The Muffin Problem

William Gasarch - University of MD Erik Metz - University of MD Jacob Prinz-University of MD Daniel Smolyak- University of MD

How it Began

A Recreational Math Conference (Gathering for Gardner) May 2016

I found a pamphlet:

The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles
Compiled by Nancy Blachman
which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that every student gets $\frac{5}{2}$ where nobody gets a tiny sliver?

5 Muffins, 3 Students, Proc by Picture

Person	Color	What they Get
Alice	RED	$1 + \frac{2}{3} = \frac{5}{3}$
Bob	BLUE	$1 + \frac{2}{3} = \frac{5}{3}$
Carol	GREEN	$1 + \frac{1}{3} + \frac{1}{3} = \frac{5}{3}$

Smallest Piece: $\frac{1}{3}$

Can We Do Better?

The smallest piece in the above solution is $\frac{1}{3}$. Is there a procedure with a larger smallest piece? Work on it with your neighbor

5 Muffins, 3 People-Proc by Picture

YES WE CAN!

Person	Color	What they Get
Alice	RED	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Bob	BLUE	$\frac{6}{12} + \frac{7}{12} + \frac{7}{12}$
Carol	GREEN	$\frac{5}{12} + \frac{5}{12} + \frac{5}{12} + \frac{5}{12}$

Smallest Piece: $\frac{5}{12}$

Can We Do Better?

The smallest piece in the above solution is $\frac{5}{12}$. Is there a procedure with a larger smallest piece? Work on it with your neighbor

5 Muffins, 3 People–Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases. (Henceforth: All muffins cut into \geq 2 pieces.)

5 Muffins, 3 People–Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases. (**Henceforth:** All muffins cut into \geq **2** pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$. (Henceforth: All muffins cut into 2 pieces.)

5 Muffins, 3 People–Can't Do Better Than $\frac{5}{12}$

NO WE CAN'T!

There is a procedure for 5 muffins,3 students where each student gets $\frac{5}{3}$ muffins, smallest piece N. We want $N \leq \frac{5}{12}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both $\frac{1}{2}$ -sized pieces to whoever got the uncut muffin. (Note $\frac{1}{2} > \frac{5}{12}$.) Reduces to other cases. (**Henceforth:** All muffins cut into \geq **2** pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then $N \leq \frac{1}{3} < \frac{5}{12}$. (**Henceforth:** All muffins cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students: Someone gets \geq 4 pieces. He has some piece

$$\leq \frac{5}{3} \times \frac{1}{4} = \frac{5}{12}$$
 Great to see $\frac{5}{12}$

What Else Was in the Pamphlet?

The pamphlet also had asked about

- 1. 4 muffins, 7 students.
- 2. 12 muffins, 11 students.
- 3. a few others

What Else Was in the Pamphlet?

The pamphlet also had asked about

- 1. 4 muffins, 7 students.
- 2. 12 muffins, 11 students.
- 3. a few others

This seemed like a nice exercise and it was.

What Else Was in the Pamphlet?

The pamphlet also had asked about

- 1. 4 muffins, 7 students.
- 2. 12 muffins, 11 students.
- 3. a few others

This seemed like a nice exercise and it was.

There can't be much more to this.

```
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/
9811215170
```

```
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/
9811215170
```

```
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/
9811215170
```

The following happened:

► Find a technique that solves many problems (e.g., Floor-Ceiling).

```
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/
9811215170
```

- ► Find a technique that solves many problems (e.g., Floor-Ceiling).
- Come across a problem where the techniques do not work.

```
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/
9811215170
```

- Find a technique that solves many problems (e.g., Floor-Ceiling).
- Come across a problem where the techniques do not work.
- Find a new technique which was interesting.

```
https://www.amazon.com/
Mathematical-Muffin-Morsels-Problem-Mathematics/dp/
9811215170
```

- Find a technique that solves many problems (e.g., Floor-Ceiling).
- Come across a problem where the techniques do not work.
- Find a new technique which was interesting.
- Lather, Rinse, Repeat.

General Problem

f(m, s) be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide m muffins among s students so that everyone gets $\frac{m}{s}$.

We have shown $f(5,3) = \frac{5}{12}$ here.

We have shown f(m, s) exists, is rational, and is computable using a Mixed Int Program.

General Problem

f(m, s) be the smallest piece in the best procedure (best in that the smallest piece is maximized) to divide m muffins among s students so that everyone gets $\frac{m}{s}$.

We have shown $f(5,3) = \frac{5}{12}$ here.

We have shown f(m, s) exists, is rational, and is computable using a Mixed Int Program.

This was a case of a Theorem in **Applied Math** being used to prove a Theorem in **Pure Math**.

- 1. $f(43,33) = \frac{91}{264}$.
- 2. $f(52, 11) = \frac{83}{176}$.
- 3. $f(35, 13) = \frac{64}{143}$.

- 1. $f(43,33) = \frac{91}{264}$.
- 2. $f(52, 11) = \frac{83}{176}$.
- 3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer

- 1. $f(43,33) = \frac{91}{264}$.
- 2. $f(52, 11) = \frac{83}{176}$.
- 3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer by Co-author Erik Metz is a muffin savant!

- 1. $f(43,33) = \frac{91}{264}$.
- $2. \ \ f(52,11) = \frac{83}{176}.$
- 3. $f(35, 13) = \frac{64}{143}$.

