Algorithmic Strategies for
Ramsey-Theoretic Games on
Complete Graphs

Shivum Arora Andy Wu
Poolesville High School Poolesville High School

Mentor: Dr. William Gasarch
University of Maryland

August 20, 2025

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

Contents

(1 Introduction|

2N . [Definitions
Notations|

[Win rates between strategies for k=3[.
[Comparison of Win + R and Block + R for k=4
[Maximum n to guarantee a draw for a given k|
[Using Minimax to find optimal strategies|.
[Modeling as an MDP + Reinforcement Learning Frameworks|. . .
[Results with Machine Learningl

4 Analysis

[6 Acknowledgements|

[

16
16
17
18

18

18

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

Abstract

Ramsey theory is an area of mathematics focusing on the appear-
ance of order and predictable patterns in a substructure broken down
from a superstructure. K,, denotes a complete graph with n vertices,
and for all 2-colorings of the edges of Kg there is a mono Kj3. In
this paper, we explore Ramsey-style edge coloring games on complete
graphs using different strategies. In these games, two players, one
red and one blue, take turns coloring edges their color on a complete
graph until one player creates a target monochromatic subgraph. An
example is a game played on Kg where both players aim to create
a mono K3 subgraph. This particular game is never a draw, and
the winner of the game is whoever creates a mono K3 of their color
first. We first analyze hard-coded strategies without insight into the
future, which involve winning immediately if possible, blocking the
opponent, and making random moves. We also observed patterns in
game configurations that guarantee a draw. We further analyzed al-
gorithmic strategies, including greedy heuristics and search methods,
such as Minimax and value iteration, as well as reinforcement learning
approaches, such as Q-learning, and modeling the game as a Markov
Decision Process. For k = 3, we found deterministic first player win-
ning strategies, while for k£ = 4 we observed probabilistic advantages.
Reinforcement learning consistently outperformed hardcoded strate-
gies, showing the fact that new algorithmic pathways can be used to
study Ramsey numbers and bounds rather than pure combinatorics.

1 Introduction

Ramsey’s theorem states that for any two integers, s and ¢, there exists a
number, R(s,t), such that any complete graph with R(s,t) vertices, where
the edges of that graph are colored red or blue, will contain either a complete
subgraph (clique) of r vertices with all red edges or a clique of s vertices
with all blue edges. A mathematical way to express Ramsey’s theorem is:

R(s,t) < R(s,t — 1)+ R(s — 1,t) for s,t > 2 [9]

A notable example of Ramsey’s theorem is R(3,3) = 6, which states that
if you have a complete graph with 6 nodes, there will be either a red cyclic
triangle or a blue cyclic triangle formed. By the theorem:

R(3,3) < R(3,2) + R(2,3) = 6 <343

Ramsey Games Games based on Ramsey Theory, or Ramsey Games, are
games involving players coloring edges on a graph. The players aim to form
or avoid a target subgraph. In this paper, we examine Ramsey games played
on complete graphs by two players, red and blue, taking turns coloring edges
their color until one player forms a specified smaller complete graph of their
color. Edges that have already been colored cannot be colored again, and
the game ends if either player forms the target subgraph or there are no
remaining uncolored edges.

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

Previous Research There’s been extensive research to find Ramsey Num-
bers. Greenwood and Gleason established in 1955 that R(4,4) = 18 [6].
Ramsey Numbers of R(5,5) and above are still unknown. R(5,5) currently
has a known lower bound of 43 [3] and a more recently found upper bound of
46 [1]. People have also attempted to use Neural Networks to find Ramsey-
extremal graphs, which perform better than Random methods, although
their objective differs from our objective of finding strategies for Ramsey
games [5]. However, little research has been done to analyze patterns with
various strategies, and the results that have been achieved by machine learn-
ing are still limited.

