BILL, RECORD LECTURE!!!!

BILL RECORD LECTURE!!!

Infinite Ramsey Theorem For Graphs

Exposition by William Gasarch

June 16, 2025

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, ..., n\}$. We often use [n] to just be an n-element set. Useage will be clear from context.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, ..., n\}$. We often use [n] to just be an n-element set. Useage will be clear from context.
- 3. 2^A is the powerset of A.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, ..., n\}$. We often use [n] to just be an n-element set. Useage will be clear from context.
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all a-sized subsets of A.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, ..., n\}$. We often use [n] to just be an n-element set. Useage will be clear from context.
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all a-sized subsets of A.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{2}$ is constant. (From now on **homog**.)

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, ..., n\}$. We often use [n] to just be an n-element set. Useage will be clear from context.
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all a-sized subsets of A.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{2}$ is constant. (From now on homog.)

Party Definition Party! All the guests are members of *A*. Each pair either knows each other or does not know each other.

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, ..., n\}$. We often use [n] to just be an n-element set. Useage will be clear from context.
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all a-sized subsets of A.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is **homogenous** if COL restricted to $\binom{H}{2}$ is constant. (From now on **homog**.)

Party Definition Party! All the guests are members of *A*. Each pair either knows each other or does not know each other.

 $H \subseteq A$ is a **homog** if either

(a) every pair of people in H knows each other, or

Let $a, n \in \mathbb{N}$. Let A be a set. A can be finite or infinite.

- 1. \mathbb{N} is the naturals which are $\{1, 2, 3, \ldots\}$.
- 2. $[n] = \{1, ..., n\}$. We often use [n] to just be an n-element set. Useage will be clear from context.
- 3. 2^A is the powerset of A.
- 4. $\binom{A}{a}$ is the set of all a-sized subsets of A.

Let COL: $\binom{A}{2} \rightarrow [2]$. A set $H \subseteq A$ is homogenous if COL restricted to $\binom{H}{2}$ is constant. (From now on homog.)

Party Definition Party! All the guests are members of A. Each pair either knows each other or does not know each other.

- $H \subseteq A$ is a **homog** if either
- (a) every pair of people in H knows each other, or
- (b) every pair of people in H does not knows each other.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

▶ An infinite subset $X \subseteq \mathbb{N}$.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

- ▶ An infinite subset $X \subseteq \mathbb{N}$.
- ► A 2-coloring of X

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

- ▶ An infinite subset $X \subseteq \mathbb{N}$.
- ► A 2-coloring of *X*

We do an example of the first few steps of the construction.

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an **infinite** homog set.

We will, given COL: $\binom{\mathbb{N}}{2} \to [2]$, form

- ▶ An infinite subset $X \subseteq \mathbb{N}$.
- ► A 2-coloring of *X*

We do an example of the first few steps of the construction. My apologies to the math majors who are not used to seeing examples.

Examples of The First Few Steps of The Construction

Look at 1 and all of the edges coming out of it:

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 1 (or both). We assume \mathbf{R} .

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 1 (or both). We assume \mathbf{R} . If $\mathrm{COL}(1,y) = \mathbf{R}$ we say that y agrees.

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 1 (or both). We assume \mathbf{R} .

If $COL(1, y) = \mathbf{R}$ we say that y agrees.

If $COL(1, y) \neq \mathbf{R}$ we say that y disagrees.

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 1 (or both). We assume \mathbf{R} .

If $COL(1, y) = \mathbb{R}$ we say that y agrees.

If $COL(1, y) \neq \mathbf{R}$ we say that y disagrees.

Kill all those who disagree!

Look at 1 and all of the edges coming out of it:

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 1 (or both). We assume \mathbf{R} .

If $COL(1, y) = \mathbb{R}$ we say that y agrees.

If $COL(1, y) \neq \mathbf{R}$ we say that y disagrees.

Kill all those who disagree!

We have a picture of this on the next slide.

Look at 1 and all of the edges coming out of it:

Look at 1 and all of the edges coming out of it:

1
2
3
4
5

Look at 1 and all of the edges coming out of it:

Assume that 1 has an infinite number of R coming out of it.

Look at 1 and all of the edges coming out of it:

Assume that 1 has an infinite number of **R** coming out of it. We kill 2,5, and anyone else who disagrees!

