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Needed Notation

Some of you may know this, some don't, so for now take it as
known.

There are x people in a room.
We want to form a committee of y of them.

How many ways can we do this?

This is denoted (;) and it is ();T}f'!)!.

(;) is pronounced x choose y
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A Nice Lemma We Will Need

Thm
at+b—-1 n at+b—-1\ [a+b
b b—1 - b

RHS is numb of ways to choose b elts from a set of a + b elts.
We show LHS also solves that problem. Say there are a+ b people.
lan is one of them. There are 2 ways to pick out b people.

- +b—1
1) Include lan! Need to pick b—1 from a+b—1, (*]°77).
2) Do NOT include lan! Need to pick b from a+b—1, (*T271).

So the total number of ways is (32311) + (”Z 1).
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Comment on the Proof

We showed that
a+b—-1 N a+b—-1\ [a+b
b b—1 N b
by finding a problem that they were both the answer for.

This is often called A Combinatorial Proof

If we had written the (X) in terms of factorials and showed they
were equal that would be An Algebraic Proof

Combintorial proofs are better!
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Better Upper Bound on R(a, b)

Thm For all a,b > 2, R(a, b) < (°1).
We prove this by induction on a + b.
Base If a4+ b=4thena=b=2.
R(2,2) =1

242\ _ (4 _

(2%) = () =6

1<6.
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Induction Step

IH For all &', b/ with & + b < a+ b, R(d,b) < (alj'bl).
IS
R(a,b) < R(a—1,b) + R(a,b—1) < (aJrg*l) i (a+b—1).

b—1
Recall that we have (3+Z_1) + (aJEfIl) = (anb)
Hence we have
R(a,b) < R(a—1,b)+ R(a,b—1) < (*"371) + (°}571) = (%),

R(a,b) < (*1P).
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So What About R(k)?

R(k) = R(k, k) < <2kk>

. T . . n\n
Using Stirling’s approximation: n! ~ 27rn(g)
one can show

2k 22k
(k)N vk’

2k k
So we get R(k, k) <~ 2—\/; ~ %.

Best Known R(k) < (4 — €)* for a very small e.
Proof is mathematically sophisticated- beyond the scope of this
weeks mini-class on Ramsey Theory.



