
Satis�ability

Suggested Format

Last revision: May 8, 1993

This paper outlines a suggested format for satis�ability problems. It is not

yet the \oÆ
ial" DIMACS graph format. If you have
omments on this or

other formats or you have information you think should be in
luded, please

send a note to
hallenge�dima
s.rutgers.edu.

1 Introdu
tion

One purpose of the DIMACS Challenge is to ease the e�ort required to test

and
ompare algorithms and heuristi
s by providing a
ommon testbed of

instan
es and analysis tools. To fa
ilitate this e�ort, a standard format must

be
hosen for the problems addressed. This do
ument outlines two formats

for satis�ability problems. The purpose of these formats is to allow qui
k

onversion from one format to another while still being reasonably e�e
tive

formats dire
tly.

Two formats were
hosen to re
e
t the need for both a spe
ialized format

for satis�ability problems in
onjun
tive normal form and for a general format

able to handle all types of satis�ability problems. These formats will be

referred to as CNF format and SAT format respe
tively.

2 File Formats for Satis�ability Problems

This se
tion des
ribes a standard �le format for graph inputs and outputs.

There is no requirement that parti
ipants follow these spe
i�
ations; however,

1

ompatible implementations will be able to make full use of DIMACS support

tools.

Parti
ipants are wel
ome to develop translation programs to
onvert in-

stan
es to and from more
onvenient, or more
ompa
t, representations; the

Unix awk fa
ility is re
ommended as espe
ially suitable for this task.

All �les
ontain ASCII
hara
ters. Input and output �les
ontain several

types of lines, des
ribed below. A line is terminated with an end-of-line

hara
ter. Fields in ea
h line are separated by at least one blank spa
e.

2.1 CNF format

A satis�ability problem in
onjun
tive normal form
onsists of a the
onjun
-

tion of a number of
lauses, where is
lause is a disjun
tion of a number of

variables or their negations. If we let x

i

represent variables that
an assume

only the values true or false, then a sample formula in
onjun
tive normal

form would be

(x

1

_ x

3

_ �x

4

) ^ (x

4

) ^ (x

2

_ �x

3

)

where _ represents the or boolean
onne
tive, ^ represents and and �x

i

is the

negation of x

i

.

Given a set of
lauses C

1

; C

2

; : : : ; C

m

on the variables x

1

; x

2

; : : : ; x

n

, the

satis�ability problem is to determine if the formula

C

1

^ C

2

^ : : : ^ C

m

is satis�able. That is, is there an assignment of values to the variables so

that the above formula evaluates to true. Clearly, this requires that ea
h C

j

evaluate to true.

The maximum satis�ability problem is to �nd an assignment of values to

the variables so as to have the maximum number of C

j

evaluate to true.

To represent an instan
e of su
h problems, we will
reate an input �le

that
ontains all of the information needed to de�ne a satis�ability problem

or a maximum satis�ability problem. This �le will be an ASCII �le
onsisting

of a two major se
tions: the preamble and the
lauses.

The Preamble. The preamble
ontains information about the instan
e.

This information is
ontained in lines. Ea
h line begins with a single
har-

2

a
ter (followed by a spa
e) that determines the type of line. These types are

as follows:

� Comments. Comment lines give human-readable information about

the �le and are ignored by programs. Comment lines appear at the

beginning of the preamble. Ea
h
omment line begins with a lower-

ase
hara
ter
.

 This is an example of a
omment line.

� Problem line. There is one problem line per input �le. The prob-

lem line must appear before any node or ar
 des
riptor lines. For
nf

instan
es, the problem line has the following format.

p FORMAT VARIABLES CLAUSES

The lower-
ase
hara
ter p signi�es that this is the problem line. The

FORMAT �eld allows programs to determine the format that will be

expe
ted, and should
ontain the word \
nf". The VARIABLES �eld

ontains an integer value spe
ifying n, the number of variables in the

instan
e. The CLAUSES �eld
ontains an integer value spe
ifying m, the

number of
lauses in the instan
e. This line must o

ur as the last line

of the preamble.

The Clauses. The
lauses appear immediately after the problem line.