All done by hand, no use of a computer by Co-author Erik Metz is a muffin savant!

Have **General Theorems** from which **upper bounds** follow. Have **General Procedures** from which **lower bounds** follow.

Duality Theorem: $f(m, s) = \frac{m}{s}f(s, m)$.

Duality Theorem: $f(m,s) = \frac{m}{s}f(s,m)$. We know and use the following:

Duality Theorem: $f(m,s) = \frac{m}{s}f(s,m)$. We know and use the following:

1. By Duality Theorem can assume m > s

Duality Theorem: $f(m,s) = \frac{m}{s}f(s,m)$.

- 1. By Duality Theorem can assume m > s
- 2. By REASONS we can assume m, s are relatively prime.

Duality Theorem: $f(m,s) = \frac{m}{s}f(s,m)$.

- 1. By Duality Theorem can assume m > s
- 2. By REASONS we can assume m, s are relatively prime.
- 3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with 2 $\frac{1}{2}$'s

Duality Theorem: $f(m,s) = \frac{m}{s}f(s,m)$.

- 1. By Duality Theorem can assume m > s
- 2. By REASONS we can assume m, s are relatively prime.
- 3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with $2\frac{1}{2}$'s
- 4. If assuming $f(m,s) > \alpha > \frac{1}{3}$, assume all muffin in ≤ 2 pcs.

Duality Theorem: $f(m,s) = \frac{m}{s}f(s,m)$.

- 1. By Duality Theorem can assume m > s
- 2. By REASONS we can assume m, s are relatively prime.
- 3. All muffins are cut in ≥ 2 pcs. Replace uncut muff with $2\frac{1}{2}$'s
- 4. If assuming $f(m,s) > \alpha > \frac{1}{3}$, assume all muffin in ≤ 2 pcs.
- 5. $f(m,s) > \alpha > \frac{1}{3}$, so exactly 2 pcs, is common case.

$$f(m,s) \leq \mathsf{FC}(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lceil 2m/s \rceil} \right\} \right\}.$$

$$f(m,s) \leq \mathsf{FC}(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

$$f(m,s) \leq \mathsf{FC}(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

$$f(m,s) \leq \mathsf{FC}(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

$$f(m,s) \leq FC(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \lceil 2m/s \rceil}, 1 - \frac{m}{s \lfloor 2m/s \rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

- Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.
- Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets
$$\geq \left\lceil \frac{2m}{s} \right\rceil$$
 pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

FC Thm Generalizes $f(5,3) \leq \frac{5}{12}$

$$f(m,s) \leq \mathsf{FC}(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \left\lceil 2m/s \right\rceil}, 1 - \frac{m}{s \left\lfloor 2m/s \right\rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

- Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.
- Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets
$$\geq \left\lceil \frac{2m}{s} \right\rceil$$
 pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\left\lceil 2m/s \right\rceil} = \frac{m}{s \left\lceil 2m/s \right\rceil}$.

Someone gets
$$\leq \lfloor \frac{2m}{s} \rfloor$$
 pieces. \exists piece $\geq \frac{m}{s} \frac{1}{|2m/s|} = \frac{m}{s|2m/s|}$.

FC Thm Generalizes $f(5,3) \leq \frac{5}{12}$

$$f(m,s) \leq \mathsf{FC}(m,s) = \max \left\{ \frac{1}{3}, \min \left\{ \frac{m}{s \left\lceil 2m/s \right\rceil}, 1 - \frac{m}{s \left\lfloor 2m/s \right\rfloor} \right\} \right\}.$$

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece $\leq \frac{1}{3}$.

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets
$$\geq \left\lceil \frac{2m}{s} \right\rceil$$
 pieces. \exists piece $\leq \frac{m}{s} \times \frac{1}{\lceil 2m/s \rceil} = \frac{m}{s \lceil 2m/s \rceil}$.

Someone gets $\leq \lfloor \frac{2m}{s} \rfloor$ pieces. \exists piece $\geq \frac{m}{s} \frac{1}{\lfloor 2m/s \rfloor} = \frac{m}{s \lfloor 2m/s \rfloor}$.

The other piece from that muffin is of size $\leq 1 - \frac{m}{s |2m/s|}$.

CLEVERNESS, COMP PROGS for the procedure.

CLEVERNESS, COMP PROGS for the procedure.

$$f(1,3)=\tfrac{1}{3}$$

CLEVERNESS, COMP PROGS for the procedure.

$$f(1,3)=\tfrac{1}{3}$$

$$f(3k,3)=1.$$

CLEVERNESS, COMP PROGS for the procedure.

$$f(1,3)=\tfrac{1}{3}$$

$$f(3k,3) = 1.$$

$$f(3k+1,3) = \frac{3k-1}{6k}, \ k \ge 1.$$

CLEVERNESS, COMP PROGS for the procedure.

$$f(1,3)=\tfrac{1}{3}$$

$$f(3k,3) = 1.$$

$$f(3k+1,3) = \frac{3k-1}{6k}, \ k \ge 1.$$

$$f(3k+2,3) = \frac{3k+2}{6k+6}.$$

CLEVERNESS, COMP PROGS for the procedure.

FC Theorem for optimality.

$$f(1,3)=\tfrac{1}{3}$$

$$f(3k,3)=1.$$

$$f(3k+1,3) = \frac{3k-1}{6k}, \ k \ge 1.$$

$$f(3k+2,3) = \frac{3k+2}{6k+6}.$$

Note: A Mod 3 Pattern.

