Interval and Sign Patterns

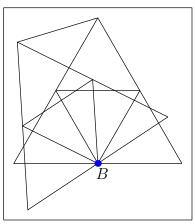
Will Roe, Ian Kim

October 16, 2025

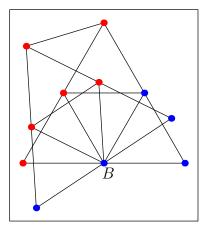
1 Abstract

In Euclidean Ramsey Theory, a *line* is a sequence of collinear points with distance 1. Such a line is notated as an l_n where n is the number of points. For k-colorings of \mathbb{R}^n , a red l_n is said to be an l_n whose points are all colored red. $\mathbb{E}^n \to (l_r, l_b)$ is written to mean that in every coloring of \mathbb{R}^n , \exists a red l_r or a blue l_b . Below is an example of a red l_3 .

It is known for a few small m that $\mathbb{E}^n \to (l_3, l_m)$. The simplest example is when m=2. It is trivial to prove that $\mathbb{E}^n \to (l_3, l_2)$. For example, if there are no blue points in a coloring then every l_3 is red, and if there is a blue point, the figure below shows a set of 11 points, including the point known to be blue (labeled B) for which it is impossible to color them all blue or red without getting a red l_3 or a blue l_2 .



An example coloring that fails is shown below:



It has been proven by Conlon and Wu [1] that $\mathbb{E}^n \not\to (l_3, l_m)$ for some number m. Their paper used two smaller lemmas to determine that $m \leq 10^{50}$. The first lemma discussed bounds on the number of sign patterns of some quantity of polynomials with given maximum degree that accept a given number of inputs. The second lemma discussed bounds on the number of specific intervals that any quadratic falls into.

2 Introduction

Keywords Euclidean Ramsey Theory; Ramsey Theory; Sign Patterns; Intervals; Colorings

Def 2.1 The sign pattern of a series of functions, calculated at a point, is defined to be the sequence of the signs of the functions at the point.

Here is an example of a sign pattern being calculated:

Say we want to find the sign pattern of functions $(x+1)^2 y$, $\sin(y+x)$, 2x-xy when x=0 and $y=3\pi$. It would be calculated as such:

Function	Value	Sign
x^2y	$\left(0+1\right)^2 \cdot 3\pi = 3\pi$	+
x^2y	$\sin\left(3\pi + 0\right) = -1$	_
x^2y	$2 \cdot 0 - 0 \cdot 5\pi = 0$	0

Reading from top to bottom the Sign column, we find the sign pattern to be the string "+-0".

Def 2.2 The sign pattern of a series of functions, calculated at a point, is defined to be the sequence of the signs of the functions at the point.

Here is an example of what is meant: Given functions x + 2 + 3y, 3x - 1 - 3y, 3x

8y, 5x + 2y + 7	Function	Value	Sign
	x^2y	$\left(0+1\right)^2 \cdot 3\pi = 3\pi$	+
	x^2y	$\sin\left(3\pi + 0\right) = -1$	_
	x^2y	$2 \cdot 0 - 0 \cdot 5\pi = 0$	0

Reading from top to bottom the Sign column, we find the sign pattern to be the string "+-0".

Notation 2.3 \mathbb{E}^n is written to mean n-dimensional Euclidean space. A k-coloring of \mathbb{R}^n is some $f: \mathbb{R}^n \to [k]$. In this paper we focus on 2-colorings of \mathbb{R}^2 .

Def 2.4 Let $\operatorname{Reg}_{\max}(d, n, p)$ be the maximum number of regions n polynomials with maximum degree p with d inputs.

Def 2.5 Let $\operatorname{Reg}_{\operatorname{maxlin}}(d, n, p)$ be the maximum number of regions n linear polynomials with maximum degree p with d inputs.

Def 2.6 Let l_n be a set of points $a_1, a_2, ..., a_n$ where $a_{i+1} - a_i = u$ for some |u| = 1.

Def 2.7 A polynomial $P(a_1, a_2, ..., a_d) = \sum_{i_1, i_2, ..., i_d = 0}^{p} C_{i_1, i_2, ..., i_d} \cdot a_1^{i_1} \cdot a_2^{i_2} \cdot ... \cdot a_d^{i_d}$ for constant c.

Def 2.8 A linear polynomial $O(a_1, a_2, ..., a_d) = \sum_{i=1}^d c_i a_i$ for constant c.

