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Preface

The papers in this volume were presented at the 5th International Conference on
Algorithmic Aspects in Information and Management (AAIM 2009), held June
15–17, 2009, in San Francisco, California. The topics cover mostly algorithmic
applications in information management and management science.

A total of 41 papers were submitted to the conference. After an on-line paper
review process, the Program Committee accepted 25 papers to be presented.
The international Program Committee included Tetsuo Asano, Marshall Bern,
Daniel Bienstock, Danny Z. Chen, Camil Demetrescu, Lisa Fleischer, Rudolf
Fleischer, Martin Frer, Andrew Goldberg, Mordecai Golin, Monika Henzinger,
Seok-Hee Hong, Ming-Yang Kao, Xiang-Yang Li, Mohammad Mahdian, Tom
McCormick, Junfeng Pan, Rong Pan, Panos Pardalos, Tomasz Radzik, Rajeev
Raman, Martin Scholz, Robert Schreiber, Dou Shen, Xiaodong Wu, Jinhui Xu,
Qiang Yang, Huaming Zhang, Yunhong Zhou and Binhai Zhu. It is expected that
many of the accepted papers will appear in a more complete form in scientific
journals.

The submitted papers are from Algeria, Argentina, Australia, Chile, China,
Czech Republic, Denmark, France, Germany, Hong Kong, India, Iran, Israel,
Japan, Taiwan, UK and USA. Each paper was evaluated by at least three Pro-
gram Committee members (four is also common), assisted in some cases by
subreferees (listed in the proceedings). In addition to selected papers, the con-
ference also included two invited presentations by Andrei Broder and Edward
Chang.

We thank all the people who made this meeting possible: the authors for sub-
mitting papers, the Program Committee members for their excellent work, and
the two invited speakers. Finally, we thank the Organizing Committee members
whose hard work make this conference possible.

June 2009 Andrew Goldberg
Yunhong Zhou
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Algorithmic Challenge in Online Advertising

Andrei Z. Broder

Yahoo! Research
2821 Mission College Blvd.

Santa Clara, CA 95054, USA

Computational advertising is an emerging new scientific sub-discipline, at the
intersection of large scale search and text analysis, information retrieval, sta-
tistical modeling, machine learning, classification, optimization, and microeco-
nomics. The central challenge of computational advertising is to find the ”best
match” between a given user in a given context and a suitable advertisement.
The context could be a user entering a query in a search engine (”sponsored
search”) , a user reading a web page (”content match” and ”display ads”), a
user watching a movie on a portable device, and so on. The information about
the user can vary from scarily detailed to practically nil. The number of poten-
tial advertisements might be in the billions. Thus, depending on the definition
of ”best match” this challenge leads to a variety of massive optimization and
search problems, with complicated constraints.

This talk will give an introduction to this area focusing mostly on the algo-
rithmic challenges encountered in practice.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, p. 1, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Parallel Algorithms for Collaborative Filtering

Edward Y. Chang1,2

1 Google Beijing Research, Beijing 100084, China
2 University of California, Santa Barbara, CA 93106, USA

edchang@google.com

Collaborative filtering has been widely used to predict the interests of a user.
Given a users past activities, collaborative filtering predicts the users future
preferences. This talk presents techniques and discoveries of our recent paral-
lelization effort on collaborative filtering algorithms. In particular, parallel asso-
ciation mining and parallel latent Dirichlet allocation will be presented and their
pros and cons analyzed. Some counter-intuitive results will also be presented to
stimulate future parallel optimization research.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, p. 2, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



On the Approximability of Some Haplotyping
Problems�

John Abraham1, Zhixiang Chen1, Richard Fowler1, Bin Fu1, and Binhai Zhu2

1 Department of Computer Science, University of Texas-American, Edinburg, TX
78739-2999, USA

{jabraham,chen,fowler,binfu}@panam.edu
2 Department of Computer Science, Montana State University, Bozeman, MT

59717-3880, USA
bhz@cs.montana.edu

Abstract. In this paper, we study several versions of optimization prob-
lems related to haplotype reconstruction/identification. The input to the
first problem is a set C1 of haplotypes, a set C2 of haplotypes, and a set
G of genotypes. The objective is to select the minimum number of hap-
lotypes from C2 so that together with haplotypes in C1 they resolve all
(or the maximum number of) genotypes in G. We show that this prob-
lem has a factor-O(log n) polynomial time approximation. We also show
that this problem does not admit any approximation with a factor bet-
ter than O(log n) unless P=NP. For the corresponding reconstruction
problem, i.e., when C2 is not given, the same approximability results
hold.

The other versions of the haplotype identification problem are based
on single individual haplotyping, including the well-known Minimum
Fragment Removal (MFR) and Minimum SNP Removal (MSR), which
have both shown to be APX-hard previously. We show in this paper that
MFR has a polynomial time O(log n)-factor approximation. We also con-
sider Maximum Fragment Identification (MFI), which is the complemen-
tary version of MFR; and Maximum SNP Identification (MSI), which is
the complementary version of MSR. We show that, for any positive con-
stant ε < 1, neither MFI nor MSI has a factor-n1−ε polynomial time
approximation algorithm unless P=NP.

1 Introduction

Haplotype inference and identification is an important problem in computational
biology. For instance, human haplotype data are crucial in identifying certain
diseases. In diploid organisms (such as human) there are two (usually not identi-
cal) copies of each chromosome. Consequently we can collect the conflated data
from two corresponding regions (genotype), relatively easily. On the other hand,
for complex diseases which are affected by more than a single gene, it is more
informative to have haplotype data, i.e., those data from exactly one copy of a
� This research is partially supported by NSF Career Award 0845376.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 3–14, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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chromosome. It is known that genotype data are much easier and cheaper to
collect compared with haplotype data, and nowadays it is possible to obtain
haplotype data directly from experiments [6].

Most part of genomes between two humans are identical. The sites of genomes
that makes the difference among human population are Single Nucleotide Poly-
morphisms (SNPs). The values of a set of SNPs on a particular chromosome copy
define a haplotype. Haplotyping an individual consists of determining a pair of
haplotypes, one for each copy of a given chromosome.

The problem of haplotyping a population has been widely studied with various
objective functions. The haplotyping problem seeks to determine the optimal
pair of haplotypes, which can be derived from data which may have inconsistence.
Many versions of this problem have been proven to be NP-hard. This problem
has been studied in a series of papers [1,24,25,19,4,16,18,22] in recent years.
The problem of haplotyping a population has been studies in [5,9,11]. There are
several versions of haplotyping problems, like they have to fit a perfect phylogeny.
Our first set of problems are mostly following the principle of haplotype inference
with maximum parsimony [10,12,14,16,26]. While the second set of problems
focus on single individual haplotyping problems, which have been studied before
in [17,19,1].

In this paper, we study several versions of optimization problems related to
haplotype reconstruction/identification. We first study the Single-Side Haplo-
type Identification problem. The input to the problem is a set C1 of haplotypes,
a set C2 of haplotypes, and a set G of genotypes. The objective is to select the
minimum number of haplotypes from C2 so that together with haplotypes in C1
they resolve all (or the maximum number of) genotypes in G. The background
of this model is that we assume that the haplotypes in C1 is already known and
may be from one of the ancestors for the genomes of a group of descendants.

We show that this problem has a factor-O(log n) polynomial time approxima-
tion. We also show that this problem does not admit any approximation with a
factor better than O(log n) unless P=NP.

The Single-Side Haplotype Reconstruction problem is also studied. It is sim-
ilar to the Single-Side Haplotype Identification problem, but the input does not
contain the candidate set C2. We obtain a factor-O(log n) polynomial time ap-
proximation, and also an Ω(log n) approximation lower bound as those for the
Single-Side Haplotype Identification problem.

Secondly, we study some other versions of the single individual haplotyping
problems and derive strong inapproximability results. In these problems, the hap-
lotype of an individual is determined directly using incomplete and/or imperfect
fragments of sequencing data. So the input for these problems is a matrix, each
row representing a fragment. The known versions of this problem include Mini-
mum Fragment Removal (MFR), which has a complementary version Maximum
Fragment Identification (MFI); and Minimum SNP Removal (MSR), which has
a complementary version Maximum SNP Identification (MSI). MFR and MSR
have already been shown to be APX-hard [1]. We show that MFR has a factor-
O(log n) polynomial time approximation. On the other hand, for any positive
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constant ε < 1, neither MFI nor MSI has a factor-n1−ε polynomial time approx-
imation unless P=NP.

This paper is organized as follows. In Section 2, we present some necessary
definitions. In Section 3, we present the approximability results for single-side
haplotype reconstruction/identification. In Section 4, we present the approxima-
bility results for several versions of the single individual haplotyping problem.
In Section 5, we conclude the paper with several open problems.

2 Preliminaries

We define necessary concepts in this section. Throughout this paper we assume
that all the haplotypes and genotypes are within a fixed block.

Suppose that we are given some local chromosomes each of m linked SNPs.
A genotype is a sequence g = g1g2 · · · gm such that gi denotes the genotype
at locus i and gi = 0, 1 or 2 denotes that this locus is homozygous wild type,
homozygous mutant or heterozygous, respectively. A (complete) haplotype is a
binary (0 or 1) sequence of length m. Two haplotypes h1 = h11h12 · · ·h1m and
h2 = h21h22 · · ·h2m resolve a genotype g = g1g2 · · · gm if and only if gi =2
implies that h1i = 0 and h2i = 1, or h1i = 1 and h2i = 0; gi = 1 implies that
h1i = h2i = 1; and gi = 0 implies that h1i = h2i = 0, for 1 ≤ i ≤ m. Example,
g = 02120 is resolved by h1 = 00110 and h2 = 01100.

For two sets of haplotypes C, C′, and a set of genotypes G, we say C and C′

resolve G if for every g ∈ G, there exist c ∈ C and c′ ∈ C′ such that c and c′

resolve g.

Definition 1

– The Single-Side Haplotype Identification problem can be formally de-
fined as follows:
INPUT: A set C1 of |C1| haplotypes, another set C2 of |C2| haplotypes, a set
G of |G| genotypes, and an integer k.
QUESTION: find a least size subset C′

2 ⊆ C2, |C′
2| ≤ k, such that C1 and

C′
2 resolve all (or the maximum number of) genotypes in G?. We also use

SSHI problem to represent Single-Side Haplotype Identification problem.
– For an integer d > 1, a d-SSHI problem is a SSHI problem C1, C2 and G

with each haplotype in C2 resolving at most d genotypes in G.
– The Single-Side Haplotype Reconstruction problem can be formally

defined as follows:
INPUT: A set C1 of |C1| haplotypes, a set G of |G| genotypes, and an integer k.
QUESTION: find a least size set C′

2 of haplotypes, |C′
2| ≤ k, such that C1 and

C′
2 resolve all (or the maximum number of) genotypes in G?. We also use

SSHR problem to represent Single-Side Haplotype Reconstruction problem.
– For an integer d > 1, a d-SSHR problem is a SSHR problem C1 and G with

each haplotype in the solution resolving at most d genotypes in G.
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For a minimization (maximization) problem Π , an algorithm A provides a per-
formance guarantee α for Π if for every instance of Π with optimal solution value
OPT the solution value returned by A is at most α×OPT (at least OPT/α).
Usually we simply say that A is a factor-α approximation for Π . Throughout this
paper, we are only interested in approximation algorithms running in polynomial
time.

We will show in Section 3 that both SSHI and SSHR are NP-complete; in
fact, there are no polynomial time approximation with a factor o(log n), unless
P=NP.

For single individual haplotyping, one needs to determine the haplotype of an
individual by working directly on (usually incomplete and/or imperfect) frag-
ments of sequencing data. In this case, a haplotype can be written as a string
over the alphabet {A,B,-} with “-” meaning lack of information or uncertainty
about the nucleotide at that site. For human, being a diploid organism, each
has two copies of each chromosome, one each from the individual’s father and
mother. So the problem is even more complicated.

Given a matrix M of haplotype fragments (rows), each column represents a
SNP site and each cell of the matrix denotes the choice of nucleotide seen at that
SNP site on that fragment. A cell of M can have a value A or B when the data is
complete and error-free; otherwise, it can have a hole, denoted by -. Two rows i1
and i2 of M conflict if there exists a column j such that M [i1, j] �= M [i2, j] and
M [i1, j], M [i2, j] ∈ {A,B}. M is feasible if and only if the rows of M can be par-
titioned into two groups such that rows in each group are mutually conflict-free.

Among the following problems, MFR and MSR were first studied in [17,19,1].
Readers are referred to [4,3] for some other problems on single individual
haplotyping.

Definition 2

– MFR (Minimum Fragment Removal): Given a SNP matrix, remove the min-
imum number of fragments (rows) so that the resulting matrix is feasible.

– MSR (Minimum SNP Removal): Given a SNP matrix, remove the minimum
number of SNPs (columns) so that the resulting matrix is feasible.

– MFI (Maximum Fragment Identification): Given a SNP matrix, select the
maximum number of fragments (rows) so that the resulting matrix is feasible.

– MSI (Maximum SNP Identification): Given a SNP matrix, select the maxi-
mum number of SNPs (columns) so that the resulting matrix is feasible.

MFR and MSR were both shown to be APX-hard, with restricted versions (i.e.,
when there is no gap, or sequences of “-” between non-hole values) being polyno-
mially solvable [1]. We show that MFR admits a factor-O(logn) approximation.
For MFI and MSI, which can be thought of as the complementary versions of
MFR and MSR, we show much stronger inapproximability results, i.e., they
cannot be approximated with a factor nε for any constant 0 < ε < 1.
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3 Approximability for Single-Side Haplotype
Identification/Reconstruction

In this section, we cover the first set of problems on haplotype identification and
reconstruction.

Theorem 1. There exists a factor-O(log n) polynomial time approximation for
the Single-Side Haplotype Identification problem.

Proof. We convert this problem into the set cover problem. The O(log n)-factor
approximation algorithm for the set cover problem [2,15,20] brings an O(log n)-
factor approximation for the Single-Side Haplotype Identification problem.

Assume that C1, C2 and G are the three input sets for the Single-Side Hap-
lotype Identification problem (see definition 1). A set cover problem is derived
as follows.

Let S = G. For each hi ∈ C2, let Si be the set of all gj ∈ G such that hi and h′

resolve gj for some h′ ∈ C1. The input of the set cover problem is S, S1, · · · , Sm,
where m = |C2|.

It is easy to see that if the Single-Side Haplotype Identification problem with
input C1, C2, and G has a solution C′

2 ⊆ C2 with size |C′
2| if and only if the

set cover problem with input S, S1, · · · , Sm has a solution of |C′
2| sets from

S1, · · · , Sm.
Since the set cover problem has an O(log n)-factor polynomial time approx-

imation, we have an O(log n)-factor approximate algorithm for the Single-Side
Haplotype Identification problem. ��
Theorem 2. There is no factor-o(log n) polynomial time approximation for the
Single-Side Haplotype Identification problem unless P=NP.

Proof. We prove this theorem by showing that Set Cover can be reduced to
SSHI. It is known that Set Cover cannot be approximated with a factor-o(log n)
polynomial time approximation [23].

Assume that X , S1, · · · , Sm with (Si ⊆ X for i = 1, · · · , m) are the input for
Set Cover, which seeks to find a least number of sets among S1, · · · , Sm to cover
the elements in the base set X . A SSHI instance can be constructed as follows:

Assume that X contains n elements e1, · · · , en. G contains g1, · · · , gn, where
gi = (22)i−100(22)n−i2 for i = 1, · · · , n. C2 contains f1, · · · , fm such that each fi

corresponds to a subset Si, and fi = a1b1 · · · anbn0 with ajbj = 01 for xj �∈ Si and
ajbj = 00 for xj ∈ Si. For C1, each set Si adds |Si| sequences hi,1, · · · , hi,|Si| to
it. Assume that Si = {ei1 , · · · , eit}. Then hi,j = a1b1 · · · anbn1, where ajbj = 10
for ej �∈ Si, atbt = 11 for et ∈ Si with t �= j, and ajbj = 00 for ej ∈ Si.

Note that each hi,j can only combine with fi to resolve some gt. We have the
following example based on the above construction.

Input for Set Cover:

X = {x1, x2, x3, x4, x5, x6}
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S1 = {x1, x3}
S2 = {x1, x2, x3}
S3 = {x2, x3}
S4 = {x3, x5}
S5 = {x4, x6}

The derived SSHI instance:

g1 = 00 22 22 22 22 22 2
g2 = 22 00 22 22 22 22 2
g3 = 22 22 00 22 22 22 2
g4 = 22 22 22 00 22 22 2
g5 = 22 22 22 22 00 22 2
g6 = 22 22 22 22 22 00 2

f1 = 00 01 00 01 01 01 0
h11 = 00 10 11 10 10 10 1
h12 = 11 10 00 10 10 10 1

f2 = 00 00 01 01 00 01 0
h21 = 00 10 10 10 11 10 1
h22 = 11 00 10 10 11 10 1
h23 = 11 11 10 10 00 10 1

f3 = 01 00 00 01 01 01 0
h31 = 10 00 11 10 10 10 1
h32 = 10 11 00 10 10 10 1

f4 = 01 01 00 01 00 01 0
h41 = 10 10 00 10 11 10 1
h42 = 10 01 11 10 00 10 1

f5 = 01 01 01 00 01 00 0
h51 = 10 10 10 00 10 11 1
h52 = 10 10 10 11 10 00 1

Assume that Si1 , · · · , Sik
be the optimal solution for the set cover problem.

Then we have that the subset C′
2 = {fi1 , · · · , fik

} of C2 such that C1 and C′
2



On the Approximability of Some Haplotyping Problems 9

resolve G. On the other hand, if a subset {fj1 , · · · , fju} of C2 is an optimal
solution for the SSHI problem, then Sj1 , · · · , Sju can cover the set S.

Therefore, for every integer k ≥ 1, there exists C′
2 ⊆ C2 with |C′

2| = k such
that C1 and C′

2 resolve G if and only if there exists S′ ⊆ S, with |S′| = k, which
covers elements in X .

With respect to the above example, we have
C1 = {h11, h12, h21, h22, h23, h31, h32, h41, h42, h51, h52}, C2 = {f1, f2, f3, f4, f5},
and G = {g1, g2, g3, g4, g5, g6}. The optimal solution is {f2, f4, f5}. ��
Theorem 3. There exists a polynomial time algorithm for the 2-SSHI problem.

Proof. This problem can be converted into 2-set cover problem, which has a
polynomial time solution via the polynomial time algorithm for the matching
problem. ��
Theorem 4. There exists a 4

3 -factor polynomial time approximation for the 3-
SSHI problem.

Proof. By Duh and Fürer’s algorithm [7], we have a 4
3 -factor approximate al-

gorithm for the 3-set cover problem. Therefore, there is a 4
3 -factor approximate

algorithm for the 3-SSHI problem. ��
We next sketch how the above results for SSHI can hold for SSHR.

Theorem 5. There exists a factor-O(log n) polynomial time approximation for
the SSHR problem.

Proof. We convert the SSHR problem into an instance of SSHI and use the
approximation algorithm for SSHI to solve the SSHR problem. Assume that
the input of the SSHR problem is a set of C1 of haplotypes, and a set G of
genotypes. We construct the set C2 to contain all haplotypes h such that there
exists a haplotype h′ ∈ C1 and a genotype g ∈ G, and together with h′, h resolves
g. It is easy to see that C2 contains at most |C1||G| haplotypes.

The newly constructed SSHI instance has input C1, C2 and G. It is easy to see
that the optimal solution of two problems are the same. By Theorem 1, we have
a factor-O(log n) polynomial time approximation for the SSHR problem. ��
Theorem 6. There is no o(log n)-factor polynomial time approximation for the
SSHR problem unless P=NP.

Proof. The proof follows from that of Theorem 2. Assume that X , S1, · · · , Sm

with (Si ⊆ X for i = 1, · · · , m) are the input of a set cover problem P . We
construct another SSHR instance Q such that P has a solution of k subsets iff
Q has a solution of k haplotypes. Q is constructed as that in Theorem 2 with
C1 containing the same set of hi,j and G containing the same set of genotypes.
We do not construct those fi (1 ≤ i ≤ m), i.e., C2 = ∅.

Assume that a haplotype f and hi,j resolves some genotype gt. For the pair 00
in hi,j , the corresponding pair in f has to be 00 since each gt has exactly one 00
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pair. For the pair 11 in hi,j , the corresponding pair in f has to be 00 so that they
can handle a 22 pair in gt. For the pair 10 in hi,j , the corresponding pair in f has
to be 01. Therefore, f must correspond to the fi constructed in Theorem 2 via
set Si. Therefore, any solution should be selected from {f1, · · · , fm}, otherwise,
it is impossible to match those hi,j to resolve genotypes in G. ��
Theorem 7. There exists a polynomial time algorithm for 2-SSHR.

Proof. This problem can be converted into 2-set cover problem, which has a
polynomial time solution via the polynomial time algorithm for the matching
problem. ��
Theorem 8. There exists a 4

3 -factor polynomial time approximation for 3-SSHR.

Proof. By Duh and Fürer’s algorithm [7], we have a 4
3 -factor approximate al-

gorithm for the 3-set cover problem. Therefore, there is a 4
3 -factor approximate

algorithm for the 3-SSHR problem. ��

4 Approximability for Some Single Individual
Haplotyping Problems

In this section we show some lower and upper bounds for the approximation of
some single individual haplotyping problems by reducing some other well known
problems to them.

Define 2-Disjoint-Clique as the problem of deciding whether an undirected
graph contains two disjoint cliques of total size (number of vertices) at least k2,
for a given k2 > 0. We show with the following lemma that 2-Disjoint-Clique is
just as hard as Clique, even to approximate.

Lemma 1. 2-Disjoint-Clique is NP-complete; moreover, for any constant ε > 0,
there is no polynomial time n1−ε-factor polynomial time approximation for it
unless P=NP.

Proof. We reduce Clique to 2-Disjoint-Clique. It is known that Clique cannot
be approximated with a factor-n1−ε polynomial time approximation [13]. Let
G = (V, E) be an undirected graph which is the input to Clique. We construct
G′ as two copies of G, with vertices and edges relabelled. It is easy to see that
G has a clique of size k iff G′ has two disjoint cliques of size 2k. Therefore, the
lemma follows. ��
Theorem 9. For any constant ε > 0, there is no factor-n1−ε polynomial time
approximation for the MFI problem unless P=NP.

Proof. We reduce the 2-Disjoint-Clique problem to MFI. Assume that G =
(V, E) is an undirected graph. We construct a SNP matrix M as follows. Each
fragment (row) corresponds to a vertex of G. Each column checks whether two
vertices of G do not define an edge in E. So, each column of M is indexed by
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a pair 〈u, v〉 of vertices in G and each row is indexed by a vertex w of G. For
two vertices u and v with u < v, put A at row u and B at row v in the column
〈u, v〉. All the remaining positions of column 〈u, v〉 hold the character −. By this
construction, if there is no edge between u and v, the corresponding rows (i.e.,
row u and row v in M) will conflict. Then it is easy to see that there are two
disjoint cliques of size k in G iff there are k rows of M which define a feasible
sub-matrix. ��
Theorem 10. For any constant ε > 0, there is no factor-nε polynomial time
approximation for the MSI problem unless P=NP.

Proof. We reduce the Independent Set problem to MSI. Note that Independent
Set is the complementary version of Clique, so the inapproximability results
for the two problems are similar [13]. The actual reduction is similar to that
in [1]. Assume that G = (V, E) is an undirected graph. The matrix M is of size
(2|E|+ 1)× |V |. Each vertex of G corresponds to a column in M . For each edge
ei = (u, v) in E, row i and row 2i has character A at column u, row i has A at
column v, and row 2i has B at column v. The special row 2|E|+ 1 contains B
at every position. It is easy to see that there are k independent vertices in G iff
M has k columns which define a feasible matrix.

Assume that C is a set of columns selected from the matrix M such that the
resulting matrix formed by the columns of C is feasible. For every edge (u, v) in
E, it is impossible that both columns u and v are in C. Otherwise, the matrix
formed by C is not feasible. Thus, C induces a set of independent set of vertices
in the graph G.

Let I be a set of independent vertices in G. Then we claim that the sub-matrix
M ′ formed by the set of columns with indices from I is feasible. For two rows
i and 2i, with ei = (u, v), as (u, v) is in E, one of u and v will not be in I.
(Otherwise, due to the B’s in the last row, there is no way to make the resulting
sub-matrix feasible.) Assume that u is in I, we can then put row i and 2i into
different groups. Thus, the resulting matrix M ′ is feasible. ��
We next show that MFR admits a factor-O(log n) polynomial time approxima-
tion. This can be done through the MVDB problem.

Minimum Vertex-Deletion Bipartite Subgraph Problem (MVDB): Given an
undirected graph G = (V, E), find a minimum size subset V ′ ⊆ V such that
G− V ′ is a bipartite graph.

Theorem 11. The two problems MFR and MVDB are equivalent in terms of
polynomial time approximation. In other words, it can be expressed in the fol-
lowing two facts:

(1) if there exists a polynomial time f(n, m)-factor approximation algorithm
for MVDB with an input graph of n vertices and m edges, then there exists
another polynomial time f(n, O(n2))-approximation for MFR with an input ma-
trix of n fragments and m SNPs, where f(n, m) is nondecreasing function from
N ×N to N for both variables.

(2) if there exists a polynomial time g(n, m)-factor approximation algorithm
for MFR with an input matrix of n fragments and m SNPs, then there exists
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another polynomial time g(n, m)-approximation for MVDB with an input graph
of n vertices and m edges, where g(n, m) is nondecreasing function from n×N
to N for both variables.

Proof. We first prove part (1). Assume that A is an approximation algorithm
for MVDB with approximation ratio f(n, m) for a graph with n vertices and m
edges. We will convert A into another approximation algorithm for MFR.

Let M be an n×m SNP matrix for the MFR problem. A graph G = (V, E)
is constructed as follows. Each row of M has a vertex in V . For every two rows
u and v of M , put an edge (u, v) in E if there is a conflict between row u and v.
Therefore, the graph G has n vertices and at most O(n2) edges. Since A is an
approximation algorithm for the MVDB problem, we obtain an polynomial time
approximation algorithm for MFR with an approximation ratio f(n, O(n2)).

Now we show part (2). Let A′ be a polynomial time approximation for MFR
with approximation ratio g(n, m) for every input matrix of n rows and m
columns. We convert A′ into an approximation for the MVDB problem. Let
G = (V, E) be an input for the MVDB problem. We construct an instance M for
the MFR problem. The matrix M has |V | rows and |E| columns. Each column
is indexed by an edge (u, v) in E and each row is indexed by a vertex u in V .
For each edge (u, v) ∈ E, the column of M with index (u, v) has entry A at row
u, entry B at row v and hole − at all of the remaining entries.

Assume that V ′ ⊆ V is a subset of vertices in V such that G−V ′ is a bipartite
graph. We can also remove those rows in M with the index from V ′ and make
the remaining matrix feasible.

On the other hand, assume that R is the subset of rows in M such that
removing those rows in R makes the remaining matrix feasible. We can also
remove the subset V ′ of vertices, which correspond to the indexes of rows in R,
and make the resulting graph G − V ′ bipartite. Therefore, the approximation
A′ for MFR is converted into another approximation algorithm for MVDB with
approximation g(n, m). ��
Corollary 1. There exists a factor-O(log n) polynomial time approximation for
the MFR problem, where n is the number of rows in the input SNP matrix.

Proof. It is known that there exists a polynomial time O(log n)-factor approxi-
mation algorithm for the MVDB problem [8]. It follows from Theorem 11 that
there is a factor-O(log n) polynomial time approximation for MFR. ��
Since MVDB is APX-hard [21], Theorem 11 also implies that MFR is APX-hard,
which was shown in [1] using a different reduction.

5 Conclusion

In this paper we study two classes of problems related to haplotyping. For the
first set of problems, we investigate single-side haplotype identification and re-
construction. This is related to haplotype inference with maximum parsimony.
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We show tight approximability bounds for the two problems Single-Side Hap-
lotype Inference and Single-Side Haplotype Reconstruction. Another interesting
problem is to decide whether the 3-SSHR problem is NP-complete.

For the second set of problems on single individual haplotyping, we investigate
variants of the well-known APX-hard problems MFR and MSR, we show that
there exists a polynomial time O(log n)-factor approximation algorithm for the
MFR problem. And for the complementary versions of MFR and MSR; namely,
MFI and MSI, we show much stronger in approximability results (i.e., they
cannot be approximated with a factor-nε polynomial time approximation, unless
P=NP). An interesting problem is to find whether there exists a factor-O(log n)
polynomial time approximation for the MSR problems.
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Abstract. We study restricted improvement cycles (ri-cycles) in finite
positional n-person games with perfect information modeled by directed
graphs (digraphs) that may contain cycles. We obtain criteria of re-
stricted improvement acyclicity (ri-acyclicity) in two cases: for n = 2
and for acyclic digraphs. We provide several examples that outline the
limits of these criteria and show that, essentially, there are no other ri-
acyclic cases. We also discuss connections between ri-acyclicity and some
open problems related to Nash-solvability.
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1 Main Concepts and Results

1.1 Games in Normal Form

Game Forms and Utility Functions. Given a set of players I = {1, . . . , n}
and a set of strategies Xi for each i ∈ I, let X =

∏
i∈I Xi.

A vector x = (xi, i ∈ I) ∈ X is called a strategy profile or situation.
Furthermore, let A be a set of outcomes. A mapping g : X → A is called a

game form. In this paper, we restrict ourselves to finite game forms, that is, we
assume that sets I, A and X are finite.

Then, let u : I×A→ R be a utility function. Standardly, the value u(i, a) (or
ui(a)) is interpreted as the payoff to player i ∈ I in case of the outcome a ∈ A.
In figures, the notation a <i b means ui(a) < ui(b).

Sometimes, it is convenient to exclude ties. Accordingly, u is called a preference
profile if the mapping ui is injective for each i ∈ I; in other words, ui defines a
complete order over A describing the preferences of player i ∈ I.

A pair (g, u) is called a game in normal form.
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Improvement Cycles and Acyclicity. In a game (g, u), an improvement
cycle (im-cycle) is defined as a sequence of k strategy profiles {x1, . . . , xk} ⊆ X
such that xj and xj+1 coincide in all coordinates but one i = i(j) and, moreover,
ui(xj+1) > ui(xj), that is, player i makes profit by substituting strategy xj+1

i

for xj
i ; this holds for all j = 1, . . . , k and, standardly, we assume that k + 1 = 1.

A game (g, u) is called im-acyclic if it has no im-cycles. A game form g is
called im-acyclic if for each u the corresponding game (g, u) is im-acyclic.

We call xj+1 an improvement with respect to xj for player i = i(j). We call
it a best reply (BR) improvement if player i can get no strictly better result
provided all other players keep their strategies. Correspondingly, we introduce
the concepts of a BR im-cycle and BR im-acyclicity. Obviously, im-acyclicity
implies BR im-acyclicity but not vice versa.

Nash Equilibria and Acyclicity. Given a game (g, u), a strategy profile x ∈ X
is called a Nash equilibrium (NE) if ui(x) ≥ ui(x′) for each i ∈ I, whenever
x′

j = xj for all j ∈ I \ {i}. In other words, x is a NE if no player can get a
strictly better result by substituting a new strategy (x′

i for xi) when all other
players keep their old strategies. Conversely, if x is not a NE then there is a
player who can improve his strategy. In particular, he can choose a best reply.
Hence, a NE-free game (g, u) has a BR im-cycle. Let us remark that the last
statement holds only for finite games, while the converse statement is not true
at all.

A game (g, u) is called Nash-solvable if it has a NE. A game form g is called
Nash-solvable if for each u the corresponding game (g, u) has a NE.

The main motivation for the study of im-acyclicity is to prove the existence of
Nash equlibria. In addition, im-acyclicity leads to a natural algorithm for com-
puting such equilibria: iteratively perform improvement steps until an equlibrium
is reached.

