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Abstract

Ramsey’s theorem states that for all finite colorings of an infinite set, there exists
an infinite homogeneous subset. What if we seek a homogeneous subset that is also
order-equivalent to the original set? For some nonnegative integer a and an ordered set
S, consider an arbitrary finite coloring of the a-subsets of S. The big Ramsey degree of
a in S is the least integer t wuch that some subset S′ order-equivalent to S where the
coloring restricted to S′ only uses t colors is guaranteed. Mašulović and Šobot (2019)
showed that all countable ordinals less than ωω have finite big Ramsey degrees. We
find exact big Ramsey degrees for all ordinals less than ωω. We also give an alternative
proof for the big Ramsey degrees of the integers.

Mathematics Subject Classifications: 05D10, 03E10

1 Introduction

Definition 1. Let (A,⪯A) and (B,⪯B) be ordered sets. Then A,B are order-equivalent,
denoted A ≈ B, if there exists an order-preserving bijection f : A → B; that is, for all
a1, a2 ∈ A:
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a1 ⪯A a2 ⇐⇒ f(a1) ⪯B f(a2).

We might also say that A has order type B.

Notation 2. Let a, b be nonnegative integers and S be a set.

1. [b] is {1, . . . , b}. If b = 0 then [b] = ∅.

2.
(
S
a

)
is the set of all a-element subsets of S. Often, we index the subset by the order of

S.

3. Let COL: S → [b] and S ′ ⊆ S. Then COL(S ′) is the codomain of COL restricted
to S ′. Hence |COL(S ′)| is the number of unique elements in the codomain of COL
restricted to S ′.

Definition 3. Let S be an ordered set with order type α, S ′ ⊆ S, a, b, t be nonnegative
integers, and COL:

(
S
a

)
→ [b] be a coloring.

1. S ′ is homogeneous if |COL
((

S′

a

))
| = 1. S ′ is t-homogeneous if |COL

((
S′

a

))
| ⩽ t.

2. S ′ is α-t-homogeneous if |COL
((

S′

a

))
| ⩽ t and S ′ ≈ S (hence S ′ has order type α).

Notation.

1. ζ is the order type of the integers, ω is the order type of the naturals, and η is the
order type of the rationals under their natural orderings.

2. Polynomials in ω are also order types: for example, ω2+ω ·3 is ω2 followed by 3 copies
of ω.

3. For all of the order types above we use the notation given for both the order type and
for the underlying set. For example, we write things like

COL:

(
ω + 2

a

)
→ [b].

When we use an order type α as a set, it’s the set of all ordinals {ρ : ρ < α}. For
example, ω + 2 = {0, 1, . . . , ω, ω + 1}.

Definition 4. Let S be an ordered set and α be its order type. For nonnegative integers
a, T (a, S) is the least nonnegative integer t such that, for all nonnegative integers b, for all
colorings COL:

(
S
a

)
→ [b], there exists some S ′ ⊆ S such that S ′ is α-t-homogeneous. Note

that t is independent of b. T (a, S) is called the big Ramsey degree of
(
S
a

)
. In other literature,

for example, Zucker [?], this is sometimes written as S → (S)ar,T (a,S) and S ̸→ (S)aT (a,S),T (a,S)−1

for all nonnegative integers r.
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This paper focuses on T (a, ζ) and T (a, α) where α is an ordinal that is less than ωω. We
do not consider T (a, η), however, the interested reader should know the following:

Theorem 5.

1. T (2, η) = 2. This was first proven by Galvin, unpublished.

2. For all nonnegative integers a, T (a, η) exists. This was first proven by Laver [?].

3. T (a, η) is the coefficient of x2a+1 in the Taylor series for the tangent function, hence

T (a, η) =
B2a+1(−1)a+1(1− 4a+1)

(2(a+ 1))!

where B2a+1 is the (2a + 1)th Bernoulli number. This was proven by Devlin [?]. See
also Vuksanovic [?] and Halpern & Lauchli [?].

Note 6. The notion of T (a, S) has been defined on structures other than orderings. We give
an example. Let R = (N, E) be the Rado graph. T (a,R) is the least number t such that,
for all b, for all colorings COL :

(N
a

)
→ [b], there exists H ⊆ N where both |COL

((
H
a

))
| ⩽ t

and the graph induced by H is isomorphic to R. The numbers T (a,R) are known but
complicated; however, T (2, R) = 2. See Dobrinen [?] for references and other examples.

2 Summary of Results

Ramsey’s Theorem on N gives an infinite 1-homogeneous subset of N, so applying it to ω
gives a ω-1-homogeneous set. Hence Theorem ?? follows.

Theorem 7. T (a, ω) = 1 for all nonnegative integers a.

What happens for other ordered sets? In this paper we do the following.

1. In Section ?? we show that T (a, ζ) = 2a. This can be obtained by the result due to
Mašulović and Šobot [?] that T (a, ω + ω) = 2a. We give a simpler and more direct
proof.

2. In Sections ??, ??, ??, ??, and ?? we determine T (a, α) for all ordinals α < ωω.
Mašulović and Šobot [?] previously showed for all α ⩾ ωω that T (a, α) is not finite.
They also showed for α < ωω that T (a, α) is finite; however, they did not obtain the
exact values of T (a, α).
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3 T (a, ζ) = 2a

For a warmup we first prove T (1, ζ) = 2 and T (2, ζ) = 4.

Example 8. T (1, ζ) = 2.

Proof. Let b be an arbitrary nonnegative integer.
We first prove T (1, ζ) ⩽ 2. Let COL: ζ → [b]. Let COL′ : ω → [b]2 be defined by

COL′(x) = (COL(−x),COL(x)).

By Theorem ?? there exists a ω-1-homogeneous set H ′. Let the color of the homogeneous
set be (c1, c2). Then the set H = −H ′ + H ′ is ζ-2-homogeneous, made up of the colors c1
and c2. Because COL was arbitrary, T (1, ζ) ⩽ 2.

We now prove T (1, ζ) ⩾ 2. Let COL: ζ → [2] be the coloring that colors all nonnegative
integers RED and all negative integers BLUE. There is no ζ-1-homogeneous set, as neither
color extends indefinitely in both directions. Therefore T (1, ζ) ⩾ 2, and with the previous
result, T (1, ζ) = 2.

Example 9. T (2, ζ) = 4.

Proof. Let b be an arbitrary nonnegative integer.
We first prove T (2, ζ) ⩽ 4. Let COL:

(
ζ
2

)
→ [b]. Let COL′ :

(
ω
2

)
→ [b]4 be defined by

COL′(x, y) = (COL(−x,−y),COL(−x, y),COL(x,−y),COL(x, y)).

By ?? there exists a homogeneous set H ′. Let the color of the homogeneous set be
(c1, c2, c3, c4). Index H ′ as {h0 < h1 < · · · }. Then the set

H = {−hi : i is even} ∪ {hi : i is odd}

is ζ-4-homogeneous, outputting colors c1, c2, c3, and c4. There is nothing special about
partitioning H ′ into odd and even indices; any partition of H ′ into any two disjoint infinite
sets suffices. We do this to filter out edges of the form (−x, x), which were not considered
by COL′ and therefore might be any color. Therefore T (2, ζ) ⩽ 4.

We now prove T (2, ζ) ⩾ 4. Let COL:
(
ζ
2

)
→ [4] be the coloring

COL(x, y) =


1 if x, y ⩾ 0

2 if x ⩾ 0, y < 0, and |x| ⩽ |y|
3 if x ⩾ 0, y < 0, and |x| > |y|
4 if x < 0, y < 0

We leave it to the reader to show there is no ζ-3-homogeneous set. The key idea of the
proof is that if we suppose some set doesn’t express a color under COL, then it cannot be
order-equivalent to ζ. Therefore T (2, ζ) ⩾ 4, and with the previous result, T (2, ζ) = 4.
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Theorem 10. For all nonnegative integers a, T (a, ζ) = 2a.

