NIM Games for Tyler and Noei

William Gasarch-U of MD
Tyler and Noei play a game:
Tyler and Noei play a game:

1. There are 7 mints on the table.
Tyler and Noei play a game:

1. There are \textbf{7 mints} on the table.
2. Tyler removes \textbf{1,2, OR 3} mints.

They keep doing this.

The person who removes the last mint wins.

Play the game and see if one of the players can always win.
Tyler and Noei play a game:
1. There are 7 mints on the table.
2. Tyler removes 1, 2, OR 3 mints.
3. Noei removes 1, 2, OR 3 mint.
Tyler and Noei play a game:

1. There are 7 mints on the table.
2. Tyler removes 1, 2, OR 3 mints.
3. Noei removes 1, 2, OR 3 mint.
4. Tyler then removes 1, 2, OR 3 mint.
Tyler and Noei play a game:

1. There are **7 mints** on the table.
2. Tyler removes **1,2, OR 3** mints.
3. Noei removes **1,2, OR 3** mint.
4. Tyler then removes **1,2, OR 3** mint.
5. They keep doing this.
7 Mints, 1-2-3 Moves, Game

Tyler and Noei play a game:
1. There are 7 mints on the table.
2. Tyler removes 1,2, OR 3 mints.
3. Noei removes 1,2, OR 3 mint.
4. Tyler then removes 1,2, OR 3 mint.
5. They keep doing this.
6. The person who removes the last mint wins.
Tyler and Noei play a game:

1. There are 7 mints on the table.
2. Tyler removes 1, 2, OR 3 mints.
3. Noei removes 1, 2, OR 3 mint.
4. Tyler then removes 1, 2, OR 3 mint.
5. They keep doing this.
6. The person who removes the last mint wins.

Play the game and see if one of the players can always win.
Tyler Can Always Win

1. Tyler removes 3 mints. There are now 4 mints.

2. 2.1 If Noei removes 1 mint, Tyler removes 3. Tyler wins.
 2.2 If Noei removes 2 mints, Tyler removes 2. Tyler wins.
 2.3 If Noei removes 3 mints, Tyler removes 1. Tyler wins.
Tyler Can Always Win

1. Tyler removes 3 mints.
Tyler Can Always Win

1. Tyler removes 3 mints. There are now 4 mints.
Tyler Can Always Win

1. Tyler removes 3 mints. There are now 4 mints.
2. 2.1 If Noei removes 1 mint, Tyler removes 3.
2. 2.2 If Noei removes 2 mints, Tyler removes 2.
2. 2.3 If Noei removes 3 mints, Tyler removes 1.
1. Tyler removes 3 mints. There are now 4 mints.
2. 2.1 If Noei removes 1 mint, Tyler removes 3. Tyler wins.
2.2 If Noei removes 2 mints, Tyler removes 2. Tyler wins.
2.3 If Noei removes 3 mints, Tyler removes 1. Tyler wins.
Tyler Can Always Win

1. Tyler removes 3 mints. There are now 4 mints.
2. 2.1 If Noei removes 1 mint, Tyler removes 3. Tyler wins.
 2.2 If Noei removes 2 mint, Tyler removes 2.
Tyler Can Always Win

1. Tyler removes 3 mints. There are now 4 mints.

2. 2.1 If Noei removes 1 mint, Tyler removes 3. Tyler wins.
2.2 If Noei removes 2 mint, Tyler removes 2. Tyler wins.
Tyler Can Always Win

1. Tyler removes 3 mints. There are now 4 mints.
2. 2.1 If Noei removes 1 mint, Tyler removes 3. Tyler wins.
 2.2 If Noei removes 2 mint, Tyler removes 2. Tyler wins.
 2.3 If Noei removes 3 mint, Tyler removes 1.
Tyler Can Always Win

1. Tyler removes 3 mints. There are now 4 mints.
2. 2.1 If Noei removes 1 mint, Tyler removes 3. Tyler wins.
 2.2 If Noei removes 2 mint, Tyler removes 2. Tyler wins.
 2.3 If Noei removes 3 mint, Tyler removes 1. Tyler wins.
Work on:

1. Can Tyler always win if the game begins with 5 mints?
2. Can Tyler always win if the game begins with 6 mints?
3. Can Tyler always win if the game begins with 7 mints? (Yes)
4. Can Tyler always win if the game begins with 8 mints?
Work on:

1. Can Tyler always win if the game begins with 5 mints?
Work on:

1. Can Tyler always win if the game begins with 5 mints?
 Tyler removes 1, there are now 4. Same as before.
2. Can Tyler always win if the game begins with 6 mints?
What about 5,6,7,8 Mints? Answers

Work on:

1. Can Tyler always win if the game begins with 5 mints? Tyler removes 1, there are now 4. Same as before.
2. Can Tyler always win if the game begins with 6 mints? Tyler removes 2, there are now 4. Same as before.
What about 5, 6, 7, 8 Mints? Answers

Work on:

1. Can Tyler always win if the game begins with 5 mints? Tyler removes 1, there are now 4. Same as before.
2. Can Tyler always win if the game begins with 6 mints? Tyler removes 2, there are now 4. Same as before.
3. Can Tyler always win if the game begins with 7 mints? (Yes)
What about 5, 6, 7, 8 Mints? Answers