Theorem: For all $m \ge 3$, f(m,3) = FC(m,3).

CLEVERNESS, COMP PROGS for procedures.

CLEVERNESS, COMP PROGS for procedures.

$$f(4k,4) = 1 \text{ (easy)}$$

CLEVERNESS, COMP PROGS for procedures.

$$f(4k, 4) = 1$$
 (easy)

$$f(1,4) = \frac{1}{4}$$
 (easy)

CLEVERNESS, COMP PROGS for procedures.

$$f(4k, 4) = 1$$
 (easy)

$$f(1,4) = \frac{1}{4}$$
 (easy)

$$f(4k+1,4) = \frac{4k-1}{8k}, \ k \ge 1.$$

CLEVERNESS, COMP PROGS for procedures.

$$f(4k, 4) = 1$$
 (easy)

$$f(1,4) = \frac{1}{4}$$
 (easy)

$$f(4k+1,4) = \frac{4k-1}{8k}, \ k \ge 1.$$

$$f(4k+2,4) = \frac{1}{2}.$$

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

$$f(4k, 4) = 1$$
 (easy)

$$f(1,4) = \frac{1}{4}$$
 (easy)

$$f(4k+1,4) = \frac{4k-1}{8k}, \ k \ge 1.$$

$$f(4k+2,4)=\tfrac{1}{2}.$$

$$f(4k+3,4) = \frac{4k+1}{8k+4}.$$

Note: A Mod 4 Pattern.

Theorem: For all $m \ge 4$, f(m, 4) = FC(m, 4).

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

$$f(4k, 4) = 1$$
 (easy)

$$f(1,4) = \frac{1}{4}$$
 (easy)

$$f(4k+1,4) = \frac{4k-1}{8k}, \ k \ge 1.$$

$$f(4k+2,4) = \frac{1}{2}.$$

$$f(4k+3,4) = \frac{4k+1}{8k+4}.$$

Note: A Mod 4 Pattern.

Theorem: For all $m \ge 4$, f(m, 4) = FC(m, 4).

FC-Conjecture: For all m, s with $m \ge s$, f(m, s) = FC(m, s).

CLEVERNESS, COMP PROGS for procedures.

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For $k \ge 1$, f(5k, 5) = 1.

CLEVERNESS, COMP PROGS for procedures.

For
$$k \ge 1$$
, $f(5k, 5) = 1$.

For
$$k = 1$$
 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. $f(11, 5)$?

CLEVERNESS, COMP PROGS for procedures.

For
$$k \ge 1$$
, $f(5k, 5) = 1$.

For
$$k = 1$$
 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. $f(11, 5)$?

For
$$k \ge 2$$
, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7,5) = FC(7,5) = \frac{1}{3}$

CLEVERNESS, COMP PROGS for procedures.

For
$$k \ge 1$$
, $f(5k, 5) = 1$.

For
$$k = 1$$
 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. $f(11, 5)$?

For
$$k \ge 2$$
, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7,5) = FC(7,5) = \frac{1}{3}$

For
$$k \ge 1$$
, $f(5k+3,5) = \frac{5k+3}{10k+10}$

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For
$$k \ge 1$$
, $f(5k, 5) = 1$.

For
$$k = 1$$
 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. $f(11, 5)$?

For
$$k \ge 2$$
, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7,5) = FC(7,5) = \frac{1}{3}$

For
$$k \ge 1$$
, $f(5k + 3, 5) = \frac{5k+3}{10k+10}$

For
$$k \ge 1$$
, $f(5k+4,5) = \frac{5k+1}{10k+5}$

Note: A Mod 5 Pattern.

CLEVERNESS, COMP PROGS for procedures.

FC Theorem for optimality.

For
$$k \ge 1$$
, $f(5k, 5) = 1$.

For
$$k = 1$$
 and $k \ge 3$, $f(5k + 1, 5) = \frac{5k+1}{10k+5}$. $f(11, 5)$?

For
$$k \ge 2$$
, $f(5k + 2, 5) = \frac{5k-2}{10k}$. $f(7,5) = FC(7,5) = \frac{1}{3}$

For
$$k \ge 1$$
, $f(5k + 3, 5) = \frac{5k+3}{10k+10}$

For
$$k \ge 1$$
, $f(5k+4,5) = \frac{5k+1}{10k+5}$

Note: A Mod 5 Pattern.

Theorem: For all $m \ge 5$ except m=11, f(m,5) = FC(m,5).

What About FIVE students, ELEVEN muffins?

$$f(11,5) \leq \max\left\{\frac{1}{3}, \min\left\{\frac{11}{5\lceil 22/5\rceil}, 1 - \frac{11}{5\lceil 22/5\rceil}\right\}\right\} = \frac{11}{25}.$$

What About FIVE students, ELEVEN muffins?

$$f(11,5) \leq \max\left\{\frac{1}{3}, \min\left\{\frac{11}{5\left\lceil 22/5\right\rceil}, 1 - \frac{11}{5\left\lfloor 22/5\right\rfloor}\right\}\right\} = \frac{11}{25}.$$

We tried to find a protocol to divide 11 muffins for 5 people, each gets $\frac{11}{5}$, and smallest piece is size $\frac{11}{25} = 0.44$.