Proof. Let b be an arbitrary nonnegative integer.
We first prove T (a, ζ) ⩽ 2a. Let COL:

(
ζ
a

)
→ [b] be an arbitrary coloring. Let COL′ :

(
ω
a

)
→

[b](2
a) be defined by

COL′(x1, . . . , xa) = (COL(x1, . . . , xa),COL(−x1, x2, . . . , xa), . . . ,COL(−x1, . . . ,−xa))

The output of COL′ goes through all 2a ways to negate a subset of the numbers. Note that
COL′ considers the color of every a-element subset where the absolute values of the elements
are all different.

By Theorem ?? there exists some homogeneous set H ′. Index H ′ as {h0 < h1 < · · · }.
Then the set

H = {−hi : i is even}+ {hi : i is odd}

is ζ-2a-homogeneous, as the absolute values of every element in H are all different. Therefore
T (a, ζ) ⩽ 2a.

We now prove T (a, ζ) ⩾ 2a. We describe a coloring COL:
(
ζ
a

)
→ [2a]. The codomain is

not be the set [2a] exactly; however it is a set of that size.

1. Let {x1, . . . , xa} ∈
(
ζ
a

)
.

2. Let (i1, . . . , ia) such that

|xi1| ⩽ |xi2| ⩽ · · · ⩽ |xia |.

We give an example that also shows how to deal with ambiguity. Suppose we are given
{−7, 4, 0, 7}. We order the absolute values as |0| ⩽ |4| ⩽ |− 7| ⩽ |7| so we have indices
(3, 2, 1, 4). Note that we ordered | − 7| ⩽ |7|. This is our convention.

3. Let sij be “+” if xij ⩾ 0 and “−” if xij < 0. In our example, (xi1 , xi2 , xi3 , xi4) =
(0, 4,−7, 7) so (si1 , si2 , si3 , si4) = (+,+,−,+).

4. The color is (si1 , . . . , sia).

We use 2a colors, as there are a elements each either “+” or “−”. We leave it to the
reader to show that there is no ζ-(2a − 1)-homogeneous set.

4 T (a, ω · k)

As noted in Theorem ??, T (a, ω) = 1. In this and later sections we look at ordinals larger
than ω. For simplicity in stating results, we save the big Ramsey degrees of successor ordinals
such as ω + 1, ω + 2, . . . for Section ??.
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Theorem 11. For nonnegative integers a, k, T (a, ω · k) ⩽ ka.

Proof. Let a, k be arbitrary nonnegative integers and

COL:

(
ω · k
a

)
→ [b]

be an arbitrary coloring for some nonnegative integer b. Define COL′ :
(
ω
a

)
→ [b](k

a) with

COL′(x1, x2, . . . , xa) = (COL(x1, . . . , xa),COL(ω + x1, x2, . . . , xa), . . . ,

COL(ω · (k − 1) + x1, . . . , ω · (k − 1) + xa))

where COL′ maps a elements of ω to the colorings of all ka valid ways to have each element
as a low-dimension coefficient within one of the k copies of ω. Apply Theorem ?? with COL′

to find some N ≈ ω where

COL′
((

N

a

))
only expresses one tuple Y containing |Y | = ka colors. Index N as {n0 < n1 < · · · } and let

H = {ni : i ≡ 0 mod k}+ · · ·+ {ω · (k − 1) + ni : i ≡ k − 1 mod k}.

Now H ≈ ω · k. Then
COL

((
H

a

))
only expresses ka colors: for any selection of a elements from H, its color was considered in
COL′ so it must be one of the ka colors in Y .

Theorem 12. For nonnegative integers a, k, T (a, ω · k) ⩾ ka.

Proof. We give a ka-coloring of
(
ω·k
a

)
that has no (ka − 1)-homogeneous H ≈ ω · k. We

represent ω · k as

ω · k = X1 + · · ·+Xk

where each Xi ≈ ω. We write each Xi to be a set of disjoint nonnegative integers. We
represent an element of ω ·k by the ordered pair (i, x) where the element is in Xi and within
Xi, it is the number x. In standard notation, we would write the element as ω · i+ x.

Before giving the coloring we give an example with a = 5 and k = 200. To color the
element

{(3, 12), (50, 2), (110, 7), (110, 7777), (117, 3)}
we do the following:

1. Order the ordered pairs by their second coordinates. So we have

((50, 2), (117, 3), (110, 7), (3, 12), (110, 7777)).

Because all of the Xi’s are disjoint the second coordinates are all different, so there is
never a tie.
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2. The color is the sequence of first coordinates. So the color is

(50, 117, 110, 3, 110).

Notice that the number of colors is the number of 5-tuple where each number is in
{0, . . . , 199}. Hence there are 2005 colors.

In general, given {(i1, x1), . . . , (ia, xa)}:

1. Order the ordered pairs by their second coordinates.

2. The element’s color is the sequence of first coordinates.

Notice that the number of colors is the number of a-tuples where each number is in
{1, . . . , k}. Hence there are ka colors. We leave it to the reader to show that there can be
no (ω · k)-(ka − 1)-homogeneous H. The key idea of the proof, much like the previous lower
bounds in this paper, is supposing that one of the ka colors is not expressed by some set,
and using that to show that the set cannot be order-equivalent to ω · k.

Theorem 13. For nonnegative integers a, k, T (a, ω · k) = ka.

Proof. By Theorem ??, T (a, ω · k) ⩽ ka. By Theorem ??, T (a, ω · k) ⩾ ka. The result
follows.

5 T (2, ω2)

This section provides a concrete example involving high-dimension ordinals. We treat ω2 as
an infinite addition of copies of ω:

0, 1, 2, 3, . . .
ω + 0, ω + 1, ω + 2, ω + 3, . . .

ω · 2 + 0, ω · 2 + 1, ω · 2 + 2, ω · 2 + 3, . . .
ω · 3 + 0, ω · 3 + 1, ω · 3 + 2, ω · 3 + 3, . . .

...

Every element of ω2 is a linear expression in ω with non-negative integer coefficients. For
example, ω · 17 + 8 ∈ ω2.

Example 14. T (2, ω2) = 4.

Proof. We first prove T (2, ω2) ⩽ 4.
Let

COL:

(
ω2

2

)
→ [b]
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be an arbitrary coloring of for some nonnegative integer b. We define four functions f1, f2, f3, f4
from domain

(
ω
4

)
to codomain

(
ω2

2

)
and then use them to define a coloring from

(
ω
4

)
to [b]4.

In what follows, we index variables as x1 < x2 < x3 < x4.

f1 :
(
ω
4

)
→

(
ω2

2

)
is defined by

f1(x1, x2, x3, x4) = {ω · x1 + x2, ω · x3 + x4}.

f2 :
(
ω
4

)
→

(
ω2

2

)
is defined by

f2(x1, x2, x3, x4) = {ω · x1 + x3, ω · x2 + x4}.

f3 :
(
ω
4

)
→

(
ω2

2

)
is defined by

f3(x1, x2, x3, x4) = {ω · x1 + x4, ω · x2 + x3}.

f4 :
(
ω
4

)
→

(
ω2

2

)
is defined by

f4(x1, x2, x3, x4) = {ω · x1 + x2, ω · x1 + x3}.

COL′ :
(
ω
4

)
→ [b]4 is defined by

COL′(X) = (COL(f1(X)),COL(f2(X)),COL(f3(X)),COL(f4(X))).

Apply Theorem ?? on COL′ to find some N ≈ ω where |COL′ ((N
4

))
| = 1. Enumerate

N as N = {x0, x1, . . .} with x0 < x1 < · · · . Let

H = ω · x1 + x2, ω · x1 + x6, ω · x1 + x10, . . . ,

ω · x3 + x4, ω · x3 + x12, ω · x3 + x20, . . . ,

ω · x5 + x8, ω · x5 + x24, ω · x5 + x40, . . . ,

...

