
The Muffin Problem

Guangi Cui - Montgomery Blair HS
John Dickerson- University of MD

Naveen Durvasula - Montgomery Blair HS
William Gasarch - University of MD

Erik Metz - University of MD
Jacob Prinz-University of MD

Naveen Raman - Richard Montgomery HS
Daniel Smolyak- University of MD

Sung Hyun Yoo - Bergen County Academies (in NJ)



How it Began

A Recreational Math Conference
(Gathering for Gardner)

May 2016
I found a pamphlet:

The Julia Robinson Mathematics Festival:
A Sample of Mathematical Puzzles

Compiled by Nancy Blachman
which had this problem, proposed by Alan Frank:

How can you divide and distribute 5 muffins to 3 students so that
every student gets 5

3 where nobody gets a tiny sliver?



Five Muffins, Three Students, Proc by Picture

Person Color What they Get

Alice RED 1 + 2
3 = 5

3

Bob BLUE 1 + 2
3 = 5

3

Carol GREEN 1 + 1
3 + 1

3 = 5
3

Smallest Piece: 1
3



Can We Do Better?

The smallest piece in the above solution is 1
3 .

Is there a procedure with a larger smallest piece?
Work on it with your neighbor



Five Muffins, Three People–Proc by Picture

YES WE CAN!

Person Color What they Get

Alice RED 6
12 + 7

12 + 7
12

Bob BLUE 6
12 + 7

12 + 7
12

Carol GREEN 5
12 + 5

12 + 5
12 + 5

12

Smallest Piece: 5
12



Can We Do Better?

The smallest piece in the above solution is 5
12 .

Is there a procedure with a larger smallest piece?
Work on it with your neighbor



5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 > 5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 < 5

12 .
(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 > 5
12 .) Reduces

to other cases.

(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 < 5

12 .
(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 > 5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 < 5

12 .
(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 > 5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 < 5

12 .

(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 > 5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 < 5

12 .
(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



5 Muffins, 3 People–Can’t Do Better Than 5
12

NO WE CAN’T!
There is a procedure for 5 muffins,3 students where each student
gets 5

3 muffins, smallest piece N. We want N ≤ 5
12 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both 1

2 -sized
pieces to whoever got the uncut muffin. (Note 1

2 > 5
12 .) Reduces

to other cases.
(Henceforth: All muffins are cut into ≥ 2 pieces.)

Case 1: Some muffin is cut into ≥ 3 pieces. Then N ≤ 1
3 < 5

12 .
(Henceforth: All muffins are cut into 2 pieces.)

Case 2: All muffins are cut into 2 pieces. 10 pieces, 3 students:
Someone gets ≥ 4 pieces. He has some piece

≤ 5

3
× 1

4
=

5

12
Great to see

5

12



What Happened Next?

Yada Yada Yada- in 2020:



What Happened Next?

Yada Yada Yada- in 2020:



What Happened Next?

Yada Yada Yada- in 2020:



General Problem

f (m, s) be the smallest piece in the best procedure (best in that
the smallest piece is maximized) to divide m muffins among s
students so that everyone gets m

s .

We have shown f (5, 3) = 5
12 here.



We Only Deal with m > s

Duality Theorem: f (m, s) = m
s f (s,m).

Hence we will just look at m > s.



Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



Floor-Ceiling Thm Generalizes f (5, 3) ≤ 5
12

f (m, s) ≤ FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
.

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin, so reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. Some piece ≤ 1
3 .

Case 2: Every muffin is cut into 2 pieces, so 2m pieces.

Someone gets ≥
⌈
2m
s

⌉
pieces. ∃ piece ≤ m

s ×
1

d2m/se = m
sd2m/se .

Someone gets ≤
⌊
2m
s

⌋
pieces. ∃ piece ≥ m

s
1

b2m/sc = m
sb2m/sc .

The other piece from that muffin is of size ≤ 1− m
sb2m/sc .



FC Gives Upper Bound

Give m, s:

FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
Gives an upper bound. So we know

(∀m, s)[f (m, s) ≤ FC(m, s)].

Is the following true?

(∀m, s)[f (m, s) = FC(m, s)]

No: If so my book would be about 20 pages.



FC Gives Upper Bound

Give m, s:

FC(m, s) = max

{
1

3
,min

{
m

s d2m/se
, 1− m

s b2m/sc

}}
Gives an upper bound. So we know

(∀m, s)[f (m, s) ≤ FC(m, s)].

Is the following true?