Work on:

1. Can Tyler always win if the game begins with 5 mints? Tyler removes 1, there are now 4. Same as before.
2. Can Tyler always win if the game begins with 6 mints? Tyler removes 2, there are now 4. Same as before.
3. Can Tyler always win if the game begins with 7 mints? (Yes) Tyler removes 3, there are now 4. Same as before.
What about $5,6,7,8$ Mints? Answers

Work on:

1. Can Tyler always win if the game begins with 5 mints? Tyler removes 1, there are now 4. Same as before.
2. Can Tyler always win if the game begins with 6 mints? Tyler removes 2, there are now 4. Same as before.
3. Can Tyler always win if the game begins with 7 mints? (Yes) Tyler removes 3, there are now 4. Same as before.
What about 8 Mints? Answers

1. If Tyler removes 1 then Noei removes 3. Now Tyler is looking at 4 mints and Noei can win.
2. If Tyler removes 2 then Noei removes 2. Now Tyler is looking at 4 mints and Noei can win.
3. If Tyler removes 3 then Noei removes 1. Now Tyler is looking at 4 mints and Noei can win.
What about 8 Mints? Answers

Noei Wins!
What about 8 Mints? Answers

Noei Wins!

1. If Tyler removes 1 then Noei removes 3.
 Now Tyler is looking at 4 mints and Noei can win.
What about 8 Mints? Answers

Noei Wins!

1. If Tyler removes 1 then Noei removes 3.
 Now Tyler is looking at 4 mints and Noei can win.

2. If Tyler removes 2 then Noei removes 2.
 Now Tyler is looking at 4 mints and Noei can win.
Noei Wins!

1. If Tyler removes 1 then Noei removes 3.
 Now Tyler is looking at 4 mints and Noei can win.

2. If Tyler removes 2 then Noei removes 2.
 Now Tyler is looking at 4 mints and Noei can win.

3. If Tyler removes 3 then Noei removes 1.
 Now Tyler is looking at 4 mints and Noei can win.
Work on:

1. Can Tyler always win if the game begins with 0 mints?
What about 1,2,3,4 Mints?

Work on:

1. Can Tyler always win if the game begins with 0 mints? No, he can’t move.
2. Can Tyler always win if the game begins with 1 mints? Yes—remove 1.
3. Can Tyler always win if the game begins with 2 mints? Yes—remove 2.
4. Can Tyler always win if the game begins with 3 mints? Yes—remove 3.
5. Can Tyler always win if the game begins with 4 mints? No; whoever wins whatever. Tyler does, Noei can remove the rest of the mints.
What about 1,2,3,4 Mints?

Work on:

1. Can Tyler always win if the game begins with 0 mints? No, he can’t move.
2. Can Tyler always win if the game begins with 1 mints? Yes-Remove 1.
3. Can Tyler always win if the game begins with 2 mints?
What about 1, 2, 3, 4 Mints?

Work on:

1. Can Tyler always win if the game begins with 0 mints? No, he can’t move.
2. Can Tyler always win if the game begins with 1 mints? Yes—Remove 1.
3. Can Tyler always win if the game begins with 2 mints? Yes—Remove 2.
4. Can Tyler always win if the game begins with 3 mints? No—Eiei wins whatever. Tyler does, Noei can remove the rest of the mints.
What about 1,2,3,4 Mints?

Work on:

1. Can Tyler always win if the game begins with 0 mints?
 No, he can’t move.

2. Can Tyler always win if the game begins with 1 mints?
 Yes-Remove 1.

3. Can Tyler always win if the game begins with 2 mints?
 Yes-Remove 2

4. Can Tyler always win if the game begins with 3 mints?
 Yes-Remove 3

5. Can Tyler always win if the game begins with 4 mints?
 Noei wins-whatever. Tyler does, Noei can remove the rest of the mints.
What about 1,2,3,4 Mints?

Work on:

1. Can Tyler always win if the game begins with 0 mints? No, he can’t move.
2. Can Tyler always win if the game begins with 1 mints? Yes-Remove 1.
3. Can Tyler always win if the game begins with 2 mints? Yes-Remove 2
4. Can Tyler always win if the game begins with 3 mints? Yes-Remove 3
5. Can Tyler always win if the game begins with 4 mints? Noei wins-whatever. Tyler does, Noei can remove the rest of the mints.
Table of Who Wins

I means player I. Has been Tyler.
II means player II. Has been Noei.
Table of Who Wins

I means player I. Has been Tyler.
II means player II. Has been Noei.

<table>
<thead>
<tr>
<th>Numb mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who Wins:</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>
Table of Who Wins

I means player I. Has been Tyler.
II means player II. Has been Noei.

<table>
<thead>
<tr>
<th>Numb mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who Wins:</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

What is the pattern?
Table of Who Wins

I means player I. Has been Tyler.
II means player II. Has been Noei.

<table>
<thead>
<tr>
<th>Numb mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Who Wins:</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

What is the pattern?