What About FIVE students, ELEVEN muffins?

$$f(11,5) \leq \max\left\{\frac{1}{3}, \min\!\left\{\frac{11}{5\left\lceil 22/5\right\rceil}, 1 - \frac{11}{5\left\lfloor 22/5\right\rfloor}\right\}\right\} = \frac{11}{25}.$$

We tried to find a protocol to divide 11 muffins for 5 people, each gets $\frac{11}{5}$, and smallest piece is size $\frac{11}{25} = 0.44$.

We found a protocol with smallest piece $\frac{13}{30} = 0.4333...$

- 1. Divide 1 muffin $(\frac{15}{30}, \frac{15}{30})$.
- 2. Divide 2 muffins $(\frac{14}{30}, \frac{16}{30})$.
- 3. Divide 8 muffins $(\frac{13}{30}, \frac{17}{30})$.
- 4. Give 2 students $\left[\frac{13}{30}, \frac{13}{30}, \frac{13}{30}, \frac{13}{30}, \frac{14}{30}\right]$
- 5. Give 1 students $\left[\frac{16}{30}, \frac{16}{30}, \frac{17}{30}, \frac{17}{30}\right]$
- 6. Give 2 students $\left[\frac{15}{30}, \frac{17}{30}, \frac{17}{30}, \frac{17}{30}\right]$

So Now What?

We have:

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25}$$
 Diff= 0.006666...

So Now What?

We have:

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25}$$
 Diff= 0.006666...

Options:

- 1. $f(11,5) = \frac{11}{25}$. Need to find procedure.
- 2. $f(11,5) = \frac{13}{30}$. Need to find new technique for upper bounds.
- 3. f(11,5) in between. Need to find both.
- 4. f(11,5) unknown to science!

Vote

So Now What?

We have:

$$\frac{13}{30} \le f(11,5) \le \frac{11}{25}$$
 Diff= 0.006666...

Options:

- 1. $f(11,5) = \frac{11}{25}$. Need to find procedure.
- 2. $f(11,5) = \frac{13}{30}$. Need to find new technique for upper bounds.
- 3. f(11,5) in between. Need to find both.
- 4. f(11,5) unknown to science!

Vote WE SHOW: $f(11,5) = \frac{13}{30}$. **Exciting** new technique!

Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M. The other piece from muffin M is the buddy of x.

Note that the buddy of x is of size

$$1 - x$$
.

$$f(11,5) = \frac{13}{30}$$
, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece N. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.

$$f(11,5) = \frac{13}{30}$$
, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student gets $\frac{11}{5}$ muffins, smallest piece N. We want $N \leq \frac{13}{30}$.

Case 0: Some muffin is uncut. Cut it $(\frac{1}{2}, \frac{1}{2})$ and give both halves to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. $N \leq \frac{1}{3} < \frac{13}{30}$.

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)

$$f(11,5) = \frac{13}{30}$$
, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \le \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

$f(11,5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

$$N \le \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

Case 3: Some student gets \leq 3 pieces.

One of the pieces is

$$\geq \frac{11}{5}\times\frac{1}{3}=\frac{11}{15}.$$

$f(11,5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \le \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

Case 3: Some student gets \leq 3 pieces.

One of the pieces is

$$\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.$$

Look at the muffin it came from to find a piece that is

$$\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.$$

$f(11,5) = \frac{13}{30}$, Easy Case Based on Students

Case 2: Some student gets \geq 6 pieces.

$$N \le \frac{11}{5} \times \frac{1}{6} = \frac{11}{30} < \frac{13}{30}.$$

Case 3: Some student gets \leq 3 pieces.

One of the pieces is

$$\geq \frac{11}{5} \times \frac{1}{3} = \frac{11}{15}.$$

Look at the muffin it came from to find a piece that is

$$\leq 1 - \frac{11}{15} = \frac{4}{15} < \frac{13}{30}.$$

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5 pieces. Number of pieces: 22. Note ≤ 11 pieces are $> \frac{1}{2}$.

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

- \triangleright s_4 is number of students who get 4 pieces
- \triangleright s_5 is number of students who get 5 pieces

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

- \triangleright s_4 is number of students who get 4 pieces
- \triangleright s_5 is number of students who get 5 pieces

$$4s_4 + 5s_5 = 22$$

 $s_4 + s_5 = 5$

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

- \triangleright s_4 is number of students who get 4 pieces
- \triangleright s_5 is number of students who get 5 pieces

$$4s_4 + 5s_5 = 22$$

 $s_4 + s_5 = 5$

 $s_4 = 3$: There are 3 students who have 4 shares.

 $s_5 = 2$: There are 2 students who have 5 shares.

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

- \triangleright s_4 is number of students who get 4 pieces
- \triangleright s_5 is number of students who get 5 pieces

$$4s_4 + 5s_5 = 22$$

 $s_4 + s_5 = 5$

 $s_4 = 3$: There are 3 students who have 4 shares.

 $s_5 = 2$: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a **4-share**. We call a share that goes to a person who gets 5 shares a **5-share**.

