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1 Abstract

In Euclidean Ramsey Theory, a line is a sequence of collinear points with
distance 1. Such a line is notated as an [,, where n is the number of points.
For k-colorings of R™, a red [,, is said to be an [,, whose points are all colored
red. E* — (I,,1) is written to mean that in every coloring of R", 3 a red I,
or a blue [,. Below is an example of a red [5.

It is known for a few small m that E® — (I3,l,,). The simplest example is
when m = 2. It is trivial to prove that E" — (I3,l5). For example, if there
are no blue points in a coloring then every I3 is red, and if there is a blue
point, the figure below shows a set of 11 points, including the point known
to be blue (labeled B) for which it is impossible to color them all blue or red
without getting a red [3 or a blue [5.




An example coloring that fails is shown below:

It has been proven by Conlon and Wu [1] that E™ 4 (I3, l,,) for some number
m. Their paper used two smaller lemmas to determine that m < 10°.
The first lemma discussed bounds on the number of sign patterns of some
quantity of polynomials with given maximum degree that accept a given
number of inputs. The second lemma discussed bounds on the number of
specific intervals that any quadratic falls into.

2 Introduction
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Def 2.1 The sign pattern of a series of functions, calculated at a point, is
defined to be the sequence of the signs of the functions at the point.

Here is an example of a sign pattern being calculated:
Say we want to find the sign pattern of functions (z 4+ 1)y, sin (y + z) , 22—
xy when £ = 0 and y = 37. It would be calculated as such:

Function Value Sign
x?y (0+1)>-3r=3n| +
z2y sin(3r+0)=-1| —
22y 2:0-0-57r=0 0

Reading from top to bottom the Sign column, we find the sign pattern
to be the string "4 — 0”.




Def 2.2 The sign pattern of a series of functions, calculated at a point, is
defined to be the sequence of the signs of the functions at the point.

Here is an example of what is meant: Given functions x + 2 + 3y,3z — 1 —
Function Value Sign
2y (0+1)°-3r=3r| +
x2y sin(3r+0)=-1| —
%y 2:.0-0-57m=0 0

Reading from top to bottom the Sign column, we find the sign pattern
to be the string "4+ — 0”.

8y,5r + 2y + 7

Notation 2.3 E” is written to mean n-dimensional Euclidean space. A k-
coloring of R™ is some f : R™ — [k]. In this paper we focus on 2-colorings of
R2.

Def 2.4 Let Reguax (d,n,p) be the mazimum number of regions n polyno-
mials with maximum degree p with d inputs.

Def 2.5 Let Regmaxin (d, 1, p) be the mazimum number of regions n linear
polynomials with maximum degree p with d inputs.

Def 2.6 Let [,, be a set of points aq, as, ..., a, where a;,1 — a; = u for some
lu| = 1.
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Def 2.7 A polynomial P (a1, as,...,aa) =33 45, i o
for constant c.
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Def 2.8 A linear polynomial O (ay, as, ..., aq) = Zle c;a; for constant c.

Notation 2.9 Let the set Py, consist of all P with d inputs and maximum
degree p. Let the set P, , be the power set of Pg,,.



It will later be useful to consider trivial cases of Regn., and of Regmaxiin-
Some are listed here.

An obvious bound on Regnax (d,n,p) is 3". For n polynomials, each may
return one of three signs: +, —, or 0. Therefore, there exist 3" sign patterns.

Regmaxin (0, n) represents a set of constants. Since the sign of a constant
never changes, the sign pattern is always the same, so Regmaxin (0,7) = 1.

Regmaxiin (d,0) represents exactly zero polynomials. Since there are no
polynomials, the sign pattern is of length 0, for which only one pattern
exists. Therefore, Regmaxin (d,0) = 1.

Def 2.10 A function F(n) = mod (n? + an + 3, p) for real a,3 and prime p.
F(n) then takes on values in [0, p).

A function R(n) is taken to be to be the number of regions [0, 1) ,[1,2),...,[p — 1,p)
that contain at least one value in F'(1), F(2),..., F'(n). For the sake of this
paper, F' will be defined in advance.

Def 2.11 R(n,«,8) = [{i||{jlj € [n],i < F(j) <i+1}| #0}| for F(n) =
mod (n? + an + 3,p).

It will also be useful to consider the inverse of R, which we will call Q.

