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1 Abstract

In Euclidean Ramsey Theory, a line is a sequence of collinear points with
distance 1. Such a line is notated as an ln where n is the number of points.
For k-colorings of Rn, a red ln is said to be an ln whose points are all colored
red. En → (lr, lb) is written to mean that in every coloring of Rn, ∃ a red lr
or a blue lb. Below is an example of a red l3.

It is known for a few small m that En → (l3, lm). The simplest example is
when m = 2. It is trivial to prove that En → (l3, l2). For example, if there
are no blue points in a coloring then every l3 is red, and if there is a blue
point, the figure below shows a set of 11 points, including the point known
to be blue (labeled B) for which it is impossible to color them all blue or red
without getting a red l3 or a blue l2.

B
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An example coloring that fails is shown below:

B

It has been proven by Conlon and Wu [1] that En ̸→ (l3, lm) for some number
m. Their paper used two smaller lemmas to determine that m ≤ 1050.
The first lemma discussed bounds on the number of sign patterns of some
quantity of polynomials with given maximum degree that accept a given
number of inputs. The second lemma discussed bounds on the number of
specific intervals that any quadratic falls into.

2 Introduction

Keywords Euclidean Ramsey Theory; Ramsey Theory; Sign Patterns; In-
tervals; Colorings

Def 2.1 The sign pattern of a series of functions, calculated at a point, is
defined to be the sequence of the signs of the functions at the point.

Here is an example of a sign pattern being calculated:
Say we want to find the sign pattern of functions (x+ 1)2 y, sin (y + x) , 2x−

xy when x = 0 and y = 3π. It would be calculated as such:
Function Value Sign

x2y (0 + 1)2 · 3π = 3π +
x2y sin (3π + 0) = −1 −
x2y 2 · 0− 0 · 5π = 0 0

Reading from top to bottom the Sign column, we find the sign pattern
to be the string ”+− 0”.
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Def 2.2 The sign pattern of a series of functions, calculated at a point, is
defined to be the sequence of the signs of the functions at the point.

Here is an example of what is meant: Given functions x + 2 + 3y,3x − 1 −

8y,5x+ 2y + 7

Function Value Sign

x2y (0 + 1)2 · 3π = 3π +
x2y sin (3π + 0) = −1 −
x2y 2 · 0− 0 · 5π = 0 0

Reading from top to bottom the Sign column, we find the sign pattern
to be the string ”+− 0”.

Notation 2.3 En is written to mean n-dimensional Euclidean space. A k-
coloring of Rn is some f : Rn → [k]. In this paper we focus on 2-colorings of
R2.

Def 2.4 Let Regmax (d, n, p) be the maximum number of regions n polyno-
mials with maximum degree p with d inputs.

Def 2.5 Let Regmaxlin (d, n, p) be the maximum number of regions n linear
polynomials with maximum degree p with d inputs.

Def 2.6 Let ln be a set of points a1, a2, ..., an where ai+1 − ai = u for some
|u| = 1.

Def 2.7 A polynomial P (a1, a2, ..., ad) =
∑p

i1,i2,...,id=0Ci1,i2,...,id ·a
i1
1 ·ai22 ·...·a

id
d

for constant c.

Def 2.8 A linear polynomial O (a1, a2, ..., ad) =
∑d

i=1 ciai for constant c.

Notation 2.9 Let the set Pd,p consist of all P with d inputs and maximum
degree p. Let the set Pd,n,p be the power set of Pd,p.
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It will later be useful to consider trivial cases of Regmax and of Regmaxlin.
Some are listed here.

An obvious bound on Regmax (d, n, p) is 3
n. For n polynomials, each may

return one of three signs: +, −, or 0. Therefore, there exist 3n sign patterns.
Regmaxlin (0, n) represents a set of constants. Since the sign of a constant

never changes, the sign pattern is always the same, so Regmaxlin (0, n) = 1.
Regmaxlin (d, 0) represents exactly zero polynomials. Since there are no

polynomials, the sign pattern is of length 0, for which only one pattern
exists. Therefore, Regmaxlin (d, 0) = 1.

Def 2.10 A function F (n) = mod (n2 + αn+ β, p) for real α,β and prime p.
F (n) then takes on values in [0, p).

A functionR(n) is taken to be to be the number of regions [0, 1) , [1, 2) , ..., [p− 1, p)
that contain at least one value in F (1), F (2), ..., F (n). For the sake of this
paper, F will be defined in advance.

Def 2.11 R(n, α, β) = |{i| |{j|j ∈ [n], i ≤ F (j) < i+ 1}| ≠ 0}| for F (n) =
mod (n2 + αn+ β, p).

It will also be useful to consider the inverse of R, which we will call Q.

