
SAT Solvers and The Pigeonhole Principle

Daniel Hoang
Mentored by William Gasarch

October 11, 2025

1 Introduction

Many situations in our world can be reduced down to a Boolean formula.
Suppose that a meeting is being planned between five friends; it is plausible
to have a pair of friends that will show up to the meeting only when both
people in the pair are present. This constraint in the situation can be written
as a conjunction of two Boolean variables. As more constraints are added, the
whole situation can be represented as a Boolean satisfiability problem (SAT).
SAT solvers solve the SAT problem; they are algorithms that determine if a
given Boolean formula can be satisfied by some assignment of the Boolean
variables within it. A formula is UNSAT if it cannot be satisfied, and SAT
if it can be.

The SAT problem was the first problem proven to be NP-complete, meaning
the SAT problem can be verified in polynomial time and any other NP prob-
lem can be reduced to the SAT problem [3]. So, if a way to efficiently solve
the SAT problem is discovered, all other NP problems can also be efficiently
solved. This motivates the investigation of SAT solvers and the problems
SAT solvers struggle with.

One problem that SAT solvers struggle with is the Pigeonhole principle prob-
lem. Thus, conducting this research did not only involve coding SAT solvers,
but also generator algorithms for Boolean formulas based on the Pigeonhole
principle. The SAT solvers are based on different heuristics, and their per-
formance will be compared by their runtime when solving the Pigeonhole

1

principle problems. Simultaneously, we can explore how runtime grows as
the Pigeonhole principle problems scale larger in size.

2 Background

2.1 Boolean Logic

SAT solvers take boolean formulas as input; SAT solvers naturally rely on
Boolean Logic. A Boolean formula refers to a logical statement made up
of Boolean variables and Boolean operators. These operators include the
conjunction AND (∧), disjunction OR (∨), and negation NOT (¬). Boolean
variables are simply variables that can be assigned values TRUE or FALSE.

2.2 CNF Boolean Formulas

CNF means conjunctive normal form. A Boolean Formula in CNF refers to
formulas structured such that it is a conjunction of clauses. A clause is a
disjunction of literals. Literals can be either a Boolean variable or a Boolean
variable negated. For example, the following CNF Boolean formula has 4
clauses:

(x1) ∧ (¬x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x3) (1)

Observe how the first clause has only one literal, it is a unit clause. Further,
x2 and x4 are considered pure literals because they are literals that only show
up as non-negated or only show up as negated. To be exact, x2 is a pos-pure
literal because it is a pure literal and a variable, while x4 is a neg-pure literal
because it is a pure literal and a negation of a variable.

2.3 2-SAT

When every clause in a SAT problem has exactly two literals, it is 2-SAT.
Although SAT is NP-complete, 2-SAT can be solved efficiently using graph
theory and Kosaraju’s algorithm [2]. Any 2-SAT problem can be converted
into a directed graph, and Kosaraju’s algorithm traverses the graph to find
strongly connected components within those graphs. Strongly connected
components are subsets in a directed graph such that all vertices in the subset
has a path to every other vertex in the same subset. One last traversal of the

2

graph will discover any contradictions in our strongly connected components.
If there are contradictions, the 2-SAT problem is UNSAT, otherwise it is SAT.

2.4 Davis-Putnam-Logemman-Loveland Algorithm

The Davis-Putnam-Logemman-Loveland Algorithm (DPLL) is the refine-
ment of the very first SAT solver algorithm [1]. DPLL is a backtracking
algorithm that relies on ”cleverly” picking variables—the ”cleverness” de-
pends on the heuristic of your design. DPLL first checks if there is already
an assignment in the formula and simplifies. Any FALSE in a clause disap-
pears, while any clauses with a TRUE disappears from the Boolean formula.
DPLL then adds assignments such that any unit clauses and pure literals re-
solve to TRUE. Next, DPLL checks if any further simplification can be done
or if any unit clauses or pure literals arose to redo the steps. If not, DPLL
then uses a heuristic to pick a variable ”cleverly.” That chosen variable is
then given an assignment and DPLL goes through recursion. If any original
clause resolves to FALSE, DPLL backtracks and tries the other assignment
of the previously chosen variable. If there is an assignment that works, DPLL
outputs SAT, else UNSAT for no valid assignment.

2.5 Pigeonhole Principle

The Pigeonhole principle states that given n pigeons and m holes, where
n > m, at least 1 hole must contain more than 1 pigeon when fitting pigeons
into holes. It is possible for any Pigeonhole principle problem to be repre-
sented as a CNF Boolean formula. Naturally, a SAT solver can determine
whether or not any Pigeonhole principle problem is UNSAT or SAT based
on the number of given n pigeons and m holes. For example, the Pigeonhole
principle problem with 3 pigeons (n = 3) and 2 holes (m = 2) can be written
as the conjunction of the following clauses:

1. x11 ∨ x12

2. x21 ∨ x22

3. x31 ∨ x32

4. ¬x11 ∨ ¬x21

5. ¬x11 ∨ ¬x31

3

6. ¬x21 ∨ ¬x31

7. ¬x12 ∨ ¬x22

8. ¬x12 ∨ ¬x32

9. ¬x22 ∨ ¬x32

Notation 2.1 Variable xij represents putting the i-th pigeon into the j-th
hole.