Then H ≈ ω2, as it’s an ω-sized concatenation of sets order-equivalent to ω.
For any edge {ω · y1 + y2, ω · y3 + y4} ∈

(
H
2

)
with ω · y1 + y2 < ω · y3 + y4, either y1 ̸= y3

or y1 = y3.

• If y1 ̸= y3, then y1 < y3 by the ordering of the two elements and y2 ̸= y4 by the
construction of H. We also have y1 < y2, y1 < y4, and y3 < y4 by the construction of
H. Then either y1 < y2 < y3 < y4, y1 < y3 < y2 < y4, or y1 < y3 < y4 < y2. In each
of the three cases, f1(y1, y2, y3, y4) ∈ Y , f2(y1, y3, y2, y4) ∈ Y , and f3(y1, y3, y4, y2) ∈ Y
respectively so COL({ω · y1 + y2, ω · y3 + y4}) ∈ Y .

• If y1 = y3, then y2 < y4 by the ordering of the elements and so y1 = y3 < y2 < y4
by the construction of H. Because f4(y1, y2, y4, 1) ∈ Y (note that f4 “wastes” its 4th
argument), COL({ω · y1 + y2, ω · y3 + y4}) ∈ Y .
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In all cases, COL({ω · y1 + y2, ω · y3 + y4}) ∈ Y so

COL

((
H

2

))
⊆ Y

with |Y | = 4. Because H ≈ ω2 and COL was arbitrary, T (2, ω2) ⩽ 4.

We now prove T (2, ω2) ⩾ 4. Let COL:
(
ω2

2

)
→ [4] with

COL(ω · x1 + x2, ω · x3 + x4) =


1 x1 < x2 < x3 < x4

2 x1 < x3 < x2 < x4

3 x1 < x3 < x4 < x2

4 x1 = x3 < x2 < x4 or otherwise

where ω · x1 + x2 < ω · x3 + x4. Color 4 could be formatted as simply “otherwise”, but
the specific part that makes color 4 present in any order-equivalent subset is the x1 = x3 <
x2 < x4, as the “otherwise” case can be filtered out without breaking order-equivalence. One
such set order-equivalent to ω2 without any “otherwise” edges would be H from the first
part of this proof. We leave it to the reader to show that there exists no 3-homogeneous
order-equivalent subset.

6 Strong Colorings

We use a concept called strong colorings to prove general results about T (a, ωd) and beyond.
The concept behind strong colorings is built on the ideas of Blass et al. [?]. We motivate
the concept by looking at the proof of Example ??.

The proof of Example ?? used four functions f1, f2, f3, f4. These functions were specif-
ically chosen to cover H in a way where the color of every edge in H was in the output of
some f1, f2, f3, f4. We note a function that was not used:

f :
(
ω
4

)
→

(
ω2

2

)
defined by

f(x1, x2, x3, x4) = COL({ω · x1 + x3, ω · x2 + x3}).

We didn’t use f in the lower bound proof because f didn’t cover any edges in H: we
constructed H in a way where distinct copies of ω had distinct finite coefficients. Since
x1 ̸= x2, the elements ω · x1 + x3 and ω · x2 + x3 couldn’t both be from H no matter the
values of x1, x2, and x3.

We could have designed H differently to require more than 4 functions to cover it, but
that would have weakened the upper bound result of Example ??. We define a notion of
colorings that f1, f2, f3, f4 qualify but f does not. We also show how to count these colorings,
and how these colorings are linked to big Ramsey degrees.
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Definition 15. For integers a, d, k ⩾ 0, we say there are a elements in each edge of
(
ωd·k
a

)
.

For 1 ⩽ q ⩽ a, we denote each element as

ωd · yq + ωd−1 · xq,d−1 + ωd−2 · xq,d−2 + · · ·+ ω1 · xq,1 + xq,0.

This leads to a yq variables in an edge of
(
ωd·k
a

)
, each an integer ranging from 0 ⩽ yq < k

indexed with 1 ⩽ q ⩽ a. We also have a · d xqn variables, indexed with 1 ⩽ q ⩽ a and
0 ⩽ n < d. Note that each xqn could be any nonnegative integer.

A strong coloring is first defined as an assignment of the a yq variables with nonnegative

integers 0 ⩽ yq < k for 1 ⩽ q ⩽ a. Then, the xqn variables in
(
ωd

a

)
with < or = signs between

them are permuted in a way that satisfies the below criteria.

1. If d ⩾ 1, xi0 < xj0 for all i < j (the element indices are ordered by their lowest-
dimension variable). If d = 0, yi < yj for all i < j.

2. yi ̸= yj → xin ̸= xjn for all n (Elements that have a different y value have all different
x values).

3. xqa < xqb for all a > b (the high-dimension variables of each element are strictly less
than the low-dimension variables).

4. xia = xjb → a = b (only variables with the same dimension can be equal).

5. xin ̸= xjn → xi,n−1 ̸= xj,n−1 for all n > 0 (elements that differ in a high-dimension
variable differ in all lower-dimension variables).

An example of a strong coloring for the expression
(
ω2

2

)
would be

y1 = 0, y2 = 0, x11 = x21 < x10 < x20.

Note that because k = 1 in the example, each yq can only be assigned to 0.
We say that two strong colorings are equivalent if and only if their yq values are all

the same and they are logically equivalent; that is, identical up to permutation of variables
within equivalence classes.

Definition 16. The size of a strong coloring as how many equivalence classes its x variables
form: for example, x11 = x21 < x10 < x20 would have size p = 3 regardless of its y variables.

Clearly a strong coloring’s size p can be no larger than a · d, how many x variables
(
ωd

a

)
has.

Definition 17.

1. Pp

(
a, ωd · k

)
is the number of strong colorings with size p there are for

(
ωd·k
a

)
.

2. P
(
a, ωd · k

)
is the number of strong colorings there are for

(
ωd·k
a

)
regardless of size. It

can be calculated as
a·d∑
p=0

Pp(a, ω
d · k).
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Definition 18. We say that an edge satisfies a strong coloring if its yq variables match and
the xqn variables match the ordering of the strong coloring. Note that some edges might not
satisfy any strong colorings.

7 T (a, ωd) = P (a, ωd)

This section is devoted to the case where k = 1. When k = 1, each yq in a strong coloring is
forced to be 0. Then all yq values are the same, so criterion ?? of Definition ?? is always
satisfied. In this section, our proofs focus only on the permutation of the xqn variables and
the remaining criteria. When values for yq are not specified, in this section they are assumed
to be all 0 by default.

This section’s aim is to show equality between big Ramsey degrees and strong colorings.
To motivate this, we start with a recurrence that counts strong colorings.

Lemma 19. For integers a, d ⩾ 0,

Pp

(
a, ωd

)
=



0 d = 0 ∧ a ⩾ 2

1 a = 0 ∧ p = 0

0 a = 0 ∧ p ⩾ 0

1 d = 0 ∧ a = 1 ∧ p = 0

0 d = 0 ∧ a = 1 ∧ p ⩾ 1

1 d = 1 ∧ a ⩾ 1 ∧ a = p

0 d = 1 ∧ a ⩾ 1 ∧ a ̸= p
a∑

j=1

p−1∑
i=0

(
p−1
i

)
Pi

(
j, ωd−1

)
Pp−1−i

(
a− j, ωd

)
d ⩾ 2 ∧ a ⩾ 1

Proof. First suppose a ⩾ 2 and d = 0. Because k = 1, we need y1, y2 = 0. But by criterion
?? of Definition ??, since d = 0 we need y1 < y2, so no strong colorings are possible regardless
of size p. This aligns with the first case of the result.

