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Arithmetic Sequences

Def An Arithmetic Progression is a sequence of natural numbers
that are equally spaced.

Example 4, 7, 10, 13

Def A k-AP is an arithmetic sequence of length k .
Example 4, 7, 10, 13 is a 4-AP.

Def Assume that {1, . . . ,W } has been 2-colored. A mono k-AP
is a k-AP where all of the numbers in it have the same color.

Example Use Board:
For W = 3, . . . , 9 we will see if there is a 2-coloring of {1, . . . ,W }
with no mono 3-AP.
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VDW’s Thm

VDW’s Thm For all k , c there exists W = W (k , c) such that for
all c-colorings of {1, . . . ,W } there exists a mono k-AP.

We look at Easy Cases.

W (1, c)=1. A mono 1-AP is just 1 number.

W (2, c)=c + 1. By Pigeon Hole Principle.

W (k, 1) =k . The mono k-AP is 1, 2, . . . , k .

W (3, 2) =Hmmm, this is the first non-trivial one.
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W (3, 2) exists

Do On Board



W (3, 3)

COL : [W ]→ [3].

How big should the blocks be?

Bill will do it on the board.
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W (3, c)

From what you have seen:

I You COULD do a proof that W (3, 4) exists. You would need
to iterate what I did twice.

I You can BELIEVE that W (3, c) exists though might wonder
how to prove it formally.

I There are ways to formalize the proof; however, they are not
enlightening.
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What Did We Use to Prove W (3, c)?

W (2, c) = c + 1 is just the Pigeon Hole Principle.

W (2, 25) =⇒ W (3, 2)
W (2, 32×3

7
+ 1) =⇒ W (3, 3).

W (2,X ) =⇒ W (3, 4) where X is very large.

Note that we do not do
W (3, 2) =⇒ W (3, 3).
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W (4, 2)

Bill does at at blackboard.



W (k, c)

I You could do a proof that W (k , c). You would need to
iterate what I did . . . a lot.

I You can believe that W (k , c) exists though might wonder
how to prove it formally.

I There are ways to formalize the proof; however, the are not
enlightening.
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Induction, But On What?

(2, 2) ≺ (2, 3) ≺ · · · ≺ (3, 2) ≺ (3, 3) ≺ · · · ≺ (4, 2) · · ·

Most inductions are on ω = {1 < 2 < 3 < 4 < · · · }.
Consider the following ordered sets

ω + ω = {1 < 2 < · · · < ω < ω + 1, · · · }

ω2 = ω+ω+ω+· · · = {1 < 2 < · · · < ω < ω+1, · · · < 2ω < 2ω+1 < · · · · · · }

The induction for VDW’s theorem is an ω2 induction.

Why can you do induction on that ordering?

Because ω2 has no ∞ desc seq. Thats called well founded.

The numbers are large since they come out of an ω2 induction.
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Are There Better Bounds?

First need to have sense of how big the bounds from the proof are.
Hierarchy of Fast Growing Functions:
1) Successor is S(x) = x + 1.
2) Addition is x + y = (x + (y − 1)) + 1. Addition is Iterated S .
3) Mult is xy = x(y − 1) + y . Mult is Iterated Addition.
4) Exp is xy = xy−1 × y . Exp is Iterated Mult.
5) Tower is T (x , y) = yT (x ,y−1). Tower is Iterated Exp.
6) Wower is iterated Tower.
7) Beyond that there are no names.
Def If a function is bounded by some function in this hierarchy we
say its Primitive Recursive. [For sticklers, thats not quite right
but we ignore the subtleties here.]

We can now phrase our question: is W (k, c) primitive recursive?
Vote: YES, NO, Unknown to Science.
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Are There Better Bounds?

In 1983 there were two thoughts in the air

1. W (k , c) is not prim rec and a logician will prove it. This had
happened with a different Theorem in Ramsey Theory (The
Paris-Harrington Large Ramsey Theorem (1977)).

2. W (k , c) is surely prim rec and a combinatorist will prove
this perhaps with a clever elementary technique.
And stop calling me Shirley.

So what happened?

Logician (Shelah) proved W (k , c) prim rec!

I Proof is elementary. Could teach to you given more time.

I Bounds still large. About the 11th level.
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A Man, A Plan, A Canal: Panama!

Well, a plan anyway.
We outline a plan for getting better upper bounds on W (k , c).