1.2 Positional Games with Perfect Information

Games in Positional Form. Let G = (V, E) be a finite directed graph (di-
graph) whose vertices v ∈ V and directed edges e ∈ E are called positions and
moves, respectively. The edge e = (v′, v′′) is a move from position v′ to v′′. Let
out(v) and in(v) denote the sets of moves from and to v, respectively.

A position v ∈ V is called terminal if out(v) = ∅. Let VT denote the set of all
terminals. Let us also fix a starting position v0 ∈ V \ VT . A directed path from
v0 to a terminal position is called a finite play.

Furthermore, let D : V \ VT → I be a decision mapping, with I being the
set of players. We say that the player i = D(v) ∈ I makes a decision (move) in
a position v ∈ D−1(i) = Vi. Equivalently, D is defined by a partition D : V =
V1 ∪ . . . ∪ Vn ∪ VT .

The triplet G = (G, D, v0) is called a positional game form.

Cycles, Outcomes, and Utility Functions. Let C denote the set of simple
(that is, not self-intersecting) directed cycles in G.
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The set of outcomes A can be defined in two ways:

(i) A = VT ∪ C, that is, each terminal and each directed cycle is a separate
outcome.

(ii) A = VT ∪ {C}, that is, each terminal is an outcome and all directed cycles
constitute one special outcome c = {C}; this outcome will also be called
infinite play.

Case (i) was considered in [3] for two-person games (n = 2). In this paper, we
analyze case (ii) for n-person games.

Remark 1. Let us mention that as early as in 1912, Zermelo already considered
two-person zero-sum games with repeated positions (directed cycles) in his pi-
oneering work [12], where the game of chess was chosen as a basic example. In
this game, repeating a position in a play results in a draw.

Note that players can rank outcome c arbitrarily in their preferences. In contrast,
in [2] it was assumed that infinite play c ∈ A is the worst outcome for all players.

Positional Games in Normal Form. A triplet G = (G, D, v0) and quadruple
(G, D, v0, u) = (G, u) are called a positional form and a positional game, respec-
tively. Positional games can also be represented in normal form, as described
below. A mapping x : V \ VT → E that assigns to every non-terminal position v
a move e ∈ out(v) from this position is called a situation or strategy profile.

A strategy of player i ∈ I is the restriction xi : Vi → E of x to Vi = D−1(i).

Remark 2. A strategy xi of a player i ∈ I is interpreted as a decision plan for
every position v ∈ Vi. Note that, by definition, the decision in v can depend only
on v itself but not on the preceding positions and moves. In other words, we
restrict the players to their pure positional strategies.

Each strategy profile x ∈ X uniquely defines a play p(x) that starts in v0 and
then follows the moves prescribed by x. This play either ends in a terminal
of VT or results in a cycle, a(x) = c (infinite play). Thus, we obtain a game
form g(G) : X → A, which is called the normal form of G. This game form is
standardly represented by an n-dimensional table whose entries are outcomes of
A = VT ∪ {c}; see Figure 1.

The pair (g(G), u) is called the normal form of a positional game (G, u).

1.3 On Nash-solvability of Positional Game Forms

In [3], Nash-solvability of positional game forms was considered for case (i).
An explicit characterization of Nash-solvability was obtained for the two-person
game forms whose digraphs are bidirected: (v′, v′′) ∈ E if and only if (v′′, v′) ∈ E.

In [2], Nash-solvability of positional game forms was studied (for a more gen-
eral class of payoff functions, so-called additive or integral payoffs, yet) with the
following additional restriction:

(ii’) The outcome c, infinite play, is ranked as the worst one by all players.
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Under assumption (ii’), Nash-solvability was proven in three cases:

(a) Two-person games (n = |I| = 2);
(b) Games with at most three outcomes (|A| ≤ 3);
(c) Play-once games: each player controls only one position (|Vi| = 1 ∀ i ∈ I).

However, it was also conjectured in [2] that Nash-solvability holds in general.

Conjecture 1. ([2]) A positional game is Nash-solvabile whenever (ii’) holds.

This Conjecture would be implied by the following statement: every im-cycle
X = {x1, . . . , xk} ⊆ X contains a strategy profile xj such that the corresponding
play p(xj) is infinite.

Indeed, Conjecture 1 would follow, since outcome c ∈ A being the worst for all
players, belongs to no im-cycle. However, the example of Section 2.2 will show
that such an approach fails. Nevertheless, Conjecture 1 is not disproved. More-
over, a stronger conjecture was recently suggested by Gimbert and Sørensen, [5].
They assumed that, in case of terminal payoffs, condition (ii’) is not needed.

Conjecture 2. A positional game is Nash-solvable if all cycles are one outcome.

They gave a simple and elegant proof for the two-person case. With their per-
mission, we reproduce it in Section 5.

1.4 Restricted Improvement Cycles and Acyclicity

Improvement Cycles in Trees. Kukushkin [9,10] was the first to consider
im-cycles in positional games. He restricted himself to trees and observed that
even in this case im-cycles can exist; see example in Figure 1.

However, it is easy to see that unnecessary changes of strategies take place
in this im-cycle. For example, let us consider transition from x1 = (x1

1, x
2
2) to

x2 = (x1
1, x

3
2). Player 1 keeps his strategy x1

1, while 2 substitutes x3
2 for x2

2 and
gets a profit, since g(x1

1, x
2
2) = a1, g(x1

1, x
3
2) = a2, and u2(a1) < u2(a2).

Yet, player 2 switches simultaneously from a4 to a3. Obviously, this cannot
serve any practical purpose, since the strategy is changed outside the actual play.

In [9], Kukushkin also introduced the concept of restricted improvements (ri).
In particular, he proved that positional games on trees become ri-acyclic if play-
ers are not allowed to change their decisions outside the actual play.

Since we consider arbitrary finite digraphs (not only trees), let us define ac-
curately several types of restrictions for this more general case. The restriction
considered by Kukushkin is what we call the inside play restriction.

Inside Play Restriction. Given a positional game form G = (G, D, v0) and
strategy profile x0 = (x0

i , i ∈ I) ∈ X , let us consider the corresponding play
p0 = p(x0) and outcome a0 = a(x0) ∈ A. This outcome is either a terminal,
a0 ∈ VT , or a cycle, a0 = c.

Let us consider the strategy x0
i of a player i ∈ I. He is allowed to change his

decision in any position v1 from p0. This change will result in a new strategy
profile x1, play p1 = p(x1), and outcome a1 = a(x1) ∈ A.
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⎡
⎣ a1 a1 → a2 a2

↑ ↓
a3 a4 ← a3 a4

⎤
⎦1 : a2 < a3, a4 < a1

2 : a1 < a2, a3 < a4

Fig. 1. Im-cycle in a tree. Bold arrows indicate chosen moves, and the black ones have
changed from the previous strategy profile. The induced preference relations are shown
on the left. The matrix on the right shows the normal form of the game.

Then, player i may proceed, changing his strategy further. Now, he is only
allowed to change the decision in any position v2 that is located after v1 in p1,
etc., until a position vm, strategy profile xm, play pm = p(xm), and outcome
am = a(xm) ∈ A appears; see Figure 2, where m = 3.

Equivalently, we can say that all positions v1, . . . , vm belong to one play.
Note that, by construction, obtained plays {p0, p1, . . . , pm} are pairwise dis-

tinct. In contrast, the corresponding outcomes {a0, a1, . . . , am} can coincide and
some of them might be the infinite play outcome c ∈ A.

Whenever the acting player i substitutes the strategy xm
i , defined above, for

the original strategy x0
i , we say that this is an inside play deviation, or in other

words, that this change of decision in x satisfies the inside play restriction.
It is easy, but important, to notice that this restriction, in fact, does not limit

the power of a player. More precisely, if a player i can reach an outcome am from
x by a deviation then i can also reach am by an inside play deviation.

From now on, we will consider only such inside play restricted deviations and,
in particular, only restricted improvements (ri) and talk about ri-cycles and
ri-acyclicity rather than im-cycles and im-acyclicity, respectively.

Types of Improvements. We define the following four types of improvements:

Standard improvement (or just improvement): ui(am) > ui(a0);
Strong improvement: ui(am) > ui(aj) for j = 0, 1, . . . , m− 1;
Last step improvement: ui(am) > ui(am−1);
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a0

a1

a2

a3

Fig. 2. Inside play restriction

Best reply (BR) improvement: am is the best outcome that player i can
reach from x (as we already noticed above, the inside play restriction does
not restrict the set of reachable outcomes).

Obviously, each best reply or strong improvement is a standard improvement,
and a strong improvement is also a last step improvement. Furthermore, it is
easy to verify that no other containments hold between the above four classes.
For example, a last step improvement might not be an improvement and vice
versa.

We will consider ri-cycles and ri-acyclicity specifying in each case a type of
improvement from the above list.

Let us note that any type of ri-acyclicity still implies Nash-solvability.
Indeed, if a positional game has no NE then for every strategy profile x ∈ X

there is a player i ∈ I who can improve x to some other profile x′ ∈ X . In
particular, i can always choose a strong BR restricted improvement. Since we
consider only finite games, such an iterative procedure will result in a strong BR
ri-cycle. Equivalently, if we assume that there is no such cycle then the considered
game is Nash-solvable; in other words, already strong BR ri-acyclicity implies
Nash-solvability.

1.5 Sufficient Conditions for Ri-acyclicity

We start with Kukushkin’s result for trees.

Theorem 1. ([9]). Positional games on trees have no restricted standard im-
provement cycles.

After trees, it seems natural to consider acyclic digraphs. We asked Kukushkin [11]
whether he had a generalization of Theorem 1 for this case. He had not considered
it yet, but shortly thereafter produced a result that can be modified as follows.

Theorem 2. Positional games on acyclic digraphs have no restricted last step
improvement cycles.

Let us notice that Theorem 1 does not result immediately from Theorem 2, since
a standard improvement might be not a last step improvement.

Finally, in case of two players the following statement holds.
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Theorem 3. Two-person positional games have no restricted strong improve-
ment cycles.

Obviously, Theorem 3 implies Nash-solvability of two-person positional games;
see Section 5 for an independent proof by Gimbert and Sørensen.

Theorems 2 and 3 are proved in Sections 3 and 4, respectively.

2 Examples of Ri-cycles; Limits of Theorems 1, 2, and 3

In this paper, we emphasize negative results showing that it is unlikely to
strengthen one of the above theorems or obtain other criteria of ri-acyclicity.

2.1 Example Limiting Theorems 2 and 3

For both Theorems 2 and 3, the specified type of improvement is essential.
Indeed, the example in Figure 3 shows that a two-person game on an acyclic
digraph can have a ri-cycle. However, it is not difficult to see that in this ri-cycle,
not all improvements are strong and some are not even last step improvements.

Thus, all conditions of Theorems 2 and 3 are essential.
Furthermore, we note that if in Theorem 3 we substitute BR improvement for

strong improvement, the modified statement will not hold, see Figure 4.
By definition, every change of strategy must result in an improvement for the

corresponding player. Hence, each such change implies an ordering of the two
outcomes; in our figures, it appears as a label on the transition arrow between
situations. An entire im-cycle implies a set of inequalities, which must be satisfi-
able in order to allow a consistent preference profile. Note that it is also sufficient
to allow ties and have a partial ordering of the outcomes.

2.2 On c-free Ri-cycles

In Section 1.3, we demonstrated that Conjecture 1 on Nash-solvability would
result from the following statement: (i) There are no c-free im-cycles.

Of course, (i) fails. As we know, im-cycles exist already in trees; see Figure 1.
However, let us substitute (i) by the similar but much weaker statement:

(ii) Every restricted strong BR ri-cycle contains a strategy profile whose out-
come is infinite play.

One can derive Conjecture 1 from (ii), as well as from (i). Yet, (ii) also fails.
Indeed, let us consider the ri-cycle in Figure 5. This game is play-once; each
player controls only one position. Moreover, there are only two possible moves
in each position. For this reason, every ri-cycle in this game is BR and strong.

There are seven players (n = 7) in this example, yet, by teaming up players in
coalitions we can reduce the number of players to four while the improvements
remain BR and strong. Indeed, this can be done by forming three coalitions
{1, 7}, {3, 5}, {4, 6} and merging the preferences of the coalitionists. The required
extra constraints on the preferences of the coalitions are also shown in Figure 5.
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Fig. 3. 2-person ri-cycle in an acyclic digraph. Beneath each situation is a graph of
outcomes with edges defined by the previous improvement steps; these will be of illus-
trative importance in the proof of Theorem 3.
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Fig. 4. 2-person BR ri-cycle in graph with cycles

It is easy to see that inconsistent (i.e., cyclic) preferences appear whenever
any three players form a coalition. Hence, the number of coalitions cannot be
reduced below 4, and it is, in fact, not possible to form 4 coalitions in any other
way while keeping improvements BR and strong.
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Fig. 5. c-free strong BR ri-cycle
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Obviously, for the two-person case, (ii) follows from Theorem 3.

Remark 3. We should confess that our original motivation fails. It is hardly
possible to derive new results on Nash-solvability from ri-acyclicity. Although,
ri-acyclicity is much weaker than im-acyclicity, it is still too much stronger than
Nash-solvability. In general, by Theorems 3 and 2, ri-acyclicity holds for n = 2
and for acyclic digraphs. Yet, for these two cases Nash-solvability is known.

It is still possible that (ii) (and, hence, Conjecture 1) holds for n = 3, too.
Strong BR ri-cycles in which the infinite play outcome c occurs do exist for
n = 3, however. Such an example is provided in Figure 6.

However, ri-acyclicity is of independent (of Nash-solvability) interest. In this
paper, we study ri-acyclicity for the case when each terminal is a separate out-
come, while all directed cycles form one special outcome. For the alternative
case, when each terminal and each directed cycle is a separate outcome, Nash-
solvability was considered in [3], while ri-acyclicity was never studied.

3 Proof of Theorem 2

Given a positional game (G, u) = (G, D, v0, u)whose digraphG = (V, E) is acyclic,
let us order positions of V so that v < v′ whenever there is a directed path from
v to v′. To do so, let us assign to each position v ∈ V the length of a longest path
from v0 to v and then order arbitrarily positions with equal numbers.

Given a strategy profile x, let us, for every i ∈ I, assign to each position
v ∈ Vi the outcome a(v, x) which x would result in starting from v and the num-
ber ui(a(v, x)). These numbers form a |V \ VT |-dimensional vector y(x) whose
coordinates are assigned to positions v ∈ V \ VT . Since these positions are or-
dered, we can introduce the inverse lexicographic order over such vectors y.

Let a player i ∈ I choose a last step ri-deviation x′
i from xi. Then, y(x′) >

y(x), since the last changed coordinate increased: ui(ak) > ui(ak−1). Hence, no
last step ri-cycle can exist. ��

4 Proof of Theorem 3

Let us consider a two-person positional game G = (G, D, v0, u) and a strategy
profile x such that in the resulting play p = p(x) the terminal move (v, a) belongs
to a player i ∈ I. Then, a strong improvement x′

i results in a terminal a′ = p(x′)
such that ui(a′) > ui(a). (This holds for n-person games, as well.)

Given a strong ri-cycle X = {x1, . . . , xk} ∈ X , let us assume, without any loss
of generality, that the game (G, D, v0, u) is minimal with respect to X , that is,
the ri-cycle X is broken by eliminating any move from G. Furthermore, let A(X )
denote the set of the corresponding outcomes: A(X ) = {a(xj), j = 1, . . . , k}.
Note that several of the outcomes of the strategy profiles may be the same and
that A(X ) may contain c ∈ A (infinite play).

Let us introduce the directed multigraph E = E(X ) whose vertex-set is A(X )
and the directed edges are k pairs (aj , aj+1), where aj = a(xj), j = 1, . . . , k,
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and k + 1 = 1. It is easy to see that E is Eulerian, i.e., E is strongly connected
and for each vertex its in-degree and out-degree are equal. An example of this
construction is shown in Figure 3.

Let E1 and E2 be the subgraphs of E induced by the edges corresponding to
deviations of players 1 and 2, respectively. Then, E1 and E2 are acyclic, since a
cycle would imply an inconsistent preference relation. In the example of Figure
3, the edges are partitioned accordingly (above and below the vertices), and the
subgraphs are indeed acyclic.

Hence, there is a vertex a1 whose out-degree in E1 and in-degree in E2 both
equal 0. In fact, an outcome a1 ∈ A(X ) most preferred by player 1 must have
this property. (We do not exclude ties in preferences; if there are several best
outcomes of player 1 then a1 can be any of them.) Similarly, we define a vertex
a2 whose in-degree in E1 and out-degree in E2 both equal 0.

Let us remark that either a1 or a2 might be equal to c, yet, not both. Thus,
without loss of generality, we can assume that a1 is a terminal outcome.

Obviously, a player, 1 or 2, has a move to a1. If 1 has such a move then it
cannot be improved in X , since u1(aj) ≤ u1(a1) for all j = 1, . . . , k and X is a
strong ri-cycle. Let us also recall that a1 has no incoming edges in E2. Hence, in
X , player 2 never makes an improvement that results in a1. In other words, a
player who has a move to a1 will make it either always, player 1, or never, player
2. In both cases we obtain a contradiction with the minimality of digraph G. ��

5 Nash-Solvability of Two-Person Game Forms

If n = 2 and c ∈ A is the worst outcome for both players, Nash-solvability was
proven in [2]. In fact, the last assumption is not necessary: even if outcome c is
ranked by two players arbitrarily, Nash-solvability still holds. This observation
was recently made by Gimbert and Sørensen.

A two-person game form g is called:
Nash-solvable if for every utility function u : {1, 2} × A → R the obtained

game (g, u) has a Nash equilibrium.
zero-sum-solvable if for each zero-sum utility function (u1(a) + u2(a) = 0 for

all a ∈ A) the obtained zero-sum game (g, u) has a Nash equilibrium, which is
called a saddle point for zero-sum games.
±-solvable if zero-sum solvability holds for each u that takes only values: +1

and −1.
Necessary and sufficient conditions for zero-sum solvability were obtained

by Edmonds and Fulkerson [4] in 1970; see also [6]. Somewhat surprisingly,
these conditions remain necessary and sufficient for ±-solvability and for Nash-
solvability, as well; in other words, all three above types of solvability are equiv-
alent, in case of two-person game forms [7]; see also [8] and Appendix 1 of [3].

Proposition 1. ([5]). Each two-person positional game form in which all cycles
form one outcome is Nash-solvable.

Proof. Let G = (G, D, v0, u) be a two-person zero-sum positional game, where
u : I × A → {−1, +1} is a zero-sum ±1 utility function. Let Ai ⊆ A denote
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the outcomes winning for player i ∈ I = {1, 2}. Without any loss of generality
we can assume that c ∈ A1, that is, u1(c) = 1, while u2(c) = −1. Let V 2 ⊆ V
denote the set of positions in which player 2 can enforce a terminal from A2.
Then, obviously, player 2 wins whenever v0 ∈ V 2. Let us prove that player 1
wins otherwise, when v0 ∈ V 1 = V \ V 2.

Indeed, if v ∈ V 1 ∩ V2 then v′ ∈ V 1 for every move (v, v′) of player 2; if
v ∈ V 1 ∩ V1 then player 1 has a move (v, v′) such that v′ ∈ V1. Let player 1
choose such a move for every position v ∈ V 1∩V1 and an arbitrary move in each
remaining position v ∈ V 2 ∩ V1. This rule defines a strategy x1. Let us fix an
arbitrary strategy x2 of player 2 and consider the profile x = (x1, x2). Obviously,
the play p(x) cannot come to V2 if v0 ∈ V1. Hence, for the outcome a = a(x)
we have: either a ∈ V 1 or a = c. In both cases player 1 wins. Thus, the game is
Nash-solvable. ��
Let us recall that this result also follows immediately from Theorem 3.

Finally, let us briefly consider a refinement of the Nash equilibrium concept,
the so-called subgame perfect equilibrium, where a strategy profile is an equilib-
rium regardless of the choice of starting position.
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1 : a2 < a1 < c

2 : c < a2 < a1

Fig. 7. Two-person game with no subgame perfect positional strategies. The improve-
ments do not obey any inside play restriction, since there is no fixed starting position.

It is not difficult to see that already for two-person games a Nash equilibrium
can be unique but not subgame perfect. Let us consider the example in Figure 7.
There are only four different strategy profiles and for all of them there is a choice
of starting position for which the profile is not an equilibrium.

6 Conclusions and Open Problems

Nash-solvability of n-person positional games (in which all directed cycles form
a single outcome) holds for n = 2 and remains an open problem for n > 2. For
n = 2, we prove strong ri-acyclicity, which implies Nash-solvability. Computing
Nash equilibria efficiently is another interesting issue for further investigation.
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For n ≥ 4 there are examples of best reply strong c-free ri-cycles. Yet, it
remains open whether such c-free examples exist for n = 3.
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Abstract. In this paper we introduce a discrete version of the online
traveling salesman problem (DOLTSP). We represent the metric space
using a weighted graph, where the server is allowed to modify its route
only at the vertices. This limitation directly affects the capacity of the
server to react and increases the risk related to each decision. We prove
lower bounds on the performance of deterministic online algorithms in
different scenarios of DOLTSP, and we present distinct algorithms for
the problem, some of them achieving the best possible performance. We
measure the performance of the algorithms using competitive analysis,
the most widely accepted method for evaluating online algorithms. Be-
sides, we perform an empirical simulation on paths, generating a signif-
icant set of instances and measuring the quality of the solutions given
by each algorithm. Our experiments show that algorithms with the best
competitive ratio do not have the best performance in practice.

Keywords: TSP, discrete metric spaces, online algorithms.

1 Introduction

Numerous variations of the Vehicle Routing Problem (VRP) have been de-
fined [1,2,3,4]. Many of these variations assume that the input is completely
known when the solution is computed. However, there are many situations in
which decisions must be made based on partial information, and the solution
must be built or even executed before the input is completely known, what
is usually known as online optimization [5,6]. Think for example of a salesman
with a cellular phone, or a fleet of vehicles equipped with radios that must collect
and deliver packages at different locations, and many other transportation prob-
lems in which the itinerary can be modified during its execution. In the online
versions of VRPs, a sequence of requests is posed to an algorithm that has to de-
cide how to move the servers to satisfy the requests without knowledge of future
requests.
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Previous works about online VRPs [7,8,9,10,1,11] have considered that the
servers move in a continuous metric space. In this scenario the servers can change
direction at any time while they are moving from one point to another. How-
ever, in some applications this may not be the case, and it is preferable to
model the problem using a discrete metric space. For example, if a server is on
a road network of freeways and a request arrives while the server is moving be-
tween two exits, the server has to proceed to the next exit before being able to
change its plan. Online routing on discrete metric spaces appears a priori to be
“harder” than the continuous counterpart, as in the former there are less oppor-
tunities to revise the plan, and thus the risk associated to each decision may be
higher.

In this paper we consider the online version of the Traveling Salesman Problem
(TSP) on discrete metric spaces. We call this variant Discrete Online Traveling
Salesman Problem (DOLTSP). In an instance of DOLTSP, a server that travels
at unit speed must visit the vertices of a graph in order to satisfy requests that
are presented along time, finishing the service as early as possible. As in previous
works about online routing, we consider two versions of the problem: one Homing
(HDOLTSP), in which the journey of the server must finish at the same vertex
where it starts, and one Nomadic (NDOLTSP), in which it can finish anywhere
in the graph. Note that the associated offline problems are the same as in the
continuous case, namely the Vehicle Routing Problem with release times [12].

We propose deterministic online algorithms for the two versions of DOLTSP,
and we measure their performance using competitive analysis [13]. In this widely
used framework the cost of an algorithm is compared to that of an optimal offline
adversary that knows the whole input in advance. We consider two types of ad-
versaries: a standard adversary with unrestricted power, and a fair adversary [10]
that must keep the server inside the region where requests have already been
presented. We analyze two classes of online algorithms: zealous algorithms [10]
that keep working while there is something to do, and cautious algorithms that
may halt the server even when there is pending work.

Most of our results hold on any (non trivial) graph. However, sometimes we
focus our attention on paths, i.e. graphs in which the server can only move in
two opposite directions which we refer as “left” (or negative) and “right” (or
positive). Moreover, certain results are only valid for halfpaths, that are paths
where the starting vertex is the leftmost one. Notice that paths and halfpaths
are the discrete analogons of the real line and halfline, respectively. This family
of graphs allows to capture many interesting applications, like the previously
mentioned of a highway, an elevator, a stacker-crane moving on a track, or the
radial movement of the read/write head in a hard disc drive.

A summary of our theoretical results is given in Table 1, where lower bounds
that hold on any graph appear in boldface. The two lower bounds not in bold-
face are valid on halfpaths with a certain distribution of vertices (and then also
on paths and trees). We found that, in general, DOLTSP is harder than its
continuous counterpart. As expected, HDOLTSP is easier than NDOLTSP, the
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Table 1. Summary of theoretical results

zealous cautious
lower upper bound lower upper bound
bound path general bound halfpath general

Homing fair 2 2 3 ≈ 1.618 ≈ 1.618 ≈ 2.618 [8]
standard 2 2 3 ≈ 1.707 ≈ 1.707 ≈ 2.618 [8]

Nomadic fair 3 3 3 ≈ 1.839 2 (unknown)
standard 3 3 3 2 2 (unknown)

fair adversary is weaker than the standard one, and zealous algorithms are weaker
than cautious ones.1

Besides, we perform empirical simulations on paths. We find that in practice
the zealous strategies we devised are better than the cautious ones. Nevertheless,
the empirical studies also ratify the idea that waiting is profitable in a worst case
sense.

2 Basic Definitions and Notation

2.1 DOLTSP

The input of DOLTSP consists of a graph G = (V, E) with a positive length
associated to each edge e ∈ E, a distinguished vertex o ∈ V (the origin), and
a sequence σ of requests ri = (ti, vi), where vi ∈ V , and ti ∈ IR≥0 is a release
time representing the moment at which ri is presented. These moments form an
ordered sequence in the sense that ti ≤ tj if i < j. At time 0 a server is located
at the origin o, and must serve all requests. With this purpose it has to move
through the edges of E at unit speed and visit each vertex vi at some moment not
earlier than ti. The server cannot change direction while traversing and edge. We
consider two variants of DOLTSP: in Homing DOLTSP (HDOLTSP) the server
must return to the origin after serving all requests, while in Nomadic DOLTSP
(NDOLTSP) the journey can finish anywhere.

For every pair of vertices v, w ∈ V we denote with d(v, w) = d(w, v) the
distance between them, that is, the length of a shortest path joining them. We
denote with v̄ the distance of v to the origin o. We assume that the graph G is not
trivial (it has at least one vertex apart from o), and that all lengths associated
to edges satisfy the triangle inequality.
1 In the Online Asymmetric Traveling Salesman Problem (OL-ATSP) a server moves in

a not necessarily symmetric space [8]. This problem can be viewed as a generalization
of DOLTSP, by replacing each edge of the graph by two directed arcs of the same
length, and considering a particular notion of distance (the cost of changing direction
while traversing an arc from x to y, is the cost of reaching y plus the cost of going
back to x). Thus, the algorithms presented in [8] mantain their performance when
they are used for DOLTSP. However, we obtain strictly better performances on paths
and for NDOLTSP.
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An algorithm for DOLTSP must decide the movements of the server with the
goal of ending its work as soon as possible. An online algorithm has to execute
each movement without knowledge of unreleased requests. On the contrary, an
offline algorithm can decide based on the whole sequence of requests.

2.2 Competitive Analysis and Adversaries

Competitive analysis [13,14] is a type of worst case analysis where the perfor-
mance of an algorithm for a problem is compared to that of an optimal offline
algorithm. The measure of performance used in competitive analysis is the com-
petitive ratio. We say that an algorithm ALG for DOLTSP is ρ-competitive if and
only if for every sequence of request σ we have CALG(σ) ≤ ρ · COPT(σ), where
CALG(σ) is the cost of ALG for σ, and COPT(σ) is the cost of an optimal offline
algorithm that knows the whole input sequence in advance.

It is usually useful to see competitive analysis as a game between an online
player and an offline adversary. The former tries to find a good solution for a
sequence of requests generated by the latter, who knows the online strategy and
tries to maximize the ratio between both costs. Thus, we use the terms optimal
offline algorithm and adversary interchangeably.

Competitive analysis is sometimes criticized for its excessive pessimism [15].
With the aim of attenuating this situation, different alternative measures have
been proposed. One of them is known as comparative analysis, in which the
adversary is restricted in some sense. For online routing problems, a form of
comparative analysis consists of using, instead of a standard, unrestricted ad-
versary, a fair adversary that is required to move the server inside the region
where requests have already been presented. Fair adversaries have been originally
proposed in [10] for (continuous) OLTSP. For DOLTSP we define this class of
adversaries as follows. At any given moment t, the fair region is the closure
under shortest paths of the set of vertices formed by the origin and the vertices
where requests have been presented. An adversary is fair if at every moment its
server is in the subgraph induced by the fair region at that moment.

3 Zealous Algorithms

In this section we propose and analyze simple and intuitive online algorithms
for DOLTSP. As we will see, these algorithms are members of a natural class of
algorithms that keep working as long as there is something to do.

The first online algorithm is known as Replan (REP). This algorithm was well
studied in the context of distinct online optimization problems, and it consists
of adjusting the solution each time a new request is presented. In the case of
DOLTSP, this means computing a new itinerary that allows the server to satisfy
all pending requests in the least possible time. If new requests are presented
when the server is not at a vertex of the graph, the new route is computed as
soon as the server reaches a vertex.

We will analyze the performance of REP for the particular case of paths. For
doing that, we need to introduce the concept of extreme vertices.
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Definition 1. Given an instance of DOLTSP on a path, at any given moment
consider the set S of vertices that REP has yet to visit. This set contains the
vertices of unserved requests, and in HDOLTSP includes also the origin. We
call left (resp. right) extreme the leftmost (resp. rightmost) vertex of S.

Note that for HDOLTSP on paths, the left (resp. right) extreme is located in the
left (resp. right) halfpath. However, one or both extremes could be the origin.
This implies that at least one of the extremes is in the same halfpath where the
server is. Among the extremes that are in the same halfpath that the server,
let F be the extreme that is farthest from the origin. It is easy to see that for
HDOLTSP on paths the route computed by REP is as follows: move to extreme
F , then to the other extreme, and finally to the origin.

In NDOLTSP we cannot assume any order between the extremes and the
origin. However, the route computed by REP is simpler: move to the extreme
that is nearest to the server, and then to the other extreme.

Knowing the routes computed by REP for DOLTSP on paths, we are ready to
analyze its competitiveness. The following results show that REP is 2-competitive
for HDOLTSP and 3-competitive for NDOLTSP. This is valid on any path (even
a halfpath) against both fair and standard adversaries.

Theorem 2. Algorithm REP is 2-competitive for HDOLTSP on any path against
both fair and standard adversaries.

Proof. Let σ be any sequence of requests. Let L and R be respectively the
leftmost and rightmost vertices that must be visited to serve all the requests of
σ, including the origin. Clearly, at any moment, the left and right extremes are
located between L and R. More precisely, the left extreme is between L and the
origin, and the right extreme is between the origin and R. Besides, the server
of REP is always between L and R, because it only moves to serve a request or
to return to the origin. Let T be the moment in which the last request of σ is
presented. Two situations can occur.

1. At time T , the online server is at a vertex or traversing an edge that moves
it away from the origin. To complete its work, the server will first move to
an extreme, then to the other extreme, and finally to the origin, ending at
most at time T + 2L̄ + 2R̄. Since T and 2L̄ + 2R̄ are lower bounds to the
optimal offline cost, we have

CREP(σ)
COPT(σ)

≤ T

COPT(σ)
+

2L̄ + 2R̄

COPT(σ)
≤ 2.