Suppose a = 0: now there are no yq variables, and since a ·d = 0, there are no x variables
to permute. Therefore criteria are vacuously satisfied. There is only one strong coloring,
and it has size p = 0. This aligns with the second and third cases of the result.

When both d = 0 and a ⩽ 1, criterion ?? of Definition ?? can be vacuously satisfied with
all yq = 0 with because there are only one or zero yq variables. Again, because a · d = 0,
there are no x variables to permute so there is only one strong coloring with size p = 0,
aligning with the fourth and fifth cases of the result.

Now suppose a ⩾ 1 and d = 1. To ensure criteria ?? of Definition ??, each of the a
xq,0 variables can only form one strong coloring x1,0 < x2,0 < . . . < xa,0 with size a so
Pa

(
a, ωd

)
= 1 and Pp

(
a, ωd

)
= 0 for p ̸= a. This aligns with the sixth and seventh cases of

the result.
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Finally, consider a ⩾ 1, d ⩾ 2. We prove the final case of our result by showing the
process for combining strong colorings described below creates all possible strong colorings of
an expression.

For arbitrary integers a ⩾ 1, d ⩾ 2, and p ⩾ 0, let 1 ⩽ j ⩽ a and 0 ⩽ i ⩽ p − 1 be
integers. As we proceed through the process, we work with an example of a = 4, d = 5,
p = 13, j = 2, and i = 5.

We create (
p− 1

i

)
Pi

(
j, ωd−1

)
Pp−1−i

(
a− j, ωd

)
strong colorings of size p by combining Pi

(
j, ωd−1

)
strong colorings with size i and Pp−1−i

(
a− j, ωd

)
strong colorings with size p− 1− i, creating

(
p−1
i

)
strong colorings from each pair.

Let τ1 represent one of the Pi

(
j, ωd−1

)
strong colorings of

(
ωd−1

j

)
with size i, and τ2

represent one of the Pp−1−i

(
a− j, ωd

)
strong colorings of

(
ωd

a−j

)
with size p − 1 − i. In our

example, let

τ1 : x1,3 = x2,3 < x1,2 = x2,2 < x1,1 = x2,1 < x1,0 < x2,0

τ2 : x1,4 = x2,4 < x1,3 = x2,3 < x1,2 = x2,2 < x2,1 < x1,1 < x1,0 < x2,0.

Then we can combine each τ1 and τ2 to form
(
p−1
i

)
unique new strong colorings of size p:

Reindex each variable xq,n of τ2 to xq+j,n, and permute the equivalence classes of the strong
colorings together, preserving each strong coloring’s original ordering of its own equivalence
classes: there are

(
p−1
i

)
ways to do this. In our example, after reindexing τ2 we have

τ1 : x1,3 = x2,3 < x1,2 = x2,2 < x1,1 = x2,1 < x1,0 < x2,0

τ2 : x3,4 = x4,4 < x3,3 = x4,3 < x3,2 = x4,2 < x4,1 < x3,1 < x3,0 < x4,0

and one of the
(
12
5

)
permutations is

x3,4 = x4,4 < x1,3 = x2,3 < x1,2 = x2,2 < x3,3 = x4,3 < x3,2 = x4,2

< x1,1 = x2,1 < x4,1 < x1,0 < x3,1 < x3,0 < x2,0 < x4,0.

This new strong coloring likely breaks criterion ?? of Definition ??; for each 1 ⩽ q ⩽ a,
reindex each xq,n according to where xq,0 is in the ordering of all xi,0. In our example, we
have x1,0 < x3,0 < x2,0 < x4,0; after swapping indices 2 and 3 to enforce criterion ?? we have

x2,4 = x4,4 < x1,3 = x3,3 < x1,2 = x3,2 < x2,3 = x4,3 < x2,2 = x4,2

< x1,1 = x3,1 < x4,1 < x1,0 < x2,1 < x2,0 < x3,0 < x4,0.

There are now d · (a− j) + (d− 1) · j = a · d− j variables in the strong coloring. There
are j variables of the form xqi,d−1 for 1 ⩽ i ⩽ j that are not in the strong coloring yet; insert
one equivalence class xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1 at the front of the new strong coloring,
bringing its size to p. We insert x1,4 = x3,4 in our example to get

x1,4 = x3,4 < x2,4 = x4,4 < x1,3 = x3,3 < x1,2 = x3,2 < x2,3 = x4,3 < x2,2 = x4,2

< x1,1 = x3,1 < x4,1 < x1,0 < x2,1 < x2,0 < x3,0 < x4,0.
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Each strong coloring is unique by the τ1 and τ2 used to create it because the process is
invertible: we can remove the leading equivalence class and separate the remaining variables
into τ1 and τ2 by whether their indices were in the leading equivalence class and reindexing.
Here, τ1 corresponds to indices 1 and 3 (not including the leading equivalence class) and is
bolded, and τ2 corresponds to indices 2 and 4 and is underlined.

x1,4 = x3,4 < x2,4 = x4,4 < x1,3 = x3,3 < x1,2 = x3,2 < x2,3 = x4,3 < x2,2 = x4,2

< x1,1 = x3,1 < x4,1 < x1,0 < x2,1 < x2,0 < x3,0 < x4,0.

Each strong coloring created by this process has the properties described by Definition
??: Because the high-dimension equivalence class xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1 was added
at the start of the strong coloring, the high-dimension coefficients of each term are smaller
than the low-dimension coefficients. Criterion ?? is satisfied by reindexing the variables. The
remaining criteria are satisfied because τ1 and τ2 satisfied them and their internal orders were
preserved in permuting the equivalence classes. Therefore this process does not overcount
strong colorings.

Every strong coloring of
(
ωd

a

)
is counted by this process: each can be mapped to some

τ1 and τ2 that create it by a similar argument to proving that the process creates unique

strong colorings. Every strong coloring of
(
ωd

a

)
must have a leading equivalence class of

xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1 to satisfy Definition ?? (the equivalence class might only
contain one variable); taking only the variables xq,n with indices appearing in that equivalence
class (but not those variables in the equivalence class itself) forms τ1, a strong coloring for(
ωd−1

j

)
. The variables with q indices not in the equivalence class form τ2, a strong coloring for(

ωd

a−j

)
. The original strong coloring of

(
ωd

a

)
is counted by interleaving τ1 with τ2 and inserting

the leading equivalence class of xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1. Therefore the final case of
the result holds.

7.1 T (a, ωd) ⩽ P (a, ωd)

We use the following lemma to show that strong colorings bound big Ramsey degrees above.

Lemma 20. For integers a, d ⩾ 0 and N ≈ ω, there exists some H ⊆ ωd with H ≈ ωd where

for all e ∈
(
H
a

)
, e satisfies a strong coloring of

(
ωd

a

)
and each coefficient in e is contained in

N .

Proof. Because N ≈ ω, we can index it x0, x1, x2, . . . with x0 < x1 < x2 < · · · . We proceed
by induction on d. When d = 0, ω0 ≈ 1 and so H = {x0} suffices. When d = 1, ω1 ≈ ω so
H = N suffices.
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For d ⩾ 2, partition N \ {x0} into infinite sets order-equivalent to ω:

X0 = {x1, x3, x5, . . .}
X1 = {x2, x6,10 , . . .}
X2 = {x4, x12, x20, . . .}
X3 = {x8, x24, x40, . . .}

...