Look at 1 and all of the edges coming out of it:

Assume that 1 has an infinite number of **R** coming out of it. We **kill** 2,5, and anyone else who disagrees!

Look at 1 and all of the edges coming out of it:

Assume that 1 has an infinite number of **R** coming out of it. We kill 2,5, and anyone else who disagrees!

We Omit 1 from future pictures but its **Still Alive and Well**. https://www.youtube.com/watch?v=8--jVqaU-G8.

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.

Either \exists^{∞} **R** or \exists^{∞} **B** coming out of 3 (or both). We assume **B**.

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.

Either \exists^{∞} **R** or \exists^{∞} **B** coming out of 3 (or both). We assume **B**. If COL(3, y) = B we say that y agrees.

The Next Step

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 3 (or both). We assume \mathbf{B} .

If COL(3, y) = B we say that y agrees.

If $COL(3, y) \neq B$ we say that y disagrees.

The Next Step

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 3 (or both). We assume \mathbf{B} .

If COL(3, y) = B we say that y agrees.

If $COL(3, y) \neq B$ we say that y disagrees.

Kill all those who disagree! (except 1 which is immortal-for now).

The Next Step

There is a \mathbb{R} edge from 1 to 3, 4, 18, 73, 186, . . .; however, this puts no constraint on the colorings between those nodes.

Look at 3 and all of the edges coming out of it.

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 3 (or both). We assume \mathbf{B} .

If COL(3, y) = B we say that y agrees.

If $COL(3, y) \neq B$ we say that y disagrees.

Kill all those who disagree! (except 1 which is immortal-for now). We have a picture of this on the next slide.

Node 3 Has The Blues

Node 3 Has The Blues

We could keep doing this with node 4, but messy!

We could keep doing this with node 4, but messy! Note that at this point nodes 1 and 3 cannot be killed.

We could keep doing this with node 4, but messy! Note that at this point nodes 1 and 3 cannot be killed. We formalize the real construction on the next slides.

Given $\mathrm{COL}\colon \binom{\mathbb{N}}{2} \to [2]$ We Form COL'

We said earlier $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 1 (Or both, in which case use \mathbf{R} for what follows.) When we formalize this, we will **color** node 1 with that color.

Given COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ We Form COL'

We said earlier

Either $\exists^{\infty}\mathbf{R}$ or $\exists^{\infty}\mathbf{B}$ coming out of 1 (Or both, in which case use \mathbf{R} for what follows.) When we formalize this, we will **color** node 1 with that color. We will then kill all nodes who disagree, but, and this is key

Given COL: $\binom{\mathbb{N}}{2} \to [2]$ We Form COL'

We said earlier

Either $\exists^{\infty} \mathbf{R}$ or $\exists^{\infty} \mathbf{B}$ coming out of 1

(Or both, in which case use \mathbf{R} for what follows.)

When we formalize this, we will **color** node 1 with that color.

We will then kill all nodes who disagree, but, and this is key

Still have an Infinite Number of Nodes In Play.

 $H_1 = \mathbb{N}$

$$H_1 = \mathbb{N}$$

 $x_1 = 1$

```
\begin{aligned} &H_1=\mathbb{N}\\ &x_1=1\\ &c_1=\textbf{R} \text{ if } |\{y\in H_1\colon \mathrm{COL}(x_1,y)=\textbf{R}\}|=\infty, \ \textbf{B} \text{ otherwise}. \end{aligned}
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}

x_2 = \text{the least element of } H_2 - \{x_1\}.
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}

x_2 = \text{the least element of } H_2 - \{x_1\}.

c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
```

```
H_1 = \mathbb{N}

x_1 = 1

c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.

H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}

x_2 = \text{the least element of } H_2 - \{x_1\}.

c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
```