Notation 2.12 Let Q (o, #) be the smallest number such that R (Q (o, 8) , 0, 8) =
p, if such a number exists at all.

A particularly powerful lower bound for the number of sign patterns of
polynomials was found by Olenik et. al. A special case of their theorem was
used by Conlon et. al. to obtain the following corollary:

Theorem 1 n polynomials of degree p with d variable will form, at most,

(fﬂ)ﬂ

i )d sign patterns, forn > d.

Our proof focuses on a geometric interpretation of Reg, ax, where Olenik’s
mainly relied on matrix manipulation.

In Section 1 we present the problem and a basic overview of Conlon and
Wu'’s paper. In Section 2 we state definitions regarding the two lemmas given
in Conlon and Wu’s paper. In Section 3 we discuss and attempt to improve
the result given by Olenik. In Section 4 we use a Monte Carlo simulation
to give a better bound on the number of regions a polynomial falls into. In
Section 5 we use our results to improve the bounds on m and present open
questions.



3 Signs

It is useful to imagine the sign of a function P with d inputs as a surface
cutting R? into at most parts: where P > 0, P < 0, and where P = 0. Note
that some polynomials, like 22 or 2241, do not divide space into three pieces.

For a set of polynomials Py, P, ..., P,, the R*! surface P, = 0 splits R?
into some number of regions. (For the sake of this paper, we take P = 0 as
a region as well as P > 0 and P < 0.) Due to the continuity of polynomials,
every region contains only points with the same sign pattern. Therefore, the
number of sign patterns < Regyax (d,n,p).

Lemma 3.1 The intersection of any two hyperplanes in R™ is a hyperplane
in R,

liroof: Let H be the hyperplane defined by the_)set of points 7 where
he - 7+hi =0, and J be the set of points 7 where Je 7 +7; = 0. Then let
hj = Z?:Q hc,iQJz’ —+ hz and jj = Z?:_()z jcﬂ‘l‘i +]z Then hj + hC,OZEO + hc,1$1 = O
th hql

and j; + jeoTo + jears = 0. If {

} is invertible, then there is one
Je,0 Je

solution for g and z;. |1

Lemma 3.2 Regnaxin (4,7 + 1) < Regmaxiin (d, 7)+2 Regmaxiin (d — 1,n) Vd, n >
1.

Proof:  Assume you have n hyperplanes, with d inputs, that divide space
into the maximum number of regions, e.g. Regmaxin (d,n) regions. Sup-
pose you add another hyperplane H, defined by P = 0. This hyperplane
may intersect any number of other planes. The intersections of each hy-
perplane with the new hyperplane form a hyperplane with one fewer di-
mension. At worst, you will get Regmaxin (d — 1,1) regions formed by the
intersection. Notice that these regions exist in the higher level of space,
where P = 0. Every region that existed before H that is split by H be-
comes either two or three new regions. All points in this region will have
the same sign pattern, except for the sign of P, which might be 1,0,or—1
for those points. We may assume the cut makes three new regions to cal-
culate a bound for Regpaxin. Therefore, you get 2 more regions then there
were before for those divided. Recall that since Regmaxin (d — 1,1) regions
were formed, Regmaxin (d — 1, 1) regions must have been cut. Therefore, you
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have Reguaxin (d — 1,n) - 2 new regions. There were Regaxin (d, 1) regions
before this new hyperplane was added, so after adding another hyperplane
you have Regmaxin (d,1) + 2 Regmaxiin (d — 1,n) regions. However, the new
hyperplane represents another polynomial with degree 1 and d dimensions,
so the number of new regions is, at worst, Regmaxin (d,n + 1). Therefore,
Regmaxiin (d, 1 + 1) < Regmaxiin (d, 1) + 2 Regmaxiin (d — 1,1). 1

Lemma 3.3 Reguaxiin (d7 n) < E?:o 2! (?)

Proof:  Let R(d,n) = Z?:o 2t (7:) R has the unique property that R (0,n) =
R(d,0) = 1, and that R(d,n) = R(d,n—1) +2R(d—1,n—1). Thus

for d = 0 or n = 0, Regmaxin (d,n) = R(d,n) Assume it is known that
Regmaxiin (d — 1,n) < Zd ! 21( ) and that Regmaxin (d — 1,n — 1) < Zd L oi (" 1)

Then Regmaxin (d — 1 n)+2 Regmaxiin (d—1,n—1) < R (d —1,n)+2R (d —1,n-1)=

R (d,n). But by the previous lemma Regmaxin (d,n) < Regmaxiin (d — 1,n) +
2 Regmaxtin (d — 1,n — 1). Then Regmaxin (d,n) < R(d,n). 1

Lemma 3.4 Regnax (d,n,p) < Regmaxiin (AP, 1).