Apply the inductive hypothesis on Xi for all i ⩾ 1, yielding Si ≈ ωd−1 for all i ⩾ 1. Then

for all i ⩾ 1, for all e ∈
(
Si

a

)
, e satisfies a strong coloring of

(
ωd−1

a

)
and each coefficient of e is

contained in Xi. For all i, let Si = {yi,0, yi,1, . . .}. Then let

H = ωd−1x1 + y1,0, ω
d−1x1 + y1,1, ω

d−1x1 + y1,2, . . . , (ω
d−1 times)

ωd−1x3 + y2,0, ω
d−1x3 + y2,1, ω

d−1x3 + y2,2, . . . , (ω
d−1 times)

ωd−1x5 + y3,0, ω
d−1x5 + y3,1, ω

d−1x5 + y3,2, . . . , (ω
d−1 times)

... (ω times)

Then H ≈ ωd. For any edge e in
(
S
a

)
, index its variables to satisfy criterion ?? of Definition

?? (this is possible because all low-dimension coefficients are distinct in H). Criterion ?? is
satisfied inductively for variables with dimensions lower than d−1. Because minXi = x2i for
all i and 2i− 1 < 2i for all integers i ⩾ 1, x2i−1 < x for all x ∈ Xi so criterion ?? is satisfied
by e. Because X0 is disjoint with all Xi with i ⩾ 1, criterion ?? is satisfied for variables
with dimension d − 1 and by induction, it’s satisfied for lower dimensions. Because Xi is
disjoint with Xj for all i ̸= j, elements that differ in variables with dimension d− 1 differ in
all lower-dimension variables. The induction with the previous statement satisfies criterion

??. Therefore e satisfies a strong coloring of
(
ωd

a

)
. The coefficients in e are contained in N

by the construction of H from N .

Theorem 21. For integers a, d ⩾ 0, T
(
a, ωd

)
⩽ P

(
a, ωd

)
.

Proof. Let E =
(
ωd

a

)
and

COL: E → [b]

be an arbitrary coloring of E for some nonnegative integer b.
Enumerate the strong colorings of E from τ1 to τP (a,ωd). The maximum size of any strong

coloring of E is a · d. For each τi, let

fi :

(
ω

a · d

)
→ E
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where if τi has size p, fi maps X to the unique e ∈ E where e satisfies τi and the p equivalence
classes of e are made up of the p least elements of X. For example, one strong coloring of(
ω2

2

)
is

x11 = x21 < x10 < x20.

The corresponding fi would be fi :
(
ω
4

)
→

(
ω2

2

)
with

fi(x1, x2, x3, x4) = COL({ω · x1 + x2, ω · x1 + x3})

where x1 < x2 < x3 < x4. Note that x4 is “wasted” by fi – this is because the example
strong coloring has size 3, but the maximum sized strong coloring for

(
ω2

2

)
has size 4.

Then, define COL′ :
(

ω
a·d

)
→ [b]P (a,ωd) with

COL′(X) = (f1(X), f2(X), . . . , fP (a,ωd)(X))

and apply Theorem ?? to find some N ≈ ω where

COL′
((

N

a · d

))
expresses only one tuple Y containing |Y | = P (a, ωd) colors.

Apply Lemma ?? to find some H ≈ ωd with the properties listed in Lemma ??. Now we
claim

COL

((
H

a

))
expresses at most P (a, ωd) colors.

By Lemma ??, each element e ∈
(
H
a

)
satisfies a strong coloring of E. Then for some

arbitrary edge e, let e satisfy τi with size p ⩽ a · d. Then take the p unique values in e, and
if necessary, insert any new larger nonnegative integers from N to form a set of a · d values;
denote this X ∈

(
N
a·d

)
. COL′(X) = Y so by the definition of COL′, COL(e) ∈ Y . Because

|Y | = P (a, ωd), T (a, ωd) ⩽ P (a, ωd).

7.2 T (a, ωd) ⩾ P (a, ωd)

Theorem 22. For integers a, d ⩾ 0, T
(
a, ωd

)
⩾ P

(
a, ωd

)
.

Proof. If P (a, ωd) = 0, this is satisfied vacuously because T (a, ωd) ⩾ 0. Now suppose

P (a, ωd) ⩾ 1. Let E =
(
ωd

a

)
. Note that all strong colorings of E are disjoint from each other.

That is, for any edge e ∈ E, if e satisfies τ ′, then it does not satisfy any nonequivalent strong
coloring of E. This is because if e were to satisfy two strong colorings τ1 and τ2, then τ1 and τ2
must share the same equivalence classes and order, so the strong colorings must be equivalent.
Therefore, we can index them τ1 . . . τP (a,ωd) and construct a coloring COL: E → [P (a, ωd)]
with

COL(e) =

{
i e satisfies τi

1 otherwise
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Similar to Example ??, our coloring has two ways to output color 1, both through satisfaction
of τ1 and through the catch-all case. The part that forces color 1 to be present in all order-
equivalent subsets is the satisfaction of τ1.

There is no ωd-(P (a, ωd) − 1)-homogeneous set: for all H ≈ ωd and for every strong
coloring τ of E, there exists some e ∈

(
H
a

)
that satisfies τ .

For arbitrary H ≈ ωd and τ , we find zqn where

{ωd−1z1,d−1 + · · ·+ ω1z1,1 + z1,0, . . . , ω
d−1za,d−1 + · · ·+ ω1za,1 + za,0}

satisfies τ .
We do this by assigning values to each zqn according to where the equivalence class

that contains xqn is found in τ , moving left to right in τ ’s permutation. By criterion ?? of
Definition ??, each zqn is assigned before zq,n−1. As we do this, we ensure that if the leftmost
unassigned value in τ is zqn, then

{ωd−1zq,d−1 + · · ·+ ωn+1zq,n+1 + ωncn + ωn−1cn−1 + · · ·
+ ω1c1 + c0 | ci ∈ ω} ∩H ≈ ωn+1.

By criterion ?? of Definition ??, the leftmost variable in τ must be xq,d−1. Before any
values are assigned, it is clear that

{ωd−1cd−1 + · · ·+ ω1c1 + c0 | ci ∈ ω} = ωd

and because H ⊆ ωd, ωd ∩H = H ≈ ωd.
By criterion ?? of Definition ??, all variables in an equivalence class must have the same

dimension d. Let the leftmost equivalence class in τ be xq1,n = xq2,n = · · · = xqm,n. By
criterion ?? each xqi,ℓ for 1 ⩽ i ⩽ m and ℓ > n appeared to the left of this equivalence class
and has already been assigned a value, and by criterion ?? the values for each dimension are
equal: for all ℓ > n and 1 ⩽ i ⩽ m, zqi,ℓ = zq1,ℓ.

By our previous steps,

{ωd−1zq1,d−1 + · · ·+ ωn+1zj,q1,n+1 + ωncn + ωn−1cn−1 + · · ·
+ ω1c1 + c0 | ci ∈ ω} ∩H ≈ ωn+1.

Then there exists some value z′ where

{ωd−1zq1,d−1 + · · ·+ ωn+1zq1,n+1 + ωnz′ + ωn−1cn−1 + · · ·
+ ω1c1 + c0 | ci ∈ ω} ∩H ≈ ωn

where z′ is greater than all previously assigned (and therefore finite) zqn values. Then for
1 ⩽ i ⩽ m, assign zqi,n to be z′.

We can repeat this process to find zqn that satisfy every strong coloring of E for arbitrary
H ≈ ωd. Therefore for all H ≈ ωd, |COL(

(
S
a

)
)| ⩾ P (a, ωd) so T (a, ωd) ⩾ P

(
a, ωd

)
.
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7.3 T (a, ωd) = P (a, ωd)

Theorem 23. For all nonnegative integers a, d, T (a, ωd) = P (a, ωd).

Proof. By Theorem ??, T (a, ωd) ⩽ P (a, ωd). By Theorem ??, T (a, ωd) ⩾ P (a, ωd). The
result follows.

8 T (a, ωd · k) = P (a, ωd · k)

We now use the theory we developed for the case k = 1 to prove results for arbitrary k. We
first extend the recurrence from Lemma ??.