Assume H_s , x_s , c_s are defined.

```
H_1 = \mathbb{N} x_1 = 1 c_1 = \mathbb{R} if |\{y \in H_1 : \mathrm{COL}(x_1, y) = \mathbb{R}\}| = \infty, \mathbb{B} otherwise. H_2 = \{x_1\} \cup \{y \in H_1 : \mathrm{COL}(x_1, y) = c_1\} x_2 = \text{the least element of } H_2 - \{x_1\}. c_2 = \mathbb{R} if |\{y \in H_2 : \mathrm{COL}(x_2, y) = \mathbb{R}\}| = \infty, \mathbb{B} otherwise. Assume H_s, x_s, c_s are defined. H_{s+1} = \{x_1, \dots, x_s\} \cup \{y \in H_s : \mathrm{COL}(x_s, y) = c_s\}
```

```
H_1 = \mathbb{N}
x_1 = 1
c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.
H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}
x_2 = the least element of H_2 - \{x_1\}.
c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
Assume H_s, x_s, c_s are defined.
H_{s+1} = \{x_1, \dots, x_s\} \cup \{y \in H_s : COL(x_s, y) = c_s\}
x_{s+1} = the least element of H_{s+1} - \{x_1, \dots, x_s\}.
```

```
H_1 = \mathbb{N}
x_1 = 1
c_1 = \mathbb{R} if |\{y \in H_1 : COL(x_1, y) = \mathbb{R}\}| = \infty, B otherwise.
H_2 = \{x_1\} \cup \{y \in H_1 : COL(x_1, y) = c_1\}
x_2 = the least element of H_2 - \{x_1\}.
c_2 = \mathbb{R} if |\{y \in H_2 : COL(x_2, y) = \mathbb{R}\}| = \infty, B otherwise.
Assume H_s, x_s, c_s are defined.
H_{s+1} = \{x_1, \dots, x_s\} \cup \{y \in H_s : COL(x_s, y) = c_s\}
x_{s+1} = the least element of H_{s+1} - \{x_1, \dots, x_s\}.
c_{s+1} = \mathbb{R} if |\{y \in H_{s+1} : COL(x_{s+1}, y) = \mathbb{R}\}| = \infty, B otherwise.
```

```
\begin{split} &H_1 = \mathbb{N} \\ &x_1 = 1 \\ &c_1 = \mathbf{R} \text{ if } |\{y \in H_1 \colon \mathrm{COL}(x_1, y) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ otherwise.} \\ &H_2 = \{x_1\} \cup \{y \in H_1 \colon \mathrm{COL}(x_1, y) = c_1\} \\ &x_2 = \text{the least element of } H_2 - \{x_1\}. \\ &c_2 = \mathbf{R} \text{ if } |\{y \in H_2 \colon \mathrm{COL}(x_2, y) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ otherwise.} \end{split}
```

Assume H_s , x_s , c_s are defined.

$$\begin{split} &H_{s+1} = \{x_1, \dots, x_s\} \cup \{y \in H_s \colon \mathrm{COL}(x_s, y) = c_s\} \\ &x_{s+1} = \text{the least element of } H_{s+1} - \{x_1, \dots, x_s\}. \\ &c_{s+1} = \mathbf{R} \text{ if } |\{y \in H_{s+1} \colon \mathrm{COL}(x_{s+1}, y) = \mathbf{R}\}| = \infty, \ \mathbf{B} \text{ otherwise}. \end{split}$$

$$X = \{x_1, x_2, \ldots\}$$

All of the edges from x_1 to the right are R.

All of the edges from x_1 to the right are R.

All of the edges from x_2 to the right are B.

All of the edges from x_1 to the right are R.

All of the edges from x_2 to the right are B.

All of the edges from x_3 to the right are B.

All of the edges from x_1 to the right are R.

All of the edges from x_2 to the right are B.

All of the edges from x_3 to the right are B.

All of the edges from x_4 to the right are R.

All of the edges from x_1 to the right are R.

All of the edges from x_2 to the right are B.

All of the edges from x_3 to the right are B.

All of the edges from x_4 to the right are R.

All of the edges from x_5 to the right are **B**.

All of the edges from x_1 to the right are R. All of the edges from x_2 to the right are B. All of the edges from x_3 to the right are B. All of the edges from x_4 to the right are R. All of the edges from R0 to the right are R1.

All of the edges from $\mathbf{x_1}$ to the right are \mathbf{R} . All of the edges from $\mathbf{x_2}$ to the right are \mathbf{B} . All of the edges from $\mathbf{x_3}$ to the right are \mathbf{B} . All of the edges from $\mathbf{x_4}$ to the right are \mathbf{R} . All of the edges from $\mathbf{x_5}$ to the right are \mathbf{B} . All of the edges from $\mathbf{x_5}$ to the right are $\mathbf{c_s}$. What do you think our next step is?

