ANY TWO-COLORING OF THE PLANE CONTAINS MONOCHROMATIC 3-TERM ARITHMETIC PROGRESSIONS

GABRIEL CURRIER, KENNETH MOORE, CHI HOI YIP

Presenter: Chaewoon Kyoung

Notation

 \mathbb{E}^n = n-dimensional Euclidean space

 ℓ_m = m collinear points with distance one apart

I.e. m-term arithmetic progression with common difference of 1

Theorem 1.1.

In any two-coloring of \mathbb{E}^2 ,

there exists a monochromatic congruent copy of ℓ_3 .

Theorem 1.1.

In any two-coloring of \mathbb{E}^2 , there exists a monochromatic congruent copy of ℓ_3 .

By scaling, there exists a monochromatic 3-term arithmetic progression with any common difference.

Theorem 1.2. (Erdős et. al.)

Let $n \geq 2$. A given 2-coloring of \mathbb{E}^n admits a monochromatic (a, b, c) triangle if and only if it admits a monochromatic equilateral triangle of side a, b, or c.

Theorem 1.2. (Erdős et. al.)

Let $n \geq 2$. A given 2-coloring of \mathbb{E}^n admits a monochromatic (a, b, c) triangle if and only if it admits a monochromatic equilateral triangle of side a, b, or c.

An L3 is a (1, 1, 2) monochromatic (degenerate) triangle.

Thus, if there is no L3 in a given coloring of \mathbb{E}^n , there are no monochromatic triangle of side length 1 or 2 in the same coloring

Lemmas we will use

Theorem 1.2. (Erdős et. al.) Will Not Prove

Lemma 2.1. If E^2 is 2-colored without a monochromatic L_3 , any unit eq. triangle colored R-R-B has B centroid Will Prove

Lemma 2.2. If E^2 is 2-colored without a monochromatic L_3 , a $\frac{1}{\sqrt{3}}$ scaled

Hexagonal grid has one valid coloring Will Prove

Proof for Lemma 2.1:

If E2 is 2-colored without a monochromatic L3, any unit eq. triangle colored R-R-B has B centroid

For the Sake of Contradiction...

Assume there is no monochromatic L_3 in an arbitrary 2-coloring of E^2 .

Construct a point set that includes many L₃s:

[a,b,c,d]:=
$$\left(\frac{a\sqrt{3}+b\sqrt{11}}{12}, \frac{c+d\sqrt{33}}{12}\right)$$
,

Let $X=\{[a,b,c,d]:a,b,c,d \in \mathbb{Z}\}$

Assume there is a 2-coloring of \mathbb{E}^2 without a mono L3.

For the sake of contradiction,

assume that a unit equilateral triangle of color R-B-B with the 3 points and its centroid in X has a centroid of color R.

Set of 56 points that admits no possible coloring for counterclaim

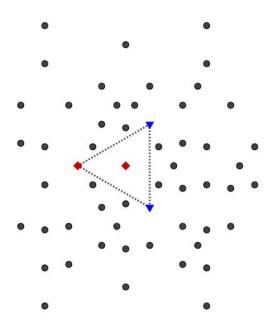


FIGURE 1. A set of 56 points admitting no coloring compatible with the initial coloring of the unit triangle and its center

A subset of the 56 point set

$$p_1 = [-4, 0, 0, 0],$$
 $p_2 = [0, 0, 0, 0],$ $p_3 = [2, 0, -6, 0],$ $p_4 = [2, 0, 6, 0],$ $q_1 = [-1, -3, 3, -1],$ $q_2 = [-1, -3, -3, 1],$ $q_3 = [2, 0, 0, 2],$ $q_3' = [2, 0, 0, -2],$ $q_4 = [-3, -3, -3, -1],$ $q_5 = [-3, -3, 3, 1].$