The variables are assumed to be numbered from 1 up to n. It is not ne
essary

that every variable appear in an instan
e. Ea
h
lause will be represented by

a sequen
e of numbers, ea
h separated by either a spa
e, a tab, or a newline

hara
ter. The non{negated version of a variable i is represented by i; the

negated version is represented by �i.

Ea
h
lauses is terminated by the value 0. Unlike many formats that

represent the end of a
lause by a new{line
hara
ter, this format allows

lauses to be on multiple lines.

Example. Using the example

(x

1

_ x

3

_ �x

4

) ^ (x

4

) ^ (x

2

_ �x

3

)

a possible input �le would be

3

 Example CNF format file

p
nf 4 3

1 3 -4 0

4 0 2

-3

2.2 SAT format

Conjun
tive normal form is not the only natural en
oding for satis�ability

problems. There are other en
odings that lead to interesting satis�ability

problems but whose translation into CNF unne
essarily in
reases the size of

the problem. To allow formulation of su
h instan
es, as well as providing

an alternative form for CNF format, the following format is also supported.

This �le
onsists also of a preamble and a formula se
tion.

The Preamble. The preamble
ontains information about the instan
e.

This information is
ontained in lines. Ea
h line begins with a single
har-

a
ter (followed by a spa
e) that determines the type of line. These types are

as follows:

� Comments. Comment lines give human-readable information about

the �le and are ignored by programs. Comment lines appear at the

beginning of the preamble. Ea
h
omment line begins with a lower-

ase
hara
ter
.

 This is an example of a
omment line.

� Problem line. There is one problem line per input �le. The problem

line must appear before any node or ar
 des
riptor lines. For network

instan
es, the problem line has the following format.

p FORMAT VARIABLES

The lower-
ase
hara
ter p signi�es that this is the problem line. The

FORMAT �eld allows programs to determine the format that will be

expe
ted, and should
ontain the word \sat". The VARIABLES �eld

ontains an integer value spe
ifying n, the number of variables in the

instan
e. This line must o

ur as the last line of the preamble.

4

The Formula. Immediately after the problem statement, the formula

appears. This formula
onsists of one or more lines,
ontaining the formula

to be satis�ed. The variables are represented by the numbers 1 through n.

Negation of a variable i is represented by �i. Valid formulae are represented

by the following rules:

1. i and �i are formula for all i.

2. If f is a valid formula, so is (f).

3. If f is a valid formula, so is �(f).

4. If f

1

; f

2

; : : : ; f

k

are valid formulas, so is �(f

1

f

2

: : : f

k

).

5. If f

1

; f

2

; : : : ; f

k

are valid formulas, so is +(f

1

f

2

: : : f

k

).

White spa
e separating pie
es of a formula
an either be spa
es, tabs, or

newline
hara
ters. Whitespa
e is not required where the tokens are unam-

biguous without it. In parti
ular, both (1 {2) and (1-2) are valid formulae.

�() and +() are valid and interpreted as TRUE and FALSE respe
tively.

The \�" operator represents the and operation, the \+" represents the or

operation, and \�" represents negation.

The formula represented must be of the form (f), for a valid formula f .

Example. For the formula

(x

1

_ x

3

_ �x

4

) ^ (x

4

) ^ (x

2

_ �x

3

)

a sample input �le is

 Sample SAT format

p sat 4

(*(+(1 3 -4)

+(4)

+(2 3)))

5

2.3 Additions and Expansions

The purpose of the standard format is to have a
ommon language for ex-

pressing problems. It may be that the formats
hosen are not ri
h enough for

some types of problems. If you would like to suggest any expansions, please

onta
t the Challenge.

The following extensions have been de�ned:

XOR Format. Problem type is satx. New operator \xor" is de�ned

with the same syntax as \+" OR *". xor(f

1

f

2

: : : f

n

) evaluates to true if

and only if an odd number of f

1

; f

2

; : : : ; f

n

evaluate to true. xor() evaluates

to false.

EQUAL Format. Problem type is sate. New operator \=" with syntax

like \+" or *". = (f

1

f

2

: : : f

n

) evaluates to true if and only if f

1

; f

2

; : : : ; f

n

are either all true or all false. = () evaluates to true.