Player I wins if the Numb of Mints IS NOT divisible by 4.
Player II wins if the Numb of Mints IS divisible by 4.
1-2-3-4 Moves, Game

Player I and II play a game:
Player I and II play a game:

1. There are \(n \) mints on the table.
Player I and II play a game:

1. There are \(n \) mints on the table.
2. Player I removes \(1,2,3 \) OR \(4 \) mints.
1-2-3-4 Moves, Game

Player I and II play a game:

1. There are n mints on the table.
2. Player I removes $1,2,3$ OR 4 mints.
3. Player II removes $1,2,3$ OR 4 mint.
1-2-3-4 Moves, Game

Player I and II play a game:

1. There are n mints on the table.
2. Player I removes $1,2,3$ OR 4 mints.
3. Player II removes $1,2,3$ OR 4 mint.
4. Player I then removes $1,2,3$ OR 4 mint.
5. They keep doing this.
6. The person who removes the last mint wins.

Play the game and see if one of the players can always win. Try to figure out:
- When Player I wins.
- When Player II wins.
1-2-3-4 Moves, Game

Player I and II play a game:

1. There are n mints on the table.
2. Player I removes 1,2,3 OR 4 mints.
3. Player II removes 1,2,3 OR 4 mint.
4. Player I then removes 1,2,3 OR 4 mint.
5. They keep doing this.
1-2-3-4 Moves, Game

Player I and II play a game:

1. There are \(n \) mints on the table.
2. Player I removes 1,2,3 OR 4 mints.
3. Player II removes 1,2,3 OR 4 mint.
4. Player I then removes 1,2,3 OR 4 mint.
5. They keep doing this.
6. The person who removes the last mint wins.
Player I and II play a game:

1. There are \(n \) mints on the table.
2. Player I removes 1,2,3 OR 4 mints.
3. Player II removes 1,2,3 OR 4 mint.
4. Player I then removes 1,2,3 OR 4 mint.
5. They keep doing this.
6. The person who removes the last mint wins.

Play the game and see if one of the players can always win.
Player I and II play a game:

1. There are \(n \) mints on the table.
2. Player I removes 1,2,3 OR 4 mints.
3. Player II removes 1,2,3 OR 4 mint.
4. Player I then removes 1,2,3 OR 4 mint.
5. They keep doing this.
6. The person who removes the last mint wins.

Play the game and see if one of the players can always win. Try to figure out:

When Player I wins.

When Player II wins.
1-4-5 Game

1. 0 mints: II wins – I can’t move.
2. 1 mint: I wins – Remove 1
3. 2 mints: II wins – I cannot get to 0.
4. 3 mints: I wins – Remove 1.
5. 4 mints: I wins – Remove 4.
6. 5 mints: I wins – Remove 5.
8. 7 mints: I wins – Remove 5.
9. 8 mints: II wins – Cannot get to 0 or 2.

We want a way to describe this pattern.
1-4-5 Game

1. 0 mints:
1-4-5 Game

1. 0 mints: II wins–I can’t move.
1-4-5 Game

1. 0 mints: II wins—l can’t move.
2. 1 mint:
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints:
1-4-5 Game

1. 0 mints: II wins— I can’t move.
2. 1 mint: I wins— Remove 1
3. 2 mints: II wins— I cannot get to 0.
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints:
1-4-5 Game

1. 0 mints: II wins—I can’t move.
2. 1 mint: I wins— Remove 1
3. 2 mints: II wins— I cannot get to 0.
4. 3 mints: I wins— Remove 1.
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints:
1-4-5 Game

1. 0 mints: II wins—I can’t move.
2. 1 mint: I wins—Remove 1
3. 2 mints: II wins—I cannot get to 0.
4. 3 mints: I wins—Remove 1.
5. 4 mints: I wins—Remove 4.
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints:
1-4-5 Game

1. 0 mints: II wins—I can’t move.
2. 1 mint: I wins— Remove 1
3. 2 mints: II wins— I cannot get to 0.
4. 3 mints: I wins— Remove 1.
5. 4 mints: I wins— Remove 4.
6. 5 mints: I wins— Remove 5.
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints: I wins– Remove 5.
7. 6 mints:
1-4-5 Game

1. 0 mints: II wins—I can’t move.
2. 1 mint: I wins—Remove 1
3. 2 mints: II wins— I cannot get to 0.
4. 3 mints: I wins— Remove 1.
5. 4 mints: I wins— Remove 4.
6. 5 mints: I wins— Remove 5.
7. 6 mints: I wins— Remove 4.
1-4-5 Game

1. 0 mints: II wins– I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints: I wins– Remove 5.
8. 7 mints:
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints: I wins– Remove 5.
8. 7 mints: I wins– Remove 5.
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints: I wins– Remove 5.
8. 7 mints: I wins– Remove 5.
9. 8 mints:
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints: I wins– Remove 5.
8. 7 mints: I wins– Remove 5.
9. 8 mints: II wins– Cannot get to 0 or 2.
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints: I wins– Remove 5.
8. 7 mints: I wins– Remove 5.
9. 8 mints: II wins– Cannot get to 0 or 2.

