
Satis�ability

Suggested Format

Last revision: May 8, 1993

This paper outlines a suggested format for satis�ability problems. It is not

yet the \oÆial" DIMACS graph format. If you have omments on this or

other formats or you have information you think should be inluded, please

send a note to hallenge�dimas.rutgers.edu.

1 Introdution

One purpose of the DIMACS Challenge is to ease the e�ort required to test

and ompare algorithms and heuristis by providing a ommon testbed of

instanes and analysis tools. To failitate this e�ort, a standard format must

be hosen for the problems addressed. This doument outlines two formats

for satis�ability problems. The purpose of these formats is to allow quik

onversion from one format to another while still being reasonably e�etive

formats diretly.

Two formats were hosen to reet the need for both a speialized format

for satis�ability problems in onjuntive normal form and for a general format

able to handle all types of satis�ability problems. These formats will be

referred to as CNF format and SAT format respetively.

2 File Formats for Satis�ability Problems

This setion desribes a standard �le format for graph inputs and outputs.

There is no requirement that partiipants follow these spei�ations; however,

1

ompatible implementations will be able to make full use of DIMACS support

tools.

Partiipants are welome to develop translation programs to onvert in-

stanes to and from more onvenient, or more ompat, representations; the

Unix awk faility is reommended as espeially suitable for this task.

All �les ontain ASCII haraters. Input and output �les ontain several

types of lines, desribed below. A line is terminated with an end-of-line

harater. Fields in eah line are separated by at least one blank spae.

2.1 CNF format

A satis�ability problem in onjuntive normal form onsists of a the onjun-

tion of a number of lauses, where is lause is a disjuntion of a number of

variables or their negations. If we let x

i

represent variables that an assume

only the values true or false, then a sample formula in onjuntive normal

form would be

(x

1

_ x

3

_ �x

4

) ^ (x

4

) ^ (x

2

_ �x

3

)

where _ represents the or boolean onnetive, ^ represents and and �x

i

is the

negation of x

i

.

Given a set of lauses C

1

; C

2

; : : : ; C

m

on the variables x

1

; x

2

; : : : ; x

n

, the

satis�ability problem is to determine if the formula

C

1

^ C

2

^ : : : ^ C

m

is satis�able. That is, is there an assignment of values to the variables so

that the above formula evaluates to true. Clearly, this requires that eah C

j

evaluate to true.

The maximum satis�ability problem is to �nd an assignment of values to

the variables so as to have the maximum number of C

j

evaluate to true.

To represent an instane of suh problems, we will reate an input �le

that ontains all of the information needed to de�ne a satis�ability problem

or a maximum satis�ability problem. This �le will be an ASCII �le onsisting

of a two major setions: the preamble and the lauses.

The Preamble. The preamble ontains information about the instane.

This information is ontained in lines. Eah line begins with a single har-

2

ater (followed by a spae) that determines the type of line. These types are

as follows:

� Comments. Comment lines give human-readable information about

the �le and are ignored by programs. Comment lines appear at the

beginning of the preamble. Eah omment line begins with a lower-

ase harater .

 This is an example of a omment line.

� Problem line. There is one problem line per input �le. The prob-

lem line must appear before any node or ar desriptor lines. For nf

instanes, the problem line has the following format.

p FORMAT VARIABLES CLAUSES

The lower-ase harater p signi�es that this is the problem line. The

FORMAT �eld allows programs to determine the format that will be

expeted, and should ontain the word \nf". The VARIABLES �eld

ontains an integer value speifying n, the number of variables in the

instane. The CLAUSES �eld ontains an integer value speifying m, the

number of lauses in the instane. This line must our as the last line

of the preamble.

The Clauses. The lauses appear immediately after the problem line.

The variables are assumed to be numbered from 1 up to n. It is not neessary

that every variable appear in an instane. Eah lause will be represented by

a sequene of numbers, eah separated by either a spae, a tab, or a newline

harater. The non{negated version of a variable i is represented by i; the

negated version is represented by �i.

Eah lauses is terminated by the value 0. Unlike many formats that

represent the end of a lause by a new{line harater, this format allows

lauses to be on multiple lines.

Example. Using the example

(x

1

_ x

3

_ �x

4

) ^ (x

4

) ^ (x

2

_ �x

3

)

a possible input �le would be

3

 Example CNF format file

p nf 4 3

1 3 -4 0

4 0 2

-3

2.2 SAT format

Conjuntive normal form is not the only natural enoding for satis�ability

problems. There are other enodings that lead to interesting satis�ability

problems but whose translation into CNF unneessarily inreases the size of

the problem. To allow formulation of suh instanes, as well as providing

an alternative form for CNF format, the following format is also supported.

This �le onsists also of a preamble and a formula setion.

The Preamble. The preamble ontains information about the instane.

This information is ontained in lines. Eah line begins with a single har-

ater (followed by a spae) that determines the type of line. These types are

as follows:

� Comments. Comment lines give human-readable information about

the �le and are ignored by programs. Comment lines appear at the

beginning of the preamble. Eah omment line begins with a lower-

ase harater .

 This is an example of a omment line.

� Problem line. There is one problem line per input �le. The problem

line must appear before any node or ar desriptor lines. For network

instanes, the problem line has the following format.

p FORMAT VARIABLES

The lower-ase harater p signi�es that this is the problem line. The

FORMAT �eld allows programs to determine the format that will be

expeted, and should ontain the word \sat". The VARIABLES �eld

ontains an integer value speifying n, the number of variables in the

instane. This line must our as the last line of the preamble.

4

The Formula. Immediately after the problem statement, the formula

appears. This formula onsists of one or more lines, ontaining the formula

to be satis�ed. The variables are represented by the numbers 1 through n.

