Research For Undergraduates and REU Programs

William Gasarch
PART I

UNDERGRADUATE RESEARCH
What is Research?

Definition Research is working on problems where the answers are not already known.

Definition Research

1. Extend work someone else did. Example: Redo an experiment but with better design.
2. Simplify work someone else did. Example: Find easier proof of a known theorem.
3. Proof an old theorem a new way. Example: \[|\text{PRIMES}| = \infty\].
4. An improvement on a known technique. Example: Speed up alg by using a different data structure.
What is Research?

Definition Research is working on problems where the answers are not already known.

That definition is too narrow. Research is also:

1. Extend work someone else did.

 Example: Redo an experiment but with better design.

2. Simplify work someone else did.

 Example: Find an easier proof of a known theorem.

3. Prove an old theorem a new way.

 Example: There are \(\geq 100 \) proofs that \(|\text{PRIMES}| = \infty \).

4. An improvement on a known technique.

 Example: Speed up the algorithm by using a different data structure.
What is Research?

Definition Research is working on problems where the answers are not already known.

That definition is too narrow. Research is also:

1. Extend work someone else did.
 - **Example** Redo an experiment but with better design.
What is Research?

Definition Research is working on problems where the answers are not already known.

That definition is to narrow. Research is also:

1. Extend work someone else did.
 Example Redo an experiment but with better design.
2. Simplify work someone else did.
What is Research?

Definition Research is working on problems where the answers are **not** already known.

That definition is to narrow. Research is also:

1. Extend work someone else did.

 Example Redo an experiment but with better design.

2. Simplify work someone else did.

 Example Find easier proof of a known theorem.

3. Proof an old theorem a new way.

4. An improvement on a known technique.

 Example Speed up alg by using a different data structure.
What is Research?

Definition Research is working on problems where the answers are not already known.

That definition is to narrow. Research is also:

1. Extend work someone else did.

 Example Redo an experiment but with better design.

2. Simplify work someone else did.

 Example Find easier proof of a known theorem.

3. Proof an old theorem a new way.
Definition Research is working on problems where the answers are not already known.

That definition is to narrow. Research is also:

1. Extend work someone else did.
 Example Redo an experiment but with better design.

2. Simplify work someone else did.
 Example Find easier proof of a known theorem.

3. Proof an old theorem a new way.
 Example There are ≥ 100 proofs that $|PRIMES| = \infty$.
What is Research?

Definition Research is working on problems where the answers are not already known.

That definition is to narrow. Research is also:

1. Extend work someone else did.
 Example Redo an experiment but with better design.

2. Simplify work someone else did.
 Example Find easier proof of a known theorem.

3. Proof an old theorem a new way.
 Example There are ≥ 100 proofs that $|\text{PRIMES}| = \infty$.

4. An improvement on a known technique.
What is Research?

Definition Research is working on problems where the answers are *not* already known.

That definition is to narrow. Research is also:

1. Extend work someone else did.

 Example Redo an experiment but with better design.

2. Simplify work someone else did.

 Example Find easier proof of a known theorem.

3. Proof an old theorem a new way.

 Example There are ≥ 100 proofs that $|\text{PRIMES}| = \infty$.

4. An improvement on a known technique.

 Example Speed up alg by using a diff data structure.
How to Find a Problem to Work on

1. Go to Talks! Read Papers! Talk to people! (Tell story about Muffin Problem.)
How to Find a Problem to Work on

1. Go to Talks! Read Papers! Talk to people!
 (Tell story about Muffin Problem.)
2. Look around you! Where does you curiosity take you.
 (Tell story about couples at a table.)
1. Go to Talks! Read Papers! Talk to people!
 (Tell story about Muffin Problem.)
2. Look around you! Where does your curiosity take you.
 (Tell story about couples at a table.)
3. See what you think people need. Steve Jobs said I don’t do user studies to see what people want. I tell them what they need.
How to Find a Problem to Work on

1. Go to Talks! Read Papers! Talk to people! (Tell story about Muffin Problem.)
2. Look around you! Where does your curiosity take you. (Tell story about couples at a table.)
3. See what you think people need. Steve Jobs said *I don’t do user studies to see what people want. I tell them what they need.*
4. If you have a mentor, then you and them can come up with a problem to work on.
How to Find a Problem to Work on

1. Go to Talks! Read Papers! Talk to people!
 (Tell story about Muffin Problem.)

2. Look around you! Where does you curiosity take you.
 (Tell story about couples at a table.)

3. See what you think people need. Steve Jobs said I don’t do user studies to see what people want. I tell them what they need.