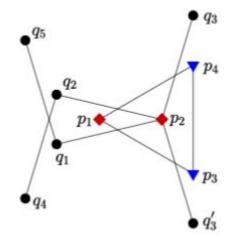


Figure 1: 56 point contradiction

$$[-4,0,0,0] \ p_1, \ [0,0,0,0] \ p_2, \ [2,0,-6,0] \ p_3, \ [2,0,6,0] \ p_4, \ [-1,-3,3,-1] \ q_1, \\ [-1,-3,-3,1] \ q_2, \ [2,0,0,2] \ q_3, \ [2,0,0,-2] \ q_3', v[-3,-3,-3,-1] \ q_4, \ [-3,-3,3,1] \ q_5, \\ [-1,-3,-3,-3], \ [-1,3,3,1], \ [-1,3,-9,1], \ [3,3,-3,-1], \ [-2,0,-6,0], \ [1,3,-9,-1], \\ [-2,0,0,-2], \ [1,-3,-3,-1], \ [4,0,0,0], \ [-1,3,9,-1], \ [0,0,-6,-2], \ [-1,-3,9,1], \\ [1,3,-15,1], \ [1,-3,3,1], \ [1,3,-3,1], \ [-2,0,6,0], \ [-3,-3,9,-1], \ [1,3,-3,-3], \\ [6,0,0,2], \ [5,-3,-3,-1], \ [-1,-3,3,3], \ [3,3,-9,1], \ [-5,3,3,1], \ [6,0,0,-2], \\ [-2,6,0,0], \ [1,3,3,-1], \ [5,-3,3,1], \ [-1,-3,-15,1], \ [0,0,6,2], \ [3,-3,-3,1], \\ [0,0,6,-2], \ [5,3,-3,1], \ [-1,3,-3,-1], \ [0,0,-6,2], \ [0,0,-12,0], \ [-3,3,3,-1], \\ [-1,-3,-9,-1], \ [3,-3,3,-1], \ [-2,0,0,2], \ [-1,3,3,-3], \ [-3,3,-3,1], \ [3,3,3,1], \\ [5,3,3,-1], \ [1,-3,3,-3], \ [1,3,9,1], \ [1,3,3,3].$$

A subset of the 56 point set

$$p_1 = [-4, 0, 0, 0],$$
 $p_2 = [0, 0, 0, 0],$ $p_3 = [2, 0, -6, 0],$ $p_4 = [2, 0, 6, 0],$ $q_1 = [-1, -3, 3, -1],$ $q_2 = [-1, -3, -3, 1],$ $q_3 = [2, 0, 0, 2],$ $q_3' = [2, 0, 0, -2],$ $q_4 = [-3, -3, -3, -1],$ $q_5 = [-3, -3, 3, 1].$

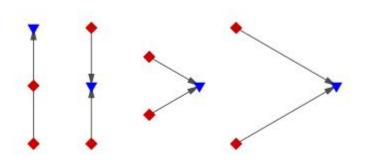
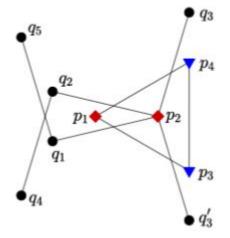
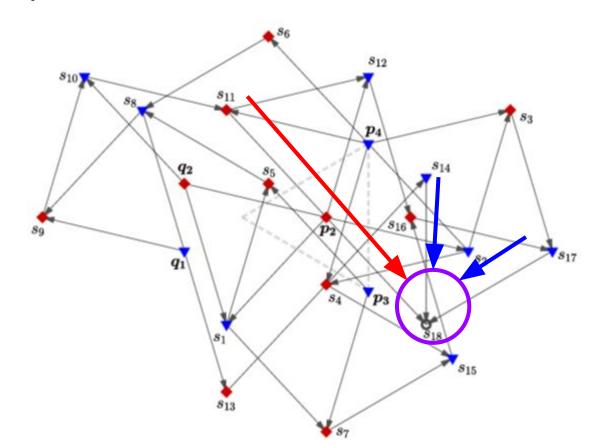


FIGURE 3. The color implication steps



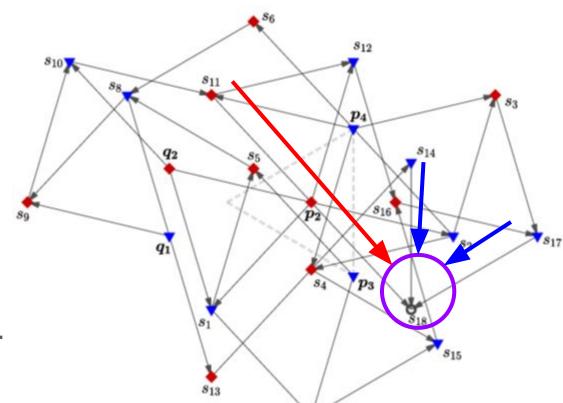
Casework on q1 and q2

q1 R and q2 B results in:



Casework on q1 and q2

q1 R and q2 B results in:



End of proof for Lemma 2.1.

