Grid Colorings that Avoid Rectangles

June 16, 2025

Credit Where Credit is Due

This talk is based on a paper by Stephen Fenner William Gasarch Charles Glover Semmy Purewal

2-Coloring 3×9

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles?

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles? What is a mono rectangle? Here is an example:

2-Coloring 3×9

Is there a 2-coloring of 3×9 with no mono rectangles? What is a mono rectangle? Here is an example:

R			R	
R			R	

Vote

Vote

1. There is a 2-coloring of 3×9 with NO mono rectangles.

Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.

Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.
- 3. The problem is **UNKNOWN TO SCIENCE**.

Vote

- 1. There is a 2-coloring of 3×9 with NO mono rectangles.
- 2. All 2-colorings of 3×9 have a mono rectangle.
- 3. The problem is **UNKNOWN TO SCIENCE**.

Answer on the next slide.

Given a 2-coloring of 3×9 look at each column.

Given a 2-coloring of 3×9 look at each column.

Each column is either

```
or or or or or or
```

Given a 2-coloring of 3×9 look at each column.

Each column is either

```
or or or or or or
```

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

Given a 2-coloring of 3×9 look at each column.

Each column is either

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Given a 2-coloring of 3×9 look at each column.

Each column is either

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Example:

R			R	
В			В	
R			R	

Given a 2-coloring of 3×9 look at each column.

Each column is either

Key: A 2-coloring of 3×9 is an 8-coloring of the 9 columns.

So some column-color appears twice.

Example:

R			R	
В			В	
R			R	

Can easily show that the two repeat-columns lead to a mono rectangle.

Work in groups:

1. Is there a 2-coloring of 3×8 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?
- 6. Is there a 2-coloring of 3×3 with no mono rectangles? YES:

Work in groups:

- 1. Is there a 2-coloring of 3×8 with no mono rectangles?
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?
- 4. Is there a 2-coloring of 3×5 with no mono rectangles?
- 5. Is there a 2-coloring of 3×4 with no mono rectangles?
- 6. Is there a 2-coloring of 3×3 with no mono rectangles? YES:

Example:

R	В	R
R	В	В
R	R	В

1. Is there a 2-coloring of 3×8 with no mono rectangles?

1. Is there a 2-coloring of 3×8 with no mono rectangles? NO: to avoid a repeat col must have col \blacksquare

Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.
- 2. Is there a 2-coloring of 3×7 with no mono rectangles?

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.
- 2. Is there a 2-coloring of 3×7 with no mono rectangles? NO: to avoid a repeat col must have col OR

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles?

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

2-Coloring 3×8 , 3×7 , ...

- Is there a 2-coloring of 3 × 8 with no mono rectangles?
 NO: to avoid a repeat col must have col
 Easily get mono rectangle.
- Is there a 2-coloring of 3 × 7 with no mono rectangles?
 NO: to avoid a repeat col must have col OR
 Easily get mono rectangle.
- 3. Is there a 2-coloring of 3×6 with no mono rectangles? YES

R	R	R	В	В	В
R	В	В	R	В	R
В	R	В	В	R	R

4. Hence there is a 2-coloring of 3×5 , 3×4 , 3×3 with no mono rectangles.

 $a \times b$ is *2-colorable* if there is a 2-coloring with no mono rectangles. What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where b > 7 NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

 $a \times b$ is 2-colorable if there is a 2-coloring with no mono rectangles. What we know

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 unknown so far.
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

Work on the 4×4 , 4×5 4×6 .

4×6 IS 2-Colorable

What we know

ightharpoonup 2 imes b is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 5 × 5, 5 × 6 unknown so far.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 unknown so far.
- ▶ $6 \times b$ where $b \ge 7$ NOT 2-colorable.

Work on 5×5 , 5×6 .

5 × 5 IS NOT 2-Colorable!

Let COL be a 2-coloring of $5\times5.$

5 × 5 IS NOT 2-Colorable!

Let COL be a 2-coloring of 5×5 . Some color must occur ≥ 13 times.

Case 1: There is a column with 5 R's

Case 1: There is a column with 5 R's.

$$\mathbf{R}$$
 o o o o

Remaining columns have $\leq 1 R$ so

Number of R's
$$\leq 5 + 1 + 1 + 1 + 1 = 9 < 13$$
.

Case 2: There is a column with 4 R's

Case 2: There is a column with 4 R's.

Remaining columns have $\leq 2 \text{ R's}$

Number of R's
$$\leq 4 + 2 + 2 + 2 + 2 \leq 12 < 13$$

Case 3: Max in a column is 3 R's

Case 3: Max in a column is 3 R's.

Case 3a: There are ≤ 2 columns with 3 R's.

Number of
$$\mathbb{R}$$
's $\leq 3 + 3 + 2 + 2 + 2 \leq 12 < 13$.

Case 3b: There are ≥ 3 columns with 3 R's.

Can't put in a third column with 3 R's!

Case 4: Max in a column is $\leq 2R$'s

Case 4: Max in a column is $\leq 2R$'s.

Number of
$$R's \le 2 + 2 + 2 + 2 + 2 \le 10 < 13$$
.