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>
1-4-5 Game

1. 0 mints: II wins–I can’t move.
2. 1 mint: I wins– Remove 1
3. 2 mints: II wins– I cannot get to 0.
4. 3 mints: I wins– Remove 1.
5. 4 mints: I wins– Remove 4.
6. 5 mints: I wins– Remove 5.
8. 7 mints: I wins– Remove 5.
9. 8 mints: II wins– Cannot get to 0 or 2.

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

We want a way to describe this pattern.
For 1-2-3 Game we said

- Player I wins if n is not divisible by 4
- Player II wins if n is divisible by 4.
Notation

For 1-2-3 Game we said
- Player I wins if n is not divisible by 4
- Player II wins if n is divisible by 4.

We have a notation for this
For 1-2-3 Game we said

- Player I wins if \(n \) is not divisible by 4
- Player II wins if \(n \) is divisible by 4.

We have a notation for this:

\[
\text{If } n \equiv 0 \pmod{4} \text{ pronounced } "n \text{ is congruent to 0 mod 4}" \]

Means that \(n \) is divisible by 4.
Notation

For 1-2-3 Game we said

- Player I wins if n is not divisible by 4
- Player II wins if n is divisible by 4.

We have a notation for this

\[n \equiv 0 \pmod{4} \text{ pronounced "} n \text{ is congruent to 0 mod 4"} \]

Means that n is divisible by 4.

- Player I wins if $n \not\equiv 0 \pmod{4}$
- Player II wins if $n \equiv 0 \pmod{4}$
For 1-3-4 Game we said

- Player I wins if when n is divisible by 7 get a remainder that is NOT 0 or 2.
- Player II wins if when divide n by 7 get a remainder of 0 or 2.

We have a notation for this:

$n \equiv 0 \pmod{7}$

Means that n is divisible by 7.

$n \equiv 2 \pmod{7}$

Means that when you divide n by 7 the remainder is 2.
For 1-3-4 Game we said

- Player I wins if when \(n \) is divisible by 7 get a remainder that is NOT 0 or 2.
- Player II wins if when divide \(n \) by 7 get a remainder of 0 or 2.

We have a notation for this

\[n \equiv 0 \pmod{7} \]
\[n \equiv 2 \pmod{7} \]
Notation

For 1-3-4 Game we said

- Player I wins if when n is divisible by 7 get a remainder that is NOT 0 or 2.
- Player II wins if when divide n by 7 get a remainder of 0 or 2.

We have a notation for this

$$n \equiv 0 \pmod{7}$$

Means that n is divisible by 7.
For 1-3-4 Game we said

- Player I wins if when n is divisible by 7 get a remainder that is NOT 0 or 2.
- Player II wins if when divide n by 7 get a remainder of 0 or 2.

We have a notation for this

\[n \equiv 0 \pmod{7} \]

Means that n is divisible by 7.

\[n \equiv 2 \pmod{7} \]

Means that when you divide n by 7 the remainder is 2.
Notation

For 1-3-4 Game we said

- Player I wins if when n is divisible by 7 get a remainder that is NOT 0 or 2.
- Player II wins if when divide n by 7 get a remainder of 0 or 2.

We have a notation for this

\[n \equiv 0 \pmod{7} \]

Means that n is divisible by 7.

\[n \equiv 2 \pmod{7} \]

Means that when you divide n by 7 the remainder is 2.

- Player I wins if $n \equiv 1, 3, 5, 6 \pmod{7}$.
For 1-3-4 Game we said

- Player I wins if when \(n \) is divisible by 7 get a remainder that is NOT 0 or 2.
- Player II wins if when divide \(n \) by 7 get a remainder of 0 or 2.

We have a notation for this

\[n \equiv 0 \pmod{7} \]

Means that \(n \) is divisible by 7.

\[n \equiv 2 \pmod{7} \]

Means that when you divide \(n \) by 7 the remainder is 2.

- Player I wins if \(n \equiv 1, 3, 5, 6 \pmod{7} \).
- Player II wins if \(n \equiv 0, 2 \pmod{7} \)
Player I wins if \(n \equiv 1, 3, 4, 5, 6, 7 \pmod{8} \).

Player II wins if \(n \equiv 0, 2 \pmod{8} \).

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Mints:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----</td>
</tr>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

- Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
- Player II wins if $n \equiv 0, 2 \pmod{8}$.

1-4-5
Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
1-4-5

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

- **Player I wins if** $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
- **Player II wins if**
Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
Player II wins if $n \equiv 0, 2 \pmod{8}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$.

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$.

3. 1-2-3-4-5 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 - Player II wins if $n \equiv 0 \pmod{6}$.

4. 1-2-3-· · ·-k Game:
 - Player I wins if $n \equiv 1, 2, 3, \ldots, k \pmod{k+1}$.
 - Player II wins if $n \equiv 0 \pmod{k+1}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:

Player I wins if \(n \equiv 1, 2, 3 \pmod{4} \).

Player II wins if \(n \equiv 0 \pmod{4} \).

2. 1-2-3-4 Game:

Player I wins if \(n \equiv 1, 2, 3, 4 \pmod{5} \).

Player II wins if \(n \equiv 0 \pmod{5} \).