Notation 2.9 Let the set $\mathbb{P}_{d,p}$ consist of all P with d inputs and maximum degree p. Let the set $\mathbb{P}_{d,n,p}$ be the power set of $\mathbb{P}_{d,p}$.

It will later be useful to consider trivial cases of Reg_{max} and of Reg_{maxlin} . Some are listed here.

An obvious bound on $\operatorname{Reg}_{\max}(d, n, p)$ is 3^n . For n polynomials, each may return one of three signs: +, -, or 0. Therefore, there exist 3^n sign patterns.

 $\operatorname{Reg}_{\operatorname{maxlin}}(0,n)$ represents a set of constants. Since the sign of a constant never changes, the sign pattern is always the same, so $\operatorname{Reg}_{\operatorname{maxlin}}(0,n) = 1$.

 $\operatorname{Reg_{maxlin}}(d,0)$ represents exactly zero polynomials. Since there are no polynomials, the sign pattern is of length 0, for which only one pattern exists. Therefore, $\operatorname{Reg_{maxlin}}(d,0)=1$.

Def 2.10 A function $F(n) = \text{mod}(n^2 + \alpha n + \beta, p)$ for real α, β and prime p. F(n) then takes on values in [0, p).

A function R(n) is taken to be to be the number of regions [0,1), [1,2), ..., [p-1,p) that contain at least one value in F(1), F(2), ..., F(n). For the sake of this paper, F will be defined in advance.

Def 2.11
$$R(n, \alpha, \beta) = |\{i | |\{j | j \in [n], i \le F(j) < i + 1\}| \ne 0\}|$$
 for $F(n) = \text{mod } (n^2 + \alpha n + \beta, p)$.

It will also be useful to consider the inverse of R, which we will call Q.

Notation 2.12 Let $Q(\alpha, \beta)$ be the smallest number such that $R(Q(\alpha, \beta), \alpha, \beta) = p$, if such a number exists at all.

A particularly powerful lower bound for the number of sign patterns of polynomials was found by Olenik et. al. A special case of their theorem was used by Conlon et. al. to obtain the following corollary:

Theorem 1 n polynomials of degree p with d variable will form, at most, $\left(\frac{50pn}{d}\right)^d$ sign patterns, for n > d.

Our proof focuses on a geometric interpretation of Reg_max, where Olenik's mainly relied on matrix manipulation.

In Section 1 we present the problem and a basic overview of Conlon and Wu's paper. In Section 2 we state definitions regarding the two lemmas given in Conlon and Wu's paper. In Section 3 we discuss and attempt to improve the result given by Olenik. In Section 4 we use a Monte Carlo simulation to give a better bound on the number of regions a polynomial falls into. In Section 5 we use our results to improve the bounds on m and present open questions.

3 Signs

It is useful to imagine the sign of a function P with d inputs as a surface cutting \mathbb{R}^d into at most parts: where P > 0, P < 0, and where P = 0. Note that some polynomials, like x^2 or $x^2 + 1$, do not divide space into three pieces.

For a set of polynomials $P_1, P_2, ..., P_n$, the \mathbb{R}^{d-1} surface $P_i = 0$ splits \mathbb{R}^d into some number of regions. (For the sake of this paper, we take P = 0 as a region as well as P > 0 and P < 0.) Due to the continuity of polynomials, every region contains only points with the same sign pattern. Therefore, the number of sign patterns $\leq \operatorname{Reg_max}(d, n, p)$.

Lemma 3.1 The intersection of any two hyperplanes in \mathbb{R}^n is a hyperplane in \mathbb{R}^{n-1} .

Proof: Let H be the hyperplane defined by the set of points \overrightarrow{x} where $\overrightarrow{h_c} \cdot \overrightarrow{x} + h_i = 0$, and J be the set of points \overrightarrow{x} where $\overrightarrow{j_c} \cdot \overrightarrow{x} + j_i = 0$. Then let $h_j = \sum_{i=2}^n h_{c,i}x_i + h_i$ and $j_j = \sum_{i=0}^{n-2} j_{c,i}x_i + j_i$. Then $h_j + h_{c,0}x_0 + h_{c,1}x_1 = 0$ and $j_j + j_{c,0}x_0 + j_{c,1}x_1 = 0$. If $\begin{bmatrix} h_{c,0} & h_{c,1} \\ j_{c,0} & j_{c,1} \end{bmatrix}$ is invertible, then there is one solution for x_0 and x_1 .