Notation 2.12 LetQ (α, β) be the smallest number such thatR (Q (α, β) , α, β) =
p, if such a number exists at all.

A particularly powerful lower bound for the number of sign patterns of
polynomials was found by Olenik et. al. A special case of their theorem was
used by Conlon et. al. to obtain the following corollary:

Theorem 1 n polynomials of degree p with d variable will form, at most,(
50pn
d

)d
sign patterns, for n > d.

Our proof focuses on a geometric interpretation of Regmax, where Olenik’s
mainly relied on matrix manipulation.

In Section 1 we present the problem and a basic overview of Conlon and
Wu’s paper. In Section 2 we state definitions regarding the two lemmas given
in Conlon and Wu’s paper. In Section 3 we discuss and attempt to improve
the result given by Olenik. In Section 4 we use a Monte Carlo simulation
to give a better bound on the number of regions a polynomial falls into. In
Section 5 we use our results to improve the bounds on m and present open
questions.

4



3 Signs

It is useful to imagine the sign of a function P with d inputs as a surface
cutting Rd into at most parts: where P > 0, P < 0, and where P = 0. Note
that some polynomials, like x2 or x2+1, do not divide space into three pieces.

For a set of polynomials P1, P2, ..., Pn, the Rd−1 surface Pi = 0 splits Rd

into some number of regions. (For the sake of this paper, we take P = 0 as
a region as well as P > 0 and P < 0.) Due to the continuity of polynomials,
every region contains only points with the same sign pattern. Therefore, the
number of sign patterns ≤ Regmax (d, n, p).

Lemma 3.1 The intersection of any two hyperplanes in Rn is a hyperplane
in Rn−1.

Proof: Let H be the hyperplane defined by the set of points −→x where−→
hc ·−→x +hi = 0, and J be the set of points −→x where

−→
jc ·−→x + ji = 0. Then let

hj =
∑n

i=2 hc,ixi + hi and jj =
∑n−2

i=0 jc,ixi + ji. Then hj + hc,0x0 + hc,1x1 = 0

and jj + jc,0x0 + jc,1x1 = 0. If

[
hc,0 hc,1

jc,0 jc,1

]
is invertible, then there is one

solution for x0 and x1.

Lemma 3.2 Regmaxlin (d, n+ 1) ≤ Regmaxlin (d, n)+2Regmaxlin (d− 1, n)∀d, n >
1.

Proof: Assume you have n hyperplanes, with d inputs, that divide space
into the maximum number of regions, e.g. Regmaxlin (d, n) regions. Sup-
pose you add another hyperplane H, defined by P = 0. This hyperplane
may intersect any number of other planes. The intersections of each hy-
perplane with the new hyperplane form a hyperplane with one fewer di-
mension. At worst, you will get Regmaxlin (d− 1, n) regions formed by the
intersection. Notice that these regions exist in the higher level of space,
where P = 0. Every region that existed before H that is split by H be-
comes either two or three new regions. All points in this region will have
the same sign pattern, except for the sign of P , which might be 1, 0,or−1
for those points. We may assume the cut makes three new regions to cal-
culate a bound for Regmaxlin. Therefore, you get 2 more regions then there
were before for those divided. Recall that since Regmaxlin (d− 1, n) regions
were formed, Regmaxlin (d− 1, n) regions must have been cut. Therefore, you
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have Regmaxlin (d− 1, n) · 2 new regions. There were Regmaxlin (d, n) regions
before this new hyperplane was added, so after adding another hyperplane
you have Regmaxlin (d, n) + 2Regmaxlin (d− 1, n) regions. However, the new
hyperplane represents another polynomial with degree 1 and d dimensions,
so the number of new regions is, at worst, Regmaxlin (d, n+ 1). Therefore,
Regmaxlin (d, n+ 1) ≤ Regmaxlin (d, n) + 2Regmaxlin (d− 1, n).

Lemma 3.3 Regmaxlin (d, n) ≤
∑d

i=0 2
i
(
n
i

)
.

Proof: LetR(d, n) =
∑d

i=0 2
i
(
n
i

)
. R has the unique property thatR (0, n) =

R (d, 0) = 1, and that R (d, n) = R (d, n− 1) + 2R (d− 1, n− 1). Thus
for d = 0 or n = 0, Regmaxlin (d, n) = R(d, n) Assume it is known that
Regmaxlin (d− 1, n) ≤

∑d−1
i=0 2

i
(
n
i

)
and that Regmaxlin (d− 1, n− 1) ≤

∑d−1
i=0 2

i
(
n−1
i

)
.