4. If you have a mentor, then you and them can come up with a problem to work on.

Key You have to work on problems you are interested in.
You have a Problem to Work on. Now What?

Make the problem well defined.
You have a Problem to Work on. Now What?

Make the problem well defined.

1. For Math this could be a clean mathematical statement.

Example: Find \(k \) such that every number can be written as the sum of \(\leq k \) 9th powers.

2. For Computer Science this could be a better way to do something.

Example: You want to do a searchable database for comic books. Do a user study, build a prototype.

3. For Science this could be to set up an experiment.

Example: Theory says the Higgs-Boson exists. Let's set up an experiment to find it!

(They found it under Peter Higgs' couch :-).)
You have a Problem to Work on. Now What?

Make the problem well defined.

1. For Math this could be a clean mathematical statement.
 Example Find k such that every number can be written as the sum of $\leq k$ 9th powers.
You have a Problem to Work on. Now What?

Make the problem well defined.

1. For Math this could be a clean mathematical statement.
 Example Find k such that every number can be written as the sum of $\leq k$ 9th powers.

2. For Computer Science this could be a better way to do something.
 Example You want do to a searchable database for comic books. Do a user study, build a prototype.
You have a Problem to Work on. Now What?

Make the problem well defined.

1. For Math this could be a clean mathematical statement.
 Example Find k such that every number can be written as the sum of $\leq k$ 9th powers.

2. For Computer Science this could be a better way to do something.
 Example You want do to a searchable database for comic books. Do a user study, build a prototype.

3. For Science this could be to set up an experiment.

(They found it under Peter Higgs couch :-).)

Also read what is already known about this problem.
You have a Problem to Work on. Now What?

Make the problem well defined.

1. For Math this could be a clean mathematical statement.
 Example Find k such that every number can be written as the sum of $\leq k$ 9th powers.

2. For Computer Science this could be a better way to do something.
 Example You want do to a searchable database for comic books. Do a user study, build a prototype.

3. For Science this could be to set up an experiment.
 Example Theory say the Higgs-Boson exists. Lets set up an experiment to find it!
You have a Problem to Work on. Now What?

Make the problem well defined.

1. For Math this could be a clean mathematical statement.
 Example Find k such that every number can be written as the sum of $\leq k$ 9th powers.

2. For Computer Science this could be a better way to do something.
 Example You want do to a searchable database for comic books. Do a user study, build a prototype.

3. For Science this could be to set up an experiment.
 Example Theory say the Higgs-Boson exists. Lets set up an experiment to find it!
 (They found it under Peter Higgs couch :-).)

Also Read what is already known about this problem.
You have a Problem to Work on. Now What?

Make the problem well defined.

1. For Math this could be a clean mathematical statement.
 Example Find k such that every number can be written as the sum of $\leq k$ 9th powers.

2. For Computer Science this could be a better way to do something.
 Example You want do a searchable database for comic books. Do a user study, build a prototype.

3. For Science this could be to set up an experiment.
 Example Theory say the Higgs-Boson exists. Lets set up an experiment to find it!
 (They found it under Peter Higgs couch :-).)

ALSO **Read** what is already known about this problem.
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!

 Grad School,
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!
 - Grad School, Industry,
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government,

Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons,
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons, Hobo,
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!
 Grad School, Industry, Government, Writer for the Simpsons,
 Hobo, Other.

2. **Build skills**
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss!

2. **Build skills**
 Team Work,
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss! Grad School, Industry, Government, Writer for the Simpsons, Hobo, Other.

