
SAT Solvers

Aanya Garg

October 7, 2025

1 Introduction

People have always dealt with problems. As time went on, those problems became less
about survival and more about ideas: how to send information across the world, how to
create systems that shape the way we live, and how far the power of technology can really
go. However, when addressing these problems, we always face the same two fundamental
questions: can we solve this and if so, how fast can we do it?

That brings us to one of the most famous problems in mathematics and computer science:
the Boolean Satisfiability Problem (SAT). It asks whether a formula composed of Boolean
variables can be satisfied by some assignment of TRUE/FALSE values. This problem is not
just another abstract puzzle, as it was the first proven NP-complete problem. This means
SAT is a gateway problem: if an efficient algorithm is found for SAT, it would immediately
provide efficient algorithms for thousands of other problems in scheduling, optimization,
verification, and beyond.

Currently, we know how to solve SAT in principle through brute force, as well as some
sophisticated algorithms for special cases, but do not have an efficient algorithm for all
instances. In this project, we will study SAT by coding several SAT Solvers. Some algorithms
are classics that researchers have been studying for decades, and others will be ones we try
ourselves. We will then test these algorithms on known sets of complex logical formulas to
see how they perform. Our goal is to see which ones actually work best, both in terms of
always finding the right answer and in how quickly they do it.

2 Background

2.1 What is SAT?

The Boolean Satisfiability Problem (SAT) is one of the most famous problems in mathematics
and computer science. In SAT, there is a logical formula made up of variables connected by

1



AND (∧), OR (∨), and NOT (¬). The question is whether one can assign TRUE or FALSE
values to the variables such that the whole formula comes out to TRUE.

For example, consider the following:

(x ∨ ¬y ∨ z) ∧ (¬x ∨ y)

Is it possible to find a combination of TRUE and FALSE values for x, y, and z so the formula
is satisfied? In this case, the answer is yes, it is satisfiable with multiple possible solutions.
One way is setting x to TRUE, y to TRUE, and z to FALSE. Another is setting x to FALSE,
y to TRUE, and z to TRUE. However, this is not true for all formulas. Take, for example:

(x) ∧ (¬x)

No matter what value is assigned to x, one of the clauses is guaranteed to be FALSE so
the whole formula can never be TRUE. Thus, it is unsatisfiable. This demonstrates the
variability of the SAT problem, some formulas work with tons of solutions, while others are
simply impossible.

2.2 Complexity-Theoretic Significance

At first glance, this may seem like nothing more than a brain teaser or puzzle. However, SAT
is much more than that. In 1971, Stephen Cook showed that SAT was the first NP-complete
problem, or that SAT is as difficult as thousands of other problems across many different
fields. That result, known as Cook’s Theorem, has two important results:

1. If there were an efficient algorithm to solve SAT, then all problems in NP could be
solved efficiently.

2. The question of whether such an algorithm exists is equivalent to the famous open
problem of whether P = NP .

Certain cases of SAT have different complexity. Take 2-SAT for example, where each clause
has at most two literals, and be solved in polynomial time using graph algorithms. On the
other hand, 3-SAT remains NP-complete and serves as the traditional “hard” version of the
problem.

2.3 Historical Development of Solvers

Currently, we know how to solve SAT using the following methods:

2



• Brute force: The most straightforward approach is to try possible assignment of
TRUE/FALSE values. While guaranteed to work, it is extremely slow as the num-
ber of assignments grows exponentially with the number of variables.

• DPLL (Davis–Putnam–Logemann–Loveland): A recursive method that improves effi-
ciency by focusing on eliminating impossible cases using strategies like unit propagation
and pure literal elimination.

• Modern SAT solvers: Extensions of DPLL, such as CDCL (Conflict-Driven Clause
Learning), add techniques like clause learning, backjumping, and randomized restarts.
These allow SAT solvers to handle large instances with millions of variables, although
it is still theoretically NP-complete.

2.4 Applications of SAT

The importance of SAT extends far beyond just theory. The implication of being NP com-
plete means is that if an efficient algorithm for SAT existed, it would instantly give efficient
algorithms for a wide range of real-world problems, including:

• Scheduling airplane flights

• Designing and verifying computer chips

• Solving puzzles like Sudoku

• Tackling optimization problems such as the Traveling Salesperson Problem

Even without a general efficient algorithm, however, SAT solvers are already widely used
in hardware and software verification, artificial intelligence, cryptography, and operations
research. Although the worst case scenario SAT is NP-complete, modern SAT solvers handle
industrial-scale problems with millions of clauses with the help of heuristics, preprocessing,
and clever algorithmic engineering.

3 Methods

3.1 Algorithms Implemented

In order to study the performance of SAT solvers, I implemented a range of algorithms that
vary from naive to advanced.