2 Notations and Definitions

Notations

1. R(s,t): Denotes a Ramsey number with a red clique size s and a blue
clique size t.

2. K,: Denotes a complete graph with n vertices.

Detfinitions

1. A graph G(V, E) is a set of points where V(G) and E(G) are the sets
of vertices and edges in G. [2] An example of the set V and the set E
in a graph is:

V ={1,2,3,4}

E= {{17 2}7 {17 3}a {1’ 4}}

2. A complete graph K, is a graph where every vertex is connected to
every other vertex by an edge. An example of the set V and the set E
in a complete graph is:

vV ={1,2,3}
E = {{17 2}7 {17 3}7 {27 3}}
K, has:
. (=1 (n
i o (2)
edges. [2]

3. A subgraph is a smaller graph contained within a larger graph

4. A clique is a complete subgraph where every pair of k vertices is con-
nected by an edge

5. A win is when a player colors edges such that there exists a monochro-
matic clique of size k in their color. Players trying to win must find a
way to win before their opponent can

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

6. A draw is when all edges are colored and neither player has formed a
monochromatic clique of size k.

3 Research

Hardcoded Simulation Results

For our first attempt at optimal play strategies, we ran simulations for var-
ious configurations of n (number of nodes in the complete graph K, and k
(clique size to form), from n < 4 < 20 for both £ = 3 and k£ = 4. We made
algorithms without insight to the future, like these:

e R: Purely random coloring.

e Win + R: If a move immediately wins the game, play it (e.g., on Red’s
turn there are three vertices x,y, z with edges {z, 2z} and {y, z} both
red, then Red colors the edge {x,y}). Otherwise, play random.

e Block + R: If the opponent has a move that immediately wins for
them, block it (e.g., on Red’s turn there are three vertices x,y, z with
edges {z,z} and {y,z} both blue, then Red colors the edge {z,y}).
Otherwise, play random.

e Win + Block + R: Try to make a winning move, then try to make a
blocking move, then play random.

We ran 1000 trials for each configuration of n, k, and player strategies,
and evaluated our results. Our hardcoded agent simulations, where blue
plays first and red next, led us to the following conjectures:

1. For both £ = 3 and k£ = 4, Win + R is generally more effective than
Block + R for both players.

2. For k = 3, if the opponent uses Win + Block 4+ R, Block + R is more
effective than Win + R for both players.

3. The maximum n that guarantees a draw increases by either 1 or 2
for each increase in k. A draw is guaranteed if there does not exist
a coloring that contains a monochromatic k-clique. Furthermore, the
increase in n follows a pattern of either

{1,2,1,2,1,1,2}
or

{1,2,1,1,2}

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

These simulations show that smaller values of k£ in larger graphs are
better with aggressive and greedy strategies for Blue. As k increases for
a fixed n, the number of draws also increases rapidly. Additionally, Blue
always has an advantage over Red when using the same strategy, regardless
of n and k. This was the base model we could use to compare for more
advanced strategies like QQ-learning and Value Iteration. However, there
were other hard-coded strategies we started to think about, like forming
chains with connected edges, and simulating which move would be the best
after 1-2 more moves.

Win rates between strategies for k£ = 3

We organized the results of our simulations into tables that compare how
the four strategies perform against each other. We compiled tables for 4 <
n < 20. We summarize these results in a table with the mean win rate for
Blue across 6 < n < 20, still with 1000 trials for each game configuration
and strategy combination. We exclude n = 4 and n = 5 because a large
portion of games end in a draw, which skews the data.

Table 1: Mean Win % for Blue across 6 < n < 20 for each strategy combi-
nation with £ = 3

Red \ Blue Win+Block+R Win+R Block+R R
Win+Block+R 66.6% 15.3% 26.9% 0.5%
Win+R 95.5% 65.1% 21.3% 4.2%
Block+R 89.5% 87.4% 61.8% 15.7%
R 99.9% 98.7% 88.8% 54.2%

The complete data for each game configuration can be found at this
Google Sheet Link. The results from Table|[l]led us to conclude, for both
players and games with k£ = 3:

e Win + Block + R performs the best, followed by Win 4+ R, Block +
R, and R

e Win + R performs better than Block + R against three out of four
strategies: Win + R, Block + R, and R.

e Block + R only performs better than Win + R if the opponent uses
Win + Block + R.