Some Color Appears Infinitely Often

Some Color Appears Infinitely Often

Some Color Appears Infinitely Often

All of the edges from \boldsymbol{x}_{s} to the right are $\boldsymbol{c}_{s}.$

All of the edges from \boldsymbol{x}_{s} to the right are $\boldsymbol{c}_{s}.$

R or B (0r both) appears infinitely often. We will assume R.

All of the edges from \boldsymbol{x}_{s} to the right are $\boldsymbol{c}_{s}.$

R or B (0r both) appears infinitely often. We will assume R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

All of the edges from \boldsymbol{x}_s to the right are \boldsymbol{c}_s .

R or B (0r both) appears infinitely often. We will assume R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

$$\left(\mathbf{y_2}\right)$$

$$\left(\mathbf{y_5} \right) \cdots$$

All of the edges from \boldsymbol{x}_s to the right are \boldsymbol{c}_s .

R or B (0r both) appears infinitely often. We will assume R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

All of the edges from y_s to the right are R.

All of the edges from x_s to the right are c_s .

R or B (0r both) appears infinitely often. We will assume R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

All of the edges from y_s to the right are R. H is clearly an infinite homog set!

All of the edges from x_s to the right are c_s .

R or B (0r both) appears infinitely often. We will assume R.

$$H = \{ y \in X \colon \mathrm{COL}(y) = \mathbf{R} \}$$

All of the edges from \mathbf{v}_s to the right are \mathbf{R} . H is clearly an infinite homog set!

DONE!

Variants Of The Infinite Ramsey Theorem

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

What if we use *c* colors? Is the following true?

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

What if we use c colors? Is the following true?

Thm For all $c \in \mathbb{N}$, for all COL: $\binom{\mathbb{N}}{2} \to [c] \exists$ an infinite homog set.

We proved

Thm For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

What if we use c colors? Is the following true?

Thm For all $c \in \mathbb{N}$, for all COL: $\binom{\mathbb{N}}{2} \to [c] \exists$ an infinite homog set.

This is easy to prove using the same technique we used for the c=2 case.

Def

1) A **1-hypergraph** is (V, E) where $E \subseteq \binom{V}{1}$.

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq (\overline{V}_2)$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq \begin{pmatrix} V \\ 3 \end{pmatrix}$.

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq \begin{pmatrix} V \\ 3 \end{pmatrix}$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

Def

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq (V)$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

We proved the Infinite Ramsey Thm for 2-hypergraphs.

Def

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq \begin{pmatrix} V \\ 3 \end{pmatrix}$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

We proved the Infinite Ramsey Thm for 2-hypergraphs.

We will define homog sets for colorings of the edges of an a-hypergraph and prove **Infinite Ramsey Thm for** a-hypergraphs.

Def

- 1) A 1-hypergraph is (V, E) where $E \subseteq \binom{V}{1}$.
- 2) A **2-hypergraph** is (V, E) where $E \subseteq \binom{V}{2}$. This is just a graph.
- 3) A **3-hypergraph** is (V, E) where $E \subseteq \begin{pmatrix} V \\ 3 \end{pmatrix}$.
- a) An a-hypergraph is (V, E) where $E \subseteq {V \choose a}$.

We proved the Infinite Ramsey Thm for 2-hypergraphs.

We will define homog sets for colorings of the edges of an a-hypergraph and prove **Infinite Ramsey Thm for** a-hypergraphs.

In a later lecture.

We showed The Infinite Ramsey Thm For 2-Hypergraphs

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ there exists an infinite homog set.

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

In a later lecture we will use

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

In a later lecture we will use

The Infinite Ramsey Thm For 2-Hypergraphs to prove

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \rightarrow [2]$ there exists an infinite homog set.

In a later lecture we will use
The Infinite Ramsey Thm For 2-Hypergraphs to prove
The Finite Ramsey Thm for 2-Hypergraphs:

We showed **The Infinite Ramsey Thm For 2-Hypergraphs Thm** For all COL: $\binom{\mathbb{N}}{2} \to [2]$ there exists an infinite homog set.

In a later lecture we will use The Infinite Ramsey Thm For 2-Hypergraphs to prove The Finite Ramsey Thm for 2-Hypergraphs: Thm For all k there exists n = R(k) such that for all $COL: \binom{[n]}{2} \to [2]$ there exists a homog set of size k.