2. At time T , the online server is traversing an edge that brings it nearer to
the origin. Let v �= o be the vertex where that move starts. We know that v
is between L and R. There are two possibilities.
(a) After the server leaves v, no new request is presented at v or at any other

vertex in the same halfpath farther away from the origin than v. As in
the previous situation, the server will first move to an extreme, then to
the other extreme, and finally to the origin, with a total cost of at most
T + 2L̄ + 2R̄. And again, this is at most twice the optimal offline cost.
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(b) The last situation is when at least one of those requests is presented. Let
r be one of them, presented at time t at vertex x. Clearly, the length
of the edge that the online server is traversing is at most x̄ and, as we
said, the movement started before time t. Then, before time t + x̄ the
server arrives to a vertex and can replan its tour, ending its job at most
at time t + x̄ + 2L̄ + 2R̄. Since the optimal offline cost is lower bounded
by t + x̄ and by 2L̄ + 2R̄, we obtain

CREP(σ)
COPT(σ)

≤ t + x̄

COPT(σ)
+

2L̄ + 2R̄

COPT(σ)
≤ 2. ��

Theorem 3. Algorithm REP is 3-competitive for NDOLTSP on any path against
both fair and standard adversaries.

Proof. Let σ be any sequence of requests. Let L, R and T be as in the previous
proof, and note that also in NDOLTSP the server of REP is always between L and
R. Until time T the cost of the algorithm is obviously T . Consider the route of
the server from this moment on. If the server is traversing and edge, it completes
the movement, and then the server moves to its nearest extreme, with a total
cost of at most d(L, R), that is, the distance between L and R. To complete its
job, the server moves to the other extreme, again with a cost of at most d(L, R).
Since T and d(L, R) are lower bounds for the optimal offline cost, we have

CREP(σ)
COPT(σ)

≤ T

COPT(σ)
+

2d(L, R)
COPT(σ)

≤ 3 ��

Our second online algorithm for DOLTSP is called Zig-Zag (ZZG), and it is
defined only on paths. The algorithm repeatedly moves the server to the left and
to the right while there are pending requests in each direction. In HDOLTSP,
while there are no pending requests, ZZG moves the server towards the origin.

The following results show that ZZG can achieve the same competitive ratios
we obtained for REP. The proofs are very similar to those of Theorem 2 and
Theorem 3.

Theorem 4. Algorithm ZZG is 2-competitive for HDOLTSP on any path against
both fair and standard adversaries.

Theorem 5. Algorithm ZZG is 3-competitive for NDOLTSP on any path against
both fair and standard adversaries.

Our last online algorithm for DOLTSP is called Delayed Replan (DREP), and it is
very similar to REP. The only difference is that when a new request is presented,
DREP delays the computation of a new optimal tour until the server is at the
origin or it has just served a request. This implies that at any given moment the
server of DREP is on a shortest path from x to y, with x and y being the origin or
vertices where requests have been presented. According to the following results,
DREP is 3-competitive on any graph, in all versions of DOLTSP.
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Theorem 6. Algorithm DREP is 3-competitive for HDOLTSP on any graph
against both fair and standard adversaries.

Proof. Let σ be any sequence of requests, and let T be the moment in which the
last request is presented. WLOG, assume that at time T the server of DREP is
on a shortest path from x to y, with x and y being the origin or vertices where
requests have been presented. Once the server reaches y, it will follow an optimal
tour that serves all the pending requests ending at the origin. Since the server
can always go from y to the origin and then follow an optimal offline tour for
σ, the cost of the last tour of DREP is at most ȳ + COPT(σ). Besides, the server
of any algorithm must visit x and y, and return to the origin, which implies
ȳ + d(x, y) ≤ COPT(σ). Putting all the above things together we obtain

CDREP(σ)
COPT(σ)

≤ T + d(x, y) + ȳ + COPT(σ)
COPT(σ)

≤ 3. ��

Theorem 7. Algorithm DREP is 3-competitive for NDOLTSP on any graph
against both fair and standard adversaries.

Proof. Let σ, T , x and y be as in the previous proof. Let a be the ending vertex of
an optimal offline tour for σ. Once the server reaches y, it will follow an optimal
tour that serves all the pending requests. Since the server can always go from y
to either the origin or a, and then follow an optimal offline tour for σ, the cost
of the last tour of DREP is at most min(ȳ, d(y, a)) + COPT(σ). Finally, the server
of any algorithm must visit x and y, being d(x, y) + d(y, a) ≤ COPT(σ) if OPT
goes first to x, and ȳ + d(y, x) ≤ COPT(σ) otherwise. Therefore we have

CDREP(σ)
COPT(σ)

≤ T + d(x, y) + [min(ȳ, d(y, a)) + COPT(σ)]
COPT(σ)

≤ 3. ��

Algorithms REP, ZZG and DREP are members of a very natural class of algorithms,
namely zealous algorithms. The idea behind them is simple: whenever there is
pending work, do it without wasting time. Zealous algorithms were introduced
in [10] for (continuous) OLTSP. As mentioned in that work, a formal definition
of zealous algorithms requires some care. This is particularly true for DOLTSP
because the server can change direction only at the vertices.

Definition 8. An online algorithm for DOLTSP is called zealous if and only if
each time the server is at any vertex, the following conditions are met.

1. If there are pending requests, the server moves to serve one of them or to
the origin using a shortest path.

2. In HDOLTSP, if there are no pending requests, the server moves to the origin
using a shortest path.

3. If the server arrived to the vertex while traveling to another one, it can change
the planned tour only if a new request has been presented after leaving the
previous vertex in the route.
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Now we have a precise description of zealous online algorithms for DOLTSP, we
are able to prove lower bounds on their competitiveness. Our lower bounds are
valid on any graph against both fair and standard adversaries.

Theorem 9. No zealous online algorithm for HDOLTSP on any graph is better
than 2-competitive against neither fair nor standard adversaries.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x. Since the online algorithm is zealous, it starts moving the server to
x immediately. Once r1 is served at time x̄, there are no pending requests, so
the server starts moving to the origin. At this moment request r2 is presented
again at vertex x, but the server must arrive to the origin before it can return
to x. Once r2 is satisfied, the server goes again to the origin, with a total cost of
at least 4x̄. The adversary can serve both requests at time x̄ moving its server
only once to x, and then returning it to the origin, with a total cost of at most
2x̄, which proves the claim. ��
Theorem 10. No zealous online algorithm for NDOLTSP on any graph is better
than 3-competitive against neither fair nor standard adversaries.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x, and the zealous algorithm starts moving its server to x immediately.
At this moment request r2 is presented at the origin, but the server must com-
plete its movement to x (at time x̄), and then it starts returning to the origin.
At this moment request r3 is presented at vertex x, but the server must reach
the origin (at time 2x̄), and then it goes again to x, with a total cost of 3x̄. The
adversary can end its job at time x̄, serving r2 at time 0 at the origin, and the
other requests at time x̄ at vertex x, which completes the proof. ��
Note that in most of the cases our zealous algorithms REP, ZZG and DREP achieve
competitive ratios coincident with the lower bounds we have just presented. More
precisely, REP and ZZG are optimal zealous algorithms for DOLTSP on paths,
while DREP is optimal for the Nomadic problem on any graph. This implies that
in general the competitiveness achievable by zealous algorithms for DOLTSP
does not depend on the type of adversary: the lower bounds of Theorem 9 and
Theorem 10 are the same against both fair and standard adversaries, and those
lower bounds are achieved in most of the cases.

Another interesting observation is that HDOLTSP is easier than NDOLTSP,
at least on paths, since optimal zealous algorithms for HDOLTSP on paths are
2-competitive, while for NDOLTSP we have 3-competitive optimal algorithms.
This is not surprising, if we consider that online algorithms for HDOLTSP have
an extra bit of information: the server must always end at the origin.

In [8] it was proved that a zealous algorithm called Plan At Home is 3-
competitive for (continuous) Homing OL-ATSP. Since OL-ATSP can be viewed
as a generalization of DOLTSP, that result can be applied to our problem, achiev-
ing the same upper bound as Theorem 6.
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4 General Lower Bounds

Lower bounds shown in Sect. 3 use the fact that the online algorithms are zealous.
In this section we remove this restriction and present lower bounds valid for any
online algorithm for DOLTSP. Some of the lower bounds hold on any graph,
while others need a special distribution of the vertices.

We will start with HDOLTSP (Theorem 11 and Theorem 12), and then we
will consider NDOLTSP (Theorem 13 and Theorem 14).

Theorem 11. No online algorithm for HDOLTSP on any graph is better than
ρ-competitive against a fair adversary, with ρ = 1+

√
5

2 ≈ 1.618.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x. The online server must visit x and return to the origin at a certain
moment, because we are in the Homing problem. Let τ ≥ x̄ be the moment in
which the online server starts moving to the origin after serving r1. If τ+x̄ ≥ 2x̄ρ,
no more requests are presented. In this case the online server arrives to the origin
not before time τ + x̄, while the adversary can move its server to x and return
it to the origin at time 2x̄, so we have

CALG(σ)
COPT(σ)

≥ τ + x̄

2x̄
≥ 2x̄ρ

2x̄
= ρ.

On the other hand, if τ + x̄ < 2x̄ρ, a new request r2 is presented at time τ
at vertex x. In this situation the adversary can serve both requests at time τ ,
with a total cost of at most τ + x̄. The online cost is at least τ + 3x̄, because
when the online server reaches the origin after serving r1, it must visit again x
and return again to the origin. Therefore we have

CALG(σ)
COPT(σ)

≥ τ + 3x̄

τ + x̄
= 1 +

2x̄

τ + x̄
> 1 +

2x̄

2x̄ρ
= 1 +

1
ρ

= ρ. ��

Theorem 12. There exists a family of halfpaths where no online algorithm for
HDOLTSP is better than ρ-competitive against a standard adversary, with ρ =
2+

√
2

2 ≈ 1.707.

Theorem 13. No online algorithm for NDOLTSP on any graph is better than ρ-

competitive against a fair adversary, with ρ = 1+ 3
√

19−3
√

33 + 3
√

19+3
√

33
3 ≈ 1.839.

Proof. Let x be the closest vertex to the origin. At time 0 request r1 is presented
at vertex x. Let τ1 ≥ 0 be the moment in which the online server leaves the
origin. If τ1 + x̄ ≥ ρx̄, the sequence of requests ends. The online server arrives
to x not before time τ1 + x̄, while the adversary can reach the vertex at time x̄,
and then we have

CALG(σ)
COPT(σ)

≥ τ1 + x̄

x̄
≥ ρx̄

x̄
= ρ .

On the contrary, if τ1 + x̄ < ρx̄, request r2 is presented at time τ1 at the
origin. Let τ2 ≥ τ1 + x̄ be the moment in which the online server starts moving



38 M. Aprea et al.

to the origin for serving r2. If τ2 + x̄ ≥ ρ(τ1 + x̄), no more requests are presented.
In this case the cost of the online algorithm is at least τ2 + x̄, because its server
must arrive to the origin. Since the adversary can wait at the origin until time
τ1 for serving r2, and then move to x for serving r1, we obtain

CALG(σ)
COPT(σ)

≥ τ2 + x̄

τ1 + x̄
≥ ρ(τ1 + x̄)

τ1 + x̄
= ρ.

Finally, if τ1 + x̄ < ρx̄ and τ2 + x̄ < ρ(τ1 + x̄), request r3 is presented at time
τ2 at vertex x. In this situation the online cost is at least τ2 + 2x̄, because the
server must visit x after it arrives to the origin. Once again the adversary can
wait at the origin until time τ1 for serving r2, and then move to x for serving
r1, ending its job at time τ2 when r3 is presented. Therefore we have

CALG(σ)
COPT(σ)

≥ τ2 + 2x̄

τ2
> 1 +

2x̄

ρ(τ1 + x̄)− x̄
> 1 +

2x̄

ρ2x̄− x̄
= 1 +

2
ρ2 − 1

= ρ. ��

Theorem 14. There exists a family of paths where no online algorithm for
NDOLTSP is better than 2-competitive against a standard adversary.

Proof. Consider a path with at least two vertices x > 0 and −x. WLOG, assume
that at time x̄ the online server is in the left halfpath. At that moment, a single
request at vertex x is presented. The online cost is at least 2x̄, while the adversary
can serve the request at time x̄. ��
Notice that the last lower bound is valid on a certain group of paths that are
not halfpaths. It is essentially the same result presented in [9] for (continuous)
OLTSP. In the full version of this paper we prove that the same lower bound
holds on a particular group of halfpaths.

Online Dial-a-Ride Problem (OLDARP) generalizes (continuous) OLTSP to
the case in which requests are pairs of points and a server must take an ob-
ject from the first point to the second point. It is interesting to note that the
lower bounds of this section are very similar to the corresponding lower bounds
known for OLDARP on the real line. For instance, the lower bounds of The-
orem 11 and Theorem 12 are coincident with the lower bounds given in [11]
and [7] for Homing OLDARP on the real halfline against fair and standard ad-
versaries, respectively. While Theorem 11 uses the same idea presented in [11],
we derived Theorem 12 in a completely different way. The relation between our
lower bounds and those for OLDARP on the real line must be studied further.
However, a possible explanation for this phenomenon could be that, even though
OLDARP is defined on a continuous metric space, once the server picks up an
object it cannot satisfy other requests until the object is delivered. A similar
situation occurs in DOLTSP, where the server cannot change direction until it
arrives to the next vertex. A summary of results for OLDARP can be found
in [11].
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5 Cautious Algorithms

In Sect. 3 we saw that REP and ZZG achieve the best competitive ratio for zealous
online algorithms. However, those ratios are notably higher than the general
lower bounds shown in Sect. 4. It would be nice to have online algorithms with
competitiveness closer to these general lower bounds. In order to succeed, we
must consider a distinct class of algorithms.

An online cautious algorithm may wait without moving its server even when
there is pending work. New requests presented while the algorithm is waiting
(and even the absence of them), give additional information that the algorithm
can use to improve its performance. On the contrary, a zealous algorithm faced
with the same sequence of requests would take an early decision that could be
inappropriate a posteriori.

A key point in the design of a cautious online algorithm is to decide how
much time the server should wait when there is pending work. A longer wait-
ing increases the possibilities to obtain additional information. Nonetheless, the
caution must not be against the main goal of the algorithm, which is to minimize
the total time to complete its job.

Our cautious online algorithms aim at obtaining competitive ratios coincident
with the general lower bounds of Sect. 4. Each time a new request arrives the
algorithms compute how long the adversary needs to serve all the known re-
quests. Then, cautious algorithms wait just till the moment in which extending
the waiting time would prevent obtaining the desired competitiveness. A number
of online algorithms that wait taking into account the cost of the adversary were
considered for continuous problems related to DOLTSP, such as OLTSP [10,11],
OLDARP [7] and OL-ATSP [8].

We devised two cautious online algorithms using the general scheme described
above. The main difference between them is when they decide to wait. Our
first cautious algorithm is called Wait-Before-Return (WBR). The algorithm is
only defined for HDOLTSP on halfpaths. It serves as soon as possible pending
requests away from the origin. The remaining requests are satisfied when the
server returns to the origin. Before doing so, WBR waits as explained above.

The other cautious algorithm is Wait-Before-Begin (WBB). It is possible to use
this algorithm for both HDOLTSP and NDOLTSP, on any path (though we only
prove results for NDOLTSP on halfpaths). Each time the server is halted and
a new request is presented, WBB computes an optimal route that serves all the
pending requests. Before starting its tour, the algorithm waits according to the
general scheme explained above.

A more detailed description of WBR and WBB can be found in the full version of
this paper. The following results establish the competitiveness of the algorithms
in different variants of DOLTSP.

Theorem 15. Algorithm WBR is ρ-competitive for HDOLTSP on any halfpath,
with ρ = 1+

√
5

2 ≈ 1.618 against a fair adversary, and ρ = 2+
√

2
2 ≈ 1.707 against

a standard adversary.
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Theorem 16. Algorithm WBB is 2-competitive for NDOLTSP on any halfpath
against both fair and standard adversaries.

Notice that the above upper bounds match the general lower bounds of Sect. 4,
with the exception of WBB for NDOLTSP against a fair adversary. If we com-
pare these lower and upper bounds, against those of Sect. 3 for zealous algo-
rithms, we observe that zealous algorithms for DOLTSP are weaker than cautious
algorithms.

Recall that in Sect. 3 we showed that for zealous online algorithms, HDOLTSP
is easier than NDOLTSP, and there is no difference between the two types of
adversaries. If we review the results of this section and those of Sect. 4, we can
observe that for cautious online algorithms once again HDOLTSP is easier than
NDOLTSP. Besides, for cautious algorithms we have better performances against
a fair adversary than against a standard adversary. That is, for cautious algo-
rithms the fair adversary is weaker than the standard one. This is not surprising
taking into account that the fair adversary has a restricted power.

As for general graphs, Theorem 3.2 in [8] states that a cautious algorithm
called SmartStart is 3+

√
5

2 -competitive for (continuous) Homing OL-ATSP. The
algorithm is a variation of an algorithm presented in [7]. In the same spirit as our
algorithm WBB, SmartStart waits at the origin until the moment in which waiting
more would prevent him from being competitive. At that moment it starts an
optimal tour that serves all the pending requests and returns to the origin. As
we said before, OL-ATSP can be viewed as a generalization of DOLTSP, so we
can derive the following result.

Theorem 17. Algorithm SmartStart for Homing OL-ATSP [8] determines a ρ-
competitive algorithm for HDOLTSP on any graph against both fair and standard
adversaries, with ρ = 3+

√
5

2 ≈ 2.618.

The above upper bound is far from the lower bounds of Theorem 11 and The-
orem 12 (Section 4). It is not clear for now whether the lower bounds can be
improved, or a better cautious algorithm can be found. In trying to improve the
lower bounds, requests outside a halfpath must be considered, since Theorem 15
states that WBR achieves a performance coincident with those lower bounds for
HDOLTSP on halfpaths.

6 Empirical Analysis of Online Algorithms

We designed a set of tests in order to get empirical evidence about how online
algorithms work in practice on paths. In our tests, we included all our competitive
algorithms, as well as other algorithms with some intuitive improvements. One of
these new algorithms is Statistic–Replan (STR), a subtle enhancement to regular
REP. The only difference occurs in NDOLTSP when the server is idle at some
vertex. Instead of waiting passively for a new request, STR moves the server
to the vertex that is the most likely to receive the next request, assuming the
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Fig. 1. Mean (bar) and distribution (telescopic-plot) of approximate ratios

existence of a pattern. Another algorithm we considered is Statistic–Wait-Before-
Begin (STW), which ends the waiting time when it is likely enough that no more
requests will be presented.

All the algorithms were tested using a large collection of instances designed
to cover a representative set of cases. This collection takes into account differ-
ent aspects of an instance: quantity and distribution of vertices, quantity and
distribution (over time and over space) of requests, etc. A set of 7506 distinct sce-
narios was considered by combining different values for each aspect. A detailed
description of the test set is given in the full version of this paper.

We executed all strategies over all instances on our test set. In each case we
computed the approximate ratio, i.e. the ratio between the cost of the online
solution and the optimal offline cost. Note that the approximate ratio of any
strategy is upper bounded by its competitive ratio.

Figure 1 shows the average approximate ratio of all algorithms (as a bar), and
the distribution of values among the different trials (as a telescopic-plot). One
thing we can conclude is that, as suggested by the theoretical part of our study,
HDOLTSP is easier than NDOLTSP. Besides, more than 50% of the times, the
simplest algorithms generated quasi optimal solutions. Opposed to this, most
approximate ratios of cautious strategies (WBR and WBB) exceed the threshold
of 1.5. However, as we could expect, the worst case ratios of the simplest algo-
rithms are much higher than those of the more sophisticated (competitive) ones.
The cautious algorithm with best results is STW, although it was better than all
zealous strategies only in 5% of the cases. The other cautious strategies (WBR
and WBB) were surpassed by a zealous algorithm in 90% of the cases. With this
evidence, we can conclude that waiting was not so profitable in practice. Finally,
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our empirical study was useful to analyze how the different aspects of the in-
stances affect their complexity. We found that the distribution of requests over
time is the most influential aspect: it does not matter where vertices or requests
are located; the later the requests become visible, the worse are the results that
the online algorithm gets.
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Abstract. In an implicit combinatorial optimization problem, the
constraints are not enumerated explicitly but rather stated implicitly
through equations, other constraints or auxiliary algorithms. An impor-
tant subclass of such problems is the implicit set cover (or, equivalently,
hitting set) problem in which the sets are not given explicitly but rather
defined implicitly. For example, the well-known minimum feedback arc
set problem is such a problem. In this paper, we consider such a cover
problem that arises in the study of wild populations in biology in which
the sets are defined implicitly via the Mendelian constraints and prove
approximability results for this problem.

1 Introduction

In an implicit combinatorial optimization problem, the constraints are not
enumerated explicitly but rather stated implicitly through equations, other con-
straints or auxiliary algorithms. Well-known examples of such optimization prob-
lems include convex optimization problems where the constraints are not given
explicitly but rather can be queried implicitly through a separation oracle1 or
given by an auxiliary algorithm. This paper concerns the implicit set cover prob-
lems which are defined as follows. In the standard (unweighted) version of the set
cover problem, we are given a collection of subsets S over an universe of elements
U and the goal is to find a sub-collection of sets from S of minimum cardinality
such that the union of these sets is precisely U . A combinatorially equivalent
1 For example, the ellipsoid method can be used to solve in polynomial time a linear

programming problem with possibly exponentially many constraints provided we
have a separation oracle that, given a tentative solution, in polynomial time either
verifies that the solution is a feasible solution or provides a hyperplane separating
the solution point from the feasible region.
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version of the set cover problem is the so-called hitting set problem where one
needs to pick instead a subset of the universe U of minimum cardinality which
contains at least one element from every set. Set cover and hitting set problems
are fundamental problems in combinatorial optimization whose computational
complexities have been throughly investigated and well understood [15,27]. More
general version of the problem could include generalizing the objective function
to be minimized, namely the number of sets picked, by say having weighted
sets and minimizing the sum of weights of the selected sets, or by defining a
monotone objective function on the set system.

Implicit set cover (or hitting set) problems have the same standard setting,
but the sets are not given explicitly but rather implicitly through some implicit
combinatorial constraints. For example, the minimum feedback vertex set or
the minimum feedback arc set problems are examples of such implicit hitting set
problems. Such implicit set cover or hitting set problems can be characterized by
not giving the collection of sets S explicitly but via an efficient (polynomial-time)
oracle O that will supply members of S satisfying certain conditions. For exam-
ple, the recent work of Richard Karp and Erick Moreno Centeno2 considers some
implicit hitting set problems with applications to multiple genome alignments
in computational biology in which the oracle O provides a minimum-cardinality
set (or a good approximation to it) from the collection S that is disjoint from a
given set Q. In addition to standard polynomial-time approximation guarantees,
one could also invoke other measures of efficiencies, such as number of access
to the oracle O to obtain an optimal or near-optimal solution to the hitting set
problem as used by Karp and Centeno.

In this paper, we consider an implicit (unweighted) set cover problem, which
we call the MIN-PARENT problem, that arises in the study of wild population.
Our problem in the setting described above is roughly as follows. Our oracle O
returns, given a sub-collection of elements U ′ ⊆ U , if there is a set that includes
U ′. Our specific objective function is motivated by the biological application and
is a monotone function, namely including a new element in our collection does
not decrease it. More precise formulations of our problems appear in the next
section and will easily convince the reader that our problem is not captured by
previous works or the recent work by Karp and Centeno.

2 Motivations

For wild populations, the growing development and application of molecular
markers provides new possibilities for the investigation of many fundamental bi-
ological phenomena, including mating systems, selection and adaptation, kin
selection, and dispersal patterns. The power and potential of the genotypic
information obtained in these studies often rests in our ability to reconstruct
genealogical relationships among individuals. These relationships include parent-
age, full and half-sibships, and higher order aspects of pedigrees [10,11,17]. In
our motivation we are only concerned with full sibling relationships from single
2 Richard Karp, personal communication.
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generation sample of microsatellite markers. Several methods for sibling recon-
struction from microsatellite data have been proposed [2,1,9,18,20,25,26,28].
Combinatorial approaches to sibling reconstruction using suitable parsimony as-
sumptions have been studied in [5,7,8,13,14,23,24]. These approaches use the
Mendelian inheritance rules to impose constraints on the genetic content possi-
bilities of a sibling group. A formulation of the inferred combinatorial constraints
in constructing a collection of groups of individuals that satisfy these constraints
under the parsimony assumption of a minimum number of parents leads to the
MIN-PARENT problems discussed in the paper.

3 Precise Formulations of MIN-PARENT Problems

father (...,...),(a,b),(...,...),(...,...) (...,...),(c,d),(...,...),(...,...) mother

(...,...),(...,...),(...,...),(...,...) child

locus
allele

one from father
one from mother

Fig. 1. Illustration of the Mendelian inheritance rule

An element (individual)
u is an ordered sequence
(u1, u2, . . . , u�) where each
uj is a genetic trait (locus)
and is represented by a
multi-set {uj,0, uj,1} of two
(possibly equal) numbers
(alleles) inherited from its
parents. Biologically, each
element corresponds to an
individual in the sample of
the wild population from the same generation. We have a universe U consisting
of n such elements. Certain sets of individuals in U can be full siblings, i.e. having
the same pair of parents under the Mendelian inheritance rule. These sets are
specified in an implicit manner in the following way. The Mendelian in-
heritance rule states that an individual u = (u1, u2, . . . , u�) ∈ U can be a child of
a pair of individuals (parents), say v = (v1, v2, . . . , v�) and w = (w1, w2, . . . , w�),
if and only if for each locus j ∈ {1, . . . , 	} one element of uj is from vj and the
other element of uj is from wj . Finally, a subset U ′ ⊆ U is a full sibling group if
and only if there exists a pair of parents v and w such that every member of U ′

is a child of v and w. Note that any pair of individuals can have the same pair
of parents by the Mendelian constraints.

Given these Mendelian constraints, our goal is to cover the universe U by a set
of full-sibling groups under the parsimonious assumption of a minimum number
of parents. Formally, the MIN-PARENT problem is defined as follows:

Problem name: MIN-PARENTn,�

Input: An universe U of n individuals each with 	 loci.
Valid Solutions: A cover A of U such that each set S ∈ A in the cover is a

sibling group.
Notation: Let B(A) denote a set of individuals (parents) such that every set S

(sibling group) in the cover has its two parents from B(A).
Objective for minimization: |B(U)| = min

A
|B(A)|.
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In the setting of the implicit set cover problems described before, our cover
problem is as follows:

– Our sets (sibling groups) are defined implicitly by the Mendelian constraints;
note that the number of such sets is possibly exponential and thus we cannot
always enumerate them in polynomial time.

– Our polynomial time oracle O answers queries of the following type: given
a given subset U ′ ⊆ U of the universe, does U ′ form a valid (sibling) set
following the Mendelian constraints3? It is easy to show a polynomial-time
implementation of the oracle (e.g., see [7]).

Finally, note that our objective function is obviously monotone since U ′ ⊂ U
implies |B(U ′)| ≤ |B(U)|. A natural parameter of interest in covering
problems the maximum size (number of elements) a in any set. For
our problem, the parameter a corresponds to maximum number of individuals
of any sibling group.

We first show that the MIN-PARENT problem is MAX-SNP-hard even if
a = 3. This leads us to the question about the computational complexity of the
problem for arbitrary a. We will show that, for arbitrary a, it is hard to even
find a minimum set of parents for a given sibling partition of the universe given
a candidate set of parents. Formally, we can define the FIND-MIN-PARENT
problem as follows:

Problem name: FIND-MIN-PARENTn,�

Input:
– a partition A of a set U of n elements, each with 	 loci, such that each

set S in the partition A is a sibling set, and
– a set of elements (possible parents) P .

Notation: Let B(A) denote a set of elements (parents) such that every set S
(sibling group) in the partition A has its two parents from B(A).

Valid Solutions: B(A) ⊆ P .
Objective for minimization: |B(U)| = min

B(A)⊆P
|B(A)|.

3.1 Standard Terminologies

Recall that a (1 + ε)-approximate solution (or simply an (1 + ε)-approximation)
of a minimization (resp. maximization) problem is a solution with an objective
value no larger (resp. no smaller) than 1 + ε times (resp. (1 + ε)−1 times) the
value of the optimum, and an algorithm achieving such a solution is said to have
an approximation ratio of at most 1+ ε. A problem is r-inapproximable under a
certain complexity-theoretic assumption means that the problem does not have
a r-approximation unless the complexity-theoretic assumption is false.

L-reductions are a special kind of approximation-preserving reduction [21]
that can be used to show MAX-SNP-hardness of an optimization problem. Given
3 Note that if U ′ is not a valid set, the oracle O is unable to provide any hint about

other possible candidates.
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two optimization problems Π and Π ′, Π L-reduces to Π ′ if there are three
polynomial-time procedures T1,T2, T3 and two constants a and b > 0 such that
the following two conditions are satisfied:

(1) For any instance I of Π , algorithm T1 produces an instance I ′ = f(I) of Π ′

generated from T1 such that the optima of I and I ′, OPT (I) and OPT (I ′),
respectively, satisfy OPT (I ′) ≤ a ·OPT (I).

(2) For any solution of I ′ with cost c′, algorithm T2 produces another solution
with cost c′′ that is no worse than c′, and algorithm T3 produces a solution
of I of Π with cost c (possibly from the solution produced by T2) satisfying
|c−OPT (I)| ≤ b · |c′′ −OPT (I ′)|.

An optimization problem is MAX-SNP-hard if another MAX-SNP-hard prob-
lem L-reduces to that problem. Arora et al. [4] show that, assuming P �=NP, every
MAX-SNP-hard problem is (1 + ε)-inapproximable for some constant ε > 0 un-
less P=NP.

3.2 The Map

We show in Section 4.1 that MIN-PARENTn,� is MAX-SNP-hard even if a = 3,
the smallest non-trivial value of a, and, for any a and any integer constant
c > 0, admits an easy

(
a
c + ln c

)√
n-approximation using polynomial number of

queries to the oracle O (and therefore in polynomial time). We show in Section 5
that, for arbitrary a, FIND-MIN-PARENTn,� is 2logε n-inapproximable, for every
constant 0 < ε < 1, unless NP⊆DTIME(npolylog(n)).

4 Approximating MIN-PARENT

This section discusses lower and upper bounds on polynomial-time approxima-
tion of MIN-PARENT.

4.1 Inapproximability of MIN-PARENT for a = 3

Lemma 1. MIN-PARENTn,� is MAX-SNP-hard even if a = 3.

Proof. For notational simplification, when an individual has the multiset {a, a}
in a locus, we will refer to it by saying that the individual has a “label” of value
a in that locus. Our construction will ensure that all individuals have only labels
at every locus. It is then easy to check that a set of individuals can be a sibling
set if and only if at each locus they have labels with no more than two distinct
values. In the sequel, we will use the terminologies “label a” and “locus {a, a}”
interchangeably.

The (vertex-disjoint) triangle-packing (TP) problem is defined as follows. We
are given an undirected connected graph G. A triangle is a cycle of 3 nodes. The
goal is to find (pack) a maximum number of node-disjoint triangles in G. TP is
known to be MAX-SNP-hard even if every vertex of G has degree at most 4 [12].
Moreover, the proof in [12] show that the MAX-SNP-hard instances of TP in
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their reduction produces an instance of TP with n nodes in which an optimal
solution has αn triangles for some constant 0 < α < 1.

We will provide an approximation preserving reduction from an instance graph
G of n nodes of TP with nodes of G having a maximum degree of 4 as obtained
in [12] to MIN-PARENTn,�. We introduce an individual u for every node u of
the graph G and provide ordered label sequences for each node (individual) such
that:

(1) Three individuals corresponding to a triangle of G have at most two values
in every locus and thus can be a sibling set.

(2) Three individuals that do not correspond to a triangle of G have at least
three values in some locus and thus cannot be a sibling set.

(3) Consider any maximal set of vertex disjoint triangles in G and the corre-
sponding sibling sets (each of size 3). Partition the remaining vertices of G
not covered by these triangles arbitrarily into pairs (groups of size 2) and
consider the corresponding full sibling sets (each of size 2). Then, each sibling
set in the above collection requires two new parents.
Note that since we have a maximal set of triangles, no three vertices in
the set of pairs can form a triangle. Conversely, given any solution of the
MIN-PARENT problem, we preprocess the solution (Algorithm T2 in the
definition of L-reduction) to get a canonical solution to ensure that no three
individuals in the union of pairs can be s sibling set; this preprocessing
obviously does not increase the number of sibling sets.