From our tables, we created another table displaying the differences between
Blue’s win percentage using Win + R and Block + R to see how big the
difference is between the strategies.

https://docs.google.com/spreadsheets/d/1oA5JHrfxbEjLCgH_MOrm3pobnym3GzrA99tncDRPtf8/edit?usp=sharing

Shivum Arora, Andy Wu, William Gasarch

August 20, 2025

Table 2: Blue (Win + R) win% — (Block + R) win% across values of n,
against different Red strategies for k = 3

Red Strategy

R Win + R Block + R Win + Block + R

—_
o © 0o U3

11
12
13
14
15
16
17
18
19
20

13.3
7.8
5.4
8.3

12.0

11.9

10.5

13.3

11.6

10.5
9.9
8.7

10.2

114
9.4
7.5
7.7

12.6
-3.2

9.0
25.3
33.1
39.0
42.5
48.5
46.9
50.3
51.2
51.5
50.7
51.1
51.3
55.0
51.4

0.0
6.4
-12.3
5.7
12.6
19.5
25.4
28.3
31.4
33.9
29.8
33.0
33.2
33.7
35.1
36.2
38.8

0.0
-8.5
-17.6
-10.8
-9.6
-10.9
-9.0
-10.9
-14.5
-10.5
-10.3
-12.1
-10.2
-11.8
-12.9
-10.6
-11.4

Table [2| displays the differences between Blue’s win percentage using
Win + R and Block + R for 4 < n < 20 against all four of Red’s strategies.
A positive value indicates that Win 4+ R performed better by that amount,
while a negative value indicates Block + R performed better by that amount.

Our simulations led us to the following conclusions:

e Win + R generally outperforms Block + R

e Win + R outperforms Block + R the most when Red uses Win + R,
followed by Block + R and R.

e Win + R increasingly outperforms Block + R as n increases in the in-
terval 4 < n < 20 if Red uses either Win + R or Block + R, increasing

from 12.57 to 51.40 and 0 to 38.80, respectively.

e Block + R always outperforms Win + R if red uses Win + Block +
R, except for n = 4 where every game ends in a draw.

We used the same comparisons for Red, which had similar patterns.

Shivum Arora, Andy Wu, William Gasarch

August 20, 2025

Table 3: Red (Win + R) win% — (Block + R) win% across values of n,
against different Blue strategies for k = 3

Blue Strategy

R Win + R Block + R Win + Block + R

—_
o © 0o U3

11
12
13
14
15
16
17
18
19
20

-7.0
-7.2
4.2
8.8
13.9
18.5
15.4
14.3
15.1
11.8
11.8
12.4
11.3
7.6
9.4
9.3
7.8

-13.6
-28.1
-9.2
4.4
12.3
14.9
20.8
20.8
25.5
27.5
24.0
30.2
31.8
32.1
33.2
32.7
34.5

0.0
-1.5
12.1
24.0
32.8
34.4
37.9
41.0
41.0
43.9
45.4
48.7
49.3
49.5
49.4
01.5
47.1

0.0
0.4
0.8
-0.9
-3.8
-4.9
-5.1
-6.9
-6.1
-8.1
-8.1
-6.4
-6.4
-7.9
-10.4
-6.4
-8.6

Table |3| displays the differences between Red’s win percentage using Win
+ R and Block + R for 4 < n < 20 against all four of Blue’s strategies. Our

simulations led us to similar conclusions for red:

Win + R generally outperforms Block + R for n > 6 if Blue is using

R, Win + R, or Block + R.

For boards where n < 6, Block + R is more effective than Win + R

Win + R outperforms Block + R the most when Blue uses Block +
R, followed by Win + R and R.

Win + R increasingly outperforms Block 4+ R as n increases in the in-
terval 4 < n < 20 if Red uses either Win + R or Block + R, increasing

from -13.64 to 34.50 and 0 to 47.10, respectively.

Block + R always achieves a higher win rate than Win + R forn > 7
if Blue uses Win + Block + R.