No more cases. We are Done! Q.E.D.

4日 → 4周 → 4 章 → 4 章 → 9 Q (*)

What we know

 \triangleright 2 × *b* is always 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable

- \triangleright 2 × *b* is always 2-colorable
- $ightharpoonup 3 \times 3, \ldots, 3 \times 6$ 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 4×4 , 4×5 , 4×6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- ▶ 5×5 , 5×6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- ► 6 × 6 NOT 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 NOT 2-colorable.

We now know **exactly** what grids are 2-colorable.

What we know

- \triangleright 2 × *b* is always 2-colorable
- \triangleright 3 × 3, ..., 3 × 6 2-colorable.
- ▶ $3 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 4 × 4, 4 × 5, 4 × 6 are 2-colorable
- ▶ $4 \times b$ where $b \ge 7$ NOT 2-colorable.
- \blacktriangleright 5 × 5, 5 × 6 NOT 2-colorable.
- ▶ $5 \times b$ where $b \ge 7$ NOT 2-colorable.
- \triangleright 6 × 6 NOT 2-colorable.

We now know **exactly** what grids are 2-colorable. Can we say it more succinctly?

Clean Short Statement

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Clean Short Statement

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Def $n \times m$ is 2-colorable if there is a 2-coloring with no mono rectangles.

Clean Short Statement

Def $n \times m$ contains $a \times b$ if $a \le n$ and $b \le m$.

Def $n \times m$ is 2-colorable if there is a 2-coloring with no mono rectangles.

Thm $n \times m$ is 2-colorable iff $n \times m$ does not contain any of the following grids:

$$\{3\times 7, 5\times 5, 7\times 3\}.$$

3-COLORABILITY

Which Grids are 3-Colorable?

Assume there is a 3-coloring of 11×11 .

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

R appears $\geq \frac{121}{3} = 40.33...$ times.

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

R appears $\geq \frac{121}{3} = 40.33...$ times.

Since ${\bf R}$ appears a Natuarl number of times, ${\bf R}$ appears ≥ 41 times.

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

R appears $\geq \frac{121}{3} = 40.33...$ times.

Since R appears a Natuarl number of times, R appears ≥ 41 times.

Let X be the set of grid-points that are \mathbb{R} .

Assume there is a 3-coloring of 11×11 .

Let **R** be the color that appears the most times.

R appears $\geq \frac{121}{3} = 40.33...$ times.

Since R appears a Natuarl number of times, R appears ≥ 41 times.

Let X be the set of grid-points that are \mathbb{R} .

$$|X| \ge 41.$$

For $1 \le i \le 11$ let x_i be the number of elements of X in the ith column.

For $1 \le i \le 11$ let x_i be the number of elements of X in the ith column. DO EXAMPLE ON BOARD

For $1 \le i \le 11$

let x_i be the number of elements of X in the ith column.

DO EXAMPLE ON BOARD

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

For $1 \le i \le 11$

let x_i be the number of elements of X in the ith column.

DO EXAMPLE ON BOARD

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{11} \binom{x_i}{2}.$$

For $1 \le i \le 11$

let x_i be the number of elements of X in the ith column.

DO EXAMPLE ON BOARD

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{11} \binom{x_i}{2}.$$

Plan The number of pairs of $\{1, \ldots, 11\}$ is $\binom{11}{2} = 55$.

For $1 \le i \le 11$

let x_i be the number of elements of X in the ith column.

DO EXAMPLE ON BOARD

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{11} \binom{x_i}{2}.$$

Plan The number of pairs of $\{1, ..., 11\}$ is $\binom{11}{2} = 55$. We will find a lower bound L on $\sum_{i=1}^{11} \binom{x_i}{2}$.

For $1 \le i \le 11$

let x_i be the number of elements of X in the ith column.

DO EXAMPLE ON BOARD

The number of pairs of $\{j, k\}$ such that some column has a pair of elements of X: one in the j-spot, one in the k-spot is

$$\sum_{i=1}^{11} \binom{x_i}{2}.$$

Plan The number of pairs of $\{1, ..., 11\}$ is $\binom{11}{2} = 55$. We will find a lower bound L on $\sum_{i=1}^{11} \binom{x_i}{2}$.

We will show L > 55, hence some two of the pairs are the same so get rectangle.

Inequality

Want to show that $\sum_{i=1}^{11} {x_i \choose 2} \geq 56$.

Inequality

Want to show that $\sum_{i=1}^{11} {x_i \choose 2} \geq 56$.

Want to find MIN of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

Inequality

Want to show that $\sum_{i=1}^{11} {x_i \choose 2} \geq 56$.

Want to find MIN of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

relative to the constraint

$$\sum_{i=1}^{11} x_i = 41.$$

Let M_N be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

Let M_N be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Let M_N be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Let M_R be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are reals

Let M_N be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Let M_R be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Let M_N be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Let M_R be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Clearly $M_{\mathsf{R}} \leq M_{\mathsf{N}}$.

Let M_N be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are Natural numbers

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Let M_R be the min of

$$\sum_{i=1}^{11} {x_i \choose 2}$$
 The x_i 's are reals

relative to the constraint $\sum_{i=1}^{11} x_i = 41$.

