby pruning a branch
of the search space. Numerous results reducing the deterministic upper bounds
followed. The best deterministic bound for solving k-SAT is O

�
.2 � 2

kC1 /
n
�

[49].
For CNF formulas of unrestricted clause length, the best worst-case time bound for
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a deterministic algorithm is O.2n.1�
1

log.2m/ // [47]. The algorithm was obtained by
derandomizing a probabilistic algorithm of [124].

8 Other Topics

Several significant topics are not treated in this chapter. There are experimental
algorithms that control the space of solutions with linear or quadratic cuts. The
Handbook on Satisfiability [19] is a good source of information about these. Several
probabilistic algorithms other than those presented here have been proposed, for
example, simulated annealing and genetic algorithm variants. These were omitted
in favor of more influential varieties. Message passing algorithms such as Survey
Propagation have been omitted as they seem to have a special niche. More general
constraint programming algorithms have been omitted as the focus here is strictly on
SAT. The use of SAT in non-monotonic settings was mentioned in the applications
section, but the topic is too broad to cover adequately in this chapter so stable
models, well-founded semantics, and answer set programming algorithms, among
others, have been omitted.

9 Conclusion

Resolution continues to be the foundation for modern SAT solvers. Resolution alone
is inadequate for most inputs. However, advances known collectively as conflict-
driven clause learning, plus advanced search and cache heuristics, have resulted
in CNF solvers that are quite useful in a variety of roles related to problems in
combinatorial optimization. One of the most useful roles of SAT to date is to support
solvers of mixed logic systems, known as Satisfiability Modulo Theory solvers.

Resolution-based solvers are gaining in performance and are replacing reduced
ordered binary decision diagrams in some roles. Gröbner bases applied to SAT
promise to replace resolution-based algorithms in significantly many roles, but
this has not happened yet because producing an optimal order of operations has
remained illusive. The same can be said for other algebraic systems such as cutting
planes. For awhile it seemed stochastic local search algorithms would replace
resolution-based algorithms in many roles, but this has not happened due to the
advances in conflict-driven clause learning noted above and because local search
techniques, as developed, are not able to prove unsatisfiability.

Some classes of SAT are solvable in polynomial time. There are many such
classes and many of those have been analyzed over the years. Using a probabilistic
measure, the scope of such classes seems limited.

Theoretical analyses illustrate the reasons why some algorithms work under
certain circumstances. Theoretical results have been used to design new algorithms
such as the probabilistic algorithm presented in this chapter. Theoretical results also
reveal upper bounds on algorithm performance.
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Glossary

Algorithm: (328, 336, 340)
A specific set of instructions for carrying out a procedure or solving a problem,
usually with the requirement that the algorithm terminate at some point.

Boolean Function: (316)
A mapping f0; 1g�f0; 1g� : : :�f0; 1g �! f0; 1g. If the dimension of the domain
is n, the number of possible functions is 22

n
.

Clause: (314, also see Formula, CNF)
In CNF formulas a clause is a disjunction of literals such as the following:
. Na _ b _ c _ d/. A clause containing only negative (positive) literals is called
a negative clause (alternatively, a positive clause). In this chapter a disjunction
of literals is also written as a set such as this: f Na; b; c; d g. Either way, the width of
a clause is the number of literals it contains. In logic programming a clause is an
implication such as the following: .a^b^c ! g/. In this chapter, if a formula is
a conjunction or disjunction of expressions, each expression is said to be a clause.

Clause Width: (see Clause)
Edge: (see Graph)
Endpoint: (338, 338, 345, 415, 416, 429)

One of two vertices spanned by an edge. See Graph.
Formula, DNF: (344)

DNF stands for disjunctive normal form. Let a literal be a variable or a negated
variable. Let a conjunctive clause be a single literal or a conjunction of two
or more literals (see Clause). A DNF formula is an expression of the form
C1 _ C2 _ : : : Cm where each Ci , 1 � i � m, is a conjunctive clause: that
is, a DNF formula is a disjunction of some number m of conjunctive clauses.
A conjunctive clause evaluates to true under an assignment of values to variables
if all its literals has value true under the assignment.