Evidently, there are a few differences between the conclusions we reached
for Blue and Red:

e For Blue, Win + R outperforms Block + R the most when the oppo-
nent uses Win + R, while it’s the other way around for Red.

e On small boards with n < 6, Block + R performs better than Win +
R for Red while Win + R still achieves better results for Blue

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

These differences may be due to Blue going first, thereby assuming an of-
fensive position, while Red goes second, assuming a defensive position.

Comparison of Win + R and Block + R for £ =4

We obtained simulation results for 6 < n < 20 and compiled them into
tables. We excluded 6 < k < 9 because too many draws would skew the
data. The results are summarized in this table with mean win rates for blue:

Table 4: Mean Win % for Blue across 10 < n < 20 for each strategy
combination with k =4

Red \ Blue Win+Block+R Win+R Block+R R
Win-+Block+R 54.4% 19.8% 72% 0.7%
Win+R 84.1% 52.0% 30.7% 8.7%
Block+R 93.8% 73.6% 50.4% 10.0%
R 99.4% 73.4% 91.9% 52.2%

Table [4]led us to conclude, for games with k = 4:

e Win + Block 4+ R performs the best, followed by Win + R, Block +
R, and R

e Win + R performs better than Block + R against all strategies

We compared the Win + R and Block + R strategies in the same way for
k = 4, finding some patterns that differed from k£ = 3.

Table 5: Blue (Win + R) win% — (Block + R) win% across values of n,
against different Red strategies for k = 4

Red Strategy
R Win + R Block + R Win + Block + R

n

6 0.6 1.7 -0.4 0.0
7 84 0.3 1.5 1.7
8§ 16.3 6.8 4.1 4.1
9 10.5 -0.4 12.7 4.6
10 0.9 -7.9 23.1 5.9
11 -2.8 -2.7 22.1 3.4
12 -0.5 7.6 21.6 6.7
13 1.1 12.5 19.8 9.5
14 1.7 20.2 17.9 11.6
15 2.8 20.9 194 10.5
16 1.3 21.1 24.0 13.4
17 -1.0 24.2 26.2 14.8
18 1.4 26.5 24.7 15.1
19 23 26.7 27.7 13.8
20 4.3 32.0 27.1 17.6

The results from Table [l led us to conclude:

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

e Win + R generally outperforms Block + R regardless of Red’s strategy

e For n < 14, Win + R outperforms Block + R the most when Red uses
Block + R, with Block + R sometimes achieving a higher win rate
than Win + R from 9 <n <12 if Red uses R or Win + R.

e For n > 14, Win + R outperforms Block + R most if Red uses Win
+ R or Block + R, followed by Win + Block + R and R.

Once again, we ran the same comparisons for Red.

Table 6: Red (Win + R) win% — (Block + R) win% across values of n,
against different Red strategies for k = 4

Blue Strategy

n R Win + R Block + R Win + Block + R
6 2.0 1.0 0.0 0.0
7 7.0 5.7 0.4 0.6
8 5.8 -2.0 4.7 1.4
9 6.1 -8.1 8.4 3.0
10 2.7 -11.2 174 1.6
11 -4.0 -4.1 22.5 4.9
12 -24 7.2 21.6 5.4
13 -1.3 13.2 16.5 7.1
14 0.9 17.3 21.2 9.5
15 04 20.9 22.4 10.4
16 3.2 24.8 21.9 9.7
17 1.8 25.8 23.8 12.7
18 2.8 27.6 29.4 10.4
19 3.0 29.8 28.8 12.1
20 3.5 27.6 32.5 12.8

The conclusions we reached for Red mirror the conclusions for Blue.
Both have a cluster where Block + R outperforms Win + R in the same
area, with overlap at 11 < n < 12 if Blue uses R and 9 < n < 11 for Win +
R. From our simulations for £ = 3 and k = 4, we determined that Win + R
is more effective than Block + R for these board configurations. Block + R
only performs better for £ = 3 and the opponent uses Win + Block + R.

Maximum n where a draw is guaranteed for a given k£

To determine the maximum n that guarantees a draw for a given k, we
tested values of n > k, increasing n by 1 until a draw is possible. A draw is
guaranteed if neither player can win. That is, there aren’t enough vertices
and edges for a player to win, no matter how they play. To identify whether
a draw is possible, we simulated a game with heuristics to create a best-case
scenario for Blue.