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

Case 4.1: Some 4-share is $\leq \frac{1}{2}$. Alice gets $w \leq x \leq y \leq z$ and $w \leq \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$

$$x + y + z \ge \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$$

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

Case 4.1: Some 4-share is $\leq \frac{1}{2}$. Alice gets $w \leq x \leq y \leq z$ and $w \leq \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$ $x + y + z \geq \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$ $z \geq \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}$

$f(11,5) = \frac{13}{30}$, Fun Cases

Case 4.1: Some 4-share is $\leq \frac{1}{2}$.

Alice gets $w \le x \le y \le z$ and $w \le \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \le \frac{1}{2}$

$$x + y + z \ge \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$$

$$z \ge \frac{17}{10} \times \frac{1}{3} = \frac{17}{30}$$

Look at **buddy** of z.

$$B(z) \le 1 - z = 1 - \frac{17}{30} = \frac{13}{30}$$

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

Case 4.1: Some 4-share is $\leq \frac{1}{2}$. Alice gets $w \leq x \leq y \leq z$ and $w \leq \frac{1}{2}$. Since $w + x + y + z = \frac{11}{5}$ and $w \leq \frac{1}{2}$.

$$x + y + z \ge \frac{11}{5} - \frac{1}{2} = \frac{17}{10}$$

$$z\geq \frac{17}{10}\times \frac{1}{3}=\frac{17}{30}$$

Look at **buddy** of z.

$$B(z) \le 1 - z = 1 - \frac{17}{30} = \frac{13}{30}$$

GREAT! This is where $\frac{13}{30}$ comes from!

$$f(11,5) = \frac{13}{30}$$
, Fun Cases

Case 4.2: All 4-shares are $> \frac{1}{2}$. There are $4s_4 = 12$ 4-shares. There are ≥ 12 pieces $> \frac{1}{2}$. Can't occur.

Proof that $f(11,5) \leq \frac{13}{30}$ was an example of the HALF method.

Proof that $f(11,5) \leq \frac{13}{30}$ was an example of the HALF method.

FC or HALF worked on everything with $m = 3, 4, 5, \dots, 23$.

Proof that $f(11,5) \leq \frac{13}{30}$ was an example of the HALF method.

FC or HALF worked on everything with $m = 3, 4, 5, \dots, 23$.

Then we found a case where neither FC nor HALF worked.

Proof that $f(11,5) \leq \frac{13}{30}$ was an example of the HALF method.

FC or HALF worked on everything with $m = 3, 4, 5, \dots, 23$.

Then we found a case where neither FC nor HALF worked.

We found a new method: INT.

Assume (24,11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets ≥ 2 shares. We show that there is a piece $\leq \frac{19}{44}$.

Assume (24, 11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets \geq 2 shares. We show that there is a piece $\leq \frac{19}{44}$.

Case 1: A student gets ≥ 6 shares. Some piece $\leq \frac{24}{11 \times 6} < \frac{19}{44}$.

Assume (24,11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets \geq 2 shares. We show that there is a piece $\leq \frac{19}{44}$.

Case 1: A student gets ≥ 6 shares. Some piece $\leq \frac{24}{11 \times 6} < \frac{19}{44}$.

Case 2: A student gets ≤ 3 shares. Some piece $\geq \frac{24}{11 \times 3} = \frac{8}{11}$. Buddy of that piece $\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}$.

Assume (24,11)-procedure with smallest piece $> \frac{19}{44}$. Can assume all muffin cut in two and all student gets ≥ 2 shares. We show that there is a piece $\leq \frac{19}{44}$.

Case 1: A student gets ≥ 6 shares. Some piece $\leq \frac{24}{11 \times 6} < \frac{19}{44}$.

Case 2: A student gets ≤ 3 shares. Some piece $\geq \frac{24}{11 \times 3} = \frac{8}{11}$. Buddy of that piece $\leq 1 - \frac{8}{11} \leq \frac{3}{11} < \frac{19}{44}$.

Case 3: Every muffin is cut in 2 pieces and every student gets either 4 or 5 shares. Total number of shares is 48.

4-students: a student who gets 4 shares. s_4 is the number of them. 5-students: a student who gets 5 shares. s_5 is the number of them.

4-students: a student who gets 4 shares. s_4 is the number of them. 5-students: a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets. *5-share:* a share that a 5-student who gets.

4-students: a student who gets 4 shares. s_4 is the number of them. 5-students: a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets. *5-share:* a share that a 5-student who gets.

$$4s_4 + 5s_5 = 48$$

 $s_4 + s_5 = 11$

4-students: a student who gets 4 shares. s_4 is the number of them. *5-students:* a student who gets 5 shares. s_5 is the number of them.

4-share: a share that a 4-student who gets. *5-share:* a share that a 5-student who gets.

$$4s_4 + 5s_5 = 48$$

 $s_4 + s_5 = 11$

 $s_4=7$. Hence there are $4s_4=4\times 7=28$ 4-shares.

 $s_5=4$. Hence there are $5s_5=5\times 4=20$ 5-shares.

Case 3.1: There is a share $\geq \frac{25}{44}$. Then its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Case 3.1: There is a share $\geq \frac{25}{44}$. Then its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Case 3.2: There is a share $\leq \frac{19}{44}$. Duh.