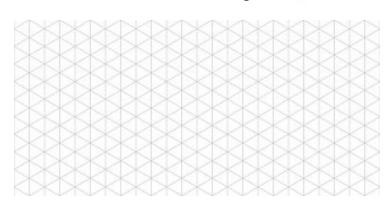
Lemmas we will use

Theorem 1.2. (Erdős et. al.) Will Not Prove

Lemma 2.1. If E^2 is 2-colored without a monochromatic L_3 , any unit eq. triangle colored R-R-B has B centroid Just Proved

Lemma 2.2. If E^2 is 2-colored without a monochromatic L_3 , a $\frac{1}{\sqrt{3}}$ scaled

Hexagonal grid has one valid coloring



Proof for Lemma 2.2:

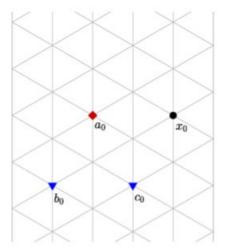
If E2 is 2-colored without a monochromatic L3, a $\frac{1}{\sqrt{3}}$ scaled

Hexagonal grid has one valid coloring

W.L.O.G. Suppose a unit triangle on points $\{a_0,b_0,c_0\}$ with R,B,B coloring,

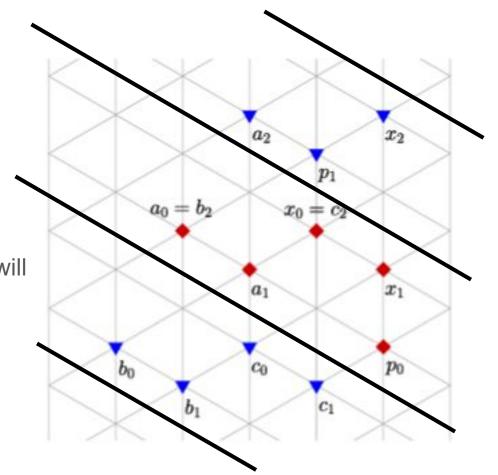
respectively

Now define x_0 as:



Casework again on x_0 If x_0 is R:

By continuing the steps, the grid will result in repetition of: 2 rows of R and 2 rows of B



Casework again on x_0 If x_0 is B:

By repetition, it will result the same as when x_0 is R

 x_0' x_0 x_0

End of proof for Lemma 2.2.

Using Lemma 2.2 repeatedly results...

A unique grid!

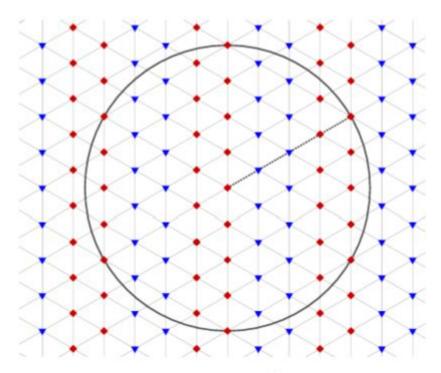


FIGURE 7. A circle with radius $\frac{4}{\sqrt{3}}$ in the colored grid

Proof of Theorem 1.1.

From the unique grid,

Now choose a R point:

All 6 points $\frac{4}{\sqrt{3}}$ units away from the point are also red

Rotate the whole grid to make a red circle of radius $\frac{4}{\sqrt{3}}$

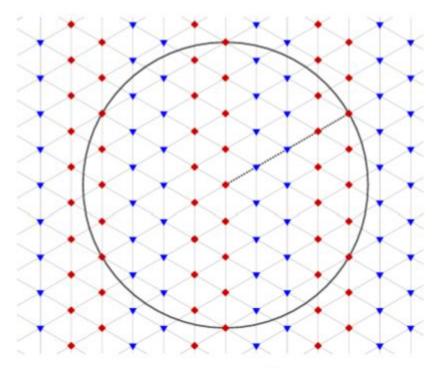


FIGURE 7. A circle with radius $\frac{4}{\sqrt{3}}$ in the colored grid

Now take a B point close enough and make a congruent circle with B color, which would intersect with R circle

The intersection are both B and R Contradiction!!

End of the proof for the Theorem 1.1