Lemma 3.2 $\operatorname{Reg_{maxlin}}(d, n+1) \leq \operatorname{Reg_{maxlin}}(d, n) + 2 \operatorname{Reg_{maxlin}}(d-1, n) \, \forall d, n > 1.$

Proof: Assume you have n hyperplanes, with d inputs, that divide space into the maximum number of regions, e.g. $\operatorname{Reg_{maxlin}}(d,n)$ regions. Suppose you add another hyperplane H, defined by P=0. This hyperplane may intersect any number of other planes. The intersections of each hyperplane with the new hyperplane form a hyperplane with one fewer dimension. At worst, you will get $\operatorname{Reg_{maxlin}}(d-1,n)$ regions formed by the intersection. Notice that these regions exist in the higher level of space, where P=0. Every region that existed before H that is split by H becomes either two or three new regions. All points in this region will have the same sign pattern, except for the sign of P, which might be 1,0,or-1 for those points. We may assume the cut makes three new regions to calculate a bound for $\operatorname{Reg_{maxlin}}$. Therefore, you get 2 more regions then there were before for those divided. Recall that since $\operatorname{Reg_{maxlin}}(d-1,n)$ regions were formed, $\operatorname{Reg_{maxlin}}(d-1,n)$ regions must have been cut. Therefore, you

have $\operatorname{Reg_{maxlin}}(d-1,n) \cdot 2$ new regions. There were $\operatorname{Reg_{maxlin}}(d,n)$ regions before this new hyperplane was added, so after adding another hyperplane you have $\operatorname{Reg_{maxlin}}(d,n) + 2\operatorname{Reg_{maxlin}}(d-1,n)$ regions. However, the new hyperplane represents another polynomial with degree 1 and d dimensions, so the number of new regions is, at worst, $\operatorname{Reg_{maxlin}}(d,n+1)$. Therefore, $\operatorname{Reg_{maxlin}}(d,n+1) \leq \operatorname{Reg_{maxlin}}(d,n) + 2\operatorname{Reg_{maxlin}}(d-1,n)$.

Lemma 3.3 Reg_{maxlin} $(d, n) \leq \sum_{i=0}^{d} 2^{i} {n \choose i}$.

Proof: Let $R(d,n) = \sum_{i=0}^{d} 2^{i} \binom{n}{i}$. R has the unique property that R(0,n) = R(d,0) = 1, and that R(d,n) = R(d,n-1) + 2R(d-1,n-1). Thus for d=0 or n=0, $\operatorname{Reg_{maxlin}}(d,n) = R(d,n)$ Assume it is known that $\operatorname{Reg_{maxlin}}(d-1,n) \leq \sum_{i=0}^{d-1} 2^{i} \binom{n}{i}$ and that $\operatorname{Reg_{maxlin}}(d-1,n-1) \leq \sum_{i=0}^{d-1} 2^{i} \binom{n-1}{i}$. Then $\operatorname{Reg_{maxlin}}(d-1,n)+2\operatorname{Reg_{maxlin}}(d-1,n-1) \leq R(d-1,n)+2R(d-1,n-1) = R(d,n)$. But by the previous lemma $\operatorname{Reg_{maxlin}}(d,n) \leq \operatorname{Reg_{maxlin}}(d-1,n) + 2\operatorname{Reg_{maxlin}}(d-1,n-1)$. Then $\operatorname{Reg_{maxlin}}(d,n) \leq R(d,n)$.

Lemma 3.4 $\operatorname{Reg_{max}}(d, n, p) \leq \operatorname{Reg_{maxlin}}(d^p, n)$.

Proof: Every polynomial in $\mathbb{P}_{(d,n,p)}$ is equal to $\sum_{i_1,i_2,\dots,i_d=0}^p C_{i_1,i_2,\dots,i_d} \cdot a_1^{i_1} \cdot a_2^{i_2} \cdot \dots \cdot a_d^{i_d}$ for some C_{i_1,i_2,\dots,i_d} and inputs a_1,a_2,\dots,a_d . Then view the polynomial as a linear polynomial with inputs $a_1^{i_1} \cdot a_2^{i_2} \cdot \dots \cdot a_d^{i_d}$. Assuming all values of $a_1^{i_1} \cdot a_2^{i_2} \cdot \dots \cdot a_d^{i_d}$ are independent, we can treat them as another set of inputs, $a_1', a_2', \dots, a_{d^p}'$, and treat C as another list of constants $C'_{1,2,\dots,d^p}$. Therefore every polynomial can be written as $\sum_{i=0}^{d^p} C'_i \cdot a'_i$. However, $a_1', a_2', \dots, a_{d^p}'$ may or may not take on any set of values, since they are all functions of a smaller set of variables, a_1, a_2, \dots, a_d . So it is indeed the case that $\operatorname{Reg_{max}}(d,n,p) \leq \operatorname{Reg_{maxlin}}(d^p,n)$.

