1 Quantum Streaming Algorithms

1.1 Classical Streaming for Triangle Counting and Distinguishing

Problem 1.1. Triangle Counting TC

INSTANCE: Graph $G = (V, E)$

QUESTION: Approximate the number of triangles in G.

A related problem that is usually considered in the literature is that of Triangle Distinguishing, which is defined as follows.

Problem 1.2. Triangle Distinguishing TD

INSTANCE: Graph $G = (V, E)$, a number T, and the promise that G has either 0 triangles or T triangles.

QUESTION: Does G have 0 triangles or T triangles?

Clearly TD \leq TC. Hence, a lower bound on TD implies a lower bound on TC.

We will state lower bounds on TD (and hence TC). We now state the problems that are used for these lower bounds.

Definition 1. Let $n \in \mathbb{N}$. A perfect matching over $[2n]$ is a set of pairs from $\{1, \ldots, 2n\}$ such that every vertex occurs in exactly 1 pair. We will represent this by an $n \times 2n$ matrix M where each row has 2 1’s and $n-2$ 0’s, representing the two endpoints. Note that each column will have exactly one 1.

Problem 1.3. Boolean Hidden Matching BHM

INSTANCE: Alice gets a string $x \in \{0, 1\}^{2n}$. Bob gets a perfect matching M over $[2n]$ and a string $w \in \{0, 1\}^n$ where w is promised to satisfy either $Mx = w$ or $Mx = \overline{w}$ (where \overline{w} is w with every bit flipped).

QUESTION: Determine which is the case: $Mx = w$ or $Mx = \overline{w}$.

NOTE: Gavinsky et al. [4] showed that the randomized 1-way communication complexity of this problem, with Alice sending, is $\Omega(\sqrt{n})$.

Notation 1. Let n denote the number of vertices, m denote the number of edges, and T is as in the problem statement. Δ_V (respectively Δ_E) is the maximum number of triangles in G that share a vertex (respectively an edge).

The following are known.

Theorem 1.

1. (Jayaram & Kallaugher [5]) There is a single-pass streaming algorithm for TC that uses space $\tilde{O} \left(\frac{m \Delta_E}{T} + \frac{m \sqrt{\Delta_V}}{T} \right)$.

2. (Braverman et al. [3]) Any single-pass streaming algorithm for TD (and hence for TC) uses space $\Omega \left(\frac{m \Delta_E}{T} \right)$. This proof uses a reduction of INDEX to TD.

3. (Kallaugher and Price [7]) Any single-pass streaming algorithm for TD (and hence for TC) uses space $\Omega \left(\frac{m \sqrt{\Delta_V}}{T} \right)$. This proof uses a reduction of BHM to TD.

4. Any single-pass streaming algorithm for TD (and hence for TC) requires space $\Omega \left(\frac{m \Delta_E}{T} + \frac{m \sqrt{\Delta_V}}{T} \right)$. This follows from Parts 2 and 3. Note that we now have matching bounds for one-pass streaming algorithms for TC.
1.2 Quantum Streaming for Triangle Counting and Distinguishing

Quantum streaming algorithms were first defined by Khadiev et al. [8] (see also Ablayev et al. [1]). We will discuss modifying the proofs of the lower bounds for streaming on TD and TC from Theorem 1 to obtain lower bounds for quantum streaming for these problems.

Theorem 1 used that INDEX has communication complexity Ω(n). Fortunately, Ambainis et al. [2] showed that INDEX also has quantum communication complexity Ω(n). Hence we have the following analog to Theorem 1.2 by the same proof:

Theorem 2. Any single-pass quantum streaming algorithm for TD (and hence for TC) requires space $\Omega\left(\frac{m\Delta E}{T}\right)$. This proof uses a reduction of INDEX to TD. This follows from Theorem 1.2 and the work of Ambainis et al. [2].

Can we do the same for Theorem 1.3? No. Gavinsky et al. [4] showed that the quantum communication complexity of BHM is $O(\log n)$. Hence we do not have a non-trivial lower bound for TC or TD in the region where $\Delta E = O(1)$ and $T = \Omega(n)$. Indeed, there is a quantum streaming algorithm that works well in that region. Kallaugher [6] showed the following.

Theorem 3. Restrict TC to the graphs where $\Delta E = O(1)$, $\Delta V = \Omega(T)$, and $T = \Omega(m)$. There is a single-pass quantum streaming algorithm for TC that uses space $O(n^{2/5})$.

Open 1. Find a lower bound of the form $\Omega(n^c)$ for TC in the case where $\Delta E = O(1)$, $\Delta V = \Omega(T)$, and $T = \Omega(m)$.

1.3 Classical Streaming for k-Clique Counting and Distinguishing

In this section, we define two problems for k-clique finding which are analogous to Triangle Counting and Triangle Distinguishing.

Problem 1.4. k-CLIQUE COUNTING (kCC)

INSTANCE: Graph $G = (V, E)$ and $k \in \mathbb{N}$.

QUESTION: Approximate the number of cliques of size k in G.

Problem 1.5. k-CLIQUE DISTINGUISHING (kCD)

INSTANCE: Graph $G = (V, E)$, $C \in \mathbb{N}$, and the promise that G has either 0 k-cliques or $\geq C$ k-cliques.

QUESTION: Determine if G has 0 k-cliques or $\geq C$ k-cliques.

Clearly kCD ≤ kCC. Hence a lower bound on kCD implies a lower bound on kCC.

BILL TO GANG: CHECK what I have below.

Theorem 1.2 stated a $\Omega\left(\frac{m\Delta E}{T}\right)$ space lower bound for single-pass streaming algorithms for Triangle Distinguishing. A similar proof gives the same lower bound for k-CLIQUE DISTINGUISHING (with T being the number of k-cliques); however this gives a trivial lower bound on most graphs, since ΔE is usually small. We want a stronger lower bound for more general graphs. Additionally, since the quantum streaming complexity of triangle counting in the parameter setting $\Delta E = O(1)$ and $T = \Omega(m)$ is an open problem it might be instructive to look for lower bounds on k-clique counting for $k \geq 4$ in this parameter setting to understand if the difficulty of this problem is unique for triangle counting.
Exercise 1.

1. Any classical single-pass streaming algorithm for kCD requires $\Omega \left(m^{1-1/k} \right)$ bits of space.

2. Any quantum single-pass streaming algorithm for kCD requires $\Omega \left(m^{1-2/k} \right)$ qubits of space.

(Hint: The proofs are generalizations of the proof of Theorem 1.3.

1.4 Future Directions

Open 2.

1. We have looked at counting and detecting triangles and k-cliques. Look at the problems of counting and detecting other subgraphs such as k-cycles.

2. Find a streaming problem, and a natural region of inputs, where quantum streaming is provably better than classical streaming. We are thinking of subgraph-counting or detection for some subgraph.

3. Obtain classical and quantum upper and lower bounds on p-pass streaming algorithms.

References

https://doi.org/10.1145/581771.581773.

https://doi.org/10.1137/070706550.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.11.
https://doi.org/10.1109/FOCS52979.2021.00091.

https://doi.org/10.1137/1.9781611974782.116.