Note that, since any pair of individuals can be a full sibling set, the above
properties imply that

TP has a solution with t triangles if and only if the 2-label cover can be
solved with 2t + 2 · n−3t

2 = n− t parents.

The MAX-SNP-hardness now follows easily since t is at most n
3 and an opti-

mum solution of TP on G has αn triangles for some constant 0 < α < 1. To be
precise, in the notations of Section 3.1 for an L-reduction with Π and Π ′ being
the TP and the MIN-PARENT problems, respectively, we have

(1) OPT(I’)= (1− α)n = 1
α(1−α)αn = 1

α(1−α)OPT(I).
(2) if c′′ = (1 − α)n + x for some x then c = αn − x and thus |c−OPT (I)| =
|c′′ −OPT (I ′)|.

Now, we describe the reduction.
Our first set of loci are as follows. The index of a locus, which we call the

“coordinate”, is defined by an “origin” node a. Thus, we will have at most
O(|V |) such loci. The respective label of an individual v at this coordinate is the
distance from a to v, assuming every edge has length 1.

Our second set of loci are as follows. We have such a locus for every set of
vertices {u, v, w} that does not form a triangle. Thus, we will have O(|V |3) such
loci. Since the three vertices do not form a triangle, at least one pair of them,
say u and v, are not conected by an edge. As a result, the set of vertices {u, v, x}
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do not form a triangle for any other vertex x �∈ {u, v}. Our goal is to ensure
that the vertices u, v and w cannot be a sibling group while not disallowing any
other sibling groups that can be formed by a triangle in the graph. This is easy
to do. Put the label 1 in this locus for the individual u, label 2 for individual v
and label 3 for all other individuals.

It is easy to see that no two individuals are the same, i.e., they differ in at
least one locus.

First we need to check that Property (1) holds. The following is true with
respect to the first set of loci. Consider a triangle {u, v, w} and assume that u
has the minimum label value of L, i.e., it is the nearest with respect to the origin
node that defined this locus. Then labels of v and w are at least L and at most
L + 1, hence we have at most two labels. The second set of loci never disallows
a sibling group corresponding to a triangle, so the property is not violated by
them either.

The construction of the second set of loci implies that Property (2) is true.
Now, we need to verify Property (3). There are three cases to verify.
First, consider the case when we have two sibling groups correspond to two

triangles T1 = {u, v, w} and T2 = {p, q, r} in G. Note that since nodes in G have
a maximum degree of 4, any node of one triangle can be connected to at most
two nodes in the other triangle.

The locus corresponding to the index with u as the origin node has a label 0
for u and a label 1 for v and w. Thus, the sibling set {u,v,w} can be generated
only by a pair of parents, say A and B, each of which has the alleles {0, 1} in
the corresponding locus.

Since u is connected to at most two nodes in T2, it is connected to a node in
T2, say r. Then, r must have a label x in this locus which is at least 2. Thus,
neither A nor B can be a parent of the sibling group {p,q, r} since x �∈ {0, 1}.

Second, consider the case when the we have two sibling groups corresponding
to a triangle T = {u, v, w} and a pair P = {p, q}. Consider the locus correspond-
ing to the index with u as the origin node. We have a label 0 for u and a label 1
for v and w. Thus, the sibling set {u,v,w} can be generated only by a pair of
parents, say A and B, each of which has the alleles {0, 1} in the corresponding
locus. If node u is not connected to both nodes p and q then one of the nodes
which is not connected to u, say p, must have a label x in this locus which is at
least 2. Thus, neither A nor B can be a parent of the sibling group {p,q} since
x �∈ {0, 1}. Otherwise, it must be the case that u is connected to both p and q.

Repeating the same argument with q as the origin node and then r as the
origin node shows that the only case that remains to be considered is when each
of u, v and w is connected to both the nodes p and q. But, then the induced
subgraph of G with vertices u, v, w, p and q is 5-clique. Since every node in G
has a degree of no more than 4, this implies that is subgraph is a connected
component of G separated from the rest of the graph, contradicting the fact
that G was a connected graph.

Finally, consider the case when we have two sibling groups corresponding to
two pairs P1 = {u, v} and P2 = {p, q}. Since we have a canonical solution of the
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MIN-PARENT problem or a maximal set of triangles for the TP problem, node
u is not connected to at least one node in P2, say p. The locus corresponding to
the index with u as the origin node has a label 0 for u and a label 1 for v, but for
p we must have a label x in this locus which is at least 2. Thus, the sibling set
{u,v} can be generated only by a pair of parents, say A and B, each of which
has the alleles {0, 1} in the corresponding locus, but neither A nor B can be a
parent of the sibling group {p,q} since x �∈ {0, 1}. ❑

4.2 A Simple Approximation Algorithm for MIN-PARENTn,�

Note that we do not need to know the value of a in the theorem below.

Lemma 2. Let a be the maximum size of any sibling set. Then, for any integer
constant c > 0, MIN-PARENT admits an easy

(
a
c + ln c

)√
n-approximation with

polynomially many access to the oracle O (and, therefore in polynomial time).

Proof. Our proof is similar to the analysis of a standard greedy algorithm for
set cover problems [27].

Suppose that we have a subset U ′ ⊂ U of the universe that is still not covered.
We can enumerate all subsets of U ′ of size at most c in O(nc) time and for each
subset query the oracle O to find if any of these subsets of individuals are full
siblings for the MIN-PARENTn,� problem. Thus we can assume that for every
instance of the problem, either the maximum sibling set size is below c and we
can find such a group of maximum size, or we can find a sibling set of size c. Our
algorithm simply selects such a set, removes the corresponding elements from U ′

and continues until all elements of U are covered.
Obviously, all subsets of a sibling set are valid sibling sets too. Let OPT

be the minimum number of parents in an optimal solution of MIN-PARENTn,�.
Consider an optimum solution, make it disjoint by arbitrarily shrinking each full-
sibling set and let α be the number of sets in this partition. Obviously, α ≤ n/2.
Since no two full-sibling sets are produced by the same pair of parents (because
of minimality),

(OPT
2

) ≥ α which implies OPT>
√

2α. We distribute the cost
of our solution among the sets of the optimum. When a set with b elements is
selected, we remove each of its element and charge the sets of the optimum 1/b
for each removal. It is easy to see that a set with a elements will get the sequence
of charges with values at most (1/c, . . . , 1/c︸ ︷︷ ︸

a−c times

, 1/(c−1), 1/(c−2), . . . , 1) and these

charges add to a
c − 1 +

∑c
i=1

1
i = a

c +
∑c

i=2
1
i < a

c + ln c. Thus, we use at most(
a
c + ln c

)
α sibling groups. Each sibling group can be generated by at most two

new parents. Thus, the total number of parents necessary to generated these
sibling groups is at most

(
a
c + ln c

)√
2α OPT<

(
a
c + ln c

)√
n OPT. ❑

5 Inapproximability of FIND-MIN-PARENT

Lemma 3. For every constant 0 < ε < 1, FIND-MIN-PARENTn,� is 2logε n-
inapproximable unless NP⊆DTIME(npolylog(n)).
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Proof. We first need the MINREP problem which is defined as follows. The
problem is closely related to the “label cover” problem defined in [3].

We are given a bipartite graph G = (A, B, E). Also is given a partition of
A into |A|/α equal-size subsets A1, A2, . . . , Aα and a partition of B into |B|/β
equal-size subsets B1, B2, . . . , Bβ . These partitions define a natural “bipartite
super-graph” H in the following manner. H has a “super-vertex” for every Ai

(the left partition) and a “super-vertex” for every Bj (the right partition). There
exists an “super-edge” between the super-vertex Ai and the super-vertex Bj if
and only if there exists u ∈ Ai and v ∈ Bj such that {u, v} is an edge of G.

A pair of vertices u and v “witnesses” a super-edge {Ai, Bj} provided a ∈ Ai,
b ∈ Bj and the edge {a, b} exists in G. A set of vertices S of G witnesses a
super-edge if there exists at least one pair of vertices in S that witnesses the
super-edge.

The goal of the MINREP problem is to find A′ ⊆ A and B′ ⊆ B such that
A ∪ B witnesses every super-edge of H and the size of the solution, namely
|A′|+ |B′|, is minimum.

For notation simplicity, let n = |A|+|B|. The following result is a consequence
of Raz’s parallel repetition theorem [16,22,19].

Theorem 4. [19,22] Let L ∈ NP and 0 < ε < 1 be any fixed constant.
Then, there exists a reduction running in quasi-polynomial time, namely in time
npolylog(n), that given an instance x of L produces an instance of MINREP such
that:

– if x ∈ L then MINREP has a solution of size at most at most α + β;
– if x �∈ L then MINREP has a solution of size at least or a solution of size at

least (α + β) · 2logε n.

Thus, the above theorem provides a 2logε n-inapproximability for MINREP
under the complexity-theoretic assumption of NP �⊆DTIME(npolylog(n)).

Let L be any language in NP. Use the above theorem to translate an instance
x of L to an instance of MINREP as described in the above theorem. Now, we
describe a translation of this instance of MINREP to an instance of FIND-MIN-
PARENTP,n,�.

We have a parent pv in P corresponding to every element v ∈ A ∪ B. We
have an individual sa,b in U for every edge {a, b} in G. Thus, the number of
possible parents in P is n and the number of individuals in U is O(n2). It there-
fore suffices to prove a 2logε |P|-inapproximability since that implies as 2logε |U|-
inapproximability.

Before describing our reduction, we need a generic construction of the follow-
ing nature to simplify our description. We are given two elements pu, pv ∈ P
and an element sa,b ∈ U . We want to add a new locus with appropriate allele
values to ensure that sa,b cannot be a child of pu and pv, but no additional
parent-child relationship is forbidden. This is easy to do. Put the alleles
{a, b} in this locus for pu and pv and put the alleles {a, c} in this locus for every
individual (including sa,b) in (P ∪ U) \ {pu, pv}. It follows that sa,b cannot be
a child of pu and pv since c �∈ {a, b}, but no other child-parent combination is
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forbidden since {a, c} can be produced by the Mendelian rule either from {a, b}
and {a, c} or from {a, c} and {a, c}.

Now, we add additional loci to the individuals in U∪P in the following manner
following the two rules:

Rule (�): For every edge {u, v} of G with u ∈ Ai and v ∈ Bj and for every pair
of vertices {a, b} such that {a, b} ∈ E \ { {y, z} | y ∈ Ai, z ∈ Bj , {y, z} ∈ E }
we add an additional locus using the generic construction to ensure that sa,b

cannot be a child of pu and pv.
Rule (��): For every pair of vertices u and v of G such that {u, v} �∈ E and for

every pair of vertices a and b of g such that {a, b} ∈ E, we add an additional
locus using the generic construction to ensure that the individual sa,b ∈ U
cannot be a child of the parents pu and pv in P .

We build each individual in U∪P locus-by-locus in the above manner. Finally,
our given sibling partitionA of U puts all the individuals sa,b with {a, b} witness-
ing the same super-edge in the same partition. Let the sibling set corresponding
to the super-edge {Ai, Bj} be Ai,j = {{sa,b} | {a, b} witnesses the super-edge
{Ai, Bj} }.

First, we need to verify that each of our sibling set is indeed a sibling set.
Consider the sibling set Ai,j . Pick any u ∈ Ai and v ∈ Bj such that {u, v} ∈ E,
i.e., {u, v} witnesses the super-edge {Ai, Bj}. We claim that pu and pv are the
parents for all individuals in Ai,j . Indeed, the two rules allow this.

Suppose that MINREP has a solution of size γ. This generates a set of γ
parents for FIND-MIN-PARENT in an obvious manner: for every vertex v in
the solution of MINREP we pick the individual pv in the solution of FIND-
MIN-PARENT. If the super-edge {Ai, Bj} is witnessed by the edge {u, v} in the
solution of MINREP, then the sibling set Ai,j is generated by the parents pu

and pv.
Conversely, suppose that FIND-MIN-PARENT has a solution with γ parents.

We associate each parent pu to the corresponding vertex u of G in our solution
of MINREP. Consider a super-edge {Ai, Bj} and the associated sibling set Ai,j .
Suppose that pu and pv are the parents of this group. By Rule (�), {u, v} ∈ E.
By Rule (��), one of pu and pv, say pu, must be from Ai and the other one pv

from Bj . Thus, the edge {u, v} witnesses this super-edge. ❑

Remark 1. The inapproximability reduction works even if one does not specify
the set A of sibling partition explicitly as part of input but allows all feasible
partitions.
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Abstract. The Banzhaf index, Shapley-Shubik index and other vot-
ing power indices measure the importance of a player in a coalitional
game. We consider a simple coalitional game called the spanning con-
nectivity game (SCG) based on an undirected, unweighted multigraph,
where edges are players. We examine the computational complexity of
computing the voting power indices of edges in the SCG. It is shown
that computing Banzhaf values is #P-complete and computing Shapley-
Shubik indices or values is NP-hard for SCGs. Interestingly, Holler indices
and Deegan-Packel indices can be computed in polynomial time. Among
other results, it is proved that Banzhaf indices can be computed in poly-
nomial time for graphs with bounded treewidth. It is also shown that for
any reasonable representation of a simple game, a polynomial time algo-
rithm to compute the Shapley-Shubik indices implies a polynomial time
algorithm to compute the Banzhaf indices. This answers (positively) an
open question of whether computing Shapley-Shubik indices for a simple
game represented by the set of minimal winning coalitions is NP-hard.

Keywords: Network connectivity, coalitional games, Banzhaf index,
Shapley-Shubik index.

1 Introduction

In this paper, we study the natural problem of computing the influence of edges
in keeping an unweighted and undirected multigraph connected. Game theorists
have studied notions of efficiency, fairness and stability extensively. Therefore,
it is only natural that when applications in computer science and multiagent
systems require fair and stable allocations, social choice theory and cooperative
game theory provide appropriate foundations. For example, a network adminis-
trator with limited resources to maintain the links in the network may decide to
commit resources to links according to their connecting ability. A spy network
comprises communication channels. In order to intercept messages on the chan-
nels, resources may be utilized according to the ability of a channel to connect all
groups. In a social network, we may be interested in checking which connections
are more important in maintaining connectivity and hence contribute more to
social welfare.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 55–67, 2009.
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Our model is based on undirected, unweighted and connected multigraphs.
All the nodes are treated equally, and the importance of a edge is based solely
on its ability to connect all the nodes. Using undirected edges is a reasonable
assumption in many cases. For example, in a social network, relations are usually
mutually formed.

We use a multigraph as a succinct representation of a simple coalitional game
called the spanning connectivity game (SCG). The players of the game are the
edges of the multigraph. The importance of an edge is measured by computing
its voting power index in the game. Voting power indices including the Banzhaf
index and Shapley-Shubik index are standard ways to compute the importance of
a player in a coalitional voting game. Intuitively, the Banzhaf value is the number
of coalitions in which a player plays a critical role and the Shapley-Shubik index
is the proportion of permutations for which a player is pivotal.

The whole paper is concerned with computing solutions for SCGs. In
Section 2, a summary of related work is given. In Section 3, preliminary def-
initions related to graph theory and coalitional games are given, and we de-
fine SCGs. Section 4 presents hardness results for computing Banzhaf values
and Shapley-Shubik indices. In Section 5, positive computational results for
Banzhaf values and Shapley-Shubik indices are provided for certain graph classes.
Section 6 presents a polynomial-time algorithm to compute Holler indices and
Deegan-Packel indices. In Section 7, a summary of results is given and future
work is discussed.

2 Related Work

Power indices such as the Banzhaf and Shapley-Shubik indices have been exten-
sively used to gauge the power of a player in different coalitional games such
as weighted voting games [17] and corporate networks [13]. These indices have
recently been used in network flow games [7], where the edges in the graph have
capacities and the power index of an edge signifies the influence that an edge
has in enabling a flow from the source to the sink. Voting power indices have
also been examined in vertex connectivity games [8] on undirected, unweighted
graphs; there the players are nodes, which are partitioned into primary, standard,
and backbone classes.

The study of cooperative games in combinatorial domains is widespread in
operations research [11,14]. Spanning network games have been examined pre-
viously [19,23] but they are treated differently, with weighted graphs and nodes
as players (not edges, as here). The SCG is related to the all-terminal reliabil-
ity model, a non-game-theoretic model that is relevant in broadcasting [22,10].
Whereas the reliability of a network concerns the overall probability of a network
being connected, this paper concentrates on resource allocation to the edges. A
game-theoretic approach can provide fair and stable outcomes in a strategic
setting.
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3 Preliminaries

3.1 Graph Theory

Definition 1. A multigraph G := (V, E, s) consists of a simple underlying graph
(V, E) with a multiplicity function s : E �→ N where N is the set of natural
numbers excluding 0. Let |V | = n and |E| = m. For every underlying edge i ∈ E,
we have si edges in the multigraph. The multigraph has a total of M =

∑
i∈E si

edges.

Definition 2. A subgraph G′ = (V ′, E′) of a graph G = (V, E) is a graph where
V ′ is a subset of V and E′ is a subset of E such that the vertex set of E′ is a
subset of V ′. A subgraph H is a connected spanning subgraph of a graph G if
it is connected and has the same vertex set as G.

3.2 Coalitional Game Theory

Definition 3. A simple voting game is a pair (N, v) with characteristic function
v : 2N → {0, 1} where v(∅) = 0, v(N) = 1 and v(S) ≤ v(T ) whenever S ⊆ T .
A coalition S ⊆ N is winning if v(S) = 1 and losing if v(S) = 0. A simple
voting game can alternatively be defined as (N, W ) where W is the set of winning
coalitions.

For the sake of brevity, we will abuse the notation to sometimes refer to game
(N, v) as v. For each connected multigraph (V, E, s), we define the SCG, spanning
connectivity game, (E, v) with players E and valuation function v, defined as
follows for S ⊆ E:

v(S) =
{

1, if there exists a spanning tree T = (V, E′) such that E′ ⊆ S
0, otherwise

It is easy to see that the SCG (E, v) is a simple game because the outcome is
binary, v is monotone, v(∅) = 0 and v(E) = 1. We consider power indices and
cooperative game solutions for the edges in the SCG.

Definition 4. A player i is critical in a coalition S when v(S) = 1 and v(S \
{i}) = 0. For each i ∈ N , we denote the number of coalitions in which i is
critical in game v by the Banzhaf value ηi(v). The Banzhaf Index of player i in
game v is

βi =
ηi(v)∑

i∈Nηi(v)
.

The Shapley-Shubik index is the proportion of permutations for which a player
is pivotal. For a permutation π of N , the π(i)th player is pivotal if coalition
{π(1), . . . , π(i− 1)} is losing but coalition {π(1), . . . , π(i)} is winning.
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Definition 5. The Shapley-Shubik (SS) value is the function κ that assigns to
any simple game (N, v) and any voter i a value κi(v) where

κi =
∑
S⊆N

(|S| − 1)!(n− |S|)!(v(S)− v(S \ {i})).

The Shapley-Shubik (SS) index of i is defined by

φi =
κi

n!
.

The Banzhaf index and the Shapley-Shubik index are the normalized versions of
the Banzhaf value and the Shapley-Shubik value respectively. Since the denomi-
nator of the Shapley-Shubik index is fixed, computing the Shapley-Shubik index
and Shapley-Shubik value have the same complexity. This is not necessarily true
for the Banzhaf index and Banzhaf value.

4 Complexity of Computing Power Indices

We define the problems of computing the power indices of the edges in the SCG.
For any power index X (e.g. Banzhaf value, Banzhaf index, Shapley-Shubik in-
dex etc.) we define the problem SCG-X as follows:

Problem: SCG-X
Instance: Multigraph G
Output: For the SCG corresponding to G, compute X for all the edges

We represent a communication network as a multigraph, where an edge repre-
sents a connection that may or may not work. An edge is said to be operational if
it works. For a given graph G, the reliability Rel(G, {pi}) of G is the probability
that the operational edges form a connected spanning subgraph, given that each
edge is operational with probability pi for i = 1, . . .m.

Problem: Rational Reliability Problem
Instance: Multigraph G and pi ∈ Q for all i, 1 ≤ i ≤ m
Output: Compute Rel(G, {pi})

A special case of the reliability problem is when every edge has the same
probability p of being operational. This is called the Functional Reliability Prob-
lem. A connected spanning subgraph with i edges will occur with probability
pi(1 − p)m−i.

Definition 6. Let Ni be the number of connected spanning subgraphs with i
edges. Then the required output of the Functional Reliability Problem is the re-
liability polynomial

Rel(G, p) =
m∑

i=0

Nip
i(1− p)m−i.
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Problem: Functional Reliability Problem
Instance: Multigraph G and p ∈ Q

Output: Compute the coefficients Ni of the reliability polynomial for all i,
1 ≤ i ≤ m.

Ball [10] points out that an algorithm to solve the Rational Reliability Problem
can be used as a sub-routine to compute all the coefficients for the Functional
Reliability Problem. Moreover he proved that computing the general coefficient
Ni is NP-hard and therefore computing the rational reliability of a graph is
NP-hard. As we will see in Section 5, reliability problems have connections with
computing power indices of SCG. We first prove that SCG-BANZHAF-VALUE
is #P-complete.

Proposition 1. SCG-BANZHAF-VALUE is #P-complete even for simple, bi-
partite and planar graphs.

Proof. We present a reduction from the problem of counting connected span-
ning subgraphs. SCG-BANZHAF-VALUE is clearly in #P because a connected
spanning subgraph can be verified in polynomial time. It is known that count-
ing the total number of connected spanning subgraphs is #P-complete even for
simple, bipartite and planar graphs( [9], p. 305). We now reduce the problem of
computing the total number of connected spanning subgraphs to solving SCG-
BANZHAF-VALUE. Take G = (V, E) with n nodes and m edges. Transform
graph G into G′ = (V ∪{n+1}, E∪{m+1}) by taking any node and connecting
it to a new node via a new edge. Then the number of spanning subgraphs in
G is equal to the Banzhaf value of edge m + 1 in graph G′. This shows that
SCG-BANZHAF-VALUE is #P-complete. ��
Similarly, SCG-SS is NP-hard.

Proposition 2. SCG-SS is NP-hard even for simple graphs.

Proof. Let Ni be the number of connected spanning subgraphs of G with i
edges. We know that computing Ni is NP-hard [10]. We show that if there is
an algorithm polynomial in the number of edges to compute the Shapley-Shubik
index of all edges in the graph, then each Ni can be computed in polynomial
time.

We obtain graph G0 by the following transformation: for some node v ∈ V (G),
we link it by a new edge x to a new node vx. Then, by the definition of the
Shapley-Shubik value,

∑m
r=0 r!Nr(|E(G)| − r)! =

∑m
r=0 r!N ′

r = κx(G0), where
we write N ′

r for Nr(m− r)!, for all r.
Similarly we can construct Gi by adding a path Pi of length i to vx where Pi

has no edge or vertex intersection with G. Therefore
m∑

r=0

(r + i)!N ′
r = κx(Gi). (1)

For i = 0, . . . , m, we get an equation of the form of (1) for each Gi. The left-
hand side of the set of equations can be represented by an (m+1)×(m+1) matrix
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A where Aij = (i + j − 2)!. The set of equations is independent because A has
a non-zero determinant of (1!2! · · ·m!)2 (see e.g. Theorem 1.1 [5]). If there is a
polynomial time algorithm to compute the Shapley-Shubik index of each edge
in a simple graph, then we can compute the right-hand side of each equation
corresponding to Gi.

The biggest possible number in the equation is less than (2m)! and can be
represented efficiently. According to Stirling’s formula, m! ≈ √2πm

(
m
e

)m, the
number (2m)! can be represented by km(log m) bits where k is a constant. We
can use Gaussian elimination to solve the set of linear equations in O(m3) time.
Moreover, each number that occurs in the algorithm can also be stored in a
number of bits quadratic of the input size (Theorem 4.10 [21]). Therefore SCG-
SS is NP-hard. ��
Comment 1. A representation of a simple game is considered reasonable if,
for a simple game (N, v), the new game (N ∪ {x}, v′) where v(S) = 1 if and
only if v′(S ∪ {x}) = 1, can also be represented. Then the proof technique in
Proposition 2 can be used to show that for any reasonable representation of the
simple game, a polynomial time algorithm to compute the Shapley-Shubik in-
dices implies a polynomial time algorithm to compute the Banzhaf indices. This
answers (positively) the question from [3] of whether computing Shapley-Shubik
indices for a simple game represented by the set of minimal winning coalitions
is NP-hard.

Proposition 3. For a simple game represented by its minimal winning coali-
tions, computing the Shapley-Shubik indices is NP-hard.

Proof. This follows from Comment 1 and the fact that computing the Banzhaf
values for a simple game represented by its minimal winning coalitions is NP-
hard [3]. If Shapley-Shubik indices can be computed, then this implies that
number of winning coalitions can be computed.

5 Polynomial Time Cases

In this section, we present polynomial time algorithms to compute voting power
indices for restricted graph classes including graphs with bounded treewidth.
We first consider the trivial case of a tree. If the graph G = (N, E) is a tree
then there is a total of n − 1 edges and only the grand coalition of edges is
a winning coalition. Therefore a tree is equivalent to a unanimity game. This
means that each edge has a Banzhaf index and Shapley-Shubik index of 1

n−1 . In
the case of the same tree structure but with multiple parallel edges, we refer to
this multigraph as a pseudo-tree.

Proposition 4. Let G = (N, E, s) be a pseudo-tree such that the underlying
edges are 1, . . . , m with multiplicities s1, . . . , sm. Then,

ηi1 =
m∏

j=1
j �=i

(2sj − 1), and so βi1 =
ηi1∑m

k=1 skηk1

. (2)
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Proof. Note that m = n − 1 in this case. Suppose edge i1 is a parallel edge
corresponding to edge i in the underlying graph. Edge i1 is critical for a coalition
C if the coalition C contains no edges parallel to i1 but contains at least one
sub-edge corresponding to each edge other than i. The number of such coalitions
is
∏m

j=1
j �=i

(2sj − 1), which gives (2). ��

Proposition 5. Let G = (N, E, s) be a pseudo-tree such that the underlying
edges are 1, . . . , m with multiplicities s1, . . . , sm where s =

∑m
i=1 si. Then the

Shapley-Shubik indices can be computed in time polynomial in the total number
of edges.

Proof. Denote by er the coefficient of xr in∑
1≤j≤n−1

j �=i

((1 + x)sj − 1).

Then er is the number of coalitions with r edges which include at least one
parallel edge for each underlying edge j except i. Then, by definition of the
Shapley-Shubik value, for 1 ≤ k ≤ si,

κik
(G) =

s−si∑
r=n−2

err!(s− r − si)!.

Thus, the Shapley-Shubik indices can be computed in time polynomial in the
total number of edges. ��
We now consider graphs with bounded treewidth. Note that trees and pseudo-
trees hve treewidth 1.

Definition 7. For a graph G = (V, E), a tree decomposition is a pair (X, T ),
where X = {X1, ..., Xn} ⊂ 2V , and T is a tree whose nodes are the subsets Xi

with the following properties:

1.
⋃

1≤i≤n Xi = V
2. For every edge (v, w) ∈ E, there is a subset Xi that contains both v and w.
3. If Xi and Xj both contain a vertex v, then all nodes Xz of the tree in the

path between Xi and Xj also contain v.

The width of a tree decomposition is the size of its largest set Xi minus one.
The treewidth tw(G) of a graph G is the minimum width among all possible tree
decompositions of G.

Proposition 6. If the reliability polynomial defined in Definition 6 can be com-
puted in polynomial time, then the following problems can be computed in time
polynomial in the number of edges:

1. the number of connected spanning subgraphs;
2. the Banzhaf indices of edges.
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Proof. We deal with each case separately.

1. By definition, Ni is the number of connected spanning subgraph with i edges.
If all coefficients Ni are computable in polynomial time, then the total num-
ber of connected spanning subgraphs

∑m
i=0 Ni is computable in polynomial

time.
2. We know that ηi(G) = 2ωi(G) − ω(G) (See [16]) where ω(G) is equal to

the total number of winning coalitions and ωi(G) is the number of winning
coalitions including player i. Consider the graph G where the probability of
edge i being operational is set to 1 whereas the probability of other edges
being operational is set to 0.5. Then the reliability of the graph being con-
nected is equal to the ratio of the number of connected spanning subgraphs
that include edge i to 2M−1, the total number of subgraphs that include i.
Therefore, ωi(v) the number of connected spanning subgraphs including edge
i can be computed in polynomial time too. ��

Corollary 1. Banzhaf indices of edges can be computed in polynomial time for
graphs with bounded treewidth.

Proof. This follows from the polynomial time algorithm to compute the reliabil-
ity of a graph with treewidth k for some fixed k [2]. ��
Definition 8. Let G = (V, E) be a graph with source s and sink t. Then G is
a series-parallel graph if it may be reduced to K2 by a sequence of the following
operations:

1. replacement of a pair of parallel edges by a single edge that connects their
common endpoints;

2. replacement of a pair of edges incident to a vertex of degree 2 other than s
or t by a single edge.

Graphs with bounded treewidth can be recognized in polynomial time [1]. Series-
parallel graphs and 2-trees are well-known classes of graphs with constant
treewidth. Other graph classes with bounded treewidth are cactus graphs and
outer-planar graphs. We see that whereas computing Banzhaf values of edges in
general SCGs is NP-hard, important graph classes can be recognized and their
Banzhaf values computed in polynomial time.

When edges have special properties, their power indices may be easier to
compute. We define a bridge in the graph to be an edge whose removal results
in the graph being disconnected. A graph class is hereditary if for every graph
in the class, every subgraph is also in the class.

Proposition 7. If graph G belongs to a hereditary graph class, for which the
reliability polynomial of a graph can be computed in polynomial time, then the
Shapley-Shubik index of a bridge can be computed in time polynomial in the total
number of edges.

Proof. Let graph G = (V, E) be a graph where edge k is a bridge which connects
two components A = (VA, EA) and B = (VB , EB). Then |E| = |EA|+ |EB |+ 1.
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If the reliability polynomial of G can be computed in polynomial time, then the
reliability polynomial for each of the components A and B can be computed.
Then the Shapley-Shubik index of player k is:

φk(G) =

∑|EA|
i=|VA|−1

∑|EB |
j=|VB |−1 Ni(A)Nj(B)(i + j)!(|EA|+ |EB | − i− j)!

|E|! .
��

Our next result is that if the reliability of a simple graph can be computed then
the Banzhaf indices of the corresponding multigraph can be computed. A naive
approach would be to compute the Banzhaf values of each edge in a simple
graph and then, for the corresponding parallel edges in the multigraph, divide
the Banzhaf value of the overall edge by the number of parallel edges. However,
as the following example shows, this approach is incorrect:

Example 1. Let G = (V, E, s) be the multigraph in Figure 1. Then, η41(vG) =
10, η11(vG) = 14, and η2(vG) = η3(vG) = 28. Therefore β41(vG) =

10
3×10+2×14+28+28 = 5

57 . Moreover, β11(vG) = 7
57 and β2(vG) = β3(vG) = 14

57 .
If we examine the underlying graph of G′ in Figure 1, then η4(v′G) = 4 and
η1(v′G) = η2(v′G) = η3(v′G) = 2 giving β4(G′) = 2/5 and βi(G′) = 1/5 for
i = 1, 2, 3. Therefore, the Banzhaf values of edges in the underlying graph do
not give a direct way of computing the Banzhaf values in the multigraph.

Fig. 1. Multigraph and its underlying graph

Lemma 1. If there is an algorithm to compute the reliability of the underlying
simple graph, then the algorithm can be used to compute the reliability of the
corresponding multigraph.