Formula, CNF: (327, 329, 340, 313)
CNF stands for conjunctive normal form. Let a literal be a variable or a negated
variable. Let a disjunctive clause be a single literal or a disjunction of two
or more literals (see Clause). A CNF formula is an expression of the form
C1 ^ C2 ^ : : : Cm where each Ci , 1 � i � m, is a disjunctive clause: that is, a
CNF formula is a conjunction of some number m of disjunctive clauses. In this
chapter a disjunctive clause, sometimes called a clause when the context is clear,
is regarded to be a set of literals and a CNF formula to be a set of clauses. Thus,
the following is an example of how a CNF formula is expressed in this chapter.

ff Na; bg; fa; c; d g; fc; Nd; Negg:

A CNF formula is said to be satisfied by an assignment of values to its variables
if the assignment causes all its clauses to evaluate to true. A clause evaluates to
true under an assignment of values to variables if at least one of its literals has
value true under the assignment.
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Formula, Horn: (315, 328)
A CNF formula in which every clause has at most one positive literal.
Satisfiability of Horn formulas can be determined in linear time [53, 78]. Horn
formulas have the remarkable property that, if satisfiable, there exists a unique
minimum satisfying assignment with respect to the value true. In other words,
the set of all variables assigned value true in any satisfying assignment other
than the unique minimum one includes the set of variables assigned value true
in the minimum one.

Formula, Minimally Unsatisfiable: (317)
An unsatisfiable CNF formula such that removal of any clause makes it
satisfiable.

Formula, Propositional or Boolean: (327, 336, 340, 342, 315)
A Boolean variable is a formula. If  is a formula, then . / is a formula. If
 is a formula, then : is a formula. If  1 and  2 are formulas and Ob is a
binary Boolean operator, then  1Ob 2 is a formula. In some contexts other than
logic programming, Na or  is used instead of :a or : to denote negation of a
variable or formula. Formulas evaluate to true or false depending on the operators
involved. Precedence from highest to lowest is typically from parentheses, to :,
to binary operators. Association, when it matters as in the case of! (implies),
is typically from right to left.

Graph: (340)
A mathematical object composed of points known as vertices or nodes and lines
connecting some (possibly empty) subset of them, known as edges. Each edge is
said to span the vertices it connects. If weights are assigned to the edges, then the
graph is a weighted graph. Below is an example of a graph and a weighted graph.

56123

2 76
1

12

5
4443

Graph, Directed: (321)
A graph in which some orientation is given to each edge.

Graph, Directed Acyclic: (324, 321, 320)
A directed graph such that, for every pair of vertices va and vb , there is not both
a path from va to vb and a path from vb to va.

Graph, Rooted Directed Acyclic: (324, 321, 320)
A connected, directed graph with no cycles such that there is exactly one vertex,
known as the root, whose incident edges are all oriented away from it.

Literal: (313 see also Formula, CNF)
A Boolean variable or the negation of a Boolean variable. In the context of a
formula, a negated variable is called a negative literal and an unnegated variable
is called a positive literal.
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Logic Program, Normal: (315)
A formula consisting of implicational clauses. That is, clauses have the form
.a^b^c ! g/where atoms to the left of! could be positive or negative literals.

Maximum Satisfiability (MAX-SAT): ()
The problem of determining the maximum number of clauses of a given CNF
formula that can be satisfied by some truth assignment.

Model, Minimal Model: (316)
For the purposes of this chapter, a model is a truth assignment satisfying a given
formula. A minimal model is such that a change in value of any true variable
causes the assignment not to satisfy the formula. See also Formula, Horn.

NP-hard: (327)
A very large class of difficult combinatorial problems. There is no known
polynomial-time algorithm for solving any NP-hard problem, and it is
considered unlikely that any will be found. For a more formal treatment of
this topic, see M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness, W.H. Freeman, San Francisco, 1979.

Operator, Boolean: (334, 313, 345)
A mapping from binary Boolean vectors to f0; 1g. Most frequently used binary
operators are

Or _: f00 �! 0; 10; 01; 11 �! 1g
And ^: f00; 01; 10 �! 0; 11 �! 1g

Implies !: f10 �! 0; 00; 01; 11 �! 1g
Equivalent $: f01; 10 �! 0; 00; 11 �! 1g

XOR ˚: f00; 11 �! 0; 01; 10 �! 1g

out of the 16 possible mappings. A Boolean operator O shows up in a formula
like this: .vl O vr / where vl is called the left operand of O and vr is called
the right operand of O. Thus, the domain of O is a binary vector whose first
component is the value of vl and whose second component is the value of vr . In
the text patterns of 4 bits are sometimes used to represent an operator: the first
bit is the mapping from 00, the second from 01, the third from 10, and the fourth
from 11. Thus, the operator 0001 applied to vl and vr has the same functionality
as .vl ^ vr /, the operator 0111 has the same functionality as .vl _ vr /, and the
operator 1101 has the same functionality as .vl ! vr /. The only meaningful
unary operator is ::f1 �! 0; 0 �! 1g. Sometimes Na or N is written for :a or : 
where a is a variable and  is a formula.