Note that clauses 1-3 are disjunctions of non-negated variables. These begin-
ning clauses represent the statement that each pigeon can go into any hole of
their choosing. Consider clause 1; pigeon 1 can go into either hole 1 or hole 2.
On the other hand, clauses 4-9 are disjunctions of negated variables. These
later clauses represent the constraint that no hole can contain more than one
pigeon. Consider clause 4; either pigeon 1 is not in hole 1 or pigeon 2 is not
in hole 1—this clause also includes that it’s possible for neither pigeon 1 nor
2 to be in hole 1. Since there are more pigeons than holes, this SAT problem
is UNSAT. In this paper, all Pigeonhole principle problems the SAT solvers
are tested on will be generated such that they are UNSAT.

3 Methods

3.1 SAT Solver Implementation

For our purposes, we programmed SAT solvers based on the same DPLL
implementation, but differing based on their heuristic of ”cleverly” choosing
a variable for assignment.

The DPLL implementation shared by the SAT solvers in this paper differs
from the general algorithm described in the background because it also checks
if the SAT problem has been reduced to 2-SAT. This 2-SAT checking is done
immediately before searching for unit clauses and pure literals. So, once the
SAT solvers reduce the SAT problem to 2-SAT, the efficient 2-SAT algorithm
is executed.

There are three different SAT solvers, each implementing our DPLL algo-
rithm with a different heuristic, that this paper explores:

1. Maximum Occurrences (MO) As a simple heuristic, each clause is

4

iterated over to count the number of occurrences of each variable. The
variable with the greatest number of occurrences is selected.

2. Maximum Occurrences in Minimum Sized Clauses (MOMS)
Rather than counting the number of occurrences throughout all clauses,
the MOMS heuristic only counts variable occurrences that are in clauses
of the minimum size [4]. Suppose there is a SAT problem with clauses
of sizes 2, 3, and 4. For this SAT problem, the MOMS heuristic will
only count occurrences in the clauses of size 2. Once again, the variable
with greatest counted occurrences is selected.

3. Jeroslow-Wang (JW) The JW heuristic was developed by Robert
G. Jeroslow and Jian Kang Wang. The JW still puts an emphasis
on smaller clauses like MOMS, but it also counts occurrences in other
clauses [4]. The emphasis is maintained because the JW heuristic as-
signs a weight to each clause based on the number of literals in that
clause:

JW (x) =
∑
x∈Ci

2−|Ci| (2)

For a variable x, the JW heuristic calculates a value that is the sum of
all the weights of each clause Ci that the variable x occurs in. As seen,
the weight of a clause C1 is 2

−|Ci| where |Ci| is the length of clause C1.
So, as the length of a clause increases, its weight decreases. As such,
the JW heuristic selects the variable x with the greatest JW (x) value.

These heuristics focus on smaller clauses because smaller clauses have less
literals in them to satisfy the clause. So, the assignment of the literals in
smaller clauses should be focused.

3.2 Pigeonhole Formula Generators

Before our SAT solvers can execute, we need the Pigeonhole CNF formulas
to test them against. Using the Pigeonhole CNF formula structure described
in the background, generators for the following problems were programmed:

1. n pigeons, n− 1 holes

2. n pigeons, n− 2 holes

3. n pigeons, n− 3 holes

5

4. n pigeons, n− 4 holes

5. 2n pigeons, n holes

6. 10n pigeons, n holes

3.3 Testing Environment

Each SAT solver will be tested against each Pigeonhole problem, measuring
the SAT solver’s runtime on the Pigeonhole problem for a given value n. The
tests will start with n = 5 and increment by 1 after each test, scaling up the
size of the Pigeonhole problem. Additionally, tests between a SAT solver
and a Pigeonhole problem that take longer than 900 seconds will be left
incomplete and only values of n prior to the incompletion will be considered.
900 seconds is a timeout cutoff.

Furthermore, Python is the programming language the SAT solvers, genera-
tor functions, and data collectors were written in. Similarly, the data will be
graphed with Python’s matlibplot library. In order to examine the growth
of Pigeonhole problems as n increases, an exponential curve will be fit to the
data.