3. 1-2-3-4-5 Game:

Player I wins if \(n \equiv 1, 2, 3, 4, 5 \pmod{6} \).

Player II wins if \(n \equiv 0 \pmod{6} \).

4. 1-2-3-\ldots-k Game:

Player I wins if \(n \equiv 1, 2, 3, \ldots, k \pmod{k+1} \).

Player II wins if \(n \equiv 0 \pmod{k+1} \).
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 ▶ Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 ▶ Player II wins if $n \equiv 0 \pmod{4}$.

2. 1-2-3-4 Game:
 ▶ Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 ▶ Player II wins if $n \equiv 0 \pmod{5}$.

3. 1-2-3-4-5 Game:
 ▶ Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 ▶ Player II wins if $n \equiv 0 \pmod{6}$.

4. 1-2-3-\ldots-k Game:
 ▶ Player I wins if $n \equiv 1, 2, 3, \ldots, k \pmod{k + 1}$.
 ▶ Player II wins if $n \equiv 0 \pmod{k + 1}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 ▶ Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 ▶ Player II wins if $n \equiv 0 \pmod{4}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 ▶ Player I wins if \(n \equiv 1, 2, 3 \pmod{4} \).
 ▶ Player II wins if \(n \equiv 0 \pmod{4} \).

2. 1-2-3-4 Game:
 ▶ Player I wins if \(n \equiv 1, 2, 3, 4 \pmod{5} \).
 ▶ Player II wins if \(n \equiv 0 \pmod{5} \).

3. 1-2-3-4-5 Game:
 ▶ Player I wins if \(n \equiv 1, 2, 3, 4, 5 \pmod{6} \).
 ▶ Player II wins if \(n \equiv 0 \pmod{6} \).

4. 1-2-3-\cdots-k Game:
 ▶ Player I wins if \(n \equiv 1, 2, 3, \ldots, k \pmod{k + 1} \).
 ▶ Player II wins if \(n \equiv 0 \pmod{k + 1} \).
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:

3. 1-2-3-4-5 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 - Player II wins if $n \equiv 0 \pmod{6}$

4. 1-2-3-...-k Game:
 - Player I wins if $n \equiv 1, 2, 3, \ldots, k \pmod{k+1}$.
 - Player II wins if $n \equiv 0 \pmod{k+1}$
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if

3. 1-2-3-4-5 Game:
 - Player I wins if

4. 1-2-3-\ldots-k Game:
 - Player I wins if
Recall:

1. **1-2-3 Game:**
 - Player I wins if \(n \equiv 1, 2, 3 \pmod{4} \).
 - Player II wins if \(n \equiv 0 \pmod{4} \).

2. **1-2-3-4 Game:**
 - Player I wins if \(n \equiv 1, 2, 3, 4 \pmod{5} \).
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$.

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$

3. 1-2-3-4-5 Game:
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$.

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$.

3. 1-2-3-4-5 Game:
 - Player I wins if
Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$

3. 1-2-3-4-5 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$

3. 1-2-3-4-5 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 - Player II wins if
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$

3. 1-2-3-4-5 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 - Player II wins if $n \equiv 0 \pmod{6}$

4. 1-2-3-⋯-k Game:
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$

3. 1-2-3-4-5 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 - Player II wins if $n \equiv 0 \pmod{6}$

4. 1-2-3-⋯-k Game:
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 ▶ Player I wins if \(n \equiv 1, 2, 3 \) (mod 4).
 ▶ Player II wins if \(n \equiv 0 \) (mod 4)

2. 1-2-3-4 Game:
 ▶ Player I wins if \(n \equiv 1, 2, 3, 4 \) (mod 5).
 ▶ Player II wins if \(n \equiv 0 \) (mod 5)

3. 1-2-3-4-5 Game:
 ▶ Player I wins if \(n \equiv 1, 2, 3, 4, 5 \) (mod 6).
 ▶ Player II wins if \(n \equiv 0 \) (mod 6)

4. 1-2-3-⋯-\(k \) Game:
 ▶ Player I wins if
Recall:

1. 1-2-3 Game:
 - Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 - Player II wins if $n \equiv 0 \pmod{5}$

3. 1-2-3-4-5 Game:
 - Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 - Player II wins if $n \equiv 0 \pmod{6}$

4. 1-2-3-⋯-k Game:
 - Player I wins if $n \equiv 1, 2, 3, \ldots, k \pmod{k+1}$.
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 - Player I wins if \(n \equiv 1, 2, 3 \) (mod 4).
 - Player II wins if \(n \equiv 0 \) (mod 4)

2. 1-2-3-4 Game:
 - Player I wins if \(n \equiv 1, 2, 3, 4 \) (mod 5).
 - Player II wins if \(n \equiv 0 \) (mod 5)

3. 1-2-3-4-5 Game:
 - Player I wins if \(n \equiv 1, 2, 3, 4, 5 \) (mod 6).
 - Player II wins if \(n \equiv 0 \) (mod 6)

4. 1-2-3-\cdots-k Game:
 - Player I wins if \(n \equiv 1, 2, 3, \ldots, k \) (mod \(k + 1 \)).
 - Player II wins if
Patterns of Patterns!