10

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

e Out of n nodes, Blue selects the first k£ of those nodes. Blue can only
color edges involving selected nodes unless none are available.

e Red can only color edges that involve at least one node not selected
by Blue unless none are available

e If Red colors in an edge where both nodes are selected by Blue, the
game is a guaranteed draw. Otherwise, if all edges involving only
selected nodes are colored, the game is not a guaranteed draw.

For instance, if K = 4 and n = 5, blue selects the first k£ nodes {0, 1, 2, 3}
and can only color edges where both nodes are selected, meaning any edges
involving node 4 are avoided. On the other hand, red can only color edges
that include node 4.

Figure 1: Simulated game with best-case scenario for blue with k£ = 4 and
n=>

During the simulation shown in Figure [T, Blue only colors edges with
nodes 0, 1, 2, and 3. Red includes node 4 in every colored edge. However,
K4 has 6 edges, meaning Blue requires 6 moves to win. Red only has 4 edges
that don’t interfere with Blue, and is eventually forced to color edges {1, 4}
and {2, 4}. Thus, Blue can’t create a monochromatic Ky, and the game is
always a draw.

During the simulation shown in Figure [2] the same heuristics are used.
Because there’s an extra node, Red has more than six edges that don’t

Figure 2: Simulated game with best-case scenario for blue with £ = 4 and
n=~06

11

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

interfere with Blue, and Blue can create a monochromatic K. Thus, this
game is not a guaranteed draw.

Because only one simulation was needed for each n, k pair, we were able
to simulate games with much higher values of n and k.

We analyzed how the maximum n to guarantee a draw, denoted n(k),
grows with k. To analyze the progression of n(k), we also consider the
differences An = n(k) —n(k —1). We observed that An follows a repeating
pattern of either 1,2,1,2,1,1,2 or just 1,2,1,1,2.

kE n(k) An
2 2 —
3 3 1 k- n(k) An
4 5 2 23 32 -
5 6 1 24 33 1
6 8 2 25 35 2
7 9 1 26 36 1
8§ 10 1 27 37 1
9 12 2 28 39 2
(a) Pattern 1,2,1,2,1,1,2 (b) Pattern 1,2,1,1,2

Table 7: Excerpts of n(k) and An illustrating two distinct difference pat-
terns.

These patterns persisted until £ = 105, with the full table available in
the linked spreadsheet. Whether this continues passed £ = 105 and what
causes these patterns are still unknown.

Using Minimax to find optimal strategies

After using Minimax algorithms to find optimal strategies, we found a four-
move winning strategy for blue for games where £ = 3 and n > 4. We used
a tree depth of 2.

Figure 3: Blue’s first move can be anything. Red’s first move connects to
Blue’s edge, but it can also be disconnected.

12

https://docs.google.com/spreadsheets/d/1oA5JHrfxbEjLCgH_MOrm3pobnym3GzrA99tncDRPtf8/edit?usp=sharing

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

Figure 4: If the first two edges are connected, blue connects the vertex
contained in both edges (0) with another vertex (2, 3, 4, or 5). If they're
separate, either vertex of blue’s first edge (0 or 1) works. Red is then forced
to block.

0 ——1

/

4 — 3

Figure 6: Blue colors the other edge and wins the game

1 0

/ /

4 3 4

1

3

Figure 5: Both of blue’s edges share a vertex (0). Blue connects it with an
unused vertex (2 or 3), creating a fork with two ways to win. Red can only
block one of these.

Since red cannot win if blue plays perfectly, red’s strategy relies on blue
making mistakes during one of these moves. Therefore, there is a way for
blue to win every time if they start first, where £ = 3 and n > 4. We were
unable to use Minimax for £ > 3 because of limitations with computational
ability.

Modeling as an MDP + Reinforcement Learning Frame-
works

After using Minimax to find the four-move winning strategy, we wanted to
take it further and find a more general strategy to all board configurations.