Case 3.1: There is a share $\geq \frac{25}{44}$. Then its buddy is

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Case 3.2: There is a share $\leq \frac{19}{44}$. Duh. Henceforth assume that all shares are in

$$\left(\frac{19}{44}, \frac{25}{44}\right)$$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $\leq v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $\leq v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

Since $v + w + x + y + z = \frac{24}{11}$ and $E \ge \frac{20}{44}$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $\leq v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

Since $v + w + x + y + z = \frac{24}{11}$ and $E \ge \frac{20}{44}$

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $\leq v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

Since $v + w + x + y + z = \frac{24}{11}$ and $E \ge \frac{20}{44}$

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

$$v \leq \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $\leq v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

Since $v + w + x + y + z = \frac{24}{11}$ and $E \ge \frac{20}{44}$

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

$$v \le \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

Henceforth we assume all 5-shares are in $\left(\frac{19}{44}, \frac{20}{44}\right)$.

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $\leq v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

Since $v + w + x + y + z = \frac{24}{11}$ and $E \ge \frac{20}{44}$

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

$$v \le \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

Henceforth we assume all 5-shares are in $\left(\frac{19}{44}, \frac{20}{44}\right)$.

5-share: a share that a 5-student who gets.

Claim: If some 5-shares is $\geq \frac{20}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $\leq v \leq w \leq x \leq y \leq z$ and $z \geq \frac{20}{44}$.

Since $v + w + x + y + z = \frac{24}{11}$ and $E \ge \frac{20}{44}$

$$v + w + x + y \le \frac{24}{11} - \frac{20}{44} = \frac{76}{44}$$

$$v \le \frac{76}{44} \times \frac{1}{4} = \frac{19}{44}$$

Henceforth we assume all 5-shares are in $\left(\frac{19}{44}, \frac{20}{44}\right)$.

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$. **Proof:** Assume Alice has $w \leq x \leq y \leq z \leq$ and $w \leq \frac{21}{44}$.

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $w \le x \le y \le z \le$ and $w \le \frac{21}{44}$.

Since $w + x + y + z = \frac{24}{11}$ and $w \le \frac{21}{44}$

Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $w \le x \le y \le z \le$ and $w \le \frac{21}{44}$.

Since $w + x + y + z = \frac{24}{11}$ and $w \le \frac{21}{44}$

$$x + y + z \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $w \le x \le y \le z \le$ and $w \le \frac{21}{44}$.

Since $w + x + y + z = \frac{24}{11}$ and $w \le \frac{21}{44}$

$$x + y + z \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

$$z \geq \frac{75}{44} \times \frac{1}{3} = \frac{25}{44}$$

Case 3.4: Some 4-shares $\leq \frac{21}{44}$

4-share: a share that a 4-student who gets.

Claim: If some 4-shares is $\leq \frac{21}{44}$ then some share $\leq \frac{19}{44}$.

Proof: Assume Alice has $w \le x \le y \le z \le$ and $w \le \frac{21}{44}$.

Since $w + x + y + z = \frac{24}{11}$ and $w \le \frac{21}{44}$

$$x + y + z \ge \frac{24}{11} - \frac{21}{44} = \frac{75}{44}$$

$$z \geq \frac{75}{44} \times \frac{1}{3} = \frac{25}{44}$$

The buddy of z is of size

$$\leq 1 - \frac{25}{44} = \frac{19}{44}$$

Henceforth we assume all 4-shares are in

$$\left(\frac{21}{44},\frac{25}{44}\right)$$
.

Case 3.5: 4-shares in $(\frac{21}{44}, \frac{25}{44})$, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

Case 3.5: 4-shares in
$$(\frac{21}{44}, \frac{25}{44})$$
, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

Case 3.5: 4-shares in
$$(\frac{21}{44}, \frac{25}{44})$$
, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

Recall: there are $4s_4 = 4 \times 7 = 28$ 4-shares.

Recall: there are $5s_5 = 5 \times 4 = 20$ 5-shares.

Case 3.5: 4-shares in
$$(\frac{21}{44}, \frac{25}{44})$$
, 5-shares in $(\frac{19}{44}, \frac{20}{44})$.

Recall: there are $4s_4 = 4 \times 7 = 28$ 4-shares.

Recall: there are $5s_5 = 5 \times 4 = 20$ 5-shares.

Claim 1: There are no shares $x \in \left[\frac{23}{44}, \frac{24}{44}\right]$.

Claim 1: There are no shares $x \in \begin{bmatrix} \frac{23}{44}, \frac{24}{44} \end{bmatrix}$.

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$. QED.

Claim 1: There are no shares $x \in \left[\frac{23}{44}, \frac{24}{44}\right]$.

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$. QED. The following picture captures what we know so far.

Claim 1: There are no shares $x \in \left[\frac{23}{44}, \frac{24}{44}\right]$.

If there was such a share then buddy is in $\left[\frac{20}{44}, \frac{21}{44}\right]$. QED. The following picture captures what we know so far.

S4= Small 4-shares

L4= Large 4-shares. L4 shares, 5-share: buddies, so |L4|=20.

Claim 2: Every 4-student has at least 3 L4 shares.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \leq 2 L4 shares then he has

$$<2\times\left(\frac{23}{44}\right)+2\times\left(\frac{25}{44}\right)=\frac{24}{11}.$$

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \leq 2 L4 shares then he has

$$<2\times\left(\frac{23}{44}\right)+2\times\left(\frac{25}{44}\right)=\frac{24}{11}.$$

Contradiction: Each 4-student gets ≥ 3 L4 shares.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \leq 2 L4 shares then he has

$$<2\times\left(\frac{23}{44}\right)+2\times\left(\frac{25}{44}\right)=\frac{24}{11}.$$

Contradiction: Each 4-student gets ≥ 3 L4 shares.