Operator, Temporal: (334, 334)
An operator used in temporal logics. Basic operators include henceforth (� 1),
eventually (˘ 1), next (ı 1), and until ( 1 U  2).

Satisfied Clause: see Formula, CNF
Satisfiability (SAT): (327, 330, 340)

The problem of deciding whether there is an assignment of values to the variables
of a given Boolean formula that makes the formula true. In 1971, Cook showed
that the general problem is NP-complete even if restricted to CNF formulas
containing clauses of width 3 or greater or if the Boolean operators are restricted
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to any truth-functionally complete subset. However, many efficiently solved
subclasses are known.

State: (334, 334, 336)
A particular assignment of values to the parameters of a system.

Subgraph: (340, 340, 342)
A graph whose vertices and edges form subsets of the vertices and edges
of a given graph where an edge is contained in the subset only if both its
endpoints are.

Unit Clause: (342)
A clause consisting of one literal. See also Clause in the glossary.

Variable, Propositional or Boolean: (330, 340, 342))
An object taking one of two values f0; 1g.

Vertex: see Graph
Vertex Weighted Satisfiability: (328)

The problem of determining an assignment of values to the variables of a given
CNF formula, with weights on the variables, that satisfies the formula and
maximizes the sum of the weights of true variables. The problem of finding a
minimal model for a given satisfiable formula is a special case.)

Weighted Maximum Satisfiability: (340, 342)
The problem of determining an assignment of values to the variables of a given
CNF formula, with weights on the clauses, which maximizes the sum of the
weights of satisfied clauses.
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U. Schöning, A deterministic .2 � 2=.k C 1//n algorithm for k-SAT based on local search.
Theor. Comput. Sci. 289, 69–83 (2002)

50. A. Darwiche, K. Pipatsrisawat, Complete algorithms, in Handbook of Satisfiability, ed. by A.
Biere, M. Heule, H. van Maaren, T. Walsh (IOS Press, Amsterdam, 2009), pp. 99–130

51. M. Davis, H. Putnam, A computing procedure for quantification theory. J. ACM 7, 201–215
(1960)

52. M. Davis, G. Logemann, D. Loveland, A machine program for theorem proving. Commun.
ACM 5, 394–397 (1962)

53. W.F. Dowling, J.H. Gallier, Linear-time algorithms for testing the satisfiability of
propositional Horn formulae. J. Logic Program. 1, 267–284 (1984)

54. C. Ducot, G.J. Lubben, A typology for scenarios. Future 12, 51–57 (1980)
55. B. Dutertre, L. de Moura, A Fast Linear-Arithmetic Solver for DPLL(T)*. Lecture Notes in

Computer Science, vol. 4144 (Springer, Berlin/Heidelberg, 2006), pp. 81–94
56. S. Even, A. Itai, A. Shamir, On the complexity of timetable and multi-commodity flow

problems. SIAM J. Comput. 5, 691–703 (1976)
57. R. Feldmann, N. Sensen, Efficient algorithms for the consistency analysis in scenario

projects. Technical Report, Universität Paderborn, Germany, 1997
58. H. Fleischner, O. Kullmann, S. Szeider, Polynomial-time recognition of minimal unsatisfiable

formulas with fixed clause-variable difference. Theor. Comput. Sci. 289(1), 503–516 (2002)
59. J. Franco, A. Van Gelder, A perspective on certain polynomial time solvable classes of

satisfiability. Discret. Appl. Math. 125(2–3), 177–214 (2003)
60. J.W. Freeman, Improvements to propositional satisfiability search algorithms. Ph.D. Thesis,

University of Pennsylvania, Computer and Information Science, 1995
61. Z. Fu, S. Malik, Solving the minimum-cost Satisfiability problem using SAT based branch-

and-bound search, in Proceedings of the International Conference on Computer Aided
Design (Association for Computing Machinery, New York, 2006), pp. 852–859

62. J. Gausemeier, A. Fink, O. Schlake, Szenario-Management (Carl Hanser Verlag, München-
Wien, 1995)

63. M. Godet, Scenarios and Strategic Management (Butterworths Publishing (Pty) Ltd., South
Africa, 1987)

64. A. Goerdt, M. Krivelevich, Efficient Recognition of Random Unsatisfiable k-SAT Instances
by Spectral Methods. Lecture Notes in Computer Science, vol. 2010 (Springer, Berlin, 2001),
pp. 294–304

65. E. Goldberg, Y. Novikov, How Good Can a Resolution Based SAT-Solver Be? Lecture Notes
in Computer Science, vol. 2919 (Springer, Berlin, 2003), pp. 35–52
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