Then Regmaxlin (d− 1, n)+2Regmaxlin (d− 1, n− 1) ≤ R (d− 1, n)+2R (d− 1, n− 1) =
R (d, n). But by the previous lemma Regmaxlin (d, n) ≤ Regmaxlin (d− 1, n) +
2Regmaxlin (d− 1, n− 1). Then Regmaxlin (d, n) ≤ R (d, n).

Lemma 3.4 Regmax (d, n, p) ≤ Regmaxlin (d
p, n).

Proof: Every polynomial in P(d,n,p) is equal to
∑p

i1,i2,...,id=0Ci1,i2,...,id ·
ai11 · ai22 · ... · aidd for some Ci1,i2,...,id and inputs a1, a2, ..., ad. Then view the
polynomial as a linear polynomial with inputs ai11 · ai22 · ... · aidd . Assuming
all values of ai11 · ai22 · ... · aidd are independent, we can treat them as an-
other set of inputs, a′1, a

′
2, ..., a

′
dp , and treat C as another list of constants

C ′
1,2,...,dp . Therefore every polynomial can be written as

∑dp

i=0C
′
i · a′i. How-

ever, a′1, a
′
2, ..., a

′
dp may or may not take on any set of values, since they are

all functions of a smaller set of variables, a1, a2, ..., ad. So it is indeed the
case that Regmax (d, n, p) ≤ Regmaxlin (d

p, n).

These lemmas give an upper bound of Regmax (d, n, p) ≤
∑dp

i=0 2
i
(
n
i

)
. In

the context of Conlon and Wu’s proof, it was useful to consider the case when
n = 4m3, p = 1, d = 2, where En ̸→ (l3, lm). The form provided by Olenik
et. al. gives Regmax (2, 4m

3, 1) ≤ 104m6, but the upper bound discussed here

gives Regmax (2, 4m
3, 1) ≤

∑21

i=0 2
i nCr (4m3, i) = 1 + 32m6.
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4 Intervals

It is known F (1), F (2), ..., F (p3) mod p must fall into at least p
6
regions for

F = x2+αx+β with α, β ∈ R. However, it often falls into a greater number
of regions. One can make a graph of the smallest number of values of F
required to have each region contain some value of F. Below is such a graph,
with α ∈ [0, 1] along the x-axis and β ∈ [0, 1] along the y-axis. In other
words, the graph is of Q (α, β) for p = 7. Interestingly, there seem to be

Figure 1: Graph of interval count for p=7. Darker values indicate a larger
Q, while bright white indicates Q=0.

polygonal regions with widely varying values instead of something smooth
and [not straight]. A similar graph can be made for larger values of p.

A Monte Carlo simulation was run to evaluate Q (α, β) over 0 ≤ α <
1,0 ≤ β < 1. Specifically, the region 0 ≤ α < 1,0 ≤ β < 1 was divided into
1282 equal square regions. Then, for each smaller region, 64 values of α and
β were picked in the region, and Q was evaluated. The distribution of Q is
shown below.
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Figure 2: Graph of interval count for p=17. Darker values indicate a larger
Q.
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p Average Min Lower Quartile Mode Upper Quartile Max
7 22.77 9 14.92 14.01 22.29 124.54
11 51.52 18.96 35.13 31.33 50.89 310.13
13 72.72 29.91 55.45 45 71.53 406.2
17 78.34 42.77 50.91 54.69 61.37 399.62
19 112.05 46.57 58.96 72.4 125.96 561.72
23 134.19 63.23 75.96 88.43 153.32 722.8
29 147.86 80.98 93.78 111.02 167.65 733.69
31 167.13 88.76 108.88 115.78 175.66 839.29
37 212.45 114.3 141.97 159.77 228.24 1053.36
41 245 127.08 159.8 177.3 240.42 1194.09
43 272.51 142.88 170.54 192.66 283.93 1334.18
47 263.07 167.74 188.4 201.49 285.29 1253.69

From this data we see that the maximum value ofQ grows roughly linearly
with p. In fact, for this set of data, Q ≈ 27p. So, for m = 27p, roughly p
intervals are hit.

The proof itself uses the polynomial a+ d(i− 1) + i2 − 3i+2 for some a,
d, and prime p.

5 Conclusions and Open Problems

Conlon andWu’s result required 12p−
1
4 < 1

2
and Regmax (2, Q (p) , 1)

(
1− p−

3
4

)p

<
1
2
, where m = Q (p). This gives 109 < p, for which there exists at least one

prime ≤ 2 · 109. Finally, since m = 27p, ∃m ≤ 54 · 109|E2 → (l3, lm),
and, equivalently, E2 → (l3, l1010). Without using the results shown here for

the interval problem, we get the inequality (32m6 + 1)
(
1− p−

3
4

) p
6 ≤ 1

2
, for

m = p3.
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