There are $s_4 = 7$ 4-students.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \leq 2 L4 shares then he has

$$<2\times\left(\frac{23}{44}\right)+2\times\left(\frac{25}{44}\right)=\frac{24}{11}.$$

Contradiction: Each 4-student gets ≥ 3 L4 shares.

There are $s_4 = 7$ 4-students.

Hence there are ≥ 21 L4-shares.

Claim 2: Every 4-student has at least 3 L4 shares.

If a 4-student had \leq 2 L4 shares then he has

$$<2\times\left(\frac{23}{44}\right)+2\times\left(\frac{25}{44}\right)=\frac{24}{11}.$$

Contradiction: Each 4-student gets ≥ 3 L4 shares.

There are $s_4 = 7$ 4-students.

Hence there are \geq 21 L4-shares. But there are only 20.

Proof that $f(24,11) \leq \frac{19}{44}$ was an example of the INT method.

Proof that $f(24,11) \leq \frac{19}{44}$ was an example of the INT method.

FC or HALF or INT worked on everything with $m = 3, 4, 5, \dots, 30$.

Proof that $f(24,11) \leq \frac{19}{44}$ was an example of the INT method.

FC or HALF or INT worked on everything with $m = 3, 4, 5, \dots, 30$.

Then we found a case where neither FC nor HALF nor INT worked.

Proof that $f(24,11) \leq \frac{19}{44}$ was an example of the INT method.

FC or HALF or INT worked on everything with $m = 3, 4, 5, \dots, 30$.

Then we found a case where neither FC nor HALF nor INT worked.

We found a new method: GAP.

Example of GAPS Technique: $f(31, 19) \leq \frac{54}{133}$

We show $f(31,19) \le \frac{54}{133}$. Assume (31,19)-procedure with smallest piece $> \frac{54}{133}$.

Example of GAPS Technique: $f(31, 19) \leq \frac{54}{133}$

We show $f(31, 19) \le \frac{54}{133}$.

Assume (31, 19)-procedure with smallest piece $> \frac{54}{133}$.

By INT-technique methods obtain:

$$s_3 = 14$$
, $s_4 = 5$.

We just look at the 3-shares:

Example of GAPS Technique: $f(31, 19) \leq \frac{54}{133}$

We show $f(31, 19) \le \frac{54}{133}$.

Assume (31, 19)-procedure with smallest piece $> \frac{54}{133}$.

By INT-technique methods obtain:

$$s_3 = 14$$
, $s_4 = 5$.

We just look at the 3-shares:

1.
$$J_1 = (\frac{59}{133}, \frac{66.5}{133})$$

2.
$$J_2 = (\frac{66.5}{133}, \frac{74}{133}) (|J_1| = |J_2|)$$

3.
$$J_3 = \left(\frac{78}{133}, \frac{79}{133}\right) \left(|J_3| = 20\right)$$

1.
$$J_1 = (\frac{59}{133}, \frac{66.5}{133})$$

2.
$$J_2 = (\frac{66.5}{133}, \frac{74}{133}) (|J_1| = |J_2|)$$

3.
$$J_3 = (\frac{78}{133}, \frac{79}{133}) (|J_3| = 20)$$

Notation: An e(1,1,3) students is a student who has a J_1 -share, a J_1 -share, and a J_3 -share.

Generalize to e(i, j, k) easily.

1.
$$J_1 = (\frac{59}{133}, \frac{66.5}{133})$$

2.
$$J_2 = (\frac{66.5}{133}, \frac{74}{133}) (|J_1| = |J_2|)$$

3.
$$J_3 = (\frac{78}{133}, \frac{79}{133}) (|J_3| = 20)$$

Notation: An e(1,1,3) students is a student who has a J_1 -share, a J_1 -share, and a J_3 -share.

Generalize to e(i, j, k) easily.

WE WILL STOP HERE. It gets messy! But it works!

- 1. Floor Ceiling.
- 2. Half
- 3. Int
- 4. Gap
- 5. Easy buddy-match
- 6. Hard buddy-match
- 7. Train

- 1. Floor Ceiling.
- 2. Half
- 3. Int
- 4. Gap
- 5. Easy buddy-match
- 6. Hard buddy-match
- 7. Train

 Confession: I never understood this one.

- 1. Floor Ceiling.
- 2. Half
- 3. Int
- 4. Gap
- 5. Easy buddy-match
- 6. Hard buddy-match
- 7. Train

Confession: I never understood this one. Erik Metz made it up and I doubt he understood it.

- 1. Floor Ceiling.
- 2. Half
- 3. Int
- 4. Gap
- 5. Easy buddy-match
- 6. Hard buddy-match
- 7. Train

Confession: I never understood this one. Erik Metz made it up and I doubt he understood it.

This list is why the problem was so interesting: We encountered obstacles and kept overcoming them.

- 1. Floor Ceiling.
- 2. Half
- 3. Int
- 4. Gap
- 5. Easy buddy-match
- 6. Hard buddy-match
- 7. Train

Confession: I never understood this one. Erik Metz made it up and I doubt he understood it.

This list is why the problem was so interesting: We encountered obstacles and kept overcoming them.