13

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

To formalize our Ramsey game, we modeled it as a finite Markov Decision
Process (MDP). [7] This gave us a structured way to apply reinforcement
learning algorithms and analyze convergence properties. We decided that
there were two effective ways to create reinforcement learning models: Value
[teration and () Learning. Value iteration is a dynamic programming algo-
rithm that solves the MDP exactly for small graphs by using the known
transition structure, while Q Learning is a model-free reinforcement learn-
ing algorithm that approximates the optimal policy when the state space
becomes too large for exact methods. For Value Iteration, we used the
Bellman optimality update equation for the state value function:

Vir1(s) = max [R(s, a) + WZ P(s'"| s,a) Vi(s)

Here, s represents the current board state, a is a possible edge placement,
R(s, a) is the immediate reward value, and P(s" | s, a) is the transition prob-
ability to the next state. This model computes the optimal strategy in a
small board configuration repeatedly until it converges.

For QQ Learning, we used the Bellman optimality equation, but for action
values:
Q*(s,a) = R(s,a) +7) _ P(s' | 5,a) maxQ*(s,d)
a/
s'eS

Here,

e (*(s,a) is the optimal Q-value, eg, the maximum expected long-term
reward from taking action a in state s and then playing optimally.

e R(s,a) is the immediate reward obtained from taking action a in state
s.

e v is the discount factor (0 < < 1), which makes future rewards less
significant than immediate ones.

e P(s'| s,a) is the probability of transitioning to state s’ given action a
in state s.

e max, Q*(s',a’) represents the best possible future Q-value obtainable
from the next state s'.

Intuitively, this equation states that the value of taking an action is the
immediate reward plus the best possible discounted value expected in the
future.

State Space. Each state is defined by the coloring of the edges of K,,. We
represented the board state as an array of edges mapped to player moves,
like

[0,-1,1,0,0,1,—1,0,0,0]

14

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

, where 1 indicates that the edge is colored blue, -1 if it’s red, and 0 if it’s not
colored. Since each edge can be uncolored, red, or blue, the total number of
states is 3<72L) For example, when n = 5, there are (g) = 10 edges, and at
most 31 = 59049 possible states.

Actions. At any state, the acting player chooses an uncolored edge and
colors it with their color. Thus, while the action space decreases linearly,
the number of possible board configurations shrinks exponentially as moves

are made

Transitions. The game is deterministic. Once an action is taken, the next
state is determined by the new edge coloring.

Reward Function. We used a sparse reward scheme:

+1 if acting player completes a k length clique,
R(s,a) = ¢ —1 if the opponent wins,

0 otherwise.

Results with Machine Learning

After creating Q-Learning Models with Epsilon-Greedy algorithms [§] and
Value Iteration models [10], we wanted to test them against each other and
against our hardcoded strategies. We trained the Q Learning model with
5000 training/evaluation epochs and then tested each model against each of
the others. For value iteration, our configurations were that gamma=0.95,
and the depth limit=4. For Q-Learning, epsilon=1.0, epsilon min=0.05,
and epsilon decay=0.995. We did 200 games for each configuration with Q
Learning and Value Iteration, and 1000 for the 4x4 Hardcoded Heuristics.

Table 8: Win % for Blue (n = 6, k = 3) across strategies against Red
strategies

Red \ Blue Win+Block+R Win+R Block+R R Value Iteration Q-Learning
Win+Block+R 87.9% 17.1% 382% 2.2% 100.0% 100.0%
Win+R 98.7% 73.5% 62.8% 17.6% 100.0% 85.0%
Block+R 99.1% 64.7% 76.7% 22.4% 100.0% 100.0%
R 99.6% 94.8% 90.5% 61.7% 100.0% 96.5%
Value Iteration 100.0% 100.0% 100.0% 93.5% 100.0% 100.0%
Q-Learning 100.0% 99.5% 97.0% 53.0% 100.0% 100.0%