Proof. Let G = (V, E, s) be a multigraph in which there are si parallel edges
i1, . . . , isi corresponding to edge i. Let pij be the probability that the jth parallel
edge of edge i is operational. In that case Rel(G, p) is equal to Rel(G′, p′), where
G′ is the corresponding simple graph of G and the probability pi that edge i is
operational is 1−∏si

j=1(1− pij ). ��
We now prove in Proposition 8 that if there is an algorithm to compute the
reliability of the underlying simple graph G, then it can be used to compute
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the Banzhaf indices of the edges in the corresponding multigraph of G. It would
appear that the proposition follows directly from Lemma 1 and Proposition 6.
However, one needs to be careful that the reliability computed is the reliability
of the overall graph. Example 1 shows that computing the Banzhaf values of
the edges in the underlying simple graph does not directly provide the Banzhaf
values of the parallel edges in the corresponding graph.

Proposition 8. For a multigraph G and edge i, let G′ be the multigraph where
all the other edges parallel to edge i are deleted. Then if the reliability of G′ can
be computed in polynomial time, then the Banzhaf value of edge i in G can be
computed directly by analysing G′.

Proof. Recall that G is a multigraph with a total of M edges. Given an algorithm
to compute the reliability of G′, we provide an algorithm to compute the Banzhaf
values of the parallel edges of edge i in G. For graph G′, set the operational
probabilities of all edges to 0.5 except i which has an operation probability
of 1 − 0.5si . and compute the overall reliability r(G′) of the graph. Then, by
Lemma 1, ω(G) is 2Mr(G′).

Now for G′, set the operational probabilities of all edges to 0.5 except i which
has an operation probability of 1. Let the reliability of G′ with the new prob-
abilities be r′(G′). We see that r′(G′) is equal to ωi(G′)/2M−si . Then ωi(G) =
2si−1ωi(G′) = 2M−1r′(G′). The Banzhaf value of i is then 2ωi(G) − ω(G). A
similar approach gives Banzhaf values of other edges from which all the Banzhaf
indices can be computed. ��

6 Other Power Indices

Apart from the Banzhaf and Shapley-Shubik indices, there are other indices
which are also used. Both the Deegan-Packel index [15] and the Holler index [20]
are based on the notion of minimal winning coalitions. Minimal winning coali-
tions are significant with respect to coalition formation. The Holler index, Hi

of a player i in a simple game is similar to the Banzhaf index except that only
swings in minimal winning coalitions contribute toward the Holler index.

Definitions 9. We define the Holler value Mi as {S ∈ Wm : i ∈ S}. The
Holler index (also called the public good index) is defined by Hi(v) = |Mi|∑

j∈N |Mj | .
The Deegan Packel index for player i in voting game v is defined by Di(v) =

1
|W m|

∑
S∈Mi

1
|S| .

Proposition 9. For SCGs corresponding to multigraphs, Holler indices and
Deegan-Packel indices can be computed in polynomial time.

Proof. We use the fact that the number of trees in a multigraph can be computed
in polynomial time, which follows from Kirchhoff’s matrix tree theorem [18].
Given a connected graph G with n vertices, let λ1, λ2, ..., λn−1 be the non-zero
eigenvalues of the Laplacian matrix of G (the Laplacian matrix is the difference
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of the degree matrix and the adjacency matrix of the graph). Kirchhoff proved
that the number of spanning trees of G is equal to any cofactor of the Laplacian
matrix of G [18]: t(G) = 1

nλ1λ2 · · ·λn−1. So now that we have a polynomial-time
method to compute the number of spanning trees t(G) of graph G, we claim this
is sufficient to compute the Holler values of the edges. If an edge i is a bridge,
then it is present in every spanning tree and its Holler value is simply the total
number of spanning trees. If i is not a bridge then Mi = t(G)−t(G\e). Moreover,
since the size of every minimal winning coalition is the same, namely (n − 1),
the Holler indices and Deegan Packel Indices coincide for an SCG. ��

7 Conclusion

This paper examined fairness-based cooperative game solutions of SCGs, for al-
locating resources to edges. In another recent paper, we have also looked at the
computation of stability based cooperative game solutions of SCGs. A polyno-
mial time algorithm is presented to compute the nucleolus [4]. This is a surprising
result considering that the standard power indices are NP-hard to compute and
also that the SCG is not convex in general. Therefore, the nucleolus may be a
better alternative for resource allocation in SCGs.

We looked at the exact computation of power indices. In [6], an optimal ran-
domized algorithm to compute Banzhaf indices and Shapley-Shubik indices with
the required confidence interval and accuracy is presented. Since the analysis in
[6] is not limited to a specific representation of a coalitional game, it can be used
to approximate Banzhaf indices and Shapley-Shubik indices in SCGs.

The results of the paper are summarized in Table 1. This framework can be
extended to give an ordering on the importance of nodes in the graph [12]. To
convert a resource allocation to edges to one on nodes, the payoff for an edge is
divided equally between its two adjacent nodes. The total payoff of a node is the
sum of the payoffs it gets from all its adjacent edges. This gives a way to quantify
and compare the centrality or connecting role of each node. It will be interesting
to understand the properties of such orderings, especially for unique cooperative
solution concepts such as the nucleolus, Shapley-Shubik and Banzhaf indices.

The complexity of computing the Shapley-Shubik index for an SCG with a
graph of bounded treewidth is open. If this problem is NP-hard, it will answer

Table 1. Complexity of SCGs

Problem Input Complexity
SCG-BANZHAF-VALUE Simple, bipartite, planar graph #P-complete
SCG-BANZHAF-INDEX Simple graph ?
SCG-BANZHAF-(VALUE/INDEX) Multigraph with bounded treewidth P
SCG-SS Multigraph NP-hard
SCG-SS Multigraph with bounded treewidth ?
SCG-H-(VALUE/INDEX) Multigraph P
SCG-DP-(VALUE/INDEX) Multigraph P
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the question posed in the conclusion of [6] on whether there are any domains
where computing one of the Banzhaf index and Shapley-Shubik index is easy,
whereas computing the other is hard.
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Abstract. Procurement executives often find it difficult to articulate
their preferences and constraints regarding auctions, making it difficult
to cast procurement decisions as straightforward optimization problems.
This paper presents an efficient algorithm to aid decision support in such
situations. Instead of trying to compute a single optimal solution for the
auction winner determination problem, we generate many candidate so-
lutions in ascending order of buyer expenditure. Standard techniques
such as clustering and dominance pruning can then trim this list to
a compact yet diverse menu of alternatives; other analyses can illumi-
nate the cost of constraints and the competitive landscape. Our efficient
solution-generation algorithm addresses sealed-bid procurement auctions
with multiple suppliers and multiple types of goods available in multi-
ple units. It supports multi-sourcing and volume discounts/surcharges in
bids. Our algorithm may optionally incorporate certain classes of hard
constraints, generating only solutions that satisfy them.

1 Introduction

The problem of clearing a sealed-bid auction—i.e., determining how goods and
payments change hands among participants as a function of auction rules and
bids—is conventionally known as the winner determination problem (WDP).
For most kinds of auctions it is easy to define the WDP as a straightforward
optimization problem, e.g., an integer linear program [1]. In practice, however,
it can be difficult for auction participants to supply all of the inputs required to
solve the WDP, particularly the constraints that define the space of permissible
solutions and the preferences that allow a WDP solver to select the best solution.

Our primary focus in this paper is on the buyer’s decision problem in sealed-
bid procurement auctions, also known as reverse auctions. A procurement exec-
utive given seller bids in such an auction might “know the right solution when
she sees one.” However if she cannot articulate its properties in terms of hard
constraints and soft tradeoffs among conflicting desiderata, a straightforward
optimization formulation of the WDP does not by itself allow the auction to be
cleared.
� Currently at Rocket Fuel, Inc.
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Existing decision-support techniques such as scenario navigation and prefer-
ence elicitation extend an optimization framework by requiring additional inputs
from the decision maker, e.g., replies to elicitation queries. This paper considers
an alternative framework that provides the buyer in a procurement auction with
additional outputs rather than demanding additional inputs. Specifically, we use
seller bids to generate a large list of alternatives from the most promising region
of the solution space: the solutions that entail minimal buyer expenditure.

The key to our approach is generating k-best (i.e., k-cheapest) solutions to the
auction WDP. An earlier paper described experiments based on real bids sub-
mitted to a real procurement auction; the results demonstrated the usefulness of
our k-best solutions approach [2]. The present paper presents a far more efficient
solution-generation algorithm, shows how to incorporate into the same decision
framework the risk of supplier failure to deliver, and theoretically analyzes the
relationship between solution rank k and buyer expenditure.

Our overall approach is in principle applicable to auctions other than pro-
curement auctions (see Section 2), but its efficiency depends on the precise form
of the WDP considered—an unavoidable fact due to the NP-hardness of solving
general WDPs [3]. When specialized for procurement auctions, in which portions
of a procurement order must be assigned among sellers such that the total order
is filled exactly, our algorithm can scale to practical problem sizes. We can incor-
porate certain kinds of hard constraints to prevent unacceptable solutions from
being generated, and our approach allows multi-sourcing and the expression of
volume discounts and surcharges in bids.

Once generated, the k-cheapest solutions to a procurement auction can be
post-processed in several helpful ways. Ordinal preferences over solution
attributes enable dominance pruning that yields a smaller Pareto frontier of
solutions. The buyer may also reduce the number of candidate solutions by clus-
tering them and considering only the cheapest in each cluster. Furthermore, the
k-best solutions define prices on bundles of constraints: The price of any bundle
of constraints satisfied by a generated solution is the cost difference between
the cheapest satisfying solution and the cheapest unconstrained solution. These
prices can focus the buyer’s attention on the auction’s most pressing tradeoffs.
No restrictions on the mathematical form of constraints or preferences are neces-
sary; arbitrary non-linearities pose no special difficulties. Finally, the k-cheapest
solutions admit a wide range of informative visualizations. See [2] for a more
detailed discussion of post-processing, including empirical results.

2 General Approach

Before refocusing attention on procurement auctions in Section 3, we briefly
consider the fully general case of arbitrary sealed-bid combinatorial auctions/
exchanges. This very general context makes it easy to sketch the basic ideas
underlying our approach and explain why the restrictions of less general WDPs
are necessary to obtain a computationally efficient solution generator.

The basic recipe for generating k-best solutions to any WDP follows from
linking four observations [2]:
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1. the WDP in combinatorial exchanges is a generalized knapsack problem [4];
2. dynamic programming can solve such problems [5];
3. dynamic programs are equivalent to shortest path problems [6]; and
4. we can generate the k shortest paths in a graph [7].

We can therefore construct a graph whose paths correspond to WDP solutions
and whose path lengths correspond to objective function values in the WDP
optimization problem (e.g., path lengths might represent buyer expenditure in a
procurement auction). By computing k-shortest paths on this graph we obtain
k-best solutions to the WDP.

Unfortunately, while this approach is straightforward, there is good reason to
believe that it cannot be computationally tractable for the fully general case of
arbitrary combinatorial auction/exchange WDPs: Merely computing the first-
best solution to a combinatorial auction is NP-hard [3]; computing k-best solu-
tions can be no easier.

We gain more detailed insight into the computational complexity of combi-
natorial exchange WDPs by considering four natural measures of problem size:
the number of types of goods, the number of units of each good available, the
number of participating agents, and the length of agent bids. The computational
difficulty of solving a fully general combinatorial exchange WDP is remarkably
modest in terms of three of these four measures: Practical solvers with pseudo-
polynomial time and memory requirements are available if the number of types
of goods is a small constant [4]. The parameter responsible for intractability in
the fully general context is the number of types of goods.

In this paper we present an approach that achieves computational efficiency
by restricting attention to a class of procurement auctions, defined precisely
in Section 3. The most important benefit of the restrictions that differentiate
our procurement auctions from the fully general case of arbitrary combinatorial
exchanges is that the procurement WDP admits efficient solvers whose com-
putational demands scale pseudo-polynomially in all problem size parameters,
including the number of good types. The k-best solution generation algorithms
that we present in this paper have computational demands quadratic in a granu-
larity parameter that divides the seller’s demand for each type of good into equal
shares. In practical procurement auctions this parameter is reasonably small, so
the quadratic cost is acceptable.

The remainder of this paper is organized as follows: Section 3 formalizes our
class of procurement auctions. Section 4 presents a k-best-solutions algorithm for
the case of unconstrained solutions. Section 5 expands the scope of our method
to incorporate constraints at the local level (e.g., no seller may supply more
than 80% of any one item) and at the global level (e.g., at least three sellers
must be involved in the global solution). Section 6 describes an extension of
the notion of “cost” from the obvious monetary interpretation to a risk-based
interpretation. Section 7 briefly summarizes the results of experiments on real
bids from an actual material-parts procurement auction [2], demonstrating that
our approach yields useful insights for procurement executives. Section 8 analyzes
the distribution of buyer cost among the k-cheapest solutions assuming that
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supplier bids are random variables constrained in reasonable ways. Section 9
reviews related work, and we conclude in Section 10.

3 Procurement Auctions

Businesses increasingly obtain goods through procurement auctions. Such auc-
tions account for tens of billions of dollars of HP’s expenditures in recent years [8],
and US firms spend hundreds of billions of dollars via procurement auctions per
year. In practice, buyer preferences typically encompass non-price solution at-
tributes and side constraints, e.g., a desire to have 2–4 suppliers for each type
of good; XOR constraints on winners, e.g., “supplier B must be excluded if A is
chosen”; constraints on the total number of winning sellers; constraints on the
distribution of expenditure across sellers. Many of these constraints are moti-
vated by risk-management concerns related to delivery failure or delay, a topic
to which we shall return in Section 6. Furthermore many are “soft” in the sense
that the buyer would waive them in exchange for sufficiently large savings.

3.1 Definitions and Notation

Let S denote the number of sellers, a term that we will use interchangeably
with suppliers ; we assume that S ≥ 2. Let I denote the number of items (dis-
tinct types of goods) that the buyer wishes to acquire; the overall procurement
auction consists of I single-item sub-auctions that are cleared simultaneously.
Global granularity parameter Q specifies the number of quantiles (shares of an
item) that bids offer to supply. If Q = 4, for instance, then bids offer to supply
25%, 50%, 75%, or 100% of the total number of demanded units of each item.
In Section 4.3 we shall consider a more general case, in which the number of
quantiles depends on the item i; it makes no difference to the construction or
complexity, so for the sake of clarity we will assume until then that the total
number of quantiles is uniform across single-item auctions.

A vector of quantity assignments q = {qi,s} is a solution (or outcome) of the
auction if the constraint

∑S
s=1 qi,s = Q is satisfied for all items i. Our objective

will be to rank such solutions in order of some cost function:

c(q) =
I∑

i=1

S∑
s=1

Bis(qi,s), (1)

where Bis(q) is any non-negative function that is calculable from an assignment
of a given quantity of a given item to a given seller, and for which Bis(0) = 0. The
canonical example is the amount of money that seller s demands for providing
q quantiles of item i, but others definitions are useful (see Section 6). When we
refer to “cheapest” we will implicitly mean cost in this general sense.

The data (I, S, Q, B) specifies a procurement auction WDP. For a given auc-
tion we will construct a weighted, directed acyclic graph G with special source
and sink vertices s and t such that the k-shortest paths from s to t correspond
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to the k cheapest solutions to the WDP. Eppstein [7] demonstrates that given
a graph G with n vertices and m edges, the k shortest paths can be calculated
implicitly in time O(m + n log n + k). The n log n term comes from Dijkstra’s
algorithm [9] for constructing the tree of shortest paths from s to each other
vertex; if such a tree has already been constructed Eppstein’s algorithm takes
time O(m + k). Happily, since our graph is directed and acyclic, it is possible
to construct the shortest-path tree in time O(m), so that our graph’s k shortest
paths can be found implicitly in time O(m + k). To extract explicit represen-
tations takes additional time proportional to the number of edges in each path,
for which we will derive good bounds in Section 4.2.

Graph construction is significantly simpler in the unconstrained case, so we
discuss this first; a full discussion of the constrained case is presented in Section 5.

4 Unconstrained Solutions

It is natural to decompose the problem by item, constructing a sub-graph for each
item (with the appropriate correspondence between shortest paths and cheapest
solutions), and then chaining the sub-graphs together; a concatenation of paths
will correspond to a multi-item solution, and its length to total cost.

4.1 Single-Item Sub-Graph

To construct a single-item graph G, we consider a set of vertices with coordinates
(s, q). We choose the source s to be the vertex (0, 0), the sink t to be (S, Q),
and the intermediate vertices to be all those for which s = 1, . . . , S − 1 and
q = 0, . . . , Q. Given these vertices for G, we add an edge from (s, q) to (s+1, q+q′)
with label q′ and length Bs+1(q′), whenever both of these vertices are in G. This
edge corresponds to an assignment of quantity q′ to seller s + 1.

The graph for S = Q = 3 is shown in Figure 1. Each edge corresponds
to assigning 0, 1, 2 or 3 of the 3 available quantiles to a particular seller; the
“length” of each edge is the corresponding bid Bis(q). The reader can verify
that there are exactly ten paths from s to t (edges are directed, left to right),
corresponding to the ten ways of allocating 3 quantiles among 3 sellers. In general
the total number of distinct paths through the unconstrained single-item graph
can be shown to be R(S, Q) = (Q + S− 1)!/(Q!(S− 1)!), which is well known to
be the number of ways of placing Q indistinguishable balls into S distinguishable
cells.

Lemma 1. Each path in G from s to t corresponds, via the edge labeling, to a
non-negative integer solution q of the equation

∑S
s=1 qs = Q, and vice-versa. Fur-

thermore the length of this path is exactly the cost to the buyer of the outcome q.

Proof. Suppose a path in G has edge labels qs. By induction on s, any path
starting at s with the labels qs, k = 1, . . . , s must end at (s,

∑
k≤s qk), so the

fact that the sink vertex has label (S, Q) proves the equation. For the converse
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Fig. 1. Individual-item solutions graph for S = Q = 3. Each edge is directed, left to
right. Finely dashed edges have label q = 0; roughly dashed edges have label q = 1;
solid edges have label q = 2 and dash-cut edges have label q = 3. Edge lengths are
shown next to each edge.

statement, the equation implies that the vertices (s,
∑

k≤s qk), s = 0, . . . , S are
all necessarily in G; the path that links these vertices in order of s clearly has
edge labels qs by the definition of edge labels in G.

4.2 Multi-item Graph

Having understood the intuition behind a single-item subgraph, we present the
formal definition of the unconstrained multi-item graph, as a concatenation of
single-item graphs for each item:

Definition 1. Let (I, S, Q, B) be a WDP; the unconstrained solutions graph
Gu(I, S, Q, B) is defined as follows: The set of vertices is the set of tuples (i, s, q),
where i = 1, . . . , I and either

– (s, q) = (0, 0); or
– s = 1, . . . , S − 1 and q = 0, . . . , Q; or
– (s, q) = (S, Q).

The set of edges is constructed by adding an edge from (i, s, q) to (i, s+1, q + q′)
with label q′ and length Bis+1(q′) whenever both vertices are in Gu; we also add
connecting edges from (i, S, Q) to (i + 1, 0, 0) for each i = 1, . . . , I − 1, with no
label and length 0. We identify (1, 0, 0) as the source s of Gu, and (I, S, Q) as
the sink t.

Proposition 1. There is a one-to-one correspondence between solutions to the
WDP of an auction (I, S, Q, B) and paths in Gu(I, S, Q, B) from s to t.

Proof. The proposition is a simple consequence of Lemma 1, since Gu is a con-
catenation of single-item graphs.
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Complexity. Each single-item sub-graph of Gu has (Q+1)(S−1)+2 = O(SQ)
vertices and

(S − 2)
(

(Q + 1)(Q + 2)
2

)
+ 2(Q + 1) = O(SQ2)

edges. It follows that n = O(I S Q), and m = O(I S Q2), so that the complexity
of implicitly finding the k-shortest paths is O(I S Q2 + k). To explicitly extract
a path requires additional computation in proportion to the number of edges in
the path [7], which is I×S, so explicit enumeration of the k-shortest paths takes
time O(I S(Q2 + k)).

4.3 The General Problem

For real-world auctions, instead of a fixed number of quantiles for all items, there
is an exact number of units to acquire for each item. Quantile is a heuristic we
use to obtain reasonable approximate solutions by dividing the number of units
for each item into the same number of quantiles (rounding if necessary). In
this section we consider the general problem where items have various desired
number of units, and denote the procurement problem where all items have the
same number of quantiles as the simplified problem.

For item i, let Qi denote the total number of units desired, for i = 1, . . . , I. If
Qi = Q for all i the general problem degenerates into the simplified problem. For
each item i, Qi is no longer very small, and it could be exponentially large (e.g., a
large computer firm usually needs to procure millions of units for each computer
part). For the general problem, we can solve it as in Section 4. We now require∑S

s=1 qi,s = Qi for each item i. We construct the single-item subgraph Gi for each
item i, identical to the construction in Section 4.1. Thus Gi has O(SQi) vertices
and O(SQ2

i ) edges. The multi-item graph G is a concatenation of single-item
subgraphs Gi for all i, thus it has O(S

∑
i Qi) vertices and O(S

∑
i Q2

i ) edges.
Using Eppstein’s algorithm, we obtain:

Theorem 1. The general procurement problem (demanding Qi units of item i)
is pseudo-polynomial-time solvable. We can compute the k-cheapest solutions in
time O(S

∑
i Q2

i + k) implicitly and time O(S
∑

i Q2
i + kSI) explicitly.

5 Constrained Solutions

Some constraints on a full solution can be imposed within the framework de-
scribed in Section 4 by simply removing some edges from graph. Because the full
graph is a chain of single-item graphs, any constraint that can be incorporated
in this way can be factorized into constraints on each single-item auction, and
for this reason we call them “local”. An example of a local constraint is that no
seller provide more than 80% of any item; this can be represented by removing
all edges whose label q is greater than 0.8Q.
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Since the incorporation of local constraints is so straightforward, we will turn
our attention to hard constraints, whose satisfying global solutions are not the
product of restricted sets of individual-item outcomes; the canonical example,
which has great practical importance for risk management, is that of restricting
the number of sellers involved in the global solution.

5.1 Hard Constraints

This section describes an approach for modifying the simple graph representation
of Section 4 to incorporate certain types of hard constraints, in the sense that
solutions that violate the constraints are not generated when the k-shortest
paths algorithm operates on the modified graph. We call the expanded graph
that encodes global constraints a constrained solutions graph. The method of
this section is not generally efficient, but several useful global constraints do
have efficient representations; we enumerate some in Section 5.3.

In the process of expanding the graph to permit structural representation
of complex constraints we inevitably increase the complexity of the k-shortest
paths algorithm, and so the question arises as to whether it is better to do so, or
to generate a larger list of candidate solutions more quickly and filter out those
that violate the constraints. In practice the approach described in this section
scales best when the constraint is most stringent—i.e. when the proportion of
all paths failing the constraint is significant. This is in contrast to approaches in
the literature, such as in Villeneuve & Desaulniers [10], that rely on forbidding
a relatively small set of paths, whose computation time scales with the set of
forbidden paths rather than the set of permitted paths.

5.2 Constrained Solutions Graph

In this section we consider the problem of constructing a graph all of whose
paths correspond to solutions satisfying some constraint C. Our method is, as in
Section 4, to construct a graph Gc with vertices indexed by item-seller-quantity
triples, but now with an auxiliary variable, x ∈ X , which represents the “state”
of the solution so far constructed. By restricting those edges that are added to
Gc on the basis of their state, we can exclude paths that are bound to violate the
constraint. X will therefore represent the intermediate states in the evaluation
of the acceptability of an outcome as the outcome is constructed by assigning
quantities to suppliers.

We can formalize this description in the following way. We consider the
edges edges(Gu) of the unconstrained graph, and because of the need to
bootstrap the evaluation of the auxiliary variable, pay particular attention
to those edges edges(s) that originate at the source vertex s. A represen-
tation function is defined to be a tuple (X, f), such that f : edges(s) ∪(
X × (edges(Gu) \ edges(s)

)) → X is a function mapping a source edge, or
a non-source edge and a state value, to another state value. A representation
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function can be extended from edges to paths starting at s, by repeated appli-
cation: for any sequence of edges e1, . . . , em starting at s we define

f(e1, . . . , em) := f(f(. . . f(f(e1), e2), . . . , em−1), em) (2)

By construction, paths in the unconstrained graph from s to t are in one-to-
one correspondence with solutions to the WDP; we say that a function (X, f) and
the set of final states Xt represents a constraint C if the set of solutions obeying
the constraint corresponds in this way to exactly the set of paths (e1, . . . , em)
such that f(e1, . . . , em) ∈ Xt.

Definition 2. Let (I, S, Q, B) be a WDP, and (X, f, Xt) a representation of
a constraint C on the set of acceptable solutions. The constrained solutions
graph for this WDP, Gc(I, S, Q, B, X, f, Xt), is defined as follows:

1. Let the vertices of Gc be s∪(X×Gu\{s}
)
, with a special sink vertex t added

(here Gu(I, S, Q, B) is the unconstrained graph defined in Definition 1);
2. For each source edge e in the unconstrained graph, from s to v′, add an edge

in Gc from s to (f(e), v′), with the label and weight of e;
3. For each non-source edge e in the unconstrained graph, from v to v′, and

each state x, add an edge in Gc from (x, v) to (f(x, e), v′); and
4. Add an edge of weight zero between (I, S, Q, x) and t whenever x ∈ Xt.

Proposition 2. If (X, f, Xt) represents a constraint C, then there is a one-to-
one correspondence between solutions to the WDP (I, S, Q, B) satisfying C, and
paths in Gc from s to t.

Proof. It is clear from 2 and 3 that any path in Gc from s to t corresponds
to a sequence of edges e1, . . . , em in Gu along which f is iteratively evaluated;
the penultimate vertex in Gc must therefore be (I, S, Q, f(e1, . . . , em)). By the
definition of the fact that f represents the constraint, a solution obeys the con-
straint if and only if the corresponding path in the unconstrained graph satisfies
f(e1, . . . , em) ∈ Xt, which by 4 is true if and only if the corresponding path in
Gc goes from s to t. Therefore there is a one-to-one correspondence between
paths in Gc from s to t, and solutions to the WDP satisfying the constraint.

Complexity. It is obvious from the construction that the complexity of incor-
porating a constraint via a representation with state set X is a factor of |X |
worse than that in Section 4.2. Thus the implicit cost is O(|X | I S Q2 + k) and
the explicit cost is O(|X | I S(Q2 + k)).

5.3 Examples

In this section we detail a selection of global constraints of increasing complexity,
and their corresponding representations and constrained solutions graphs.
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Worst Case. The first thing to notice is that every global constraint has a
representation: Let X be the set of all paths originating at s in Gu, and define
f(x, e) to be the concatenation of the edge e onto the end of x, if it is defined, or
the empty path otherwise. Clearly every path starting at s is mapped by repeated
application of f to a unique element of X , namely itself. For an arbitrary set
of acceptable outcomes we can therefore let Xt be the set of corresponding
paths from the unconstrained graph; only these paths will be connected to the
sink vertex in Gc, and so only solutions obeying our arbitrary constraint will
be generated by the k-shortest paths method in Gu. This representation is not
useful, however, because the number of new vertices and edges required to create
its constrained solutions graph scales very poorly.

Constrained Number of Winners. In order to clarify the general definitions
in Section 5.2 above, in this section we give an explicit representation of the
important constraint that the number of sellers allocated non-zero quantities in
the global solution should lie in some range.

Suppose that our goal is to bound this number above by some value Σf . We
proceed by letting X be the collection of sets of sellers with at most Σf elements,
with a special element fail to denote that the constraint is violated. We define
the representation functions f(e) and f(x, e) as follows:

– If e is a source edge, and has label q > 0 then f(e) := {s1}, otherwise f(e)
is the empty set.

– If e is not a source edge,
• If it has zero weight, then define f(x, e) = x;
• Otherwise the edge ends at a vertex of the form (i, s, q); if x ∪ {s} ∈ X

then define f(x, e) := x ∪ {s}; otherwise define f(x, e) := fail.

As quantities are allocated to sellers, the state keeps an accurate record of
the set of sellers so far allocated non-zero quantity, transitioning to state fail
if the number of sellers ever gets too high. To represent an upper bound on the
number of sellers it is sufficient to let Xt = X \ {fail}. A lower bound of σf is
representable by using Σf = σf − 1 in the above, and Xt = {fail} (only those
solutions that fail to use less than or equal to σf − 1 sellers are acceptable). We
can impose upper and lower bounds simultaneously by using the state set from
the upper bound, and choosing Xt = {x ∈ X : |x| ≥ σf}. Because lower bounds
thus have multiple representations, choosing a representation wisely is in general
a tricky matter.

Monotonic Predicates. The most important feature of the cardinality con-
straint example in Section 5.3 is that the global constraint is evaluated over
predicates of the form “is seller s assigned non-zero total volume?” Such pred-
icates have two very nice properties: Most importantly, they can be evaluated
incrementally at each step by a simple OR over whether the seller has yet been
included and whether the seller is included at the current step. This implies that
the space of states need be no larger than 2|S

′|, where S′ is the set of sellers
under consideration in the global constraint. For example, a representation of
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sink

source

Fig. 2. A representation of the constrained graph Gc(2, 3, 3, B, X) for state variable x
equal to the set of suppliers so far included in the solution. Dashed edges lead to a fail
state, not shown; a copy of the unconstrained graph based on concatenated copies of
Figure 1 for each element x ∈ X is shown, grayed out, for reference.

the constraint “Either seller 1 is included, or seller 2 is included, but not both”
exists with |X | = 4.

Secondly, the value of the predicate is monotonic in the sense that as quantities
are assigned to sellers, once the predicate is true, it will remain true in all
subsequent steps. This fact sometimes gives straightforward upper bounds on
the state sets. For example, for the canonical representation of “Either seller 1 is
included, or seller 2 is included, but not both”, the state sets will clearly never
contain a state in which both seller 1 and seller 2 are included: it is not necessary
to wait until step I to realize this. If the constraint had been “Either seller 1
is assigned an even number of shares, or seller 2 is assigned an even number of
shares, but not both”, this would not have been possible. Similarly, it is this
monotonicity that allows the upper bound on X in Section 5.3.

Constraints on a second metric. We can impose an arbitrary constraint with
respect to a second cost metric c′ (i.e. one expressible as a sum of edge weights
B′, as in Equation 1) by maintaining it as a state variable x = c′: updates to the
state are calculable at the edge level by the fact that the cost is a sum of edge
values.

In this case X covers all reachable values of c′, and so might potentially be
very large. A constraint is enforced in the straightforward way, by letting Xt be
the set of values of the second metric that are acceptable.

Monotonic constraints on a second metric. If the second cost metric is
monotonic in the sense that the edge weights B′ in Equation 1 are all of one sign,
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and if the constraint is an inequality c′ ≤ C, c′ ≥ C, etc., then the representation
of Section 5.3 can be simplified.

Without loss of generality, assume that the second cost metric is positive. For
the case of an upper bound on a positive second cost metric, c′ ≤ C, we can
restrict X to be the reachable values of c′ that are also less than or equal to C,
and add a failure state fail as in Section 5.3. Then the constraint representation
either accumulates c′ in the expected way, or diverts to fail if the constraint is
violated: the monotonicity of c′ guarantees that once broken the constraint is
always broken. The set of final values Xt is equal to X \ fail.

Symmetrically, for the case of a lower bound on a positive second cost metric,
c′ > C, we can use the same state space, with the failure state replaced by a
success state, success: the set of final values is then just Xt = {success}.

Quantized thresholds as a solution filter. In Section 5.3, most interesting
secondary cost metrics will have very many possible states. Even in cases where
this multiplicity makes the full constrained graph impractical to construct, we
can still construct a graph whose solutions all satisfy the constraint, but which
excludes some solutions that do not. This reduces the computational burden
on a final filtering stage, possibly at low cost in terms of the original graph
construction.