- 1. Floor Ceiling.
- 2. Half
- 3. Int
- 4. Gap
- 5. Easy buddy-match
- 6. Hard buddy-match
- 7. Train

Confession: I never understood this one. Erik Metz made it up and I doubt he understood it.

This list is why the problem was so interesting: We encountered obstacles and kept overcoming them.

But see next slide.

Later Results by Other People

- 1. In Fall 2018 Scott Huddleston had code for an algorithm that, on input m, s, found f(m, s) and the procedure REALLY FAST.
- Jacob and Erik Understand WHAT his algorithm does and Jacob coded it up to make sure he understood it. Jacob's code is also REALLY FAST.
- 3. Neither Scott, Bill, Jacob, or Erik had a proof that Scott's algorithm was fast (poly in m, s).
- Richard Chatwin independently came up with the same algorithm; however, he also has a proof that it works. Its on arXiv.
- 5. One corollary of the work: f(m, s) only depends on m/s.
- 6. The problem can now be said to be solved! Yeah!

- 1. PRO for my work Fun for all ages!
- 2. PRO for my work The set of techniques forms a nice book.
- 3. **CON for my work** Techniques got too complicated.
- 4. **CON for my work** No general theorem.

- 1. PRO for my work Fun for all ages!
- 2. PRO for my work The set of techniques forms a nice book.
- 3. CON for my work Techniques got too complicated.
- 4. CON for my work No general theorem.
- 1. PRO for their work General Theorem, FAST method.
- 2. **CON for their work** Its really hard.

- 1. PRO for my work Fun for all ages!
- 2. PRO for my work The set of techniques forms a nice book.
- 3. **CON for my work** Techniques got too complicated.
- 4. **CON for my work** No general theorem.
- 1. PRO for their work General Theorem, FAST method.
- CON for their work Its really hard.Confession: I do not understand their work.
- 3. CAVEAT They never said The Muffin Problem is in P. It is.

- 1. PRO for my work Fun for all ages!
- 2. PRO for my work The set of techniques forms a nice book.
- 3. **CON for my work** Techniques got too complicated.
- 4. **CON for my work** No general theorem.
- 1. PRO for their work General Theorem, FAST method.
- CON for their work Its really hard.Confession: I do not understand their work.
- 3. CAVEAT They never said The Muffin Problem is in P. It is.

Upshot

If you want to learn interesting easy math, read my book.

- 1. PRO for my work Fun for all ages!
- 2. **PRO for my work** The set of techniques forms a nice book.
- 3. **CON for my work** Techniques got too complicated.
- 4. **CON for my work** No general theorem.
- 1. PRO for their work General Theorem, FAST method.
- CON for their work Its really hard.Confession: I do not understand their work.
- 3. CAVEAT They never said The Muffin Problem is in P. It is.

Upshot

If you want to learn interesting easy math, read my book. If you want to do real work in the area, read their papers.

I emailed Alan Frank, the **creator** of the Muffin Problem and we planned to meet at the MIT combinatorics seminar where I was scheduled to give a talk.

► He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.

- ► He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ► He brought to the seminar 11 muffins: 1 cut $(\frac{15}{30}, \frac{15}{30})$, 2 cut $(\frac{14}{30}, \frac{16}{30})$, 8 cut $(\frac{13}{30}, \frac{17}{30})$.

- ► He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ▶ He brought to the seminar 11 muffins: $1 \text{ cut } (\frac{15}{30}, \frac{15}{30})$, $2 \text{ cut } (\frac{14}{30}, \frac{16}{30})$, $8 \text{ cut } (\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.

- ► He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ▶ He brought to the seminar 11 muffins: $1 \text{ cut } (\frac{15}{30}, \frac{15}{30})$, $2 \text{ cut } (\frac{14}{30}, \frac{16}{30})$, $8 \text{ cut } (\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- ► He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00.

- ► He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ▶ He brought to the seminar 11 muffins: $1 \text{ cut } (\frac{15}{30}, \frac{15}{30})$, $2 \text{ cut } (\frac{14}{30}, \frac{16}{30})$, $8 \text{ cut } (\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- ► He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00. First Year Royalties: \$40.00. The break-even point!

- ► He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ▶ He brought to the seminar 11 muffins: $1 \text{ cut } (\frac{15}{30}, \frac{15}{30})$, $2 \text{ cut } (\frac{14}{30}, \frac{16}{30})$, $8 \text{ cut } (\frac{13}{30}, \frac{17}{30})$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- ► He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00. First Year Royalties: \$40.00. The break-even point! Second Year Royalties: \$50.00. I'm up by \$10.00. Wow!

- ► He was delighted that his innocent problem, that he viewed as recreational, has lead to so much math of interest.
- ▶ He brought to the seminar 11 muffins: $1 \text{ cut } \left(\frac{15}{30}, \frac{15}{30}\right)$, $2 \text{ cut } \left(\frac{14}{30}, \frac{16}{30}\right)$, $8 \text{ cut } \left(\frac{13}{30}, \frac{17}{30}\right)$. The five us of took pieces so we each got $\frac{11}{5}$ muffins.
- ▶ He does a Bike-For-Food Charity. I asked him if I should give \$40.00 a year OR my Royalties. He chose the \$40.00. First Year Royalties: \$40.00. The break-even point! Second Year Royalties: \$50.00. I'm up by \$10.00. Wow! Third Year Royalties: \$20.00. He is up by \$20.00.