15

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

Table 9: Win % for Blue (n = 6, k = 4) across strategies against Red
strategies

Red \ Blue Win+Block+R Win+R Block+R R Value Iteration Q-Learning
Win+Block+R 744% 29.7% 36.0% 9.9% 96.0% 35.5%
93.4% 66.4% 72.1% 28.1% 98.0% 37.0%
Block+R 96.1% 65.1% 69.4% 37.0% 96.0% 77.0%
98.7% 90.9% 86.9% 64.1% 99.0% 66.5%
Value Iteration 100.0% 100.0% 100.0% 96.5% 100.0% 100.0%
Q-Learning 97.5% 96.5% 78.5% 70.0% 100.0% 100.0%
Table 10: Win % for Blue (n = 7, k = 3) across strategies against Red
strategies
Red \ Blue Win+Block+R Win+R Block+R R Value Iteration Q-Learning
Win+Block+R 75.8% 16.1% 29.8% 1.4% 100.0% 93.5%
98.0% 71.5% 46.7% 9.2% 100.0% 47.0%
Block+R 97.4% 72.4% 70.4% 19.5% 100.0% 100.0%
99.6% 96.9% 87.6% 57.8% 100.0% 82.5%
Value Iteration 100.0% 100.0% 100.0% 99.0% 100.0% 100.0%
Q-Learning 100.0% 99.5% 99.0% 56.0% 100.0% 100.0%

Note: The Q-Learning agent is the same agent for both blue and red

Even though in these simulations value iteration performed the best out
of any other strategy, it took much more time than the rest of the configura-
tions to run, since the number of paths it had to explore grew exponentially.
This left Q-learning as the only viable strategy in the end, since it performed
well and took less time than Value-Iteration. The time complexity for Q-
Learning also did not skyrocket as n or k increased. However, the time for
Q-Learning still did increase significantly, though it grew slower than value

iteration.

4 Analysis

Theoretical Connections to Ramsey Theory

The results we obtained share many similarities and connections with tradi-
tional Ramsey theory. Ramsey’s theorem guarantees monochromatic cliques
in large complete graphs, and our simulations and RL models are a way to
see how quickly such cliques can be forced through a competitive game style.
For example, since a monochromatic triangle must appear in any two player
coloring of Ky, the ability of the first player to guarantee a win with fewer
vertices demonstrates the fact that algorithmic strategies are a great way to
shift traditional Ramsey theory from combinatorial proofs to explicit and
algorithmic methods.

16

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

Our methods could be used to potentially uncover new forceful algorithms
guaranteeing wins for much higher K, and k clique sizes, which may of-
fer useful ways to estimate lower bounds for higher Ramsey numbers, like
R(5,5), R(6,6), etc.

How Algorithmic Strategies can be used to find lower bounds By
analyzing the strategies we identified, we can find optimal forcing strategies
in which the two agents prevent each other from winning and attempt to
force a draw. If a draw is achievable for a given configuration, it shows that
a clique cannot be formed. Consequently, this shows that the corresponding
value of n does not serve as a valid lower bound for R(k, k).

Extensions of hardcoded and RL models

Instead of using R(s,t) where s = t, we could try making the two players
have 2 different goals and s # t. This would let us find strategies for many
more configurations, allowing us to potentially uncover lower bounds for
other Ramsey numbers. Additionally, instead of using the same Q-Learning
agent for both red and blue, an extension of this is to train two seperate
agents. This way, both agents will develop their own strategy akin to their
needs.

Instead of using a sparse reward scheme, where the rewards happen in-
frequently, making it hard for the agent to know if it was making a good or
bad move, we could give it more informative reward schemes. For example,
we could use these more elaborate reward schemes:

1. Partial progress toward a clique:
e +0.1 for adding an edge that extends a potential k-clique in the

agent’s color.

e —(.1 for adding an edge that helps the opponent form a k-clique.
2. Fork creations:

e +0.3 if a move creates multiple ways to win (eg, two potential
k-cliques that need only one more edge each).

3. Blocking opponent threats:

e +0.2 if a move prevents the opponent from completing a k-clique
in their next turn.

We could also implement Deep Q-Learning or Deep Reinforcement Learn-
ing to handle larger graphs where the state space is too large for regular
Q-Learning [4]. In DQN, instead of storing Q-values in a table for every
state-action pair, we use a neural network to approximate the Q-function.
In deep reinforcement learning, we use a deep neural network or a convolu-
tional neural network that takes in the game frames, feeding into a policy
network.

