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Lower Bounds on R(k)

Def R(k) is the least n such that

for all 2-colorings of the edges of K|, there exists a mono K.

k
We showed R(k) < %.

We stated R(k) < (4 — €)k.

How good are these upper bounds (UB)?
We show lower bounds (LB).

We compare our LBs to the UB 2% for convenience.
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How to Show A Lower Bounds

To show that R(k) > f(k) we need to construct

a 2-coloring of the edges of K (x) such that there is no mono K.
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Thm R(k) > (k —1)2.
We first give an example, on the next slide.
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Example: The kK =5 Case

The thick blue lines between two Kj's, X and Y, means that there
is a blue edge between every pair {x,y} with x € X and y € Y.

4 x 4 =16 vertices. No mono Ks.
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General Case

Here is a coloring of the edges of K(,_1)> with no mono Ki:

First partition [(k — 1)?] into k — 1 groups of k — 1 each.

RED if x,y are in same group

COL(x,y) = ) .
BLUE if x, y are in different groups
Look at any k vertices.
> They can't all be in one group, so it can't have RED Kj.

> They can't all be in different groups, so it can't have BLUE
K.
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So we have

k? — 2k +1 < R(k) < 22k-1

The upper and lower bounds are far apart.
We will do better!