On the one hand, it lead to very deep mathematics.

On the other hand,

It DID succeed! (Oh! Thats a good thing!)
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Upper Density

Def Let A ⊆ N The upper density of A is

lim sup
n→∞

|A ∩ [n]|
n

Def Positive upper density means that the upper density is > 0.
Examples

1. For all k , {x : x ≡ 0 (mod k)} has upper den 1
k .

2. {x2 : x ∈ N} has upper den 0.
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A Conjecture, 1936

Conjecture If A ⊆ N has positive upper density then, for all k, A
has a k-AP.

Thm Conj implies VDW’s Thm.

The hope was that the proof of Conj would require a new proof of
VDW’s Thm that would lead to better bounds.
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I Roth won the Fields Medal in 1958 for his work on
Diophantine approximation (so not for this work).
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Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics.

So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?

Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.

I wish this was my dilemma.



Szemeredi
Szemeredi Proved the conjecture in 1975.

I Szemeredi’s proof used VDW’s theorem and hence did not
give better bounds.

I Even so, it introduced very deep methods.

I Proof is elementary but strains the use of the word
elementary.

I The theorem is known as Szemeredi’s Thm.

I Szemeredi should have won Fields Medal ($15,000) but did
not since combinatorics was not seen as deep math.

I Szemeredi won the Abel Prize ($700,000) in 2012 for his work
in combinatorics. So there!

I What’s: Fields Medal when you are 40 or Abel prize when you
are 70?
Fields Medal can lead to better jobs and pay while you are
still young.
I wish this was my dilemma.



Furstenberg

Furstenberg Proved the conjecture in 1977 using ergodic theory.

I Proof is nonconstructive, so gives no bounds on W (k , c).

I Logicians proved that you can get bounds from Furstenberg’s
proof. The bounds are much worse than VDW’s proof.

I His technique was later used to prove Poly VDW theorem.

I Proof is not elementary.

I Furstenberg won the Abel Prize ($700,000) in 2020.
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Gowers

Gowers Proved the conjecture in 2001 using Fourier analysis and
combinatorics.

I Gowers proof gave upper bounds you can actually write down:

W (k, c) ≤ 22
c2

2k+9

I Proof is not elementary.

I Gowers won the Fields Medal ($15,000) in 1998 for this work.
Why did Gowers win the Fields Medal but not Szemeredi?
I Gowers work used traditional deep math. Szemeredi’s used

new deep math that was not appreciated.
I Combinatorics was less respected in 1975 then in 1998.
I Causes of change: (1) combinatorics using deep math, (2) CS

inspired new problems in combinatorics.
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Known VDW Numbers

W (3, 2) = 9
W (3, 3) = 27
W (3, 4) = 76

W (4, 2) = 35
W (4, 3) = 293

W (5, 2) = 178

W (6, 2) = 1132: was Michal Kouril’s PhD thesis. Very clever.
I’ve asked Kouril when we will get W (7, 2).

He said Helen will work it out during the Exotic Set Lectures.

None of these results used mathematics of interest.
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Known Lower Bounds

1. Easy Use of Prob Method (was on HW) W (k , 2) ≥
√
k2k/2

(Easy extension to 3 colors)

2. Very sophisticated use yields W (k, 2) ≥ 2k

kε (Does not extend
to 3 colors.)

3. If p is prime then W (p, 2) ≥ p(2p − 1). Constructive! (Does
not extend to 3 colors.)



The Green-Tao Thm

Green-Tao proved the following in 2004.

Thm For all k there is a k-AP of primes.

I Does not follow from Sz Thm, primes do have upper density 0.

I Tao won the Field’s Medal ($15,000) in 2006, a MacArthur
Genius award ($500,000) in 2006, and a Breakthrough Prize
($3,000,000 but not as much prestige) in 2014.

I Green won the ConservaMath Medal ($0) in 2006.
The ConservaMath Medal is a merit-based alternative to the
Field’s Medal. Deserving recipients should solve a real
longstanding problem, rather than an invented problem.
Green earned this award in 2006 for the Green-Tao Thm to
dim the star of Obama-supporter Tao, making Tao less
effectively politically.

I There is also a ConservaMedical Medal- an alternative to the
Nobel Prize in Medicine. It went to RFK Jr for his fight
against life-saving vaccines. I am kidding.
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