Clearly $M_{\mathsf{R}} \leq M_{\mathsf{N}}$.

Hence, to show $M_{\rm N} \geq$ 56, it suffices to show $M_{\rm R} >$ 55.

Well Known Theorem

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint

$$\sum_{i=1}^{11} x_i = 41$$

occurs when all of the x_i s are equal.

Well Known Theorem

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint

$$\sum_{i=1}^{11} x_i = 41$$

occurs when all of the x_i s are equal.

We take $x_i = 41/11$.

Well Known Theorem

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint

$$\sum_{i=1}^{11} x_i = 41$$

occurs when all of the x_i s are equal.

We take $x_i = 41/11$.

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$

Well Known Theorem

The Min of

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$
 The x_i 's are reals

relative to the constraint

$$\sum_{i=1}^{11} x_i = 41$$

occurs when all of the x_i s are equal.

We take $x_i = 41/11$.

$$\sum_{i=1}^{11} \frac{x_i(x_i-1)}{2}$$

$$\geq 11 \times \frac{41}{11} (\frac{41}{11} - 1) \frac{1}{2} = 55.9090 \dots$$

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs of points in X is

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs of points in X is

$$\geq$$
 56.

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs of points in X is

$$\geq$$
 56.

Hence some vertical pair of points occurs twice, so \boldsymbol{X} has a rectangle.

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs of points in X is

$$\geq$$
 56.

Hence some vertical pair of points occurs twice, so X has a rectangle.

That will be a R rectangle. Contradiction.

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs of points in X is

$$\geq$$
 56.

Hence some vertical pair of points occurs twice, so X has a rectangle.

That will be a R rectangle. Contradiction.

Question Can we use this technique to show 10×10 is not 3-colorable.

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs of points in X is

$$\geq$$
 56.

Hence some vertical pair of points occurs twice, so X has a rectangle.

That will be a R rectangle. Contradiction.

Question Can we use this technique to show 10×10 is not 3-colorable. No.

The number of vertical pairs is $\binom{11}{2} = 55$

The number of vertical pairs of points in X is

$$\geq$$
 56.

Hence some vertical pair of points occurs twice, so X has a rectangle.

That will be a R rectangle. Contradiction.

Question Can we use this technique to show 10×10 is not 3-colorable. No.

Question Is 10×10 3-colorable? See next slide.

10×10 is 3-colorable

Thm 10×10 is 3-colorable.

R	R	R	R	В	В	G	G	В	G
R	В	В	G	R	R	R	G	G	В
G	R	В	G	R	В	В	R	R	G
G	В	R	В	В	R	G	R	G	R
R	В	G	G	G	В	G	В	R	R
G	R	В	В	G	G	R	В	В	R
В	G	R	В	G	В	R	G	R	В
В	В	G	R	R	G	В	G	В	R
G	G	G	R	В	R	В	В	R	В
В	G	В	R	В	G	R	R	G	G

Complete Char of 3-colorability

Techniques and computer work got us this:

Thm The grid $m \times n$ is 3-colorable iff it does not contain any of the following:

$$\{4\times 19, 5\times 16, 7\times 13, 10\times 11, 11\times 10, 13\times 7, 16\times 5, 19\times 4\}$$

We got most of this but we did not know if 17×17 was 4-colorable.

We got most of this but we did not know if 17×17 was 4-colorable.

We know that our techniques could not show it wasn't 4-colorable, so it probably was.

We got most of this but we did not know if 17×17 was 4-colorable.

We know that our techniques could not show it wasn't 4-colorable, so it probably was.

On Nov 30, 2009 I posted a blog with the following offer: The first person to email me a 4-coloring of the 17×17 grid will receive \$289.00.

We got most of this but we did not know if 17×17 was 4-colorable.

We know that our techniques could not show it wasn't 4-colorable, so it probably was.

On Nov 30, 2009 I posted a blog with the following offer: The first person to email me a 4-coloring of the 17×17 grid will receive \$289.00.

Bernd Steinbach and Christian Postoff showed both 17×17 is 4-colorable and they are \$289 richer!

Theorem on 4-coloring

 $n \times m$ is 4-colorable iff it does not contain any of the following: $\{5 \times 41, 6 \times 31, 7 \times 29, 9 \times 25, 10 \times 23, 11 \times 22\} \cup \{22 \times 11, 23 \times 10, 25 \times 9, 29 \times 7, 31 \times 6, 41 \times 5\}.$

Questions to Ponder During the Break

Def Let $a, b, c \in \mathbb{N}$. The $a \times b$ is *c-colorable* if there is a coloring of $a \times b$ where there is no set of four points that are the same color, that are the corners of a rectangle.

- 1) Show that 4×48 is not 3-colorable.
- 2) Show that 4×18 is 3-colorable.
- 3) Find a number b such that $5 \times b$ is not 4-colorable.
- 4) Show that 5×40 is 4-colorable.
- **5)** Is there some number n such that, for all 2-colorings of $n \times n$, there are four points that are the same color that are the corners of a square?