17

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

Limitations

Due to limited computing resources, we were unable to run more than 1000
trials for each game configuration. We were also unable to run simulations
for large graphs with n > 20 or k£ > 4. We also used Python, which limits
the speed of our programs compared to other faster languages. We were
also unable to run simulations in a reasonable amount of time with Value
Iteration and Q-Learning for n > 7 and k > 4 due to our limited computing
resources.

5 Conclusion

In this paper, we researched Ramsey edge coloring games on complete graphs
using both hardcoded strategies and machine learning frameworks. Our ex-
periments demonstrated that greedy algorithms can provide strong base-
lines, but reinforcement learning, MDP, and minimax algorithms can dis-
cover deeper and more effective strategies that outperform simple models.
We found deterministic winning strategies for small (n, k) configurations and
consistent advantages for Blue when starting first, aligning with traditional
Ramsey theory.

6 Acknowledgements

We would like to greatly thank our mentor, Dr. William Gasarch, for his
support, discussions, guidance, and feedback on our designs and progress.
We would also like to thank our colleagues for helping us and sharing ideas.

References

[1] Vigleik Angeltveit and Brendan D. McKay. r(5,5) < 46, 2024.

2] Colin Barton. Ramsey theory and its applications. https:
//www.whitman.edu/documents/Academics/Mathematics/2016/
Barton.pdf, 2016. Senior thesis, Whitman College.

3] G. Exoo. A lower bound for r(5,5). Journal of Graph Theory, 13(1):1-5,
1989.

[4] Jianqing Fan, Zhaoran Wang, Yuchen Xie, and Zhuoran Yang. A the-
oretical analysis of deep g-learning, 2020.

[5] Amur Ghose, Amit Levi, and Yingxue Zhang. Graph neural networks
for ramsey graphs, 2023. Accessed: 2025-08-25.

6] R. E. Greenwood and A. M. Gleason. Combinatorial relations and
chromatic graphs. Canadian Journal of Mathematics, 7:1-7, 1955.

18

https://www.whitman.edu/documents/Academics/Mathematics/2016/Barton.pdf
https://www.whitman.edu/documents/Academics/Mathematics/2016/Barton.pdf
https://www.whitman.edu/documents/Academics/Mathematics/2016/Barton.pdf

Shivum Arora, Andy Wu, William Gasarch August 20, 2025

7]

Emily Hawboldt. A machine learning approach to construct-
ing ramsey graphs: Leads to the trahtenbrot-zykov problem.
https://ir.library.louisville.edu/cgi/viewcontent.cgi?
article=5453&context=etd, August 2023. Master’s thesis, University
of Louisville, Electronic Theses and Dissertations, ThinkIR: The
University of Louisville’s Institutional Repository.

Beakcheol Jang, Myeonghwi Kim, Gaspard Harerimana, and
Jong Wook Kim. Q-learning algorithms: A comprehensive classifica-
tion and applications. IEFEE Access, 7:133653-133667, 2019.

F. P. Ramsey. On a problem of formal logic. Proceedings of the London
Mathematical Society, s2-30(1):264-286, 1930.

Aviv Tamar, Sergey Levine, and Pieter Abbeel. Value iteration net-
works. CoRR, abs/1602.02867, 2016.

19

https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=5453&context=etd
https://ir.library.louisville.edu/cgi/viewcontent.cgi?article=5453&context=etd

	Introduction
	Notations and Definitions
	Notations
	Definitions

	Research
	Hardcoded Simulation Results
	Win rates between strategies for k=3
	Comparison of Win + R and Block + R for k=4
	Maximum n to guarantee a draw for a given k
	Using Minimax to find optimal strategies
	Modeling as an MDP + Reinforcement Learning Frameworks
	Results with Machine Learning

	Analysis
	Theoretical Connections to Ramsey Theory
	Extensions of hardcoded and RL models
	Limitations

	Conclusion
	Acknowledgements