Negation of a variable i is represented by �i. Valid formulae are represented

by the following rules:

1. i and �i are formula for all i.

2. If f is a valid formula, so is (f).

3. If f is a valid formula, so is �(f).

4. If f

1

; f

2

; : : : ; f

k

are valid formulas, so is �(f

1

f

2

: : : f

k

).

5. If f

1

; f

2

; : : : ; f

k

are valid formulas, so is +(f

1

f

2

: : : f

k

).

White spae separating piees of a formula an either be spaes, tabs, or

newline haraters. Whitespae is not required where the tokens are unam-

biguous without it. In partiular, both (1 {2) and (1-2) are valid formulae.

�() and +() are valid and interpreted as TRUE and FALSE respetively.

The \�" operator represents the and operation, the \+" represents the or

operation, and \�" represents negation.

The formula represented must be of the form (f), for a valid formula f .

Example. For the formula

(x

1

_ x

3

_ �x

4

) ^ (x

4

) ^ (x

2

_ �x

3

)

a sample input �le is

 Sample SAT format

p sat 4

(*(+(1 3 -4)

+(4)

+(2 3)))

5

2.3 Additions and Expansions

The purpose of the standard format is to have a ommon language for ex-

pressing problems. It may be that the formats hosen are not rih enough for

some types of problems. If you would like to suggest any expansions, please

ontat the Challenge.

The following extensions have been de�ned:

XOR Format. Problem type is satx. New operator \xor" is de�ned

with the same syntax as \+" OR *". xor(f

1

f

2

: : : f

n

) evaluates to true if

and only if an odd number of f

1

; f

2

; : : : ; f

n

evaluate to true. xor() evaluates

to false.

EQUAL Format. Problem type is sate. New operator \=" with syntax

like \+" or *". = (f

1

f

2

: : : f

n

) evaluates to true if and only if f

1

; f

2

; : : : ; f

n

are either all true or all false. = () evaluates to true.

XOR{EQUAL Format. Combines the above with problem type satex.

2.4 Output Files

Every algorithm or heuristi should reate an output �le. This output �le

should onsist of one or more of the following lines, depending on the type

of algorithm and problem being solved.

� Comments. Comment lines give human-readable information about

the �le and are ignored by programs. Comment lines an appear any-

where in the �le. Eah omment line begins with a lower-ase harater

. Note that omment lines an be used to provide solution information

not otherwise available (i.e. omputation time, number of alulations).

 This is an example of a omment line.

� Solution Line

s TYPE SOLUTION VARIABLES CLAUSES

s TYPE SOLUTION VARIABLES

The lower-ase harater s signi�es that this is a solution line. The TYPE

�eld denotes the type of solution ontained in the �le. This should be

6

one of the following strings: \max", for solving the maximum satis�a-

bility problem (whose input �le format was neessarily \nf"), or the

FORMAT string from the Problem Line, for solving (some form of) the

satis�ability problem. In partiular, for CNF satis�ability, the string

is \nf". See Problem Line desription for other possibilities.

The SOLUTION �eld ontains an integer orresponding to the solution

value. For maximum satis�ability, this should be the number of lauses

satis�ed; for satis�ability, this should be \1" if the formula is satis�able,

0 if the formula is unsatis�able, and -1 if no deision was reahed.

The VARIABLES �eld ontains the same integer that was in the VARI-

ABLES �eld of the problem line. The CLAUSES �eld ontains the same

integer that was in the CLAUSES �eld of the problem line, appliable

to \nf" format only.

Notie that a Solution Line \of last resort" an be appended to the

output �le by a Unix shell sript in whih the program is exeuting, in

the event that the program dies prematurely.

� Timing Line

The Timing Line is optional, but is reommended. Its purpose is to

standardize the reporting of timing information for ease of statistial

analysis. It may appear anywhere in the �le, and it repeats all of the

information on the solution line for simpliity of extration.

t TYPE SOLUTION VARIABLES CLAUSES CPUSECS MEASURE1 ...

The lower-ase harater t signi�es that this is a timing line. The TYPE,

SOLUTION, VARIABLES, and CLAUSES �elds are idential to the solution

line, exept that the CLAUSES �eld is 0 when not appliable.

The CPUSECS �eld is a oating point number designating the number

of CPU seonds used during the solution (or attempted solution). All

numbers should be understandable by awk. A number without a dei-

mal point is aeptable as \oating point".

Remaining �elds are oating point numbers providing alternative mea-

sures of performane that are \algorithmi" and reproduible: that is,

7

these numbers should ome out the same under di�erent system load-

s, and on di�erent arhitetures. MEASURE1 is required (just print 0

to abstain), and is what the appliation thinks is the most signi�an-

t measure of performane, suh as number of nodes in searh spae,

number of variable-assignment hanges, et.

Additional measures report other interesting performane data, de-

pending on the appliation. Exeptions to the rule of reproduibility

may be made for additional measures: for example, memory require-

ment might vary by arhiteture.

Notie that a Timing Line \of last resort" an be appended to the

output �le by a Unix shell sript in whih the program is exeuting.

� Variable Line

v V

The lower-ase harater v signi�es that this is a variable line. The

value V is either a positive value i, whih means that i should be set

true or a negative value �i, implying it should be set false.

� Clause Satisfation Line

s C

This line, useful only for maximum satis�ability, denotes whether a

partiular lause is satis�ed or not. The lower-ase harater s signi�es

that this is a lause line. The value C is either a positive value i, whih

means that lause i is satisi�ed by the solution, or a negative value �i,

implying it is not.

3 Implementation at DIMACS.

CNF format �les will generally have a .nf extension, while SAT format �les

will have a .sat extension.

8