2. **Build skills**
 Team Work, Communication,
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss! Grad School, Industry, Government, Writer for the Simpsons, Hobo, Other.

2. **Build skills**
 Team Work, Communication, Project Management.
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss! Grad School, Industry, Government, Writer for the Simpsons, Hobo, Other.

2. **Build skills**
 Team Work, Communication, Project Management.

3. **Build a network** with faculty and students.
Why Do Research?

1. **Expose you to a variety of career paths.** Discuss! Grad School, Industry, Government, Writer for the Simpsons, Hobo, Other.
2. **Build skills**
 Team Work, Communication, Project Management.
3. **Build a network** with faculty and students. Useful for the future!
How to Get Involved in Research

1. If you are taking a course you like and the course has a project you can ask the professor if you can keep working on it the following semester.

2. If you are taking a course you like you can ask the professor if they are taking students for research projects. Knock on doors!

3. If your school has some sort of Honors Program, the Honors Chair may help you find someone to do research with.

4. REU programs - this is next part of this talk.
How to Get Involved in Research

1. If you are taking a course you like and the course has a project you can ask the professor if you can keep working on it the following semester.
How to Get Involved in Research

1. If you are taking a course you like and the course has a project you can ask the professor if you can keep working on it the following semester.

2. If you are taking a course you like you can ask the professor if they are taking students for research projects. Knock on doors!
How to Get Involved in Research

1. If you are taking a course you like and the course has a project you can ask the professor if you can keep working on it the following semester.

2. If you are taking a course you like you can ask the professor if they are taking students for research projects. Knock on doors!

3. If your school has some sort of Honors Program, the Honors Chair may help you find someone to do research with.
How to Get Involved in Research

1. If you are taking a course you like and the course has a project you can ask the professor if you can keep working on it the following semester.

2. If you are taking a course you like you can ask the professor if they are taking students for research projects. Knock on doors!

3. If your school has some sort of Honors Program, the Honors Chair may help you find someone to do research with.

4. REU programs- this is next part of this talk.
REU PROGRAMS
REU stands for...
REU stands for

Research Experience for Undergraduates
Note I run an REU program. This talk is about REU programs in general but I may use mine as an example.
Note I run an REU program. This talk is about REU programs in general but I may use mine as an example.
REU programs are funded by the NSF
Basic Description

Note I run an REU program. This talk is about REU programs in general but I may use mine as an example. REU programs are funded by the NSF

1. Students apply for them. (I had 300 applicants.)
Note I run an REU program. This talk is about REU programs in general but I may use mine as an example.

REU programs are funded by the NSF

1. Students apply for them. (I had 300 applicants.)
2. The NSF pays for 10 students. Some have additional money.
Note I run an REU program. This talk is about REU programs in general but I may use mine as an example.

REU programs are funded by the NSF

1. Students apply for them. (I had 300 applicants.)
2. The NSF pays for 10 students. Some have additional money.
Basic Description

Note I run an REU program. This talk is about REU programs in general but I may use mine as an example.

REU programs are funded by the NSF

1. Students apply for them. (I had 300 applicants.)
2. The NSF pays for 10 students. Some have additional money.
4. Students work on projects with a mentor in teams of 2 to 5.
Basic Description

Note I run an REU program. This talk is about REU programs in general but I may use mine as an example.

REU programs are funded by the NSF

1. Students apply for them. (I had 300 applicants.)
2. The NSF pays for 10 students. Some have additional money.
4. Students work on projects with a mentor in teams of 2 to 5.
5. The program has a theme. Examples on next slide.
Examples

The NSF website of REU programs is here: https://www.nsf.gov/crssprgm/reu/reu_search.jsp

Here are topics of a few in Computer Science:

2. Image Processing.
3. Cloud computing.
4. Crypto OR Security OR Blockchain (that's 3 different REUs).
5. AI OR ML OR Data Science3 (that's 3 different REUs).
8. Computational biology. That's another one at UMCP.
9. Biometrics, Cybersecurity, ML (That's 1 REU.)
10. There are many others.
Should you Apply to an REU (for Summer 2024)?