Recall:

1. 1-2-3 Game:
 ▶ Player I wins if $n \equiv 1, 2, 3 \pmod{4}$.
 ▶ Player II wins if $n \equiv 0 \pmod{4}$

2. 1-2-3-4 Game:
 ▶ Player I wins if $n \equiv 1, 2, 3, 4 \pmod{5}$.
 ▶ Player II wins if $n \equiv 0 \pmod{5}$

3. 1-2-3-4-5 Game:
 ▶ Player I wins if $n \equiv 1, 2, 3, 4, 5 \pmod{6}$.
 ▶ Player II wins if $n \equiv 0 \pmod{6}$

4. 1-2-3-⋯-k Game:
 ▶ Player I wins if $n \equiv 1, 2, 3, \ldots, k \pmod{k+1}$.
 ▶ Player II wins if $n \equiv 0 \pmod{k+1}$
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 ▶ Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.
 ▶ Player II wins if $n \equiv 0, 2 \pmod{7}$.

2. 1-4-5 Game:
 ▶ Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
 ▶ Player II wins if $n \equiv 0, 2 \pmod{8}$.

3. 1-5-6 Game: I leave this to you.

4. General Pattern: I leave this to you.
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:

 Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.

 Player II wins if $n \equiv 0, 2 \pmod{7}$.

2. 1-4-5 Game:

 Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.

 Player II wins if $n \equiv 0, 2 \pmod{8}$.

3. 1-5-6 Game: I leave this to you.

4. General Pattern: I leave this to you.
Recall:

1. 1-3-4 Game:
 ▶ Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.

2. 1-4-5 Game:
 ▶ Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.

3. 1-5-6 Game: I leave this to you

4. General Pattern: I leave this to you.
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - Player I wins if \(n \equiv 1, 3, 4, 5, 6 \) (mod 7).

2. 1-4-5 Game:
 - Player II wins if \(n \equiv 0, 2 \) (mod 7).

3. 1-5-6 Game: I leave this to you

4. General Pattern: I leave this to you.
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - ▶ Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.
 - ▶ Player II wins if $n \equiv 0, 2 \pmod{7}$

2. 1-4-5 Game:
 - ▶ Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
 - ▶ Player II wins if $n \equiv 0, 2 \pmod{8}$

3. 1-5-6 Game: I leave this to you

4. General Pattern: I leave this to you.
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.
 - Player II wins if $n \equiv 0, 2 \pmod{7}$

4. General Pattern: I leave this to you
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.
 - Player II wins if $n \equiv 0, 2 \pmod{7}$

2. 1-4-5 Game:
 - Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
 - Player II wins if $n \equiv 0, 2 \pmod{8}$

3. 1-5-6 Game: I leave this to you

4. General Pattern: I leave this to you.
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 ▶ Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.
 ▶ Player II wins if $n \equiv 0, 2 \pmod{7}$

2. 1-4-5 Game:
 ▶ Player I wins if

3. 1-5-6 Game: I leave this to you

4. General Pattern: I leave this to you.
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.
 - Player II wins if $n \equiv 0, 2 \pmod{7}$

2. 1-4-5 Game:
 - Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - Player I wins if \(n \equiv 1, 3, 4, 5, 6 \pmod{7} \).
 - Player II wins if \(n \equiv 0, 2 \pmod{7} \).

2. 1-4-5 Game:
 - Player I wins if \(n \equiv 1, 3, 4, 5, 6, 7 \pmod{8} \).
 - Player II wins if
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - Player I wins if \(n \equiv 1, 3, 4, 5, 6 \pmod{7} \).
 - Player II wins if \(n \equiv 0, 2 \pmod{7} \).

2. 1-4-5 Game:
 - Player I wins if \(n \equiv 1, 3, 4, 5, 6, 7 \pmod{8} \).
 - Player II wins if \(n \equiv 0, 2 \pmod{8} \).
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 - Player I wins if $n \equiv 1, 3, 4, 5, 6 \pmod{7}$.
 - Player II wins if $n \equiv 0, 2 \pmod{7}$

2. 1-4-5 Game:
 - Player I wins if $n \equiv 1, 3, 4, 5, 6, 7 \pmod{8}$.
 - Player II wins if $n \equiv 0, 2 \pmod{8}$

3. 1-5-6 Game: I leave this to you
More Patterns of Patterns!

Recall:

1. 1-3-4 Game:
 ▶ Player I wins if \(n \equiv 1, 3, 4, 5, 6 \) (mod 7).
 ▶ Player II wins if \(n \equiv 0, 2 \) (mod 7)

2. 1-4-5 Game:
 ▶ Player I wins if \(n \equiv 1, 3, 4, 5, 6, 7 \) (mod 8).
 ▶ Player II wins if \(n \equiv 0, 2 \) (mod 8)

3. 1-5-6 Game: I leave this to you

4. General Pattern: I leave this to you.
Player I wins if $n \equiv 1, 3, 5, 6, 7, 8, 9, 10 \pmod{11}$.

Player II wins if $n \equiv 0, 2, 4 \pmod{11}$.