(∀m, s)[f (m, s) = FC(m, s)]

No: If so my book would be about 20 pages.



TWO, THREE, FOUR, FIVE Students

Thm

1. For all m ≥ 3, f (m, 2) = FC(m, 2).

2. For all m ≥ 4, f (m, 3) = FC(m, 3).

3. For all m ≥ 5, f (m, 4) = FC(m, 4).



FIVE Students

Thm For all m ≥ 6, f (m, 5) = FC(m, 5)

Except m = 11. What!

1. We have a procedure which shows f (11, 5) ≥ 13
30 .

2. f (11, 5) ≤ max{13 ,min{ 11
5d22/5e , 1− 11

5b22/5c}} = 11
25 .

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

WE SHOW f (11, 5) = 13
30 . Exciting new technique!



FIVE Students

Thm For all m ≥ 6, f (m, 5) = FC(m, 5)
Except m = 11. What!

1. We have a procedure which shows f (11, 5) ≥ 13
30 .

2. f (11, 5) ≤ max{13 ,min{ 11
5d22/5e , 1− 11

5b22/5c}} = 11
25 .

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

WE SHOW f (11, 5) = 13
30 . Exciting new technique!



FIVE Students

Thm For all m ≥ 6, f (m, 5) = FC(m, 5)
Except m = 11. What!

1. We have a procedure which shows f (11, 5) ≥ 13
30 .

2. f (11, 5) ≤ max{13 ,min{ 11
5d22/5e , 1− 11

5b22/5c}} = 11
25 .

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

WE SHOW f (11, 5) = 13
30 . Exciting new technique!



FIVE Students

Thm For all m ≥ 6, f (m, 5) = FC(m, 5)
Except m = 11. What!

1. We have a procedure which shows f (11, 5) ≥ 13
30 .

2. f (11, 5) ≤ max{13 ,min{ 11
5d22/5e , 1− 11

5b22/5c}} = 11
25 .

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

WE SHOW f (11, 5) = 13
30 . Exciting new technique!



FIVE Students

Thm For all m ≥ 6, f (m, 5) = FC(m, 5)
Except m = 11. What!

1. We have a procedure which shows f (11, 5) ≥ 13
30 .

2. f (11, 5) ≤ max{13 ,min{ 11
5d22/5e , 1− 11

5b22/5c}} = 11
25 .

So
13

30
≤ f (11, 5) ≤ 11

25
Diff= 0.006666 . . .

WE SHOW f (11, 5) = 13
30 . Exciting new technique!



Terminology: Buddy

Assume that in some protocol every muffin is cut into two pieces.

Let x be a piece from muffin M.
The other piece from muffin M is the buddy of x .

Note that the buddy of x is of size

1− x .



f (11, 5) = 13
30

, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 < 13

30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)



f (11, 5) = 13
30

, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 < 13

30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)



f (11, 5) = 13
30

, Easy Case Based on Muffins

There is a procedure for 11 muffins, 5 students where each student
gets 11

5 muffins, smallest piece N. We want N ≤ 13
30 .

Case 0: Some muffin is uncut. Cut it (12 ,
1
2) and give both halves

to whoever got the uncut muffin. Reduces to other cases.

Case 1: Some muffin is cut into ≥ 3 pieces. N ≤ 1
3 < 13

30 .

(Negation of Case 0 and Case 1: All muffins cut into 2 pieces.)



f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

That pieces buddy is of size:

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)



f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

That pieces buddy is of size:

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)



f (11, 5) = 13
30

, Easy Case Based on Students

Case 2: Some student gets ≥ 6 pieces.

N ≤ 11

5
× 1

6
=

11

30
<

13

30
.

Case 3: Some student gets ≤ 3 pieces.
One of the pieces is

≥ 11

5
× 1

3
=

11

15
.

That pieces buddy is of size:

≤ 1− 11

15
=

4

15
<

13

30
.

(Negation of Cases 2 and 3: Every student gets 4 or 5 pieces.)



f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.



f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.



f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.



f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.



f (11, 5) = 13
30

, Fun Cases

Case 4: Every muffin is cut in 2 pieces, every student gets 4 or 5
pieces. Number of pieces: 22. Note ≤ 11 pieces are > 1

2 .

I s4 is number of students who get 4 pieces

I s5 is number of students who get 5 pieces

4s4 + 5s5 = 22
s4 + s5 = 5

s4 = 3: There are 3 students who have 4 shares.
s5 = 2: There are 2 students who have 5 shares.