IF some combination of the following hold then you should apply to MANY REU programs.

1. You are thinking of going to Grad School and want to see what research is like.
2. You are definitely going to apply to grad school and want to have a letter from someone you have done research for. (A paper would be good also.)
3. You have an interest in one of the topics on the REU website and want to explore it more.
4. The notion of spending your summer with other people who are serious about computer science appeals to you (as opposed to your partying hallmates).
Should you Apply to an REU (for Summer 2024)?

IF some combination of the following hold then you should apply to MANY REU programs.

1. You are thinking of going to Grad School and want to see what research is like.
Should you Apply to an REU (for Summer 2024)?

IF some combination of the following hold then you should apply to MANY REU programs.

1. You are thinking of going to Grad School and want to see what research is like.

2. You are definitely going to apply to grad school and want to have a letter from someone you have done research for. (A paper would be good also.)
Should you Apply to an REU (for Summer 2024)?

IF some combination of the following hold then you should apply to MANY REU programs.

1. You are thinking of going to Grad School and want to see what research is like.
2. You are definitely going to apply to grad school and want to have a letter from someone you have done research for. (A paper would be good also.)
3. You have an interest in one of the topics on the REU website and want to explore it more.
Should you Apply to an REU (for Summer 2024)?

IF some combination of the following hold then you should apply to MANY REU programs.

1. You are thinking of going to Grad School and want to see what research is like.
2. You are definitely going to apply to grad school and want to have a letter from someone you have done research for. (A paper would be good also.)
3. You have an interest in one of the topics on the REU website and want to explore it more.
4. The notion of spending your summer with other people who are serious about computer science appeals to you (as opposed to your partying hallmates).
Advice on Apply for an REU (for Summer 2024)

1. Apply to about 10 and apply Early. They are very competitive!
2. You need good grades in your Comp Sci and Math classes (and other relevant classes).
3. READ the REU’s website so you know what they want in your statement of purpose.
4. Your statement should have a little on why you like CS and a lot on why you are qualified and interested in their REU.
5. Write a different statement of purpose for each REU program you apply to.
Advice on Apply for an REU (for Summer 2024)

1. Apply to about 10 and Apply Early. They are very competitive! But only apply to ones you would really want to go to.

2. You need good grades in your Comp Sci and Math classes (and other relevant classes).

3. READ the REU’s website so you know what they want in your statement of purpose.

4. Your statement should have a little on why you like CS and a lot on why you are qualified and why you are interested in their REU.

5. Write a different statement of purpose for each REU program you apply to.
Advice on Apply for an REU (for Summer 2024)

1. Apply to about 10 and Apply Early. They are very competitive! But only apply to ones you would really want to go to.

2. You need good grades in your Comp Sci and Math classes (and other relevant classes).
Advice on Apply for an REU (for Summer 2024)

1. Apply to about 10 and Apply Early. They are very **competitive**! But only apply to ones you would really want to go to.
2. You need good grades in your Comp Sci and Math classes (and other relevant classes).
3. READ the REU’s website so you know what they want in your statement of purpose.
4. Your statement should have a little on why you like CS and a lot on why you are qualified and why you are interested in their REU.
5. Write a different statement of purpose for each REU program you apply to.
Advice on Apply for an REU (for Summer 2024)

1. Apply to about 10 and Apply Early. They are very competitive! But only apply to ones you would really want to go to.

2. You need good grades in your Comp Sci and Math classes (and other relevant classes).

3. READ the REU’s website so you know what they want in your statement of purpose.

4. Your statement should have a little on why you like CS and a lot on why you are qualified and why you are interested in their REU.
Advice on Apply for an REU (for Summer 2024)

1. Apply to about 10 and Apply Early. They are very **competitive**! But only apply to ones you would really want to go to.

2. You need good grades in your Comp Sci and Math classes (and other relevant classes).

3. READ the REU’s website so you know what they want in your statement of purpose.

4. Your statement should have **a little** on why you like CS and **a lot** on why you are qualified and why you are interested in **their** REU.

5. Write a different statement of purpose for each REU program you apply to.