XOR{EQUAL Format. Combines the above with problem type satex.

2.4 Output Files

Every algorithm or heuristi
 should
reate an output �le. This output �le

should
onsist of one or more of the following lines, depending on the type

of algorithm and problem being solved.

� Comments. Comment lines give human-readable information about

the �le and are ignored by programs. Comment lines
an appear any-

where in the �le. Ea
h
omment line begins with a lower-
ase
hara
ter

. Note that
omment lines
an be used to provide solution information

not otherwise available (i.e.
omputation time, number of
al
ulations).

 This is an example of a
omment line.

� Solution Line

s TYPE SOLUTION VARIABLES CLAUSES

s TYPE SOLUTION VARIABLES

The lower-
ase
hara
ter s signi�es that this is a solution line. The TYPE

�eld denotes the type of solution
ontained in the �le. This should be

6

one of the following strings: \max", for solving the maximum satis�a-

bility problem (whose input �le format was ne
essarily \
nf"), or the

FORMAT string from the Problem Line, for solving (some form of) the

satis�ability problem. In parti
ular, for CNF satis�ability, the string

is \
nf". See Problem Line des
ription for other possibilities.

The SOLUTION �eld
ontains an integer
orresponding to the solution

value. For maximum satis�ability, this should be the number of
lauses

satis�ed; for satis�ability, this should be \1" if the formula is satis�able,

0 if the formula is unsatis�able, and -1 if no de
ision was rea
hed.

The VARIABLES �eld
ontains the same integer that was in the VARI-

ABLES �eld of the problem line. The CLAUSES �eld
ontains the same

integer that was in the CLAUSES �eld of the problem line, appli
able

to \
nf" format only.

Noti
e that a Solution Line \of last resort"
an be appended to the

output �le by a Unix shell s
ript in whi
h the program is exe
uting, in

the event that the program dies prematurely.

� Timing Line

The Timing Line is optional, but is re
ommended. Its purpose is to

standardize the reporting of timing information for ease of statisti
al

analysis. It may appear anywhere in the �le, and it repeats all of the

information on the solution line for simpli
ity of extra
tion.

t TYPE SOLUTION VARIABLES CLAUSES CPUSECS MEASURE1 ...

The lower-
ase
hara
ter t signi�es that this is a timing line. The TYPE,

SOLUTION, VARIABLES, and CLAUSES �elds are identi
al to the solution

line, ex
ept that the CLAUSES �eld is 0 when not appli
able.

The CPUSECS �eld is a
oating point number designating the number

of CPU se
onds used during the solution (or attempted solution). All

numbers should be understandable by awk. A number without a de
i-

mal point is a

eptable as \
oating point".

Remaining �elds are
oating point numbers providing alternative mea-

sures of performan
e that are \algorithmi
" and reprodu
ible: that is,

7

these numbers should
ome out the same under di�erent system load-

s, and on di�erent ar
hite
tures. MEASURE1 is required (just print 0

to abstain), and is what the appli
ation thinks is the most signi�
an-

t measure of performan
e, su
h as number of nodes in sear
h spa
e,

number of variable-assignment
hanges, et
.

Additional measures report other interesting performan
e data, de-

pending on the appli
ation. Ex
eptions to the rule of reprodu
ibility

may be made for additional measures: for example, memory require-

ment might vary by ar
hite
ture.

Noti
e that a Timing Line \of last resort"
an be appended to the

output �le by a Unix shell s
ript in whi
h the program is exe
uting.

� Variable Line

v V

The lower-
ase
hara
ter v signi�es that this is a variable line. The

value V is either a positive value i, whi
h means that i should be set

true or a negative value �i, implying it should be set false.

� Clause Satisfa
tion Line

s C

This line, useful only for maximum satis�ability, denotes whether a

parti
ular
lause is satis�ed or not. The lower-
ase
hara
ter s signi�es

that this is a
lause line. The value C is either a positive value i, whi
h

means that
lause i is satisi�ed by the solution, or a negative value �i,

implying it is not.

3 Implementation at DIMACS.

CNF format �les will generally have a .
nf extension, while SAT format �les

will have a .sat extension.

8