Lemma 24. For integers a, d, k ⩾ 0,

Pp

(
a, ωd · k

)
=



0 d = 0 ∧ a > k

1 a = 0 ∧ p = 0

0 a = 0 ∧ p ⩾ 0(
k
a

)
d = 0 ∧ 1 ⩽ a ⩽ k ∧ p = 0

0 d = 0 ∧ 1 ⩽ a ⩽ k ∧ p ⩾ 1

ka d = 1 ∧ a ⩾ 1 ∧ a = p

0 d = 1 ∧ a ⩾ 1 ∧ a ̸= p

k
a∑

j=1

p−1∑
i=0

(
p−1
i

)
Pi

(
j, ωd−1

)
Pp−1−i

(
a− j, ωdk

)
d ⩾ 2 ∧ a ⩾ 1

Proof. First suppose a > k and d = 0. We need 0 ⩽ yq < k for all yq, so at most k unique
values of yq variables are possible. But by criterion ?? of Definition ??, since d = 0 we need
a unique values of yq variables, so no strong colorings are possible regardless of size p. This
aligns with the first case of the result.

Suppose a = 0: now there are no yq variables, and since a ·d = 0, there are no x variables
to permute so all criteria are vacuously satisfied. Because there are no y or x variables, there
is only one strong coloring, and it has size p = 0. This aligns with the second and third cases
of the result.

When both d = 0 and a ⩽ k, criterion ?? of Definition ?? can be satisfied with the
assignments to the a yq variables being any permutation of a unique values out of k possible
integer values. This leads to

(
k
a

)
feasible combinations. Again, because a · d = 0, there are

no x variables to permute so there are
(
k
a

)
empty strong colorings with size p = 0, aligning

with the fourth and fifth cases of the result.
Now suppose a ⩾ 1 and d = 1. To ensure criteria ?? of Definition ??, each of the a xq,0

variables can only form one permutation x1,0 < x2,0 < . . . < xa,0 with size a. Because all x
values are distinct and d = 1, the yq values are not restricted by any criteria so each of the
a variables can be any of the k integers. Therefore Pa

(
a, ωd

)
= ka and Pp

(
a, ωd

)
= 0 for

p ̸= a. This aligns with the sixth and seventh cases of the result.
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Finally, consider a ⩾ 1, d ⩾ 2. We prove the final case of our result by showing the
process for combining strong colorings described below creates all possible strong colorings of
an expression.

For arbitrary integers a ⩾ 1, d ⩾ 2, k ⩾ 0, and p ⩾ 0, let 1 ⩽ j ⩽ a and 0 ⩽ i ⩽ p − 1
be integers.

We create

k

(
p− 1

i

)
Pi

(
j, ωd−1

)
Pp−1−i

(
a− j, ωd · k

)
strong colorings of size p by combining Pi

(
j, ωd−1

)
strong colorings with size i and Pp−1−i

(
a− j, ωd · k

)
strong colorings with size p− 1− i, with k

(
p−1
i

)
new strong colorings for each pair.

with each strong coloring having j elements equal in their highest-dimension variable
with those j elements having a combined size (i.e. count of distinct variables) of i.

Let τ1 represent one of the Pi

(
j, ωd−1

)
strong colorings of

(
ωd−1

j

)
with size i, and τ2

represent one of the Pp−1−i

(
a− j, ωd

)
strong colorings of

(
ωd·k
a−j

)
with size p− 1− i.

Then we can combine each τ1 and τ2 to form k
(
p−1
i

)
unique new strong colorings of

size p: Reindex τ2, permute the equivalence classes, and insert a leading equivalence class
xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1 as in the proof of Lemma ??. This leads to

(
p−1
i

)
new

permutations of the x variables.

Because τ1 was a strong coloring for
(
ωd−1

j

)
, each of its y values were 0. Now that we

are creating a strong coloring for
(
ωd·k
a

)
, we can choose the y coefficients to be composed of

values between 0 and k − 1. By criterion ?? of Definition ??, because all elements from τ1
are bound together in a leading high-dimension equivalence class, they must all have equal
y values. This leads to k options for these y values; with the options of permuting the x
variables, k

(
p−i
i

)
ways to create a new strong coloring.

For the new strong coloring’s yq values, we assign each element originally from τ2 with its
original y value (likely at a different index due to reindexing). Then, the remaining elements
from τ1 are given all the same y value from one of the k options.

Each strong coloring is unique by the τ1 and τ2 used to create it because the process is
invertible: we can remove the leading equivalence class and separate the remaining variables
into τ1 and τ2 by whether their indices were in the leading equivalence class and reindexing.
The y values for τ2 can be found from the strong coloring’s y values after reversing the index
change, and the y values for τ1 are all 0.

We claim each strong coloring created by this process has the properties described by
Definition ??: Because the high-dimension equivalence class xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1

was added at the start of the strong coloring, the high-dimension coefficients of each term
are smaller than the low-dimension coefficients. Criterion ?? is satisfied by reindexing the
variables. Criterion ?? is met by assigning all elements from τ1 the same y value. The
remaining criteria are satisfied because τ1 and τ2 satisfied them and their internal orders were
preserved in permuting the equivalence classes. Therefore this process does not overcount
strong colorings.
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We also claim that every strong coloring of
(
ωd·k
a

)
is counted by this process: each can

be mapped to some τ1 and τ2 that create it by a similar argument to proving that the

process creates unique strong colorings. Every strong coloring of
(
ωd·k
a

)
must have a leading

equivalence class of xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1 to satisfy Definition ?? (the equivalence
class might only contain one variable); taking only the variables xq,n with indices appearing
in that equivalence class (but not those variables in the equivalence class itself) with all-

zero y values forms τ1, a strong coloring for
(
ωd−1

j

)
. The variables with q indices not in the

equivalence class with their y values form τ2, a strong coloring for
(
ωd·k
a−j

)
. The original strong

coloring of
(
ωd·k
a

)
was counted by interleaving τ1 with τ2 and inserting the leading equivalence

class of xq1,d−1 = xq2,d−1 = · · · = xqj ,d−1. Therefore the final case of the result holds.

8.1 T (a, ωd · k) ⩽ P (a, ωd · k)

Lemma 25. For nonnegative integers a, d, k and N ≈ ω, there exists some H ⊆ ωd · k,
H ≈ ωd · k where for all e ∈

(
H
a

)
, e satisfies a strong coloring of

(
ωd·k
a

)
and each coefficient

in e is contained in N .

Proof. Because N ≈ ω, we can index it x1, x2, x3, . . . with x1 < x2 < x3 < · · · .
If d = 0, H = {x1, x2, . . . , xk} suffices.
If d ⩾ 1, we can first apply Lemma ?? with N to attain some H ′ ≈ ωd+1 with the listed

properties. Then, let H be the first k copies of ωd within H ′: formally,

H = {ωdy + ωd−1xd−1 + . . .+ ω1x1 + x0 ∈ H ′ | y < k}.

Because the edges of H ′ satisfied criterion ?? of Definition ?? at dimension n = d + 1, the
edges of H satisfy criterion ??. The remaining criteria are satisfied directly because H ′

satisfied them.

Theorem 26. For integers a, d, k ⩾ 0, T
(
a, ωd

)
⩽ P

(
a, ωd

)
.

Proof. Let E =
(
ωd·k
a

)
and

COL: E → [b]

be an arbitrary coloring of E for some nonnegative integer b.
Enumerate the strong colorings of E from τ1 to τP (a,ωd·k). The maximum size of any

strong coloring of E is a · d. For each τi, let

fi :

(
ω

a · d

)
→ E

where if τi has size p, fi maps X to the unique e ∈ E where e satisfies τi and the p equivalence
classes of e are made up of the p least elements of X. For example, one strong coloring of(
ω2·2
2

)
is

y1 = 0, y2 = 1, x11 < x21 < x20 < x10.
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The corresponding fi would be fi :
(
ω
4

)
→

(
ω2·2
2

)
with

fi(x1, x2, x3, x4) = COL({ω2 · 0 + ω · x1 + x4, ω
2 · 1 + ω · x2 + x3})

where x1 < x2 < x3 < x4. Note that the yq values are used directly in of the definition
of fi – for the strong coloring with identical x permutation but y0 = 1 and y1 = 0, the yq
coefficients would be swapped.