The basic idea is to quantize the secondary edge costs B′ by some step pa-
rameter δ. If c′ is a positive monotonic secondary cost metric, and the constraint
is an upper bound c′ ≤ C, then by rounding all values of B′ down to the near-
est multiple of δ, we can assure ourselves of a smaller space of possible second
metric values, while remaining confident that any path excluded corresponds to
a solution violating the constraint. For a lower bound we round bid values up
instead.

6 Pareto Optima Minimizing Both Cost and Risk

We have presented the objective function with respect to which solutions are
ranked as being the monetary cost of procuring a particular bundle of quantities
from various sellers, but another interesting example is provided by letting the
cost of such an assignment be the negative logarithm of the probability of failure:

Bis(q) = − log (Pr(seller s delivers|quantity = q, item = i)) . (3)

Then the total cost of an assignment is a measurement of the risk of failing to
obtain all quantities required (under the assumption of independence between
deliveries). If we care only about minimizing risk of delivery, then it is equiva-
lent to minimizing the total length of a path where Bis(q) is defined in Equa-
tion 3. And of course we can compute k-safest solutions using the same overall
approach that we have heretofore employed for computing k-cheapest solutions.
However, since both monetary cost (expenditure) and delivery risk are important
considerations in procurement auctions, it is natural to consider the bi-criteria
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optimization problem minimizing both expenditure and risk, and to seek an al-
gorithm to enumerate the Pareto optimal solutions in order of one metric or the
other.

Next we show how to compute the Pareto optima path set. Write the un-
constrained graph from Section 4 in terms of its vertices and edges: G =
Gu(I, S, B, Q) = (V, E). Recall from Section 4.2 that the number of vertices and
edges are bounded by n = O(ISQ) and m = O(ISQ2). For each edge e ∈ E,
denote its cost c1(e) and risk c2(e). For each vertex v ∈ V and any non-negative
cost value c ≤ Vmax, we use Lv[c] to store the minimum risk distance from the
source to vertex v with cost distance exactly c. Here Vmax is the maximum cost
distance for any path from the source, corresponding to the maximum procure-
ment cost to satisfy demand for all items. Lv is an array with length Vmax. It is
easy to initiate Ls for the source vertex s. Next we use dynamic programming
to compute Lv[c] as follows:

Lv[c] = min{Lu[c− c1(u, v)] + c2(u, v) | (u, v) ∈ E}.
The set of Pareto optima paths can be extracted from the array Lt, where

t is the destination vertex, through a linear walk of Lt from least to highest
cost: the first Pareto path is given by the minimum c value with Lv[c] defined;
at step c, if Lv[c] is defined and Lv[c] is smaller than the risk distance of any of
the stored Pareto paths, the path corresponding to Lv[c] is Pareto optimal, and
we store it.

The total running time to compute the set of Pareto optima is dominated
by the dynamic programming step to compute Lv[c] for all v ∈ V , c ≤ Vmax,
and it takes time O(mVmax) where m = |E| = O(ISQ2). This completes the
description of our algorithm, which runs in time O(ISQ2Vmax).

In general we cannot expect to do particularly well on the Pareto enumeration
problem, because the procurement auction problem minimizing both expenditure
and risk belongs to the bi-criteria shortest path problem, which is NP-hard
based on a reduction from the Partition Problem (see Garey & Johnson [11],
p. 214). The general multiple-objective shortest path problem is one of the most
intensively studied problems in multiple-objective combinatorial optimization;
here we mention only work most relevant to our setting. We are interested in
computing the Pareto optima path set in an acyclic graph with two cost metrics.
Henig [12] considered the bi-criteria optimization problem using a utility function
to combine both metrics. For an acyclic graph with n vertices, Warburton [13]
gives a pseudo-polynomial-time exact algorithm (based on DP) with running
time O(n2V̂max log n) where V̂max is the maximum possible path distance under
both metrics. Using standard scaling and rounding techniques, it is converted
into a fully-polynomial-time approximation scheme (FPTAS) to compute the
approximately efficient Pareto optima set in time O(n3/ε).

For our contributions, first, we show that the procurement auction problem
minimizing both cost and risk can be modeled as bi-criteria shortest path prob-
lem in graph Gu(I, S, Q, B). Second, we show that a dynamic programming ap-
proach simplifying the Walburton method can compute the set of Pareto optima
in time O(ISQ2Vmax).
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7 Experiments

This section briefly summarizes the results of experiments described in detail in a
preliminary paper [2] that employed an inefficient solution-generation algorithm
inferior to the algorithm of the present paper.

We computed k-best solutions based on actual bids submitted to a multi-
million-dollar, multi-item, multi-supplier HP material-parts procurement auc-
tion. We then explored the following questions:

1. Are the top k solutions affordable?
2. Are the top k solutions diverse?
3. Does dominance pruning aid multi-criteria decision problems?
4. Can our method assign prices to bundles of side constraints?

In all cases, our results were encouraging: The 100,000th-cheapest solution is
only 0.054% more expensive than the 1st-cheapest solution, so considering k-best
solutions is not prohibitively expensive for the buyer in this real procurement
auction. Furthermore the k-best solutions are remarkably diverse in terms of how
they apportion the buyer’s expenditure across sellers, and moreover when we
add randomly-generated volume discounts to the bids, this measure of diversity
improves. When we consider the bi-criteria optimization problem in which the
buyer wishes to minimize expenditure and also spread expenditure as evenly as
possible across sellers, we find that the Pareto frontier of undominated solutions
is small enough to admit consideration by a human decision-maker. Finally,
our experiments show that our method can assign prices to bundles of side
constraints, e.g., constraints on both the number of sellers included in a solution
and the uniformity of expenditure across sellers.

8 Extreme Value Statistics

Our experiments have shown empirically that for a real auction, the k-cheapest
solutions have very similar expenditure [2]. In this section we examine the same
issue theoretically, by examining the important question of the probability, in
the face of randomly distributed bids, of the cost of the k-cheapest solutions
relative to the absolute cheapest. The question we therefore address is the likely
tradeoff between cost and diversity in solutions.

For items i = 1, . . . , I, let Xi denote a random variable representing the total
cost for item i; For Q = 1, Xi denotes a random selection of supplier j for
all units of item i with total cost pij . Let Y = X1 + X2 + . . . + XI , then Y
denotes the total procurement cost to obtain all the items with desired number
of units. Let ai ≡ min Xi, bi ≡ maxXi, then 0 < ai ≤ bi for each i, and
Ymin = a1 + a2 + . . . + aI , Ymax = b1 + b2 + . . . + bI . Here Ymin denotes the
minimum cost to purchase all items with desired number of units, and it is the
optimal solution for other solutions to compare with. We say a solution Y is
ε-approximately optimal if Y ≤ (1 + ε)Ymin. Here we abuse the notation and use
Y to denote both the solution and its corresponding total cost.
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Assumption 1. bi ≤ 2ai for all items i.

Given that bids are normally competitive, it is reasonable to assume that the
highest unit-price for each item is at most twice as expensive as the lowest unit-
price for each item. This implies that Ymax ≤ 2Ymin. Suppose that items are
sorted according to their minimum cost, i.e., a1 ≤ a2 ≤ . . . ≤ aI , then∑δ

i=1(Xi − ai)
Ymin

≤
∑δ

i=1 ai∑I
i=1 ai

≤ δ

I
.

Pick δ such that δ ≤ εI, then any supplier selected for the first δ items
together with minimum cost for items i > δ consist of a solution with total cost
at most (1 + ε)Ymin. Recall that R = R(S, Q) is defined to be the total number
of solutions for each item; for the special case of Q = 1, R is equal to S, the total
number of suppliers.1 The total number of ε-approximately optimal solutions is
Rδ = RεI = 2εI log R.

Assumption 2. There is an aggressive new entrant who matches the minimum
price for a significant fraction of all the items.

Suppose that new entrant j0 matches the min-price for a fraction f0 of all the
items. For each of these items, there are at least two choices of suppliers with
min-cost, thus the total number of min-cost solutions grows by a factor of 2f0I .
Combining results using Assumptions 1 and 2, we obtain:

Theorem 2. There are at least RεI2f0I = 2εI log R+f0I ε-approximately optimal
solutions assuming that for each item the max-cost bid is at most twice the min-
cost one, and a new entrant matches the min-cost bid of existing suppliers for a
fraction f0 of all items.

9 Related Work

Decision support in auctions is an important problem in practice and has inspired
much research, primarily on preference elicitation and scenario navigation.

Preference elicitation techniques typically represent a decision maker’s prefer-
ences as a latent utility function with a specified functional form and unknown
coefficients, and then repeatedly query the decision maker to refine estimates
of these coefficients (e.g., by asking her to choose between two alternatives).
Preference elicitation is applicable to auctions [14], and can preserve privacy
and shorten bids [15] and aid uncertain decision makers [16]. However, most
approaches place strong restrictions on the mathematical form of the utility
function and may require auction participants to reply to exponentially many
queries. Furthermore, revealed preferences may be intransitive. Our approach
does not suffer from any of these difficulties.

1 The number of solutions for item i is Θ(SQ), thus much larger than S when Q > 1.
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Scenario navigation typically employs mixed-integer program solvers to find
price-optimal solutions under different constraints. This approach requires the
buyer in a procurement auction to specify a different set of constraints for each
scenario—a potentially tedious exercise. By contrast, in its simplest form our
method does not require explicit modeling of side constraints.

The close relationship between combinatorial auction/exchange WDPs and
generalized knapsack problems is described in [4], which furthermore exploits
this connection to develop a general multi-unit combinatorial exchange WDP
solver that offers attractive computational properties. Specifically, the time and
memory required are pseudo-polynomial (indeed, linear) in all problem parame-
ters except that they are exponential in the number of good types. Our present
contribution exploits the special properties of procurement auctions to achieve
good scalability in terms of all problem-size parameters.

Eppstein [7] surveys k-shortest paths problems and algorithms, and indeed
applies his shortest paths algorithm to the solution of the 0-1 knapsack problem,
generating what can be seen as a special case of our single-item graph. Encoding
constraints in graphs so that a k-shortest paths algorithm generates only satis-
fying paths has also been explored. Villeneuve and Desaulniers [10] describe an
approach based on string-matching algorithms; as noted above, this method is
not suitable for our problem. Coutinho-Rodrigues et al. employ k-shortest paths
computations with interactive elicitation queries to explore the Pareto frontier
in bi-criteria optimization [17].

To the best of our knowledge, ours is the first systematic method of generating
k-best solutions to auction WDPs. An early paper described an inefficient solu-
tion generation algorithm that required exponential time and memory [2]. The
present paper makes the overall method more practical by greatly improving the
computational efficiency of solution generation.

10 Conclusions

This paper has described an efficient method for computing k-cheapest solutions
to procurement auction WDPs. It supports multi-sourcing, volume discounts and
surcharges, and it scales pseudo-polynomially (in fact at most quadratically) with
respect to all problem size parameters. Furthermore, the constrained solutions
graph can accommodate many useful global hard constraints with only a modest
increase in computational complexity. We have presented analytical results on
the number of “reasonably cheap” solutions, complementing previous empirical
results addressing the same issue. Finally, we have shown that k-safest solutions
may be computed using the same framework as k-cheapest solutions, and we
have presented an algorithm for computing solutions on the Pareto frontier of
the bi-criteria cost/risk problem. Taken together, the contributions of this pa-
per enable a promising approach to decision support for practical procurement
auctions.
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Abstract. Polyhedra are widely used in model checking and abstract
interpretation. Polyhedral analysis is effective when the relationships
between variables are linear, but suffers from imprecision when it is neces-
sary to take into account the integrality of the represented space. Impre-
cision also arises when non-linear constraints occur. Moreover, in terms
of tractability, even a space defined by linear constraints can become un-
manageable owing to the excessive number of inequalities. Thus it is use-
ful to identify those inequalities whose omission has least impact on the
represented space. This paper shows how these issues can be addressed in
a novel way by growing the integer hull of the space and approximating
the number of integral points within a bounded polyhedron.

1 Introduction

The aim of this work is to take algorithms from computation geometry and linear
programming and apply them to solve problems arising in program analysis using
polyhedra. In abstract interpretation convex polyhedra have long been used to
abstract the sets of values that variables may take [6]. This has proven to be
attractive in program analysis because, as well as prescribing range constraints
on variables, polyhedra can also describe interactions between variables.

Polyhedral analyses sometimes need to consider integrality [16], for instance,
to derive invariants between integral objects such as loop counters and pointer
offsets [20]. In such analyses variables are discrete, whereas polyhedra are defined
over real or rational numbers. Further, polyhedra cannot express non-linear rela-
tionships; in this case, the non-linearity is either projected out or approximated
in an ad hoc way. These drawbacks impede the accurate analysis of programs. In
terms of tractability, polyhedra can be too expressive in some situations; an anal-
ysis can become overwhelmed by large systems of (non-redundant) inequalities.
This paper presents a synthesis of solutions to the three problems introduced
above: integrality, non-linearity and tractability.

The target of this work is abstract interpretation based analyses, such as
those performed by [5]. In such an analysis a fixpoint in the meet semi-lattice
of polyhedra over the variables of interest is calculated, where this fixpoint de-
scribes the values and relationships between program variables. The smaller the
fixpoint (when the polyhedra is interpreted as a set of points), the more infor-
mation it contains. In particular, if the polyhedra describes the values of integers

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 85–99, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



86 P.J. Charles, J.M. Howe, and A. King

(and no floating point variables), then tightening to the integer hull provides a
systematic way of strengthening an analysis.

The starting point of the work is that a polyhedron can be grown to describe
the integer solutions of a system of constraints. The process is incremental in
nature. First an integer solution to the system of constraints is found. Then a
second distinct integer solution is found whose distance is maximal from the first
and the convex hull of this point and the previous space is taken. Iterating this
mechanism, one of the inequalities that bounds the current space is chosen and
a solution is found at maximal normal distance from the inequality. This process
is repeated until all inequalities have been considered, giving the integer hull
[10]. Computing the integer hull for arbitrary systems of even linear inequalities
is NP-hard, limiting the size of problems likely to be solvable and motivating
approximation techniques. Observe that the technique above gives a series of
integer polyhedra approximating the solution from below, converging on the
precise solution. It will also be seen that an approximation from above can
be extracted from the algorithm. It is important to note that the input set of
constraints is not necessarily linear, thus this approach addresses two of the three
problems: integrality and non-linearity.

A potential drawback of the above technique is that the resulting integer poly-
hedron may involve an unmanageably large number of inequalities. This moti-
vates a systematic technique for relaxing a polyhedron by reducing the number
of inequalities. This is achieved by calculating a Monte Carlo approximation of
the number of integer points that a constraint bars from a polyhedron. The least
contributing constraints are relaxed. This approach provides a way of curbing
the growth of inequalities and computing an integer approximation whose num-
ber of defining constraints does not exceed some bound, addressing the problem
of tractability.

This paper brings together a number of threads in program analysis and
computational geometry and the contributions of the paper are summarised:

– The algorithm of [10] that grows the integer hull and allows anytime approx-
imation from below and above is presented and elucidated.

– This algorithm can be adapted to calculate the integer hull of a projection
of the input constraint system onto a subset of its variables. When running
to completion this method can be used for over-approximating the integer
solutions of a set of non-linear constraints, an approximation problem which
thus far has not been satisfactorily addressed.

– A method to determine which constraints contribute little to the enclosed
space, hence are candidates for relaxation, is presented. This is parameterised
by the method used to determine this contribution and a Monte Carlo ap-
proximation technique is discussed in detail.

– The integer hull algorithm and one approach to relaxation have been imple-
mented and the results of an empirical evaluation are presented. The results
are promising for the use of the algorithms in program analysis.
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2 Growing Integer Hulls

This section details the calculation of the convex hull of the integer solutions
– the so-called integer hull [18] – of a system of constraints C defined over
totally ordered variables x1, . . . , xn. The integer hull is approximated from below,
growing it from a point by giving an inequality c to an oracle that will return
a point p satisfying C, but not c; inequality c bounds the current hull, W . The
convex hull of p and W is then calculated. This approach was first seen in [10]
and is also remarked upon in [4]. Here, the algorithm is detailed with particular
attention given to the maintenance of the inequalities describing the hull. Further
attention is paid to the novel use of this algorithm in the context of program
analysis, especially the way in which it can deal with non-linear constraints.

2.1 An Integer Hull Algorithm

The following three procedures detail the integer hull algorithm implemented in
Section 4. The main loop of the algorithm is contained in the second procedure,
worklisthull. The first procedure, integerhull below, sets up the problem:

1: procedure integerhull(C)

2: p := maximise(C, x1);

3: p = null then return null; end if

4: Ineqs :={xi ≤pi,−xi ≤−pi|1≤ i≤n};
5: Ps := {p};
6: Cons := sort(Ineqs);

7: lastrank := 0;

8: rank := rank(Ineqs);

9: while Cons �= [] do

10: p′ := null;

11: while Cons �= [] ∧ p′ = null do

12: Cons ≡ f :: Rest, f ≡ c · x ≤ d;

13: p′ := maximise(C ∧ ¬f, c · x);

14: Cons := Rest;

15: end while

16: if p′ = null then

17: return Ineqs;

18: else

19: lastrank := rank;

20: Ineqs′ := convexhull(p′, Ineqs);

21: rank := rank(Ineqs′);

22: if rank > lastrank then

23: Ineqs := Ineqs′ ;

24: Cons := sort(Ineqs);

25: Ps := Ps ∪ {p′};
26: else

27: return worklisthull(Ps, Ineqs, C);

28: end if

29: end if

30: end while

The purpose of this procedure is to calculate a first approximation (impor-
tantly, a simplex) of the integer hull that reaches the dimension of the final
solution. Note that the integer hull might well be a hyperplane of lower dimen-
sion than n, the number of varibles. On line 2, a first integer point in the hull
is calculated. This uses the auxiliary function maximise(C, c) that takes a sys-
tem of constraints C and a cost function c and returns an integer solution to
C that maximises c. If no such point exists it returns null. The choice of the
first cost function is arbitrary. Ineqs is a set of linear inequalities describing the
current approximation and Ps is the set of points so far calculated. Ineqs is then
sorted by the number of points in Ps that lie on the boundary of an inequal-
ity. This ensures that the next discovered point will raise the dimension, if full
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dimensionality is not yet reached. The dimension of a set of inequalities is de-
termined by function rank. The next point is determined on line 13 and (the
topological closure of) the convex hull of this point with the previous hull is cal-
culated on line 20 using an appropriate method. This process is repeated through
lines 9 to 30 until either the integer hull is calculated or full dimensionality is
reached.

Before passing on to worklisthull, it is worth noting that replacing lines 18-28
(and the rank variables and calculations) of integerhull with

Ineqs := convexhull(p′, Ineqs);
Cons := sort(Ineqs);

will give a complete algorithm not using the following two procedures. This will
be referred to later as integerhull′. This is essentially what is given in [10] and the
additional procedures detail the use of simplicial faces to control the generation
of new inequalities (which in integerhull′ result from the call to convexhull).

Procedure worklisthull is passed a set of points, a set of inequalities describing
their integer hull and the input constraints. This procedure works on a simplicial
input and the final point calculated by the integerhull is not included in the set
of points; worklisthull provides the main loop and is given below:

1: procedure worklisthull(Ps, Ineqs,C)
2: Hull = dimred(Ps, Ineqs);
3: Worklist = faces(Ps, Ineqs);
4: while Worklist �= φ do
5: f(V s, ineq) ∈ Worklist;
6: p := maximise(C ∧ ¬ineq, c · x) where ineq ≡ (c · x ≤ d);
7: if p = null then
8: Hull := Hull ∪ {ineq};
9: Worklist := Worklist \ {f(V s, ineq)}

10: else
11: Ps := Ps ∪ {p};
12: Worklist := hull(p, Worklist, P s);
13: end if
14: end while
15: return Hull;

In worklisthull a worklist of consists of faces, where a face f(V s, ineq) is a
set of integer points V s, with |V s| equal to the dimension of the integer hull,
and inequality ineq with each point in V s lying on the boundary of ineq. Each
face is a simplex of dimension |V s| − 1. Hull represents the inequalities in the
integer hull. It is initialised with any dimension reducing inequalities, determined
by auxiliary dimred – every point in Ps will be on the boundary of such an
inequality. The auxiliary faces sets up the initial worklist. Whilst there are faces
in the worklist a face f(V s, ineq) is selected and the oracle is asked for a point
p satisfying C, but not ineq, line 6. If there is no such point, then ineq is added
to Hull, line 7. If there is, line 10, the procedure hull determines a new worklist,
replacing any face not satisfied by p with a set of new faces whose determining
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points will include the new point. Note that the call to hull will remove the
current face from the worklist.

Procedure hull, below, takes the place of a convex hull calculation in
worklisthull:

1: procedure hull(p, Worklist, P s)
2: NewWorklist = φ;
3: for all f(V s, ineq) ∈ Worklist do
4: if p |= ineq then
5: NewWorklist := NewWorklist ∪ {f(V s, ineq)};
6: else
7: for all v ∈ V s do
8: V s′ := (V s \ {v}) ∪ {p};
9: ineq′ := ineq(V s′, v);

10: if ∀q ∈ Ps.q |= ineq′ then
11: NewWorklist := NewWorklist ∪ {f(V s′, ineq′)};
12: end if
13: end for
14: end if
15: end for
16: return NewWorklist;

The procedure will retain any face satisfied by the new point p, line 4 (|= de-
notes the satisfaction relation). An unsatisfied face forms the base of a simplicial
cone whose pinacle is p. The faces of this cone are the simplicies obtained by
replacing one of the points defining the base by p, line 8. The inequality for this
new face can be calculated (see below), from these points, plus the discarded
point, line 9. Finally, the worklist need only retain faces that are currently sat-
isfied by all discovered points, others are discarded, line 10.

The plane through a set of d independent points, p1, ..., pd, can be calculated
in constant time for fixed d by solving the parametric description of the plane
using Gaussian elimination. That is, plane = p1 +

∑d
i=2 λi.vec(p1, pi) where

vec(pi, pj) is the vector from point pi to point pj . Set up a matrix where the
first d− 1 columns are given by vec(p1, pi+1), the next d columns are the unit
vectors for each dimension and the final column is the entries of p1. Use Gaussian
elimination to set the first d − 1 entries of the final row to 0 and read off the
equation of the plane from the entries in the remaining columns of this row. The
discarded point can then be used to determine the desired inequality.

Anytime Approximations. During execution of worklisthull at any point the
accumulated inequalities of Hull and Worklist determine an integer polyhe-
dron that is an underapproximation of the integer hull, allowing anytime ap-
proximation from below. Further, note that at any point Hull is a potentially
unbounded polyhedron (but not necessarily an integer polyhedron) that is an
over-approximation of the integer hull, allowing anytime approximation from
above. Algorithms with anytime approximation are paricularly attractive for
program analysis when attempting to bound the time the analysis takes. Both
under and over-approximations are useful, depending the whether analysis is for
properties that definitely hold, or potentially hold.
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Fig. 1. Integer hull of a set of linear constraints

Example 1. Consider the following linear constraints, C = {−11x+y ≤ −8, 2x+
8y ≤ 71, 8x+4y ≤ 67, 19x+2y ≤ 116,−4x−11y ≤ −35}. This is represented by
the dotted lines in Fig. 1. The initial call to maximise gives p1, subsequent calls
from integerhull give the points p2 and p3 and the simplicial under-approximation
of the integer hull given by the continuous lines in Fig. 1 a).

In worklisthull, the face with inequality c1 ≡ −2x − 5y ≤ −17 will be first
selected. The call maximise(C, c1) will return null and c1 will be added to Hull.
Next consider face({(6, 1), (3, 8)}, d2), giving the call to maximise(C, d2) that
will return (5, 6). In hull, the face with inequality d1 is satisfied by the new point
and will remain in the worklist. The new faces are face({(5, 6), (3, 8)}, c4) and
face({(6, 1), (5, 6)}, c5). To determine c4 consider the matrix on the left, which
with one elimination step gives that on the right:[−2 1 0 5

2 0 1 6

] [−2 1 0 5
0 1 1 11

]
This allows the result to be read off: c4 ≡ x+y ≤ 11 (the point (6,1) has been

used to determine the inequality). Similarly, c5 ≡ 5x+y ≤ 31. Further iterations
give c2 ≡ −5x + y ≤ −2 and c3 ≡ y ≤ 8. Since there are no further external
points satisfying C these will be added to Hull which will finally be returned.

Note that a tightening has been achieved. The input C projected onto x gives
range [0.984,6] whereas the integer hull gives [1,6], and for y [1,8.5] becomes
[1,8].

2.2 Working in a Projected Space and Non-linear Constraints

This section builds upon two observations on the algorithm presented in the
previous section to highlight its suitability for use in program analysis. The first
observation is that the algorithm is easily adapted to compute the integer hull of
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a k-dimensional projection of constraints C, that is, the smallest polyhedron that
contains those points 〈v1, . . . , vk〉 for which C possesses a corresponding integer
solution 〈v1, . . . , vn〉. Restriction to a subset of variables of interest is an opera-
tion commonly required for program analysis. The adaptation is simply achieved
by restricting the points p, determined by calls to maximise, to the variables of
interest. The second observation is that C may contain non-linear constraints,
as long as the point oracle can deal with these. Both of these observations are
illustrated with a well-known problem from program analysis.

Although the seminal paper on polyhedral analysis [6] identified the prob-
lem of approximating non-linear constraints, a widely accepted solution to the
problem has not been found. Consider the example of [6, Sect. 4.2.1] to illus-
trate how to compute a polyhedral approximation of a non-linear assignment.
Specifically, suppose the constraint S = {−x + y ≤ 1,−y ≤ −1,−x− y ≤ −5},
holds when the non-linear assignment y := xy is encountered. The problem
is how to systematically compute a polyhedral approximation of the ensuing
non-linear space. This problem can be addressed by augmenting S with the con-
straint y′ = xy, thereby raising the dimension, then symbolically projecting out
y, and replacing y′ with y. This gives the shaded space in Fig. 2(a) defined by
{−x ≤ −2, y ≤ x + x2,−y ≤ −x,−y ≤ x2 − 5x, y ≤ 32767}. This approach
presupposes that a symbolic projection algorithm is known for the system of
augmented constraints, which of course, is not guaranteed in general [7]. Note
that the y ≤ 32767 constraint is imposed by an underlying 16-bit representation
where variables range over [−32768, 32767]; other machine representations would
likewise ensure that integer variables can only lie within a finite range. Note too
that the manually derived non-linear constraint suggested in [6, Sect. 4.2.1] omits
the inequality −x ≤ −2 that is necessary to exclude the origin. This inequality
follows from a linear combination of −x+y ≤ 1 and −x−y ≤ −5, and illustrates
the subtlety of manually abstracting non-linear constraints.

Now consider a run of the algorithm where C is instantiated to S ∧ y′ = xy and
the variables are totally ordered as in the sequence x, y′, y. Putting k = 2 then
eliminates the variable y so that the algorithm computes the integer hull of the
projection of C onto the x, y′ plane. An initial solution u = 〈32767, 32767, 1〉 is
computed at line 2 of integerhull. The projection of u onto the x, y′ plane is merely
u′ = 〈32767, 32767〉 which can be represented as a system of inequalities {x ≤
32767,−x ≤ −32767, y′ ≤ 32767,−y′ ≤ −32767}, which defines the polyhedra
P at line 2 and can be seen in Fig. 2(b).

On the first iteration f is chosen to be −x ≤ −32767, then the cost function
at line 8 is −x. The net effect is to find the solution v = 〈2, 6, 3〉 that minimises
the x coordinate whilst satisfying C ∧ ¬f ≡ C ∧ x < 32767. Projecting v onto
the x, y′ plane yields v′ = 〈2, 6〉. Extending the polyhedra P in Fig. 2(a) with
this point by computing the convex hull at line 9 gives the line segment {−x ≤
−2, x ≤ 32767, 32765y′ = 32761x + 131068} depicted as P in Fig. 2(b).

On the second iteration, f is chosen to be 32765y′ ≤ 32761x + 131068, lead-
ing to the triangle depicted in Fig. 2(c). At this stage P has reached full di-
mensionality and worklisthull will be called. Here, a call to maximise with ineq
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Fig. 2. Polyhedral approximation of a feasible region defined by non-linear constraints

as −32765y′ ≤ −32761x− 131068 will lead to the polyhedra in Fig. 2(d). After
this, further iterations will fail to find further points and P will be returned.
Notice that P is formulated in terms of y′ which represents the value of y after
the assignment. The state of the x, y variables after the assignment is obtained
by merely replacing y′ with y. Again notice that symbolic computation of the
projection has been replaced by an integer hull calculation.

3 Curbing Growth of the Integer Hull

Earlier it was noted that the integer hull algorithm presented allows for anytime
approximation from above and below. This is advantageous when the algorithm
fails to perform quickly enough, however an approach that allows selected in-
equalities to be dropped is desirable for a different kind of problem. As the
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polyhedron representing a solution space grows, the number of inequalities may
also grow. This growth can be curbed by either relaxing inequalities in the final
polyhedron or dropping them on-the-fly whilst the integer hull algorithm pro-
ceeds. These two approaches will henceforth be referred to as off-line and on-line
integer hull relaxation. Here, the focus is on off-line relaxation. These techniques
can be used to limit the growth of a system of inequalities, ameliorating any
ensuing tractability issues (with possible precision cost).

Suppose that S = {0 ≤ x, 0 ≤ y, y ≤ −x + 6} describes the relative values of
variables x and y when the non-linear assignment y := xy is reached. Applying
the integer hull algorithm to the system of non-linear constraints S ∧ y′ = xy
with the variable ordering x, y′, y and k = 2 gives the projected integer hull, H ,
enclosing only those integer points that satisfy both the linear inequality −y′ ≤ 0
and the non-linear inequality y′ ≤ −x2 + 6x. H is defined by 7 inequalities
c1: −y′ ≤ 0, c2: y′ ≤ 5x, c3: y′ ≤ 3x+2, c4: y′ ≤ x+6, c5: y′ ≤ −x+12, c6: −3x+
20, c7: y′ ≤ −5x + 30. Rank these inequalities according to some measure of
their suitability for relaxation, and discard as appropriate. For example, if the
ranking was c3, c6, c4, c5, c2, c7, c1 then relaxing the highest two ranked would
give a small increase the volume, but this slightly larger polytope contains no
additional integer points. Reranking, this process could be continued to a final
result given by c2, c7, c1.

This approach is parameterised by the function ranking the inequalities. The
method chosen here for ranking is to calculate a Monte Carlo approximation,
[15], of the volume of H∧¬ci that represents the increase in volume resulting from
the relaxation. A bounding box is constructed and sampled until the sampling
error (σ/

√
n, where σ2 = (r2 + n2)/(r + n)2, r is the number of samples in the

region and n the number of samples not in the region) is beneath a given value.
The proportion of the sample within the polytope multiplied by the volume of
the bounding box gives an approximation to the volume, as required.

Alternative rankings are possible: the volume of a polytope (with rational
vertices) can be computed in polynomial time [2] and, rather surprisingly, so can
the number of integer points in such a polytope [3,8,22], which is exactly what is
required when describing integral properties. However, despite their complexity
these remain difficult problems, particularly in high dimension and sampling
based methods seem more suitable to guiding the quick relaxation of constraints.

A natural generalisation of off-line relaxation is on-line relaxation which dis-
cards inequalities as soon as their number exceeds some pre-defined threshold
in the main loop of the integer hull algorithm. This approach is problematic for
the integerhull algorithm given earlier as relaxation will lead to faces whose ver-
tices are not known and the hull method will not work. However, the integerhull′

method with its reliance on a more general convex hull algorithm can incorpo-
rate this – simply follow the call to convexhull with as many relaxation steps
as required. Anecdotal evidence suggests that this might useful, particularly in
discarding inequalities with large coefficients that are both problematic for per-
formance and less likely to be useful for program analysis.
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4 Experimental Evaluation

The algorithm described in Section 2 and the off-line approximation technique
described in Section 3 were implemented and tested.