We call a share that goes to a person who gets 4 shares a 4-share.
We call a share that goes to a person who gets 5 shares a 5-share.



f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w , x , y , z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

Let x be the largest of x , y , z

x ≥ 17

10
× 1

3
=

17

30

The buddy of x is of size

≤ 1− x = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!



f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w , x , y , z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

Let x be the largest of x , y , z

x ≥ 17

10
× 1

3
=

17

30

The buddy of x is of size

≤ 1− x = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!



f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w , x , y , z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

Let x be the largest of x , y , z

x ≥ 17

10
× 1

3
=

17

30

The buddy of x is of size

≤ 1− x = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!



f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w , x , y , z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

Let x be the largest of x , y , z

x ≥ 17

10
× 1

3
=

17

30

The buddy of x is of size

≤ 1− x = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!



f (11, 5) = 13
30

, Fun Cases

Case 4.1: Some 4-share is ≤ 1
2 .

Alice gets w , x , y , z and w ≤ 1
2 .

Since w + x + y + z = 11
5 and w ≤ 1

2

x + y + z ≥ 11

5
− 1

2
=

17

10

Let x be the largest of x , y , z

x ≥ 17

10
× 1

3
=

17

30

The buddy of x is of size

≤ 1− x = 1− 17

30
=

13

30

GREAT! This is where 13
30 comes from!



f (11, 5) = 13
30

, Fun Cases

Case 4.2: All 4-shares are > 1
2 . There are 4s4 = 12 4-shares.

There are ≥ 12 pieces > 1
2 . Can’t occur.



This Kept Happening!

1. We Generalized the method for f (11, 5) and called it HALF.

2. We use FC and HALF to solve MANY problems.

3. We found obstracles and found methods to overcome them.

4. Next slide tells you the names of the methods and how often
they worked.



All of Our Methods

Let

A = {(m, s) | 2 ≤ s ≤ 100 and s < m ≤ 110 and m, s rel prime}

There are 3520 pairs (m, s) in A. We solved all of them!

I For 2301 of them f (m, s) = FC(m, s). That is ∼ 65.37%.

I For 329 of them f (m, s) = HALF(m, s). That is ∼ 9.35%.

I For 186 of them f (m, s) = INT(m, s). That is ∼ 5.28%.

I For 111 of them f (m, s) = MID(m, s). That is ∼ 3.15%.

I For 240 of them f (m, s) = EBM(m, s). That is ∼ 6.28%.

I For 89 of them f (m, s) = HBM(m, s). That is ∼ 2.53%.

I For 250 of them f (m, s) = GAP(m, s). That is ∼ 7.10%.

I For 13 of them f (m, s) = TRAIN(m, s). That is ∼ 0.40%



We are NOT Done

There are problems that none of

FC(m, s),HALF(m, s),INT(m, s),MID(m, s),

EBM(m, s),HBM(m, s),GAP(m, s),TRAIN(m, s)

worked on:

I f (205, 178)

I f (226, 135)

I f (233, 141)



The Scott Huddleston Technique

Scott Huddleston has an algorithm that is REALLY FAST and
seems to ALWAYS WORK. Erik and Jacob understand it, nobody
else does. They have replicated his results and think that YES it
solves ALL problems.

Richard Chatwin independently came up with the same algorithm
and proved it worked, but never coded it up. He tells me its poly
time and I believe this can be proved, though its not in his paper.
His paper is here: https://arxiv.org/abs/1907.08726

https://arxiv.org/abs/1907.08726


The Scott Huddleston Technique

Scott Huddleston has an algorithm that is REALLY FAST and
seems to ALWAYS WORK. Erik and Jacob understand it, nobody
else does. They have replicated his results and think that YES it
solves ALL problems.

Richard Chatwin independently came up with the same algorithm
and proved it worked, but never coded it up. He tells me its poly
time and I believe this can be proved, though its not in his paper.
His paper is here: https://arxiv.org/abs/1907.08726

https://arxiv.org/abs/1907.08726


Lessons Learned

I found this problem in a pamphlet at a Recreational math
Conference.

Math is all around you! Pursue your curiosity!

You never know where the next big project will come from!



Lessons Learned

I found this problem in a pamphlet at a Recreational math
Conference.

Math is all around you! Pursue your curiosity!

You never know where the next big project will come from!



Lessons Learned

I found this problem in a pamphlet at a Recreational math
Conference.

Math is all around you! Pursue your curiosity!

You never know where the next big project will come from!