All testing was conducted on hardware with the following properties

• Windows 10 Operating System

• AMD Ryzen 5 7600X 6-Core Processor @ 4.70 GHz

• 16 GB RAM @ 4800 MHz

4 Results

4.1 n Pigeons, n-k Holes

For early values of n, the problems are too trivial to have substantial the
differences between each heuristic. The SAT solvers always timed out after
n = k+10. The final runtime was never near the 900-second cutoff, runtime
was never even over 500 seconds. For the final value of n that didn’t timeout,
it is clear that the JW SAT Solver always performed worst, while MOMS
performed the best. Additionally, the runtime of each test grew exponentially
as n increased. All tests had fit an exponential curve with R2 = 0.99.

6

Figure 1: Runtime of SAT solvers on n pigeons, n− 1 holes (k = 1)

Figure 2: Runtime of SAT solvers on n pigeons, n− 2 holes (k = 2)

7

Figure 3: Runtime of SAT solvers on n pigeons, n− 3 holes (k = 3)

Figure 4: Runtime of SAT solvers on n pigeons, n− 4 holes (k = 4)

8

To further explore the Pigeonhole problems of this category, consider only
the SAT solver runtime with the MOMS heuristic.

As k increases, the runtime of the SAT solver on for the same values of
n decrease. For example, when k = 2, solving for n = 12 takes over 200
seconds. However, when k = 4, solving for n = 12 takes under 5 seconds.
Naturally, it was possible for us to reach greater values of n before stopping
due to our time constraint.

Interestingly, the graph visually suggests that a single linear line can pass
through all the last data points for the different values of k. The same
intuition appears for the second-to-last and third-to-last data points for the
different values of k.

Figure 5: Runtime of SAT solver with MOMS heuristic on n pigeons, n− k
holes (k varying)

4.2 kn Pigeons, n Holes

Here, solving Pigeonhole problems with early values of n was once again too
trivial to have great differences between the heuristics. This time, the SAT

9

solvers timed out after n = 9 for problems with 2n pigeons, while they timed
out after n = 8 for problems with 10n pigeons. Final runtime got as high as
800 seconds. There was not a clear relationship describing the last value of n
before timing out. For the runtime of later n values, the JW SAT solver was
once again the worst-performing, but this time the MO SAT solver performed
the best—not MOMS. Similar to the last Pigeonhole problems, the runtime
growth also fit an exponential curve with R2 = 0.99, regardless of heuristic.

Figure 6: Runtime of SAT solvers on 2n pigeons, n holes

When considering only the MO SAT solver, it is evident that an increase in
k once again decreases runtime for same values of n. For n = 8, there is a
near 800 second difference between k = 2 and k = 10.

10

Figure 7: Runtime of SAT solvers on 10n pigeons, n holes

Figure 8: Runtime of SAT solver with MO heuristic on kn pigeons, n holes
(k varying)

11

5 Conclusion

Although there were differences in runtime between the SAT solvers, we
cannot confidently declare one as the “best.” Since we were unable to test
runtime on many values of n due to time constraints, it is possible our findings
on SAT solver runtime do not extend for values of n greater than the ones
investigated. Additionally, while MOMS performed the best for Pigeonhole
problems of n pigeons and n−k holes, MO performed the best for Pigeonhole
problems of kn pigeons and n holes. Still, the JW SAT solver performed the
worst in both categories of Pigeonhole problems, so it is likely the worst-
performing of the three SAT solvers in general.

This paper has confirmed the exponential growth rate of runtime on solving
Pigeonhole problems, as every problem was able to fit an exponential curve
with little error. Unfortunately, the growth rate of runtime was too high to
collect data for values of n beyond 14.

Further open-ended questions that arise from this work includes whether or
not an increase in pigeons affects runtime more than a decrease in holes.
Knowing that the value of n helps determine the number of clauses and
variables, is it possible to have a Pigeonhole problem with more clauses or
variables than another, but be solved with less time?

It is clear that the Pigeonhole principle is still one of SAT solver’s “hard”
problems to solve. Future investigation could involve SAT solvers that are not
as naive and use adaptive heuristics. With more modern implementations,
it is possible to investigate beyond this paper.

References

[1] Johannes K. Fichte, Daniel Le Berre, Markus Hecher, and Stefan Szeider.
The silent (r)evolution of sat, Nov 2023.

[2] Algorithms for Competitive Programming, Oct 2025.

[3] Lance Fortnow and Steven Homer. Computational complexity. In Jörg H.
Siekmann, editor, Computational Logic, volume 9 of Handbook of the
History of Logic, pages 495–521. North-Holland, 2014.

12

[4] Robert G. Jeroslow and Jinchang Wang. Solving propositional satis-
fiability problems. Annals of Mathematics and Artificial Intelligence,
1(1–4):167–187, September 1990.

13

	Introduction
	Background
	Boolean Logic
	CNF Boolean Formulas
	2-SAT
	Davis-Putnam-Logemman-Loveland Algorithm
	Pigeonhole Principle

	Methods
	SAT Solver Implementation
	Pigeonhole Formula Generators
	Testing Environment

	Results
	n Pigeons, n-k Holes
	kn Pigeons, n Holes

	Conclusion