As mentioned in the introduction, the target of this work is abstract interpre-
tation based analyses, where a fixpoint describing the values and relationships
between program variables is calculated. This fixpoint is a point in the meet
semi-lattice of polyhedra over the variables. Fixpoints arise because of loops:
the values of the variables after an iteration of a loop serve as the values that
are input to the next iteration. The semantic equations that express the values
that variables can assume are thus recursive. A fixpoint of these equations can
be interpreted as expressing invariants that hold over all iterations of a loop.
The fixpoint may not necessarily be the unique least fixpoint; the requirement
for correctness is merely that if the fixpoint summarises values that hold in one
iteration, then it also summarises values that hold in the next. By tightening
to integer polyhedra at certain analysis points the analysis is strengthened. The
tightening to the integer hull could be applied with differing levels of granularity:
after each domain operation, at the end of the fixpoint calculation, or after the
analysis of each loop structure. The benchmarks best represent the last of these.

The benchmarks come from the Stanford Invariant Generator (Sting) and
FAST [17,1]. The Sting analyser discovers linear invariants of transition systems
that represent iterations of loops where all the variables are integer. The bench-
marks are invariants generated by Sting and are representive of the program
analysis problems that this work is aimed at. The implementation is in Java and
the experiments were run on a single core of a MacBook with a 2.4GHz Intel
Core 2 Duo processor and 4GB of memory.

Calculating Integer Hulls. The algorithm is coded in Java, with the oracle
provided by the CBC MILP solver [13]. CBC is coded in C++ and called via the
Java Native Interface. The integer hull is only defined for bounded problems and
as noted earlier inequalities need to be augmented with variable bounds. In these
experiments the problem constraints were augmented with variable bounds of
[0,64]. The results can be seen in Fig. 3: for each named benchmark, Var gives the
number of variables in the benchmarks, Ineqs the number of input constraints
(including the variable bounds), Time gives the execution time in seconds for
calculating the integer hull, Opts the number of calls to the ILP solver and Sol
Size the number of inequalities in the integer hull.

The barvinok package for integer point counting [22] and the Polylib package
for manipulating integer polyhedra [23] have been used to check the integer hull
calculations given in this paper. barvinok has been run on the input constraints
and the calculated integer hull to check that the number of lattice points are in-
dentical for both and Polylib has been used to convert the calculated constraints
to a vertices and rays representation, the test being that the vertices are all at
integer points.

Off-line Approximation. Fig. 4 tabulates results from applying the Monte
Carlo approximation of Section 3 to the results of the integer hull calculations.
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Problem Var Ineqs Time Opts Sol Size
barber.inv 8 29 3.417 207 15
berkeley-nat.inv 4 13 0.075 29 9
berkeley.inv 4 11 0.069 28 9
cars.inv 5 19 0.15 61 13
efm.inv 6 22 0.111 39 12
efm1.inv 6 21 0.086 19 9
heap.inv 5 16 0.08 26 10
lifo-nat.inv 7 24 0.297 87 13
lifo.inv 4 14 0.047 15 6
robot.inv 3 10 0.031 10 5
scheduler-2p.invl1 7 27 0.15 46 15
scheduler-2p.invl2 7 27 0.279 65 17
scheduler-3p.invl1 10 40 10.881 273 42
scheduler-3p.invl2 10 46 194.022 1037 125
scheduler-3p.invl3 10 38 23.034 388 26
see-saw.inv 2 6 0.022 10 5
swim-pool-1.inv 9 32 0.255 62 16
swim-pool.inv 9 31 0.248 57 15
train-beacon.invlate1 3 11 0.026 12 7
train-beacon.invonbrake 3 10 0.037 14 6
train-beacon.invontime 3 12 0.027 14 8
train-beacon.invstopped 3 11 0.026 12 7
train-rm03.inv 6 20 0.12 38 12

Fig. 3. Benchmarking of the integer hull algorithm

Benchmarks with no bounded relaxation have been omitted. The first set of
results gives data on ranking and relaxing one constraint: T1 is the time taken
in seconds, Best is the number of sample points needed to calculate the volume
associated with the constraint dropped, Total is the total number of sample
points and Max is the largest sample size needed to approximate a volume arising
from a single constraint. The second set of results details relaxing as many
constraints as possible, recalculating the ranking at each step: TM is the time
taken in seconds, Cons is the number of constraints in the input, Size is the final
number of constraints and Sam is total number of samples taken in this process.

Discussion. The results are promising. The implementation (not tuned to the
problems) returns the integer hull for all benchmarks up to 10 dimensions in
an acceptable time. These are the first experiments of this kind performed on
program analysis benchmarks (indeed, the authors know of no integer hull bench-
marking work at all). However, at 10 dimensions and beyond performance degen-
erates (the implementation was unable to solve nine further suitable benchmarks
over more than 10 variables in a reasonable time). This is in part because some
calls to the ILP oracle become slow, in part owing to the amount of factor-
ing performed and in part owing to the growth in the number of simplicies to
be handled. The largest benchmarks in the suite have 15 variables; this is real
loop data and being able to handle between 10 to 20 variable problems would
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Problem T1 Best Total Max Volume TM Cons Size Sam
berkeley-nat.inv 0.061 100 401 101 260.0 0.089 9 8 405
berkeley.inv 0.049 107 518 108 5.981 0.084 9 8 514
cars.inv 0.099 134 1403 190 0.0 0.455 13 8 4596
efm.inv 0.114 200 635 200 0.0 0.255 12 10 973
efm1.inv 0.080 200 200 200 0.0 0.127 9 8 200
heap.inv 0.077 200 594 200 0.0 0.179 10 8 984
lifo-nat.inv 0.132 184 560 184 5.565 0.235 13 12 525
robot.inv 0.022 148 148 148 11000.372 0.032 5 4 149
scheduler-2p.invl1 0.155 200 1368 200 0.0 0.709 15 10 3673
scheduler-2p.invl2 0.198 200 1586 200 0.0 1.076 17 10 6776
scheduler-3p.invl1 1.025 200 6170 200 0.0 16.282 42 14 92934
scheduler-3p.invl2 47.755 200 22848 200 0.0 1556.5 125 14 1326519
scheduler-3p.invl3 0.499 200 2572 200 0.0 4.312 26 14 17962
see-saw.inv 0.012 107 452 142 2.505 0.027 5 3 639
swim-pool-1.inv 0.223 200 800 200 0.0 0.745 16 13 1598
swim-pool.inv 0.208 200 400 200 0.0 0.521 15 13 600
train-beacon.invlate1 0.026 109 331 112 1.431 0.045 7 6 349
train-beacon.invonbrake 0.030 104 206 104 3.308 0.038 6 5 214
train-beacon.invontime 0.034 134 716 134 30.09 0.100 8 5 1205
train-beacon.invstopped 0.031 114 346 120 1.263 0.064 7 5 441
train-rm03.inv 0.095 179 710 182 4.148E9 0.305 12 9 1219

Fig. 4. Off-line relaxation of constraints

allow the analysis of many programs. The authors believe that further work
on the implementation will yield improvements in scalability. Size of the con-
straint coefficients is also a problem as the bounding box increases in size – most
benchmarks run equally well with larger bounding boxes, but not all.

With two or three exceptions approximation results give the desired behaviour
– sensible constraints to relax can be quickly identified. The slower benchmarks
indicate a need to augment ranking with a timeout. A further issue is that
when relaxing more than one constraint, dropping one or other equally ranked
constraint can change the total number of constraints relaxed.

5 Related Work

The algorithm presented in Section 2 was first outlined by Hartmann in [4,10]
and is also mentioned in [9]. However, its relationship with projection, non-
linearity and program analysis have not previously been commented on. An
alternative algorithm has been proposed by Meister based on the concept of pe-
riodic polyhedra [14]. Eisenbrand’s work [9] also deals with approximating the
integer hull from above, a counterpart to the work here that is also useful for
program analysis. In terms of implementation, the barvinok package for integer
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point counting [22] includes an integer hull algorithm also based on [10]; initial
experimentation suggests that this does not scale as well as the implementation
described here. The iB4e system [11] implements the beneath/beyond convex
hull algorithm over reals and uses similar concepts; it is also presented with an
oracle for solving LP problems, this could be an ILP solver.

The work on polynomial algorithms for lattice point counting from Barvi-
nok and others [2,3,8,12,22] gives precisely what is required for assessing the
importance of a candidate constraint for relaxation. This work has been ex-
tended to count points in the projection of a constrained space [21]. The re-
sults of these systems are impressive, but are still slower than sampling based
techniques for estimating the number of integer points in a polytope as used
in the approximation thread of this work. Recent work on loop nest analysis
[19,22] utilises the algorithmic results on point counting. However, abstract in-
terpretation based analysis requires constraints between variables, not lattice
point counts.

6 Conclusion

This paper has presented work on the application of algorithms from compu-
tational geometry and linear programming to data arising in program analysis.
An existing algorithm has been detailed and elucidated, and features that make
its adaptation to problems of non-linearity and integrality in program analysis
easy and natural have been identified. It has also been implemented and empiri-
cally evaluated. The results of this evaluation underline that this novel approach
to dealing with integer variables and non-linear constraints in program anal-
ysis is promising. The approach is coupled with a method for approximating
the increase in volume associated with relaxing a constraint from a system in
order to control the size of that system. This too has been implemented and
again the results suggests that the methods will be of importance in program
analysis.

The implementation described in this paper represents the state-of-the-art
for integer hull calculation. The results are promising, but also invite further
work on increasing the speed of the implementation and the size of problem
that can be dealt with. Future work will focus on improvements to the current
implementation, whilst also investigating alternative approaches avoiding large
numbers of calls to an ILP solver. The current implementation is not tuned to
program analysis benchmarks and a further line of work is to investigate whether
the structure of these lead to practical or theoretical improvements.
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Abstract. In this paper we present approximation algorithms for solv-
ing the line segment facility location problem in weighted regions. The
weighted region setup is a more realistic model for many facility loca-
tion problems that arise in practical applications. Our algorithms exploit
an interesting property of the problem, that could possibly be used for
solving other problems in weighted regions.

1 Introduction

In this paper we consider a geometric optimization problem that we call the
line segment facility location in weighted regions. We study the problem in a
weighted subdivision R = {R1, R2, . . . , Rn′} of the plane with n vertices, with
each region Ri ∈ R having associated a positive integer weight wi. Without
loss of generality, we assume that R is triangulated. The Euclidean length of a
line segment st is denoted by |st|. We denote by S(st) the weighted length of a
segment st ∈ R. In general, the weighted length of a segment st in R is defined
as the sum of the weighted lengths of st within each region it intersects. That is,
S(st) =

∑
st∩Rj �=∅ wj ∗ dj(st), where dj(st) is the Euclidean length of st within

region Rj .
The problem we study is defined as follows: Given a set of l points P =

{s1, s2, . . . , sl} ∈ R, find a facility L, which is a line segment, such that each
point in P can be connected to L via an orthogonal link and some cost C(L)
associated with the facility location is minimized (see Fig. 1 for an example). We
consider two versions of this problem, depending on how C(L) is defined. For
the first version (P1), C(L) = S(L). That is, we want to minimize the weighted
length of L. For the second version (P2), C(L) =

∑l
i=1 S(Li) + S(L), where Li

is the orthogonal link from si to L. That is, we want to minimize the sum of
weighted lengths of L and the orthogonal links from points in P to L.

The facility location problem is a well-studied problem in operations research
and computer science literature [12,13,14,9]. The problem has many formula-
tions, resulting in various definitions for the objective function. In our formula-
tion, there is a cost for opening a facility and also for constructing orthogonal
� This research was partially supported by NSF grant CCF-0635013.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 100–113, 2009.
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Fig. 1. A line segment facility L and the orthogonal links from P = {s1, s2, s3} to L

links that connect customers to this facility. The goal of P1 is to minimize the
cost of building the facility, while P2 takes into account the cost of building the
facility as well as the cost of building orthogonal links to connect a set of sites
to it. One may imagine that the facility L is an oil pipeline and the points in P
are oil wells. The oil field is divided into weighted regions based on its charac-
teristics (cost of digging, ownership rights, etc.). From each well, a spur pipeline
is to be connected directly to L, in straight line. Given the x- and y-coordinates
of the wells, the goal is to find the optimal location for the main pipeline that
minimizes the total cost.

1.1 Related Work

In unweighted environment, Megiddo and Tamir [14] solved the problem of find-
ing a line minimizing the sum of the Euclidean length of orthogonal links to the
line more than two decades ago. They showed that an optimal line facility can
be found in O(n2 log n) time by proving that there exists an optimal line that
passes through at least two of the points in P . Later, Imai et. al. [12] proved
that in L1-metric the optimal solution can be computed in linear time. Very re-
cently, Cheung and Daescu [9] showed that the weighted version of this problem,
i.e. C(L) =

∑l
i=1 S(Li), can be solved by dividing the problem into a number

(O(l2n2) in the worst case) of 1-variable subproblems. The objective function of
each subproblem has the form

l∑
i=1

S(Li) =
√

1 + m2
o(

M∑
j=1

cj

mo −mj
+

l∑
i=1

bimo + ai

m2
o + 1

+ C),
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for some constants ai, bi, ci, and C, where l is the number of points in P , n is
the number of vertices of R, and mo is the slope of orthogonal links. To this
end, they proved a key property of the problem, specifically that there exists an
optimal solution that passes through a set of “critical” points.

The proposed problem is closely related to weighted region shortest path
problems, which have been investigated in computational geometry for about
two decades. Using Snell’s refraction low and the continuous Dijkstra algorithm,
Mitchell and Papadimitriou [15] present an O(n8 log nN ′ρ

ε ) time algorithm, where
N ′ is the largest integer coordinate of vertices of R and ρ is the ratio of the max-
imum weight to the minimum weight of the regions in R. Aleksandrov et al. [2,3]
provide two logarithmic discretization schemes, that place Steiner points along
edges or bisectors of angles of regions in R, forming geometric progressions.
The placement of Steiner points depends on an input parameter ε > 0 and
the geometry of the subdivision. The (1 + ε)-approximation algorithms in [2,3]
take O(n

ε ( 1√
ε

+ log n) log 1
ε ) and O( n√

ε
log n

ε log 1
ε ) time, respectively. Sun and

Reif [17] give an algorithm, called BUSHWHACK, which constructs a discrete
graph G by placing Steiner points along edges of the subdivision. By exploiting
the geometric property of an optimal path, BUSHWHACK computes an approx-
imate path more efficiently as it accesses only a subgraph of G. Combined with
the logarithmic discretization scheme introduced in [2], BUSHWHACK takes
O(n

ε (log 1
ε + log n) log 1

ε ) time. Recently, Aleksandrov et al. [1] give a query al-
gorithm that can find an ε-approximate shortest path between any two points
in O(q̄) time, where q̄ is a query time parameter. The preprocessing time of this
algorithm is O( (g+1)n2

ε2/3q̄
log n

ε log4 1
ε ), where g is the genus of the discrete graph

constructed by the discretization scheme. Cheng et al. [7] give an algorithm to
approximate optimal paths in anisotropic regions, which is a generalized case of
weighted regions. Their algorithm takes O(ρ2 log ρ

ε2 n3 log(ρn
ρ )) time, where ρ ≥ 1

is a constant such that the convex distance function of any region contains a con-
centric Euclidean disk with radius 1/ρ. In weighted regions, the time complexity
of the algorithm is improved to O(ρ log ρ

ε n3 log(ρn
ε )), where ρ is the ratio of the

maximum weight to the minimum weight. Very recently, Cheng et al. [8] also
provided a query version of this algorithm that gives an approximate optimal
path from a fixed source (in an anisotropic subdivision) in O(log ρn

ε ) time. The
preprocessing time is O(ρ2n4

ε2 (log ρn
ε )2).

Chen et al. [5] give a fundamental study on the optimal weighted link problem,
where the goal is to minimize the weighted length of a line segment st connecting
two given regions, Rs and Rt, of R. In [5], it has been proven that the problem
to minimize the cost S(st) =

∑
st∩Rj �=∅ wj ∗ dj(st) can be reduced to a number

of (O(n2) in the worst case) global optimization problems, each of which asks
to minimize a 2-variable function over a convex domain. In [10,11], it has been
shown that to minimize the objective function S(st), st must pass through a
vertex of R. By considering each candidate vertex, they reduced the problem to
solving O(n) optimization problems at each vertex. The objective function for the
optimization problem can be expressed in the form

√
1 + m2(d0 +

∑k
i=1

ai

m+bi
),
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where d0, ai, and bi are constants, k = O(n), and m is the slope of the line
supporting st. The feasible domain Dm is a slope interval for the line passing
through the vertex. Hence, the objective function of each subproblem contains
only one variable and can be solved by computing the roots of a polynomial of
degree O(n) over the given domain Dm. Unfortunately, this approach is only
practical when the number of fractional terms in S(st) is small. In [11], a faster
approach is suggested, which aims to compute an approximate solution by bi-
secting the slope interval and pruning out subproblems that cannot lead to an
optimal solution. Some of the results in [5] were later on generalized in [6] to
more difficult problems, where the line is replaced by a parallel or cone like beam.

1.2 Our Results

Our main contributions are in describing how to partition the problem into a
polynomial number of 1-variable subproblems, and how to obtain the expression
of the objective functions for these subproblems.

For problem P1, we show that the objective function C(L) can be expressed in
the form of a sum of fractional terms, which resembles those in [5,10]. The prob-
lem can be reduced O(l2n2) 1-variable optimization problems, each with O(n)
fractional terms, which can be solved by either computing exact roots of polyno-
mials or by approximation algorithms. Using point-line duality transforms [16],
the feasible domain for each subproblem is an arc or a line segment in the dual
plane.

Then, we show that problem P2 can be solved using a similar, but more
complex, approach.

Finally, we outline a prune-and-search approximation algorithm for solving
both problems, that is very simple to implement. We expect an approximate
solution to be obtained fast in practice, since the prune-and-search algorithm
handles all subproblems at once, rather than one by one.

2 P1: Minimize the Weighted Length of L

In this section, we consider the problem of minimizing the weighted length of L,
i.e. C(L) = S(L), such that the points in P can access L via orthogonal links. We
first derive the general objective function. Then, we show that this optimization
problem can be reduced to a number of 1-variable subproblems. These subprob-
lems can be solved by the prune-and-search approximation algorithm described
in Section 4.

2.1 The Rotating Calipers

Notice that we want to set the line segment facility L as short as possible, while
each point in P is able to connect to L via an orthogonal link. Let CH(P ) denote
the convex hull of P . A line e is a line of support of CH(P ) if e is tangent to
CH(P ). The length of L is minimized when L is a segment bounded by two
parallel lines of support enclosing CH(P ) and orthogonal to L. See Fig. 2 for
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Parallel lines of support

L

CH(P)

Fig. 2. L is bounded by two parallel lines of support enclosing CH(P )

an illustration. A pair of vertices of CH(P ), {pi, pj}, is an antipodal pair if it
admits two parallel lines of support enclosing CH(P ). Applying the rotating
calipers procedure [18], we can generate all possible antipodal pairs (h pairs in
the worst case) for O(h) slope intervals in O(h) time, where h is the number of
vertices of CH(P ).

The rotating calipers procedure resembles rotating a pair of dynamically ad-
justable calipers around CH(P ) [18]. First, we choose an initial direction such as
the y-axis. Let the two calipers be e1, e2 respectively. The antipodal pair {pi, pj}
of the initial slope can be found in O(h) time. See Fig. 3 for an illustration. As
we rotate the calipers, the calipers touch the same pair of antipodal vertices until
one of the caliper touches another vertex of CH(P ). When at pi, pj , to generate
the next antipodal pair we consider the angles, θi and θj , that e1, e2 make with
edges pipi+1 and pjpj+1, respectively. If θj < θi, we rotate the calipers by an
angle θj , and {pj+1, pi} becomes the next antipodal pair, and vice versa. This
process is continued until we come full circle to the starting position.

2.2 Optimization of S(L)

Given a slope m, let the antipodal pair that admits the two parallel lines of
support of slope −1/m be pi = (a, b) and pj = (c, d), respectively. Also, let L be
a line segment with end points on the two parallel lines of support and orthogonal
to them. Let the sequence of edges intersected by L be Seq(L) = (e1, e2, . . . , ek),
where k = O(n), ej : y = mjx + pj, for j = 1, 2, . . . , k, and e1 and ek are the
two parallel lines of support. We have

S(L) =
√

1 + m2
k−1∑
j=1

wi|xj+1 − xj | =
√

1 + m2
k−1∑
j=1

wj(
pj+1 − p

m−mj+1
− pj − p

m−mj
),
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Fig. 3. Rotating the calipers around CH(P )

where m and p are the slope and intercept of L respectively, xj is the x-coordinate
of the intersection between L and ej , and wj is the weight of the region bounded
by edges ej and ej+1. Since e1 and ek are the two parallel lines of support,
we have e1 : y = −1/m(x − a) + b and ek : y = −1/m(x − c) + d. It follows
that S(L) =

√
1 + m2(

∑k−2
j=2 wj(

pj+1−p
m−mj+1

− pj−p
m−mj

) + w1( p2−p
m−m2

− b+a/m−p
m+1/m )+

wk−1(
d+c/m−p
m+1/m − pk−1−p

m−mk−1
)), and thus

S(L) =
√

1 + m2(
k−2∑
j=2

cj + djp

m−mj
+

Cmp + Dm + E

1 + m2 ),

where C, D, E, cj , and dj are all constants.
Let Q denote the set of intersection points between the lines of support above

and the edges of R. Let V be the set of vertices of R.

Lemma 1. For a fixed slope m, there exists an optimal solution L such that
L ∩ (V ∪ Q) �= ∅, where Q is the set of intersection points between the lines of
support at slope −1/m and the edges of R. That is, L passes through a point in
V ∪Q.

Proof. With m fixed, S(L) becomes a linear function of p. Thus, there is a
direction of improvement for S(L), as we slide it parallel to itself. The direction
of improvement may change only when L intersects a new region of R, and thus
the expression of S(L) changes. This can happen only if one of the following two
situation occurs: (1) L passes a vertex of R or (2) an endpoint of L passes an
edge of R. Since that endpoint of L is also on a line of support, the second case
implies the endpoint passes a point in Q. �

Corollary 1. For a fixed slope m we can find the optimal L in O(n2) time and
O(n) space.
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Parallel lines of support

L

CH(P)

e

e’

Fig. 4. L intersects a line of support at an edge

Next, we analyze the problem in the dual space. We use the duality transform
which maps a line y = mx+p on the plane onto a point (m, p) in the dual plane
and maps a point (a, b) onto the line y = −ax + b on the dual plane. Note that
L can be represented by the line supporting it.

Observe that if we change the slope m of L then seq(L) changes, i.e. the
expression of the objective function C(L) = S(L) changes, only if one of the
following events occurs:
(1) L sweeps through a vertex of R, or
(2) L sweeps through an intersection point between a line of support and an
edge of R, or
(3) L rotates through a slope such that the antipodal pair changes.

We introduce three sets of curves or lines to properly partition the dual space
such that each cell corresponds to all segments in the primal space which have
the same functional expression for the weighted length S(L).

First, we transform all vertices of R to the dual space. Let Av denote this
arrangement, which consists of n lines.

Next, consider that L intersects a line of support e′ at an edge e. As the line
of support e′ rotates, the intersection between L and e′ moves along edge e.See
Fig. 4 for an illustration.

Let the vertex of CH(P ) that is on e′ be (a, b) and let e : y = mex + pe. We
have

e′ : (y − b) = − 1
m

(x − a)

y = − 1
m

x +
a

m
+ b

L : y = mx + p
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For the intersection point of L and e′, we have:

− 1
m

x +
a

m
+ b = mx + p

x =
bm− pm + a

m2 + 1

Thus, L and e′ intersect at u : ( bm−pm+a
m2+1 , bm2+am+p

m2+1 ). Since u ∈ e, we have

bm2 + am + p

m2 + 1
= me

bm− pm + a

m2 + 1
+ pe

bm2 + am + p = me(bm− pm + a) + pe(m2 + 1)
(b − pe)m2 + (a + mep−meb)m + (p−mea− pe) = 0

p = − (b− pe)m2 + (a−meb)m−mea− pe

mem + 1

Since there are O(h) antipodal pairs of vertices and O(n) edges of R, we have
a total of O(hn) such curves. Let A′

c denote the arrangement of these curves.
Note that two such curves can intersect at most three times and one such curve
can intersect with a line at most two times.

Finally, let M = {m1, m2, . . . , mh} be the set of slopes of edges in CH(P ) and
let M ′ = {−1/m : m ∈ M}. Recall that in the rotating calipers procedure, the
antipodal pair changes only when the calipers are rotating through the slopes in
M , or equivalently when L rotates through the slopes in M ′, since L is orthogonal
to the calipers. Let A′

r be the arrangement of O(h) vertical lines {x∗ = m : m ∈
M ′} in the dual space.

The overall partition is Av ∪A′
c ∪A′

r, which consists of O(n) lines and O(hn)
curves. See Fig. 5 for an illustration.

Lemma 2. Av∪A′
c∪A′

r partitions the dual space such that each cell corresponds
to all segments in the primal space which have the same functional expression
for the weighted length.

Proof. Let L and L′ be two line facilities such that S(L) and S(L′) have dif-
ferent functional expressions for the weighted length. Due to order preserving
property of the dual transform, their corresponding dual points L∗ and L′∗ must
be separated by at least one line or curve in Av, A′

c or A′
r. The proof follows. �

Using the algorithm in [4], the arrangement Av ∪ A′
c ∪ A′

r can be computed in
O(nh log(nh) + k) time and O(nh + k) space, where k is the number of cells,
which is O(h2n2) in the worst case.

Lemma 3. A global minimum of C(L) can be found at non-vertical boundaries
of the partition, i.e. on the lines or the curves in Av ∪A′

c.

Proof. When the slope m of L is fixed, the objective function C(L) is linear and
monotonic with respect to the intercept p of L. Then, a minimum of C(L) can
be found on the non-vertical boundary of the partition. �
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Fig. 5. Partition of the dual space

Lemma 4. P1 can be reduced to O(h2n2) 1-variable subproblems. The domain
for each subproblem is a piece of non-vertical boundary on the partition Av ∪
A′

c ∪A′
r.

Proof. The complexity of the overall partition Av ∪ A′
c ∪ A′

r is O(h2n2). The
result follows from Lemma 2 and Lemma 3. �

We now analyze the subproblems. If the domain of a subproblem is on Av, L
passes through a vertex. Let v : (xi, yi) ∈ R be that vertex. We have,

L : y − yi = m(x − xi),

p = yi −mxi,

S(L) =
√

1 + m2(
k−2∑
j=2

cj + djp

m−mj
+

Cmp + Dm + E

1 + m2 )

=
√

1 + m2(
k−2∑
j=2

cj + dj(yi −mxi)
m−mj

+
Cm(yi −mxi) + Dm + E

1 + m2 )

=
√

1 + m2(
k−2∑
j=2

c′j
m−mj

+
D′m + E′

1 + m2 + C′),

where mj , c
′
j , C

′, D′, E′ are all constants.
If the domain of the subproblem is on A′

c, L intersects with a line of support
on an edge e. Let me and pe be the slope and intercept of e, respectively, and
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let the vertex of CH(P ) on the line of support be (a, b). Substituting

p = − (b− pe)m2 + (a−meb)m−mea− pe

mem + 1

into S(L), we have

S(L) =
√

1 + m2(
k−2∑
j=2

c′jm + d′j
(m−mj)(1 + mem)

+
C′m2 + D′m + E′

(1 + m2)(1 + mem)
+ C′′),

where mj , me, c
′
j , d

′
j , C

′, C′′, D′, E′ are constants.
We will show in Section 4 how to minimize S(L) using a prune-and-search

algorithm.

3 P2: Minimize the Sum of Weighted Length of
Orthogonal Links and L

In this section, we address the second optimization problem P2, which asks to
minimize the sum of weighted length of orthogonal links and S(L), i.e. C(L) =∑l

i=1 S(Li) + S(L). We solve this optimization problem by (1) partitioning the
problem in the dual space, (2) finding the objective function on the boundary
of the partition and (3) applying the prune-and-search algorithm in Section 4 to
approximate the solution.

The problem of minimizing the sum of weighted length of orthogonal links
is solved in [9]. In [9], the dual space is partitioned by introducing three sets
of curves or lines. The first set consists of dual lines of points in P . Let Ap

denote the arrangement of the l dual lines. Next, all lines intersecting with some
orthogonal link at some edge of R are transformed to the dual space. This yields
a set of O(ln) curves. Let Ac denote the arrangement of this set of curves. The
last set of lines introduced to the dual space is

{x∗ = −1/mij : i = 1, 2, . . . , l and j = 1, 2, . . . , n},
where mij is the slope of the line passing through point si ∈ P and vertex
vj ∈ R. Let Ar denote the arrangement of this set of lines. The optimization
problem is reduced to a number of 1-variable subproblems. The domain for each
subproblem is a piece of arc or segment on Ap or Ac. The objective function for
each subproblem can be expressed in the form

l∑
i=1

S(Li) =
√

1 + m2
o(

M∑
j=1

cj

mo −mj
+

l∑
i=1

bimo + ai

m2
o + 1

+ C),

for some constants ai, bi, ci, C, where mo is the slope of orthogonal links. Sub-
stituting mo = −1/m,

l∑
i=1

S(Li) =
√

1 + m2(
M∑

j=1

−cj

mjm + 1
+

l∑
i=1

aim− bi

m2 + 1
+

C

m
).
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Notice that A′
c, defined in the previous section, is a subset of Ac, since each

line of support supports an orthogonal link from a point in P to L. It follows that
Ap ∪Ac ∪Ar ∪Av ∪A′

r partitions the dual space such that each cell corresponds
to all segments in the primal space which have the same functional expression
for the objective function, i.e. C(L) =

∑l
i=1 S(Li) + S(L). The partition can be

computed in O(ln log(lh) + k) time and O(lh + k) space, where k is the number
cells, which is O(l2n2) in worst case, using the algorithm in [4].

Lemma 5. An optimal solution for P2 can be found on the non-vertical bound-
ary of the partition Ap ∪Ac ∪Ar ∪Av ∪A′

r.

Proof. Similar to Lemma 3. �

Lemma 6. P2 can be divided into O(l2n2) subproblems, where the domain for
each subproblem is a piece of non-vertical boundary of the partition Ap ∪ Ac ∪
Ar ∪Av ∪A′

r, i.e. an arc or a segment on Ap, Ac, or Av.

Proof. Similar to Lemma 4. �

Next, we derive the overall expression for C(L). If the domain of the subprob-
lem is on Ap or Av, i.e. L passes through a point si ∈ P or a vertex in R, we have:

C(L) =
l∑

i=1

S(Li) + S(L)

=
√

1 + m2(
M∑

j=1

−cj

mjm + 1
+

l∑
i=1

aim− bi

m2 + 1
+

C

m
)

+
√

1 + m2(
k−2∑
j=2

c′j
m−m′

j

+
D′m + E′

1 + m2 + C′)

=
√

1 + m2(
M∑

j=1

(
c′′j

mjm + 1
+

c′j
m−mj

) +
D′′m + E′′

1 + m2 +
C

m
+ C′),

where mj , cj , c
′
j, c′′j , C, C′, D′′, and E′′ are constants.

If the domain of the subproblem is on Ac, i.e. L intersects with an orthogonal
link or a line of support on an edge, we have:

C(L) =
l∑

i=1

S(Li) + S(L)

=
√

1 + m2(
M∑

j=1

−cj

mjm + 1
+

l∑
i=1

aim− bi

m2 + 1
+

C

m
)

+
√

1 + m2(
k−2∑
j=2

c′jm + d′j
(m−m′

j)(1 + mem)
+

C′m2 + D′m + E′

(1 + m2)(1 + mem)
+ C′′′)
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=
√

1 + m2(
M∑

j=1

(
c′′j

mjm + 1
+

c′jm + d′j
(m−mj)(1 + mem)

)

+
C′′m2 + D′′m + E′′

(1 + m2)(1 + mem)
+

C

m
+ C′′′),

where mj , me, cj , c
′
j , and c′′j are constants.