3



DPLL (Davis–Putnam–Logemann–Loveland) Algorithm This classical recursive al-
gorithm uses backtracking, unit propagation, and pure literal elimination to prune large parts
of the search space. I implemented DPLL in Python to serve as a “baseline” structured solver.

Heuristic Variable-Picking Algorithms I tested custom heuristics that decide the order
in which variables are assigned in “smart” ways

1. Choosing the variable that appears most frequently. One of the simplest but still
effective deterministic heuristics is to select the variable that appears most frequently
across all clauses. Assigning them early can immediately simplify a large portion of
the instance, either by satisfying many clauses or by reducing their size.

2. Clause-Weighted Variable Selection. This strategy adds importance to variables based
on the length of clauses they appear in. The main idea is that shorter clauses are more
restrictive, since they have fewer opportunities to be satisfied. To capture this, each
clause is given a weight equal to the inverse of its length. Then, for each variable, we
sum the weights of all clauses in which it appears. The solver then selects the variable
with the highest weighted score.

3. Adaptive Probabilistic Hybrid. This strategy blends deterministic selection with ran-
domness depending on the search depth. At the top of the search tree, where choices
strongly influence the rest of the solution, the solver favors deterministic rules (such
as those in the first two “smart” ways: frequency and constraints). Deeper in the tree,
however, it introduces more randomness as those rigid strategies could lead to dead
end scenarios.

3.2 Implementation Details

All solvers were implemented in Python 3 using only standard libraries (with Pandas and
Numpy used for data collection and analysis).

• Input Format: SAT instances were generated in Conjunctive Normal Form (CNF).
Each formula was represented as a list of clauses, where each clause was a list of
integers corresponding to literals (e.g., x represented by 1, ¬x by -1).

• Correctness Checks: Each solver was tested against small formulas with known solu-
tions to confirm being correct before performance testing.

3.3 Testing Framework

To compare solvers, I used the following testing environment:

4



• Instance Types: Random 3-SAT (uf20, uf50) and structured SAT (pigeonhole, graph
coloring, Towers of Hanoi).

• Metrics: Runtime (seconds, with 30s timeout), Correctness, Recursion failures.

• Hardware & Software: MacBook Air (Apple M3, 2024) with 8-core CPU and 8 GB
RAM.

4 Results

4.1 Overview

The experiments revealed distinctions between solver performance on random versus struc-
tured benchmarks. While all solvers handled small random instances with ease, larger or
more structured formulas exposed significant weaknesses, with both exponentially large slow-
downs and practical implementation limits such as recursion depth. Two forms of failure
were reported: timeouts, where a solver exceeded the 30 second limit, and recursion limit
exceeded, where the solver reached Python’s maximum recursion depth despite extending it
to 20,000.

4.2 Random 3-SAT Formulas

The experiments on random 3-SAT formulas (uf20 and uf50 benchmarks) show a divide
between the smaller uf20 instances and the larger uf50 ones.

For uf20 problems, all solvers were able to find solutions quickly, usually in under 10 mil-
liseconds. DPLL consistently produced results in the 1–8 ms range, while the frequency
and weight-based heuristics sometimes added extra time but remained efficient. The hybrid
solver’s runtimes were also competitive, generally close to the deterministic heuristics. These
results suggest that on small random formulas, even simple DPLL is sufficient, and heuristic
improvements do not provide dramatic speedups.

For uf50 problems, the differences between the solvers became more apparent. On many uf50
instances, DPLL still returned results in 1–10 seconds, but the frequency heuristic sometimes
required longer runtimes (up to 12 seconds), reflecting the time lost by evaluating variable
counts in larger formulas. The weighted heuristic, however, was much more efficient, often
solving those same instances in under 1 second. The hybrid strategy was inconsistent: on
some formulas it matched or outperformed DPLL, but on others it ran much longer or even
timed out at the 30 second limit.

Overall, the data shows that weighted clause heuristics scale better than simple frequency
counting when formula size increases. Additionally, while DPLL remains competitive on

5



smaller instances, it loses efficiency as variable counts and clause density grow. Hybrid
methods show potential but also instability.

Figure 1: Average runtime comparison between uf20 and uf50 random 3-SAT instances.

Figure 2: Runtime distribution of solvers on uf20 vs uf50 random 3-SAT instances.

4.3 Hard Problems

The structured formulas produced very different results compared to the random ones. For
the pigeonhole problems, all larger ones (hole8, hole9, hole10) hit the 30 second timeout for
every solver. The smaller ones had more variation: hole6 was solved quickly by every solver,
and hole7 was solved within 15 seconds by the frequency and weighted heuristics, while

6



DPLL and hybrid timed out. Since pigeonhole encodings are unsatisfiable, these results
show how much harder it is for the solvers to prove unsatisfiability versus just finding a
satisfying assignment.