These lemmas give an upper bound of $\operatorname{Reg_{max}}(d, n, p) \leq \sum_{i=0}^{d^p} 2^i \binom{n}{i}$. In the context of Conlon and Wu's proof, it was useful to consider the case when $n = 4m^3, p = 1, d = 2$, where $\mathbb{E}^n \not\to (l_3, l_m)$. The form provided by Olenik et. al. gives $\operatorname{Reg_{max}}(2, 4m^3, 1) \leq 10^4 m^6$, but the upper bound discussed here gives $\operatorname{Reg_{max}}(2, 4m^3, 1) \leq \sum_{i=0}^{2^1} 2^i \operatorname{nCr}(4m^3, i) = 1 + 32m^6$.

4 Intervals

It is known $F(1), F(2), ..., F(p^3) \mod p$ must fall into at least $\frac{p}{6}$ regions for $F = x^2 + \alpha x + \beta$ with $\alpha, \beta \in \mathbb{R}$. However, it often falls into a greater number of regions. One can make a graph of the smallest number of values of F required to have each region contain some value of F. Below is such a graph, with $\alpha \in [0,1]$ along the x-axis and $\beta \in [0,1]$ along the y-axis. In other words, the graph is of $Q(\alpha,\beta)$ for p=7. Interestingly, there seem to be

Figure 1: Graph of interval count for p=7. Darker values indicate a larger Q, while bright white indicates Q=0.

polygonal regions with widely varying values instead of something smooth and [not straight]. A similar graph can be made for larger values of p.

A Monte Carlo simulation was run to evaluate $Q(\alpha, \beta)$ over $0 \le \alpha < 1, 0 \le \beta < 1$. Specifically, the region $0 \le \alpha < 1, 0 \le \beta < 1$ was divided into 128^2 equal square regions. Then, for each smaller region, 64 values of α and β were picked in the region, and Q was evaluated. The distribution of Q is shown below.

Figure 2: Graph of interval count for p=17. Darker values indicate a larger Q.

p	Average	Min	Lower Quartile	Mode	Upper Quartile	Max
7	22.77	9	14.92	14.01	22.29	124.54
11	51.52	18.96	35.13	31.33	50.89	310.13
13	72.72	29.91	55.45	45	71.53	406.2
17	78.34	42.77	50.91	54.69	61.37	399.62
19	112.05	46.57	58.96	72.4	125.96	561.72
23	134.19	63.23	75.96	88.43	153.32	722.8
29	147.86	80.98	93.78	111.02	167.65	733.69
31	167.13	88.76	108.88	115.78	175.66	839.29
37	212.45	114.3	141.97	159.77	228.24	1053.36
41	245	127.08	159.8	177.3	240.42	1194.09
43	272.51	142.88	170.54	192.66	283.93	1334.18
47	263.07	167.74	188.4	201.49	285.29	1253.69

From this data we see that the maximum value of Q grows roughly linearly with p. In fact, for this set of data, $Q \approx 27p$. So, for m = 27p, roughly p intervals are hit.

The proof itself uses the polynomial $a + d(i-1) + i^2 - 3i + 2$ for some a, d, and prime p.

5 Conclusions and Open Problems

Conlon and Wu's result required $12p^{-\frac{1}{4}} < \frac{1}{2}$ and $\operatorname{Reg_{max}}(2, Q(p), 1) \left(1 - p^{-\frac{3}{4}}\right)^p < \frac{1}{2}$, where m = Q(p). This gives $10^9 < p$, for which there exists at least one prime $\leq 2 \cdot 10^9$. Finally, since m = 27p, $\exists m \leq 54 \cdot 10^9 | \mathbb{E}^2 \to (l_3, l_m)$, and, equivalently, $\mathbb{E}^2 \to (l_3, l_{10^{10}})$. Without using the results shown here for the interval problem, we get the inequality $(32m^6 + 1) \left(1 - p^{-\frac{3}{4}}\right)^{\frac{p}{6}} \leq \frac{1}{2}$, for $m = p^3$.

6 Acknowledgements

The researcher used Desmos and Wolfram Alpha. They would like to thank Dr. William Gasarch for their mentorship and time.

References

[1] W. Conlon. More on lines in euclidean ramsey theory. Arxiv, 322(10):891–921, 2022.