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>
1-5-6

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
</tbody>
</table>

- Player I wins if
 \[n \equiv 1, 3, 5, 6, 7, 8, 9, 10 \pmod{11} \]

- Player II wins if
 \[n \equiv 0, 2, 4 \pmod{11} \]
Player I wins if $n \equiv 1, 3, 5, 6, 7, 8, 9, 10 \pmod{11}$.
Player I wins if \(n \equiv 1, 3, 5, 6, 7, 8, 9, 10 \pmod{11} \).

Player II wins if
1-5-6

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

- Player I wins if \(n \equiv 1, 3, 5, 6, 7, 8, 9, 10 \mod 11 \).
- Player II wins if \(n \equiv 0, 2, 4 \mod 11 \)
Player I wins if \(n \equiv 1, 3, 5, 6, 7, 8, 9, 10, 11 \pmod{11} \).

Player II wins if \(n \equiv 0, 2, 4 \pmod{12} \).

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
<tr>
<td>Mints:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>--------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
</tr>
</tbody>
</table>

- Player I wins if \(n \equiv 1, 3, 5, 6, 7, 8, 9, 10, 11 \pmod{11} \).
- Player II wins if \(n \equiv 0, 2, 4 \pmod{12} \).
Player I wins if \(n \equiv 1, 3, 5, 6, 7, 8, 9, 10, 11 \) (mod 11).
Player I wins if $n \equiv 1, 3, 5, 6, 7, 8, 9, 10, 11 \pmod{11}$.

Player II wins if $n \equiv 0, 2, 4 \pmod{12}$.

<table>
<thead>
<tr>
<th>Mints:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Mints:</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Wins:</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>I</td>
<td>II</td>
<td>I</td>
<td>II</td>
<td>I</td>
</tr>
</tbody>
</table>

- Player I wins if \(n \equiv 1, 3, 5, 6, 7, 8, 9, 10, 11 \pmod{11} \).
- Player II wins if \(n \equiv 0, 2, 4 \pmod{12} \).
Patterns for $1-a-a+1$, a odd

1-3-4
Patterns for $1-a-a+1$, a odd

1-3-4

- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
Patterns for $1-a-a+1$, a odd

1-3-4

- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$
Patterns for $1-a-a+1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6

$1-a-a+1$ for a odd
- Player I wins if $n \not\equiv 0, 2, \ldots, a-1 \pmod{2^a-1}$.
- Player II wins if $n \equiv 0, 2, \ldots, a-1 \pmod{2^a-1}$
Patterns for $1-a-a + 1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
- Player I wins if

Patterns for $1-a-a+1$, a odd

1-3-4
 ▶ Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
 ▶ Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
 ▶ Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
Patterns for $1-a-a+1$, a odd

1-3-4

- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6

- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if
Patterns for $1-a-a+1$, a odd

1-3-4

- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6

- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$
Patterns for $1-a-a+1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2$ (mod 7).
- Player II wins if $n \equiv 0, 2$ (mod 7)

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4$ (mod 11).
- Player II wins if $n \equiv 0, 2, 4$ (mod 11)

1-7-8
Patterns for $1-a-a+1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2$ (mod 7).
- Player II wins if $n \equiv 0, 2$ (mod 7)

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4$ (mod 11).
- Player II wins if $n \equiv 0, 2, 4$ (mod 11)

1-7-8
- Player I wins if
Patterns for $1-a-a + 1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8
- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
Patterns for $1-a-a+1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8
- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
- Player II wins if
Patterns for $1-a-a + 1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8
- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
- Player II wins if $n \equiv 0, 2, 4, 6 \pmod{15}$
Patterns for $1-a-a + 1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8
- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
- Player II wins if $n \equiv 0, 2, 4, 6 \pmod{15}$

1-$a-a + 1$ for a ODD
Patterns for $1-a-a+1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8
- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
- Player II wins if $n \equiv 0, 2, 4, 6 \pmod{15}$

1-a-$a+1$ for a ODD
- Player I wins if
Patterns for $1-a-a+1$, a odd

1-3-4

- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6

- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8

- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
- Player II wins if $n \equiv 0, 2, 4, 6 \pmod{15}$

1-\(a\)-\(a\) + 1 for a ODD

- Player I wins if $n \not\equiv 0, 2, \ldots, a-1 \pmod{2a-1}$.

Patterns for $1-a-a + 1$, a odd

1-3-4

- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6

- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8

- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
- Player II wins if $n \equiv 0, 2, 4, 6 \pmod{15}$

1-\(a\)-\(a\) + 1 for \(a\) ODD

- Player I wins if $n \not\equiv 0, 2, \ldots, a-1 \pmod{2a-1}$.
- Player II wins if
Patterns for $1-a-a+1$, a odd

1-3-4
- Player I wins if $n \not\equiv 0, 2 \pmod{7}$.
- Player II wins if $n \equiv 0, 2 \pmod{7}$

1-5-6
- Player I wins if $n \not\equiv 0, 2, 4 \pmod{11}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{11}$

1-7-8
- Player I wins if $n \equiv 0, 2, 4, 6 \pmod{15}$.
- Player II wins if $n \equiv 0, 2, 4, 6 \pmod{15}$