The Hanoi tower encodings were also very hard. Even for hanoi4 and hanoi5, every solver
timed out before finishing. The deep recursive nature of these formulas makes them difficult,
and the branching heuristics did not help.

Finally, the graph coloring instances (g125, g250) were the hardest overall. All solvers
reached the timeout without producing a result. These formulas caused very deep recursion,
and I had to add a recursion limit on top of the timeout wrapper to keep the program from
crashing.

Figure 3: Average runtime of each solver across hard benchmark instances (pigeonhole,
Hanoi, and graph coloring).

7



Figure 4: Heatmap of solver runtimes across structured SAT problems.

8



Figure 5: Solved vs Timeout per solver across structured benchmarks.

4.4 Timeout and Recursion Limit Behavior

A notable distinction emerged between timeouts and recursion limit failures.

• Timeouts indicate that the solver explored too broad a search space without effectively
eliminating cases. These were common in uf50 instances with poor heuristics and in
large hard problems.

• Recursion limit failures reflect search trees that are extremely deep but narrow. These
were most common in Hanoi and large graph-coloring encodings.

4.5 Summary

Overall, the experiments confirm that:

1. Baseline DPLL remains surprisingly competitive on random benchmarks.

2. Frequency and weighted heuristics help in some cases but introduce variability that
can worsen performance on structured instances.

3. Structured formulas expose the limits of recursive Python implementations, producing
recursion depth overflows even when the system recursion limit is raised substantially.

9



5 Discussion

The results show the difference between random and structured SAT problems, as well as
the limits of simple SAT solvers written in Python. For the random 3-SAT formulas, the
solvers performed well on the smaller uf20 instances and sometimes on the uf50 ones, though
the heuristic design did make a clear difference in runtime. These results suggest that even
lightweight heuristics like frequency and weight can demonstrate meaningful improvements
in some scenarios.

The structured formulas, on the other hand, had different results. For the pigeonhole en-
codings, solvers could only handle the very smallest cases before taking too much time.
The Hanoi encodings had even worse results, as the deep recursion made them practically
unsolvable within the limits of our implementation. Graph coloring problems also caused
consistent timeouts, showing that these constraint structures were difficult for all the solvers.
These outcomes demonstrate how the structure of the formula is just as important as the
size. Random formulas tend to give solvers more “easy wins,” while structured problems
expose their weaknesses.

Another important observation was the need for both a timeout and recursion guard. With-
out these, the solvers would either run indefinitely or crash, which would make testing on
a large scale very difficult on a personal computer. These controls also revealed where dif-
ferent families of problems fail: timeouts for breadth-heavy formulas, recursion errors for
depth-heavy ones.

Overall, this project shows that while simple heuristics can improve performance on random
instances, they are not enough to break through structured SAT problems. This gap suggests
a direction for future work with more advanced heuristics, hybrid strategies, or even machine
learning based strategies that could be explored. In practice, this is why modern SAT solvers
use clause learning from conflicts, more sophisticated branching, and preprocessing to go
beyond what was tested here.

References

Cook, S. A. (1971). The complexity of theorem-proving procedures. Proceedings of the
Third Annual ACM Symposium on Theory of Computing (STOC ’71), 151–158. https:
//doi.org/10.1145/800157.805047

Davis, M., Logemann, G., & Loveland, D. (1962). A machine program for theorem-proving.
Communications of the ACM, 5(7), 394–397. https://doi.org/10.1145/368273.368557

Hoos, H. H., & Stützle, T. (2000). SATLIB: An online resource for research on SAT. In
SAT 2000: Highlights of Satisfiability Research in the Year 2000 (pp. 283–292). IOS Press.
http://www.cs.ubc.ca/∼hoos/SATLIB/

10

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/368273.368557
http://www.cs.ubc.ca/~hoos/SATLIB/


Yurichev, D. (2025). SAT/SMT by Example. https://smt.st/SAT SMT by example.pdf

Soos, M. (2018). Modern SAT solvers: fast, neat and underused (part 1 of N). https:
//codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/

11

https://smt.st/SAT_SMT_by_example.pdf
https://codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/
https://codingnest.com/modern-sat-solvers-fast-neat-underused-part-1-of-n/

	Introduction
	Background
	What is SAT?
	Complexity-Theoretic Significance
	Historical Development of Solvers
	Applications of SAT

	Methods
	Algorithms Implemented
	Implementation Details
	Testing Framework

	Results
	Overview
	Random 3-SAT Formulas
	Hard Problems
	Timeout and Recursion Limit Behavior
	Summary

	Discussion