Then, define COL′ :
(

ω
a·d

)
→ [b]P (a,ωd·k) with

COL′(X) = (f1(X), f2(X), . . . , fP (a,ωd·k)(X))

and apply Theorem ?? to find some N ≈ ω where

COL′
((

N

a · d

))
expresses only one tuple Y containing |Y | = P (a, ωd · k) colors.

Apply Lemma ?? to find some H ≈ ωd · k with the properties listed in Lemma ??. Now
we claim

COL

((
H

a

))
expresses at most P (a, ωd · k) colors.

By Lemma ??, each element e ∈
(
H
a

)
satisfies a strong coloring of E. Then for some

arbitrary edge e, let e satisfy τi with size p ⩽ a · d. Then take the p unique values in e, and
if necessary, insert any new larger nonnegative integers from N to form a set of a · d values;
denote this X ∈

(
N
a·d

)
. COL′(X) = Y so by the definition of COL′, COL(e) ∈ Y . Because

|Y | = P (a, ωd · k), T (a, ωd · k) ⩽ P (a, ωd · k).

8.2 T (a, ωd · k) ⩾ P (a, ωd · k)

Theorem 27. For nonnegative integers a, d, k, T
(
a, ωd · k

)
⩾ P

(
a, ωd · k

)
.

Proof. If P (a, ωd · k) = 0, this is satisfied vacuously because T (a, ωd · k) ⩾ 0. Suppose

P (a, ωd · k) ⩾ 1. Let E =
(
ωd·k
a

)
. Note that all strong colorings of E are disjoint from each

other. That is, for any edge e ∈ E, if e satisfies τ ′, then it does not satisfy any nonequivalent
strong coloring of E. This is because if e were to satisfy two strong colorings τ1 and τ2,
then τ1 and τ2 must share the same yq values, equivalence classes and order, so the strong
colorings must be equivalent. Therefore, we can index them τ1 . . . τP (a,ωd) and construct a
coloring COL: E → [P (a, ωd · k)] with

COL(e) =

{
i e satisfies τi

1 otherwise
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Similar to Example ??, our coloring has two ways to output color 1, both through satisfaction
of τ1 and through the catch-all case. The part that forces color 1 to be present in all order-
equivalent subsets is the satisfaction of τ1.

For arbitrary H ≈ ωd · k and τ , we find yq and zqn variables where

{ωdy1 + ωd−1z1,d−1 + · · ·+ ω1z1,1 + z1,0, . . . , ω
dya + ωd−1za,d−1 + · · ·+ ω1za,1 + za,0}

satisfies τ .
Given an arbitrary H ≈ ωd · k and τ , we first separate H into k ordered sets by the

leading coefficient, each order-equivalent to ωd.
Then, if there are equivalence classes in τ , using the process formally described in the

proof of Theorem ??, we consider the leading equivalence class of τ . By criterion ?? of
Definition ??, all variables in that equivalence class must come from same set order-equivalent
to ωd. We assign a finite value to that equivalence class, and move to the next class with a
potentially different y value, using the assigned finite value as a lower bound for the next one.
We can repeat this process to find zqn that satisfy every strong coloring of E for arbitrary
H ≈ ωd. Then, we can assign the yq variables directly as the y variables in τ .

If there are no equivalence classes in τ (it has size p = 0), we can simply assign the yq
variables directly as the y variables in τ .

Therefore for all H ≈ ωd, |COL
((

H
a

))
| ⩾ P (a, ωd · k) so T (a, ωd · k) ⩾ P

(
a, ωd · k

)
.

8.3 T (a, ωd · k) = P (a, ωd · k)

Theorem 28. For nonnegative integers a, d, k, T (a, ωdk) = P (a, ωdk).

Proof. By Theorem ??, T (a, ωd ·k) ⩽ P (a, ωd ·k). By Theorem ??, T (a, ωd ·k) ⩾ P (a, ωd ·k).
The result follows.

9 T (a, α) for any α < ωω

9.1 Dimensional Strong Colorings

We defined strong colorings to compute big Ramsey degrees of sets of the form ωd · k. We’ll
now extend the definition to dimensional strong colorings, which allows us to compute big
Ramsey degrees for all ordered sets less than ωω.

Definition 29. For an ordered set α < ωω, consider α in terms of a polynomial in ω:

α ≈ ωd · kd + ωd−1 · kd−1 + · · ·+ ω · k1 + k0.

For some integer a ⩾ 0, we say there are a elements in e ∈
(
α
a

)
. Unlike the definition of

strong colorings, each element can have anywhere from 0 and d variables, as the element
does not have to originate from the ωd part of α. For 1 ⩽ q ⩽ a, we use cq for the number of
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variables element q has (the element therefore originated from the ωcq part of α). We denote
each element as

ωcq · yq + ωcq−1 · xq,cq−1 + ωcq−2 · xq,cq−2 + · · ·+ ω1 · xq,1 + xq,0.

where 0 ⩽ yq < kcq and each xqn a nonnegative integer.
A dimensional strong coloring, hereafter referred to as a DSC, is first an assignment of the

a cq variables with integers for 0 ⩽ cq ⩽ d. Then, it’s an assignment of the a yq variables with
integers for 0 ⩽ yq < kcq . Each element has xqn variables associated with it for 1 ⩽ q ⩽ a
and 0 ⩽ n < cq. Then, the xqn variables with < or = signs between them are permuted in
a way that satisfies the below criteria. Only criterion ?? below is different than the criteria
from Definition ??.

1. If d ⩾ 1, xi0 < xj0 for all i < j (the element indices are ordered by their lowest-
dimension variable). If d = 0, yi < yj for all i < j.

2. yi ̸= yj → xin ̸= xjn for all n (Elements that have a different y value have all different
x values).

3. xqa < xqb for all a > b (the high-dimension variables of each element are strictly less
than the low-dimension variables).

4. xia = xjb → a = b (only variables with the same dimension can be equal).

5. xin ̸= xjn → xi,n−1 ̸= xj,n−1 for all n > 0 (elements that differ in a high-dimension
variable differ in all lower-dimension variables).

6. ci ̸= cj → yi ̸= yj and ci ̸= cj → xin ̸= xjn for all 0 ⩽ n < d (different c variables mean
different y and x variables).

Definition 30. We again define the size of a DSC to be how many equivalence classes its x
variables form. A DSC’s size p is still bounded above by d · a.

Definition 31.

1. Dp (a, α) is the number of strong colorings with size p there are for
(
α
a

)
.

2. D (a, α) is the number of strong colorings there are for
(
α
a

)
regardless of size. It can be

calculated as
a·d∑
p=0

Dp(a, α).

Lemma 32. For nonnegative integers a, d, k, p, Dp(a, ω
d · k) = Pp(a, ω

d · k).

the electronic journal of combinatorics 27 (2020), #P00 22



Proof. Let α = ωd · k. Because α only has one dimension with a nonzero k coefficient, each
cq = d: if some cq ̸= d, because yq < kcq by Definition ??, yq < 0, which is impossible.
Then there are the same count of a · d xqn variables being permuted, the new criterion
?? has no effect because all cq are equal. Then both are under the same restrictions so
Dp(a, ω

d · k) = Pp(a, ω
d · k).

Lemma 33. For all α < ωω with

α ≈ ωd · kd + ωd−1 · kd−1 + · · ·+ ω · k1 + k0,

Dp (a, α) =
a∑

j=0

p∑
i=0

(
p

i

)
Pi

(
j, ωd · kd

)
Dp−i

(
a− j, ωd−1 · kd−1 + · · ·+ ω · k1 + k0

)
.

when d > 0 and Dp(a, α) = Pp(a, α) otherwise.