1-a-$a+1$ for a ODD
- Player I wins if $n \not\equiv 0, 2, \ldots, a-1 \pmod{2a-1}$.
- Player II wins if $n \equiv 0, 2, \ldots, a-1 \pmod{2a-1}$
Patterns for $1-a-a + 1$, a even

1-2-3
Patterns for 1-a-a + 1, a even

1-2-3

- Player I wins if $n \not\equiv 0 \pmod{4}$.
Patterns for $1-a-a+1$, a even

1-2-3

- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$.
Patterns for 1-\(a-a+1\), \(a\) even

1-2-3

- Player I wins if \(n \not\equiv 0 \pmod{4}\).
- Player II wins if \(n \equiv 0 \pmod{4}\)

1-4-5
Patterns for $1-a-a+1$, a even

1-2-3
- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
Patterns for $1-a-a+1$, a even

1-2-3
 ▶ Player I wins if $n \not\equiv 0 \pmod{4}$.
 ▶ Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
 ▶ Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
Patterns for $1-a-a + 1, a$ even

1-2-3

- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5

- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
- Player II wins if
Patterns for 1-\(a\)-\(a\) + 1, \(a\) even

1-2-3

- Player I wins if \(n \not\equiv 0 \pmod{4}\).
- Player II wins if \(n \equiv 0 \pmod{4}\)

1-4-5

- Player I wins if \(n \not\equiv 0, 2 \pmod{8}\).
- Player II wins if \(n \equiv 0, 2 \pmod{8}\)

1-2-\(a\) - 1 for \(a\) even

- Player I wins if \(n \not\equiv 0, 2, \ldots, a-2 \pmod{2a}\).
- Player II wins if \(n \equiv 0, 2, \ldots, a-2 \pmod{2a}\)
Patterns for $1-a-a+1$, a even

1-2-3
- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
- Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
Patterns for 1-\(a\)-a + 1, a even

1-2-3

- Player I wins if \(n \not\equiv 0 \pmod{4}\).
- Player II wins if \(n \equiv 0 \pmod{4}\)

1-4-5

- Player I wins if \(n \not\equiv 0, 2 \pmod{8}\).
- Player II wins if \(n \equiv 0, 2 \pmod{8}\)

1-6-7

- Player I wins if
Patterns for $1-a-a+1$, a even

1-2-3
- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
- Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
- Player I wins if $n \equiv 0, 2, 4 \pmod{12}$.
Patterns for 1-\(a\)-\(a\) + 1, \(a\) even

1-2-3
- Player I wins if \(n \not\equiv 0 \pmod{4}\).
- Player II wins if \(n \equiv 0 \pmod{4}\).

1-4-5
- Player I wins if \(n \not\equiv 0, 2 \pmod{8}\).
- Player II wins if \(n \equiv 0, 2 \pmod{8}\).

1-6-7
- Player I wins if \(n \equiv 0, 2, 4 \pmod{12}\).
- Player II wins if
Patterns for $1-a-a+1$, a even

1-2-3
 ▶ Player I wins if $n \not\equiv 0 \pmod{4}$.
 ▶ Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
 ▶ Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
 ▶ Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
 ▶ Player I wins if $n \equiv 0, 2, 4 \pmod{12}$.
 ▶ Player II wins if $n \equiv 0, 2, 4 \pmod{12}$
Patterns for 1-a-a + 1, a even

1-2-3
 - Player I wins if $n \not\equiv 0 \pmod{4}$.
 - Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
 - Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
 - Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
 - Player I wins if $n \equiv 0, 2, 4 \pmod{12}$.
 - Player II wins if $n \equiv 0, 2, 4 \pmod{12}$

1-a-a + 1 for a even
Patterns for $1-a-a+1$, a even

1-2-3
- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
- Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
- Player I wins if $n \equiv 0, 2, 4 \pmod{12}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{12}$

1-$a-a+1$ for a even
- Player I wins if
Patterns for $1-a-a+1$, a even

1-2-3
- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
- Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
- Player I wins if $n \equiv 0, 2, 4 \pmod{12}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{12}$

1-$a-a+1$ for a even
- Player I wins if $n \not\equiv 0, 2, \ldots, a-2 \pmod{2a}$.
Patterns for $1-a-a+1$, a even

1-2-3
- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
- Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
- Player I wins if $n \equiv 0, 2, 4 \pmod{12}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{12}$

1-$a-a+1$ for a even
- Player I wins if $n \not\equiv 0, 2, \ldots, a-2 \pmod{2a}$.
- Player II wins if
Patterns for $1-a-a+1$, a even

1-2-3
- Player I wins if $n \not\equiv 0 \pmod{4}$.
- Player II wins if $n \equiv 0 \pmod{4}$

1-4-5
- Player I wins if $n \not\equiv 0, 2 \pmod{8}$.
- Player II wins if $n \equiv 0, 2 \pmod{8}$

1-6-7
- Player I wins if $n \equiv 0, 2, 4 \pmod{12}$.
- Player II wins if $n \equiv 0, 2, 4 \pmod{12}$

1-a-$a+1$ for a even
- Player I wins if $n \not\equiv 0, 2, \ldots, a-2 \pmod{2a}$.
- Player II wins if $n \equiv 0, 2, \ldots, a-2 \pmod{2a}$