. . . . p . .
Proof: Every polynomial in P, , is equal to i1 sigoig=0 Clit i,
a' -ay - .- ay 4 for some Ci iy,...is and inputs ag, ag, ...,ag. Then view the
polynomlal as a linear polynomlal with inputs ai' - a3 - ... - a;. Assuming
all values of ai' - a3 - ... - a} are independent, we can treat them as an-
other set of inputs, a},as, ..., al,, and treat C as another list of constants

. . dP
C1 .. - Therefore every polynomial can be written as » i C; - aj. How-
ever, aj, a, ...,a,, may or may not take on any set of values, since they are
all functions of a smaller set of variables, ai,as,...,aq. So it is indeed the

case that Regmax (d,1,p) < Regmaxiin (P, n). |

These lemmas give an upper bound of Reguay (d,n,p) < Z?io 2t (T;) In
the context of Conlon and Wu’s proof, it was useful to consider the case when
n =4m3,p = 1,d = 2, where E* 4 (I3,1,,). The form provided by Olenik
et. al. gives Reguayx (2,4m3, 1) < 10*m®, but the upper bound discussed here
gives Regmax (2,4m3,1) < Zf;o 2inCr (4m3,4) = 1 + 32m°.



4 Intervals

It is known F(1), F(2), ..., F(p*) mod p must fall into at least £ regions for
F = 22 + az + 8 with a, 8 € R. However, it often falls into a greater number
of regions. One can make a graph of the smallest number of values of F
required to have each region contain some value of F. Below is such a graph,
with a € [0,1] along the x-axis and € [0, 1] along the y-axis. In other
words, the graph is of @ (a, 3) for p = 7. Interestingly, there seem to be

Figure 1: Graph of interval count for p=7. Darker values indicate a larger
Q, while bright white indicates Q=0.

polygonal regions with widely varying values instead of something smooth
and [not straight]. A similar graph can be made for larger values of p.

A Monte Carlo simulation was run to evaluate @ («, 5) over 0 < a <
1,0 < 8 < 1. Specifically, the region 0 < a < 1,0 < 8 < 1 was divided into
1282 equal square regions. Then, for each smaller region, 64 values of a and
[ were picked in the region, and ) was evaluated. The distribution of @) is
shown below.



Figure 2: Graph of interval count for p=17. Darker values indicate a larger

Q.



p | Average | Min | Lower Quartile | Mode | Upper Quartile | Max

7 22.77 9 14.92 14.01 22.29 124.54
11| 51.52 18.96 35.13 31.33 50.89 310.13
13| 72.72 29.91 55.45 45 71.53 406.2

17| 78.34 42.77 50.91 54.69 61.37 399.62
19 | 112.05 | 46.57 58.96 72.4 125.96 561.72
23| 134.19 | 63.23 75.96 88.43 153.32 722.8

29 | 147.86 | 80.98 93.78 111.02 167.65 733.69
31| 167.13 | 88.76 108.88 115.78 175.66 839.29
37| 21245 | 114.3 141.97 159.77 228.24 1053.36
41 245 127.08 159.8 177.3 240.42 1194.09
43 | 272.51 | 142.88 170.54 192.66 283.93 1334.18
47 | 263.07 | 167.74 188.4 201.49 285.29 1253.69

From this data we see that the maximum value of () grows roughly linearly

with p. In fact, for this set of data, Q) ~ 27p. So, for m = 27p, roughly p
intervals are hit.

The proof itself uses the polynomial a + d(i — 1) +i* — 3i + 2 for some a,
d, and prime p.

5 Conclusions and Open Problems

p
Conlon and Wu's result required 12p~1 < % and Regnax (2,Q (p), 1) (1 — p_%) <

%, where m = @Q (p). This gives 10° < p, for which there exists at least one
prime < 2-10° Finally, since m = 27p, Im < 54 - 10°|E? — (I3,1,),

and, equivalently, E? — (I3, l1910). Without using the results shown here for
b

the interval problem, we get the inequality (32m° + 1) (1 — p’%> ‘< 3, for
m = p3.
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