Proof. When d = 0, Lemma ?? shows Dp(a, α) = Pp(a, α). When d ⩾ 1, we describe a
process of combining strong colorings with DSCs to create DSCs for

(
α
a

)
.

For arbitrary integers a ⩾ 0, p ⩾ 0, and some α < ωω, let 0 ⩽ j ⩽ a and 0 ⩽ i ⩽ p be
integers. We create (

p

i

)
Pi

(
j, ωd · k

)
Dp−i

(
a− j, ωd−1 · kd−1 + · · ·+ k0

)
DSCs, with each DSC having j elements from the ωd part of α and a−j elements from parts
with lower dimensions.

Let τ1 represent one of the Pi

(
j, ωd · k

)
strong colorings of

(
ωd·k
j

)
with size i, and τ2

represent one of the Pp−i

(
a− j, ωd−1 · kd−1 + · · ·+ k0

)
DSCs of

(
ωd−1·kd−1+···+k0

a−j

)
with size

p− i. We change τ1 into a DSC by assigning it cq = d for all cq.
Then we can combine each τ1 and τ2 to form

(
p
i

)
unique new DSCs of size p: Reindex

τ2 and permute the equivalence classes as in the proof of Lemma ??. Note that we do not
insert a leading equivalence class – this is because we do not want to increase the dimension
or size of τ1.

We can keep each cq and yq value the same, and reindex them alongside the xqn variables
to ensure criterion ??.

Each DSC is unique by the τ1 and τ2 used to create it because the process is invertible:
we can identify the elements originally from τ1 because they uniquely have cq = d.

We claim each DSC created by this process has the properties described by Definition ??:
Because all cq are equal for τ1, criterion ?? is satisfied for the elements from τ1. Criterion ??
is satisfied by reindexing the variables. The remaining criteria are satisfied because τ1 and τ2
satisfied them and their internal orders and equivalence classes were preserved in permuting
the equivalence classes. Therefore this process does not overcount DSCs.

We also claim that every DSC of
(
α
a

)
is counted by this process: each can be mapped

to some τ1 and τ2 that create it by a similar argument to proving that the process creates
unique DSCs.
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9.2 T (a, α) ⩽ D(a, α)

Lemma 34. For all α < ωω, nonnegative integers a, and N ≈ ω, there exists some H ⊆ α,
H ≈ α where for all e ∈

(
H
a

)
, e satisfies a DSC of

(
α
a

)
and each coefficient in e is contained

in N .

Proof. Because N ≈ ω, we can index it x0, x1, x2, . . . with x0 < x1 < x2 < · · · . Let
α ≈ ωd · kd + ωd−1 · kd−1 + · · ·+ ω · k1 + k0.

First apply Lemma ?? on N to produce an H ′ ≈ ω · (d+ 1). For 0 ⩽ n ⩽ d, let N ′
n ≈ ω

such that
H ′ = N ′

0 + · · ·+N ′
d.

For 0 ⩽ n ⩽ d, apply Lemma ?? on N ′
n to yield some Hn ≈ ωn · kn where all e ∈ Hn

satisfy a strong coloring for
(
ωnkn
a

)
. Then let

H =
d∑

n=0

Hn

so that H ≈ α.
Because all e ∈ Hn satisfy a strong coloring for 0 ⩽ n ⩽ d, only criterion ?? of Definition

?? remains to be satisfied. Since we separated N into disjoint orders H ′
n, each Hn is disjoint

from the others so criterion ?? is satisfied. The coefficients in e are contained in N by the
construction of H from N .

Theorem 35. For all α < ωω,

T (a, α) ⩾ D (a, α) .

Proof. Let E =
(
α
a

)
and

COL: E → [b]

be an arbitrary coloring of E for some nonnegative integer b.
Enumerate the DSCs of E from τ1 to τD(a,α). The maximum size of any DSC of E is a ·d.

For each τi, let

fi :

(
ω

a · d

)
→ E

where if τi has size p, fi maps X to the unique e ∈ E where e satisfies τi and the p equivalence
classes of e are made up of the p least elements of X. For example, one DSC of

(
ω2+ω·8

2

)
is

c1 = 2, c2 = 1, y1 = 0, y2 = 6, x11 < x20 < x10.

The corresponding fi would be fi :
(
ω
4

)
→

(
ω2+ω·8

2

)
with

fi(x1, x2, x3, x4) = COL({ω2 · 0 + ω · x1 + x3, ω · 6 + x2})
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where x1 < x2 < x3 < x4.
Then, define COL′ :

(
ω
a·d

)
→ [b]D(a,α) with

X = (f1(X), f2(X), . . . , fD(a,α)(X))

and apply Theorem ?? to find some N ≈ ω where

COL′
((

N

a · d

))
expresses only one tuple Y containing |Y | = D(a, α) colors.

Apply Lemma ?? to find some H ≈ α with the properties listed in Lemma ??. Now we
claim

COL

((
H

a

))
expresses at most D(a, α) colors.

By Lemma ??, each element e ∈
(
H
a

)
satisfies a DSC of E. Then for some arbitrary edge

e, let e satisfy τi with size p ⩽ a · d. Then take the p unique values in e, and if necessary,
insert any new larger nonnegative integers from N to form a set of a · d values; denote this
X ∈

(
N
a·d

)
. COL′(X) = Y so by the definition of COL′, COL(e) ∈ Y . Because |Y | = D(a, α),

T (a, α) ⩽ D(a, α).

9.3 T (a, α) ⩾ D(a, α)

Theorem 36. For all α < ωω,

T (a, α) ⩽ D (a, α) .

Proof. If D(a, α) = 0, this is satisfied vacuously because T (a, α) ⩾ 0. Suppose D(a, α) ⩾ 1.
Let E =

(
α
a

)
. Note that all DSCs of E are disjoint from each other. That is, for any

edge e ∈ E, if e satisfies τ ′, then it does not satisfy any nonequivalent DSC of E. This is
because if e were to satisfy two DSC τ1 and τ2, then τ1 and τ2 must share the same cq, yq,
equivalence classes, and order, so the DSCs must be equivalent. Therefore, we can index
them τ1 . . . τP (a,α) and construct a coloring COL: E → [D(a, α)] with

COL(e) =

{
i e satisfies τi

1 otherwise

For arbitrary H ≈ α and a DSC τ for α, we can assign cq and yq based on τ . Then we
can apply a similar process to the one used in Theorem ?? to find zqn variables that match
the permutation of xqn variables.

Let α ≈ ωd · kd + ωd−1 · kd−1 + · · · + ω · k1 + k0. We can separate H into d + 1 sets
each order-equivalent to ωn · kn for 0 ⩽ n ⩽ d, and separate each of those into kn sets
order-equivalent to ωn.
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Then, for each equivalence class in τ , using the process formally described in the proof
of Theorem ??, we consider the leading equivalence class of τ . By criteria ?? and ?? of
Definition ??, all variables in that equivalence class must come from same set order-equivalent
to ωn. We assign a finite value to that equivalence class, and move to the next class with
potentially different c and y values, using the assigned finite value as a lower bound for the
next one. We can repeat this process to find zqn that satisfy each DSC of E for arbitrary
H ≈ α.

Therefore for all H ≈ α, |COL
((

H
a

))
| ⩾ D(a, α) so T (a, α) ⩾ D (a, α).

9.4 T (a, α) = D(a, α)

Theorem 37. For all α < ωω,

T (a, α) = D (a, α) .

Proof. By Theorem ??, T (a, α) ⩾ D (a, α). By Theorem ??, T (a, α) ⩽ D (a, α). The result
follows.
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