Once the objective functions are derived for all subproblems, the optimal
solution can be approximated within an ε-factor by applying the prune-and-
search algorithm described in the next section.

4 A Prune-and-Search Approximation Algorithm

We present a prune-and-search approximation algorithm combined with the sub-
division approach. The general outline is as follows:

(1) Find upper and lower bounds for each subproblem of interest.
(2) Calculate Umin, which is the minimum of upper bounds of all subproblems
in the queue.
(3) For each subproblem, if its lower bound is greater than Umin then prune it.
(4) Maintain a priority queue of active subproblems based on their lower bounds.
(5) Get the first candidate Ii from the priority queue and find a coarse approxi-
mation by placing Steiner points and sampling.
(6) A solution L is accepted if S(L) ≤ (1 + ε)Smin

i , where ε is a parameter
defining the quality of the approximation and Smin

i is the lower bound of Ii.
(7) If no acceptable solution has been found, we further divide Ii into smaller
subproblems.
(8) Find the upper bound and lower bound of all new subproblems and add them
back to the priority queue. Go to step (3).

Next, we give more details of the prune-and-search algorithm for problem P1
(a similar analysis can be done for P2). Given a subproblem Ii, all line segments
in the feasible domain Di intersect with the same set of regions of R. Let the
set of regions intersected by segments in Di be {Ri1 , Ri2 , . . . , Rik

}. We can set
the lower bound of Ii, Smin

i , as
∑k

q=1 wiq ∗ minL∈Di(L ∩ Riq ). The value of
minL∈Di(L ∩Riq) can be computed in O(1) time. The upper bound of Ii could
be any sample value of the objective function in the given domain.

Lemma 7. The prune process is safe.

Proof. Consider a subproblem Ii. If the lower bound Smin
i ≥ Umin then the

subproblem that produces Umin can give us a solution at least as good as the
best possible solution given by Ii. Hence, there is no need to consider Ii in future
steps. �

5 Conclusions

In this paper, we discussed two versions of the line segment facility location
problem in weighted regions. For the first version (P1), we want to minimize the
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weighted length of L, while each point in a set of points P is able to connect
to L via an orthogonal link. For the second version (P2), we want to minimize
the sum of weighted lengths of L and the orthogonal links from points in P to
L. Each version of the problem can be solved in similar fashion. We partition
the problem in the dual space such that the optimal solution is located on the
boundary of the partition. We show that P1 can be reduced to O(h2n2) 1-variable
subproblems, while P2 can be reduced to O(l2n2) 1-variable subproblems, where
h is the number of vertices of the convex hull of P , l is the number of points
in P , and n is the number of vertices in the weighted subdivision. Approximate
solutions for P1 and P2 can be found by applying a prune-and-search algorithm.

We conclude by mentioning the following open problems.

– Is it possible to obtain a combinatorial solution for P1, P2, or the problem
of minimizing the sum of orthogonal links?

– Other interesting versions are when L reduces to a point or when we do not
require the connecting links to be orthogonal to L.
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surfaces. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
98–109. Springer, Heidelberg (2006)

2. Aleksandrov, L., Maheshwari, A.A., Sack, J.R.: Approximation algorithms for geo-
metric shortest path problems. In: Proc. 32nd Annual ACM Symposium on Theory
of Computing, pp. 286–295 (2000)

3. Aleksandrov, L., Maheshwari, A., Sack, J.R.: Determining approximate shortest
paths on weighted polyhedral surfaces. Journal of the ACM 52(1), 25–53 (2005)

4. Amato, N.M., Goodrich, M.T., Ramos, E.A.: Computing the arrangement of curve
segments: Divide-and-conquer algorithms via sampling. In: Proc. 11th Annual
CAM-SIAM Symposium on Discrete Algorithms, pp. 705–706 (2000)

5. Chen, D.Z., Daescu, O., Hu, X., Wu, X., Xu, J.: Determining an optimal penetra-
tion among weighted regions in two and three dimensions. Journal of Combinatorial
Optimization 5(1), 59–79 (2001)

6. Chen, D.Z., Hu, X., Xu, J.: Computing Optimal Beams in Two and Three Dimen-
sions. Journal of Combinatorial Optimization 7(2), 111–136 (2003)

7. Cheng, S.W., Na, H.S., Vigneron, A., Wang, Y.: Approximate shortest paths in
anisotropic regions. SIAM Journal on Computing 38, 802–824 (2008)

8. Cheng, S.W., Na, H.S., Vigneron, A., Wang, Y.: Querying approximate shortest
paths in anisotropic regions. In: Proc. 23rd Symposium on Computational Geom-
etry, pp. 84–91 (2007)

9. Cheung, Y., Daescu, O.: Line Facility Location in Weighted Regions. In: Proc. 4th
Intl. Conf. on Algorithmic Aspects in Information and Management, pp. 109–119
(2008)

10. Daescu, O.: Improved optimal weighted links algorithms. In: Proc. ICCS, 2nd In-
ternational Workshop on Computational Geometry and Applications, pp. 227–233
(2002)

11. Daescu, O., Palmer, J.: Minimum Separation in Weighted Subdivisions. Interna-
tional Journal of Computational Geometry and Applications 19(1), 33–57 (2009)



Line Segment Facility Location in Weighted Subdivisions 113

12. Imai, H., Kato, K., Yamamoto, P.: A linear-time algorithm for linear L1 approxi-
mation of points. Algorithmica 4(1), 77–96 (1989)

13. Goemans, M.X., Skutella, M.: Cooperative facility location games. Journal of Al-
gorithms 50(2), 194–214 (2004)

14. Megiddo, N., Tamir, A.: Finding Least-Distance Lines. SIAM Journal of Algebraic
Discrete Methods 4(2), 207–211 (1983)

15. Mitchell, J.S.B., Papdimitriou, C.H.: The weighted region problem: Finding short-
est paths through a weighted planer subdivision. Journal of the ACM 38(1), 18–73
(1991)

16. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction.
Springer, New York (1985)

17. Sun, Z., Reif, J.H.: On finding approximate optimal path in weighted regions.
Journal of Algorithms 58(1), 1–32 (2006)

18. Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proc.
2nd IEEE Mediterranean Electrotechnical Conference (MELECON 1983), pp. 1–4
(1983)



Algorithms for Placing Monitors in a
Flow Network

(Preliminary Version)

Francis Chin1,�, Marek Chrobak2,��, and Li Yan2,��

1 Department of Computer Science, The University of Hong Kong, Pokfulam,
Hong Kong

2 Department of Computer Science, University of California, Riverside, CA 92521

Abstract. In the Flow Edge-Monitor Problem, we are given an undi-
rected graph G = (V, E), an integer k > 0 and some unknown circulation
ψ on G. We want to find a set of k edges in G, so that if we place k mon-
itors on those edges to measure the flow along them, the total number of
edges for which the flow can be uniquely determined is maximized. In this
paper, we first show that the Flow Edge-Monitor Problem is NP-hard,
and then we give two approximation algorithms: a 3-approximation algo-
rithm with running time O((m + n)2) and a 2-approximation algorithm
with running time O((m + n)3), where n = |V | and m = |E|.

1 Introduction

We study the Flow Edge-Monitor Problem (FlowMntrs, for short), where the
objective is to find k edges in an undirected graph G = (V, E) with an unknown
circulation ψ, so that if we place k flow monitors on these edges to measure
the flow along them, we will maximize the total number of edges for which
the value and direction of ψ is uniquely determined by the flow conservation
property. Intuitively, the objective is to maximize the number of bridge edges in
the subgraph induced by edges not covered by monitors. (For a more rigorous
definition of the problem, see Section 2.)

Consider, for example, the graph and the monitors shown in Figure 1. In this
example we have k = 4 monitors represented by rectangles attached to edges,
with measured flow values and directions shown inside. Thus we have ψ(2, 3) = 4,
ψ(3, 8) = 2, ψ(6, 4) = 7 and ψ(1, 2) = 1. From the flow conservation property,
we can then determine that ψ(3, 5) = 2, ψ(8, 6) = 2, ψ(7, 5) = 3 and ψ(5, 6) = 5.
Thus with 4 monitors we can determine flow values on 8 edges.

Our results. We first show that the FlowMntrs problem is NP-hard. Next,
we study polynomial-time approximation algorithms. We introduce an algo-
rithm called σ-Greedy that, in each step, places up to σ monitors in such
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Fig. 1. A graph with 4 monitors

a way that the number of edges with known flow is maximized. We then prove
that 1-Greedy is a 3-approximation algorithm and that 2-Greedy is a 2-
approximation algorithm. The running times of these two algorithms are
O((m + n)2) and O((m + n)3), respectively, where n = |V | and m = |E|. In
both cases, our analysis is tight. In fact, our approximation results are stronger,
as they apply to the weighted case, where the input graph has weights on edges,
and the objective is to maximize the total weight of the edges with known flow.

Related work. A closely related problem was studied by Gu and Jia [4] who con-
sidered a traffic flow network with directed edges. They observed that m−n+1
monitors are necessary to determine the flow on all edges of a strongly connected
graph, and that this bound can be achieved by placing flow monitors on edges
in the complement of a spanning tree. (The same bound applies to connected
undirected graphs.) Khuller et al. [5] studied an optimization problem where
pressure meters may be placed on nodes of a flow network. An edge whose both
endpoints have a pressure meter will have the flow determined using the pressure
difference, and other edges may have the flow determined via flow conservation
property. The goal is to compute the minimum number of meters needed to de-
termine the flow on every edge in the network. They showed that this problem is
NP-hard and MAX-SNP-hard, and that a local-search based algorithm achieves
2-approximation. For planar graphs, they have a polynomial-time approximation
scheme. The model in [5] differs from ours in that it assumes that the flow satis-
fies Kirchhoff’s current and voltage laws, while we only assume the current law
(that is, the flow preservation property). This distinction is reflected in different
choices of “meters”: vertex meters in [5] and edge monitors in our paper. Recall
that, as explained above, minimizing the number of edge monitors needed to
determine the flow on all edges is trivial, providing a further justification for our
choice of the objective function.

The FlowMntrs problem is also related to the classical k-cut and multi-way
cut problems [6,8,1], where the goal is to find a minimum-weight set of edges that
partitions the graph into k connected components. One can view our monitor
problem as asking to maximize the number of connected components obtained
from removing the monitor edges and the resulting bridge edges.
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2 Preliminaries

We now give formal definitions. Let G = (V, E) be an undirected graph. We as-
sume that G is simple, that is, it does not have multiple edges or loops, although
our algorithms work for multi-graphs with loops as well. Throughout the paper,
we use n = |V | to denote the number of vertices in G and m = |E| to be the
number of edges. We will typically use letters u, v, x, y, ..., possibly with indices,
to denote vertices, and a, b, e, f, ... to denote edges. If an edge e has endpoints
x, y, we write e = {x, y}.

A circulation on G is a function ψ that assigns a flow value and a direction
to any edge in E. (We use the terms “circulation” and “flow” interchangeably,
slightly abusing the terminology.) Denoting by ψ(u, v) the flow on e = {u, v}
from u to v, we require that ψ satisfies the following two conditions (i) ψ is anti-
symmetric, that is ψ(u, v) = −ψ(v, u) for each edge {u, v}, and (ii) ψ satisfies
the flow conservation property, that is

∑
{u,v}∈E ψ(u, v) = 0 for each vertex v.

A bridge in G is an edge whose removal increases the number of connected
components of G. Let Br(G) be the set of bridges in G. The flow value on any
bridge of G must be 0, so, without loss of generality, throughout the paper we
will be assuming that the input graph does not have any bridges. In other words,
each connected component of G is 2-edge-connected. (Recall that, for an integer
c ≥ 1, a graph H is called c-edge-connected, if H is connected and it remains
connected after removing any c− 1 edges from H .)

Suppose that some circulation ψ is given for all edges in some set M ⊆ E,
and not for other edges. We have the following observation:

Observation 1. For {u, v} ∈ E−M , ψ(u, v) is uniquely determined if and only
if {u, v} ∈ Br(G−M).

We can now define the gain of M to be gain(G, M) = |M ∪ Br(G −M)|, that
is, the total number of edges for which the flow can be determined if we place
monitors on the edges in M . We will refer to the edges in M as monitor edges,
while the bridge edges in Br(G−M) will be called extra edges. If G is understood
from context, we will write simply gain(M) instead of gain(G, M).

The Flow Edge-Monitor Problem (FlowMntrs) can now be defined formally
as follows: given a graph G = (V, E) and an integer k > 0, find a set M ⊆ E
with |M | ≤ k that maximizes gain(G, M).

The weighted case. We consider the extension of FlowMntrs to weighted
graphs, where each edge e has a non-negative weight w(e) assigned to it, and
the task is to maximize the weighted gain. More precisely, if M are the monitor
edges, then the formula for the (weighted) gain is gain(M) =

∑
e∈M∪B w(e), for

B = Br(G−M). We will denote this problem by WFlowMntrs.
Throughout the paper, we denote by M∗ some arbitrary, but fixed, optimal

monitor edge set. Let B∗ = Br(G−M∗) be the set of extra edges corresponding
to M∗. Then the optimal gain is gain∗(G, k) = w(M∗ ∪B∗).

We now claim that in the weighted case we can restrict our attention to
graphs whose all connected components are 3-edge-connected. More specifically,
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we show that any weighted 2-edge-connected graph G = (V, E) can be converted
in linear time into a 3-edge-connected weighted graph G′ = (V ′, E′) such that:

(i) gain∗(G, k) = gain∗(G′, k), and
(ii) If M ′ ⊆ E′ is a set of k monitor edges in G′, then in linear time one can

find a set M ⊆ E of k monitor edges in G with gain(G, M) = gain(G′, M ′).

We now show the construction of G′. A 2-cut is a pair of edges {e, e′} whose
removal disconnects G. Write e � e′ if {e, e′} is a 2-cut. It is known, and quite
easy to show, that relation “�” is an equivalence relation on E. The equivalence
classes of � are called edge groups.

Suppose that G has an edge group F with |F | = q, for q ≥ 2, and let H1, ..., Hq

be the connected components of G − F . Then F = {e1, ..., eq}, where, for each
i, ei = {ui, vi}, ui ∈ Hi and vi ∈ Hi+1 (for i = q we assume q + 1 ≡ 1). For
i = 1, ..., q − 1, contract edge ei so that vertices ui and vi become one vertex,
and then assign to edge eq = {uq, vq} weight

∑q
i=1 w(ei). We will refer to eq as

the deputy edge for F . Figure 2 illustrates the construction.

H1
H3

H6

H2

17

H1 H3

H6

H2
1

3

5

5 2

1

Fig. 2. Contracting edge groups

Let G′ = (V ′, E′) be the resulting weighted graph. By the construction, G′ is
3-edge-connected. All edge groups can be computed in linear time (see, [7], for
example), so the whole transformation can be done in linear time as well.

It remains to show that G′ satisfies conditions (i) and (ii). If M is any monitor
set, and if M has two or more monitors in the same edge group, we can remove
one of these monitors without decreasing the gain of M . Further, for any monitor
edge e of M , we can replace e by the deputy edge of the edge group containing
e, without changing the gain. This implies that, without loss of generality, we
can assume that the optimal monitor set M∗ in G consists only of deputy edges.
These edges remain in G′ and the gain of M∗ in G′ will be exactly the same as
its gain in G. This shows the “≥” inequality in (i). The “≤” inequality follows
from the fact that any monitor set in G′ consists only of deputy edges from G.
The same argument implies (ii) as well.

The kernel graph. Consider a graph G = (V, E) and a monitor edge set M ,
and let B = Br(G−M). The kernel graph associated with G and M is defined as
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a weighted graph GM = (VM , EM ), where VM is the set of connected components
of G−M −B, and EM is determined as follows: For any edge {u, v} ∈M ∪B,
where u, v ∈ V , let x and y be the connected components of G −M − B that
contain, respectively u and v. Then we add edge {x, y} to EM . The weights
are preserved, that is w({x, y}) = w({u, v}). We will say that this edge {x, y}
represents {u, v} or corresponds to {u, v}. In fact, we will often identify {u, v}
with {x, y}, treating them as the same object. Note that GM is a multigraph,
as it may have multiple edges and loops (even though G is a simple graph).

Figure 3 shows the kernel graph corresponding to the graph and the monitor
set in the example from Figure 1 (all edge weights are 1):

1,2,4,7 5

6

3

8

Fig. 3. The kernel graph for the example in Figure 1. The loop in vertex {1, 2, 4, 7}
represents edge {2, 1}.

Note that we have |EM | ≤ k + |VM | − cc(GM ), where cc(H) denotes the
number of connected components of a graph H . This can be derived directly
from the definitions: The edges in GM that represent extra edges are the bridges
in GM and therefore they form a forest in GM . This implies that the number of
extra edges is at most |VM | − cc(GM ), and the inequality follows.

In the paper, we will use the concept of kernel graphs only with respect to
some optimal monitor set. Let M∗ be some arbitrary, but fixed, optimal monitor
edge set. To simplify notation, we will write G∗ = (V ∗, E∗) for the kernel graph
associated with M∗, that is G∗ = GM∗ , V ∗ = VM∗ and E∗ = EM∗ . In this
notation, we have gain∗(G, k) = w(E∗). In the analysis of our algorithms, we
will be comparing the weights of edges collected by the algorithm against the
edges in the kernel graph G∗.

3 Proof of NP-hardness of FlowMntrs

We show that the FlowMntrs is NP-hard (even in the unweighted case), via a
reduction from the Clique problem. We start with a simple lemma whose proof
is omitted. (In the lemma, we assume that

(1
2

)
= 1(1− 0)/2 = 0.)

Lemma 1. Let a1, a2, . . . , as be s positive integers such that
∑s

i=1 ai = n, for a
fixed integer n. Then

∑s
i=1

(
ai

2

)
is maximized if and only if aj = n − s + 1 for

some j and ai = 1 for all i �= j.
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Theorem 2. FlowMntrs is NP-hard.

Proof. In the Clique problem, given an undirected graph G = (V, E) and an
integer q > 0, we wish to determine if G has a clique of size at least q. Clique

is well-known to be NP-complete (see [2]). We show how to reduce Clique,
in polynomial-time, to DecFlowMntrs, the decision version of FlowMntrs,
defined as follows: Given a graph G = (V, E) and two integers, k, l > 0, is there
a set M of k edges in G for which |Br(G−M)| ≥ l?

The reduction is simple. Suppose we have an instance G = (V, E), q of Clique.
We can assume that G is connected and q ≥ 3. Let n = |V | and m = |E|. We map
this instance into an instance G, k, l of DecFlowMntrs, where k = m− (q2)− l
and l = n− q. This clearly takes polynomial time. Thus, to complete the proof,
it is sufficient to prove the following claim:
(∗) G has a clique of size q iff G has a set M of k edges for which |Br(G−M)| ≥ l.

We now prove (∗). The main idea is that, by the choice of parameters k and l,
the monitors and extra edges in the solution of the instance of DecFlowMntrs

must be exactly the edges outside the size-q clique of G.
(⇒) Suppose that G has a clique C of size q. Let G′ be the graph obtained by

contracting C into a single vertex and let T be a spanning tree of G′. We then
take M to be the set of edges of G′ outside T . Thus the edges in T will be the
bridges of G−M . Since G′ has n− q + 1 vertices, T has l = n− q edges, and M
has m− (q2)− l = k edges.

(⇐) Suppose there is a set M of k monitor edges that yields a set B of l′

extra edges, where l ≤ l′ ≤ n− 1. We show that G has a clique of size q.
Let s be the number of connected components of G−M −B, and denote by

a1, a2, ..., as the cardinalities of these components (numbers of vertices). Since
|B| = l′, we have s ≥ l′ + 1. Also,

∑s
i=1 ai = n and

∑s
i=1

(
ai

2

)
+ k + l′ ≥ m.

Therefore, using Lemma 1, and the choice of k and l, we have(
n− l′

2

)
+ l′ ≥

(
n− s + 1

2

)
+ l′ ≥

s∑
i=1

(
ai

2

)
+ l′ ≥ m− k =

(
n− l

2

)
+ l.

By routine calculus, the function f(x) = 1
2 (n − x)(n − x − 1) + x is decreasing

in interval [0, n − 1], and therefore the above derivation implies that l′ ≤ l, so
we can conclude that l′ = l. This, in turn, implies that all inequalities in this
derivation are in fact equalities. Since the first inequality is an equality, we have
s−1 = l′ = l = n− q. Then, since the second inequality is an equality, Lemma 1
implies that aj = q for some j and ai = 1 for all i �= j. Finally, the last inequality
can be an equality only if all the connected components are cliques. In particular,
we obtain that the jth component is a clique of size q.

4 Algorithm σ-Greedy

Fix some integer constant σ ≥ 1. Let G = (V, E) be the input graph with weights
on edges. For simplicity, we will assume that G is connected. (A full argument
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will appear in the final version.) As explained in Section 2, we can then also
assume that G is 3-edge-connected.

Algorithm σ-Greedy that we study in this section works in �k/σ� steps and
returns a set of k monitor edges. In each step, it assigns σ monitors to a set P of σ
remaining edges that maximizes the gain in this step, that is, the total weight of
the monitor edges and the resulting bridges. A more rigorous description is given
in Figure 4, which also deals with special cases when the number of monitors or
edges left is less than σ.

Algorithm σ-Greedy

G0 = (V , E0)←G = (V ,E )
M0 ←∅
X0 ←∅
for t ← 1, 2, ..., �k/σ


if Et−1 = ∅
then return M = Mt−1 and halt

σ′ ← σ
if t = �k/σ� + 1

then σ′ = k mod σ
if |Et−1| ≤ σ′

then P ←Et−1

else
find P ⊆ Et−1 with |P | = σ′

that maximizes w(P ∪ Br(Gt−1 − P))
Yt ←P ∪ Br(Gt−1 − P)
Xt ←Xt−1 ∪ Yt

Et ←Et−1 − Yt

Gt ← (V ,Et )
Mt ←Mt−1 ∪ P

return M = M�k/σ�

Fig. 4. Pseudo-code for Algorithm σ-Greedy. Yt represents the edges collected by the
algorithm in step t, with P ⊆ Yt being the set of monitor edges and Yt − P the set of
extra edges. Mt represents all monitor edges collected up to step t and Xt represents
all edges collected up to step t.

Note that each step of the algorithm runs in time O(mσ(n+m)), by trying all
possible combinations of σ edges in the remaining graph Gt−1 to find P . Hence,
for each fixed σ, Algorithm σ-Greedy runs in polynomial time.

4.1 Analysis of 1-Greedy

For σ = 1, Algorithm 1-Greedy is: At each step, choose an edge whose removal
creates a maximum number of bridges, and place a monitor on this edge. Then
remove this edge and the resulting bridges. We show that this algorithm has
approximation ratio 3.
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Analysis. For simplicity, assume that the input graph G is connected. As ex-
plained in previous sections, we can assume that G is in fact 3-edge-connected.

Fix the value of k, and some optimal solution M∗, and let G∗ = (V ∗, E∗)
be the corresponding kernel graph. To avoid cluttered notation, we will identify
each edge in E∗ with its corresponding edge in E, thus thinking of E∗ as a subset
of E. For example, when we say that the algorithm collected some e ∈ E∗, we
mean that it collected the edge in E represented by e.

Recall that gain∗(G, k) = w(E∗), where w(E∗) is the sum of weights of the
edges in E∗. Thus we need to show that our algorithm’s gain is at least 1

3w(E∗).
Intuitively, since G is 3-edge-connected, each vertex in G∗ has degree at least

3, so |E∗| ≥ 3
2 |V ∗|. Thus k = |E∗| − |V ∗| + 1 > 1

3 |E∗|. 1-Greedy collects at
least k edges. Since 1-Greedy maximizes the gain at each step, its total gain
will be at least the total weight of the 1

3 |E∗| heaviest edges in E∗. (This does
not mean, however, that 1-Greedy will collect the 1

3 |E∗| heaviest edges.)
We now give a more rigorous argument. The proof is by amortized analysis.

We will analyze consecutive steps of the algorithm, while maintaining a dynamic
set Lt of edges. Initially, we set L0 = E∗. As the algorithm collects edges in each
step t, we will also remove edges from Lt−1, so that Lt ⊆ Lt−1 for t ≥ 1. In
addition, this set Lt will satisfy the following conditions for each step t = 1, 2, ...:

(L1.1) Lt ∩Xt = ∅; that is, all edges in Lt are available to the algorithm after
step t;

(L1.2) w(Yt) ≥ 1
3w(Lt−1 − Lt); that is, our gain at each step is at least one

third of the total weight of all the edges removed from Lt−1; and
(L1.3) |Lt−1| − |Lt| ≥ min {3, |Lt−1|}.
We claim that the conditions above imply that 1-Greedy’s approximation

ratio is 3. Since k ≥ 1
3 |E∗|, from (L1.3) and amortization, we have Lk = ∅. Then,

again by amortization, (L1.2) implies that w(Xk) ≥ 1
3w(E∗), as claimed.

It thus remains to show how to update Lt to maintain (L1.1), (L1.2) and
(L1.3). Suppose that these conditions hold up to step t − 1. Let γ = |Yt ∩
Lt−1| be the number of edges collected in step t that are in Lt−1. We first set
Lt←Lt−1− Yt. Next, if γ < 3, we further remove arbitrary 3− γ edges from Lt

(If it so happens that Lt has fewer than 3 − γ edged, then we remove all edges
from Lt.) Since we have removed all Yt from Lt−1, (L1.1) is preserved. Moreover,
since we either remove at least 3 edges or Lt = ∅, (L1.3) is preserved as well.
Finally, by the algorithm and (L1.1), w(Yt) is at least as large as the weight of
each of the 3− γ additional edges removed from Lt−1, which implies (L1.2).

Summarizing the argument above, we obtain:

Theorem 3. Algorithm 1-Greedy is a polynomial-time 3-approximation algo-
rithm for the WFlowMntrs problem.

With a somewhat more careful analysis, one can show that the approximation ra-
tio of 1-Greedy is actually 3(1−1/k), which matches our lower bound example
below. Also, we remark that the proof above is perhaps unnecessarily technical,
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but we introduce it here on purpose, as a stepping stone to a much more involved
analysis of Algorithm 2-Greedy in the next section.

A tight-bound example. We now present an example showing that our anal-
ysis of 1-Greedy is tight. Graph G consists of one connected component with
2k − 2 vertices, in which each vertex has degree 3 and each edge has weight
1, and the other connected component that has only two vertices connected by
k + 2 edges each of weight 1 + ε. Fig. 5 shows the construction for k = 5.

1+

1+

1+

1+

1+

1+

1+

1

1
1 1

1

1

11
1

1 1 1

Fig. 5. Lower bound example for 1-Greedy, with k = 5

1-Greedy will be collecting edges from the 2-vertex component on the left,
ending up with k edges and total gain (1 + ε)k. The optimum solution is to put
k monitors in the cubic component on the right, thus gaining all 3k − 3 edges
from this component. For ε→ 0, the approximation ratio tends to 3(1− 1/k).

4.2 Analysis of 2-Greedy

Let G = (V, E) be the input graph with weight on edges. As in the previous sec-
tion we will assume that G is 3-edge-connected. For σ = 2, Algorithm 2-Greedy,
at each step, collects two edges whose total weight combined with the weight of
all resulting bridges, is maximized among all possible choices of two edges. Ties
are broken arbitrarily. We place monitors on these two edges, and then remove
them from G, as well as the resulting bridges. The exceptional situations, when
k is odd, or we run out of edges, etc., are handled as in Figure 4.

Analysis. We can assume that the algorithm never runs out of edges (that is,
Et−1 �= ∅ for each step t), for otherwise it computes the optimum solution. For
simplicity, we will assume that k is even. If k is odd, the proof below can be
shown to work by taking into account the gain of the algorithm in the last step
when it has only one monitor. We also fix some optimal solution M∗, and let
G∗ = (V ∗, E∗) be the corresponding kernel graph. Recall that gain∗(G, k) =
w(E∗); thus we need to show that our algorithm’s gain is at least 1

2w(E∗).
Before we delve into formal proof, we give a high level description of our

approach. We start with a set L which contains two copies of every edge in
E∗, so that w(L) = 2w(E∗) = 2gain∗(G, k). It thus suffices to show that the
algorithm’s gain in k/2 steps is at least w(L)/4. In the analysis of one step we
remove some copies of edges from L, while guaranteeing that their total weight
is at most 4 times 2-Greedy’s gain in this step. Then we show that after k/2
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steps L becomes empty. Hence the algorithm must have collected a set of edges
with total weight at least w(L)/4, as needed. Below we give the complete proof.

As in the previous section, the proof is by amortized analysis. If e = {x, y} is
an edge, then by ex and ey we will denote two copies of e, and we will call them
arcs. We also say that arcs ex and ey are associated with e. One can think of these
arcs as directed edges, with ex = (x, y) directed from x to y, and ey directed in
the opposite direction. Each arc ex has weight w(ex) = w(e). In our analysis,
we maintain a dynamic set Lt of arcs, for each step t, that will satisfy invariants
similar to those in the previous section. Initially, L0 contains two copies of each
edge, that is L0 = {ex, ey : e = {x, y} ∈ E∗}. Note that |L0| = 2|E∗| and w(L0) =
2w(E∗). As we analyze each step t of the algorithm, we will be removing some
arcs from Lt−1, so that we will have Lt ⊆ Lt−1 for each t = 1, 2, ..., k/2. Lt will
not contain any arcs associated with edges already collected by the algorithm in
the first t steps. For an edge in E∗, Lt may contain both its associated arcs, one
of the two arcs, or neither of them.

Let x be a vertex of degree-3 in G∗ and e, f and g be the three edges incident
to x. We will say that x is a tripod at step t if none of edges e, f , g have been
collected by 2-Greedy when step t−1 completes. Arcs ex, fx, gx are then called
tripod arcs or arcs of x. We say that x is a bipod at step t if exactly one of these
edges has been collected by 2-Greedy. (Note that the case when exactly two of
these edges was collected is not possible since any two collected by the algorithm
implies the algorithm also gets the third one.) If, say, g is the one edge collected
by 2-Greedy, then ex and fx are called bipod arcs or arcs of x.

Let x be a tripod at step t. If A ⊆ L0 is a set of arcs, we say that x is in A
if its three arcs ex, fx, gx are in A. Similarly, if x is a bipod at time t, we say
that x is in A if both its arcs ex, fx are in A. Let ξ(A) be the total number of
tripods and bipods in A. It will be convenient to have some name for arcs in A
that are neither tripod arcs nor bipod arcs. We refer to such arcs as loose arcs
in A. Note that for an edge e = {x, y}, arc ex ∈ A could be a loose arc while the
opposite arc ey is a tripod arc or a bipod arc.
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Fig. 6. Example of a graph G∗

Consider, for example, the graph G∗ in Figure 6, where all weights are 1.
For this graph, we would have L0 =

{
a2, a4, b2, b3, c3, c6, . . . , p1, p2, q1, q4

}
. The

tripods of L0 are vertices 1, 3, 5 and 6, so ξ(L0) = 4. By definition of bipod,
the initial set L0 does not contain any bipods. All arcs in L0 that do not belong
to a tripod are loose arcs, for example q4, a4, j7, etc. If the algorithm picks
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edges b, d in step 1, c will become a bridge, so the gain is 3. In the analysis, all
arcs associated with these edges will be removed from L0. Assuming that in the
analysis we will not remove any arcs associated with edges f , e and i, L1 will
contain two bipods, 5 and 6.

In our analysis, we will assume for now that |L0|− ξ(L0) is even; later we will
explain how to modify the proof to cover the case when this quantity is odd.
As mentioned earlier, the overall idea of the proof is to construct a decremental
sequence L0 ⊇ L1 ⊇ L2 ⊇ ... that satisfies appropriate conditions, from which we
can derive a bound on the gain of 2-Greedy. In fact, we will actually construct
the sets Δt ⊆ Lt−1 of arcs to be removed at each step, so that Lt = Lt−1 −Δt.
We claim that for any given step t, 1 ≤ t ≤ k/2. there exists a set of arcs
Δt ⊆ Lt−1 that satisfies the following conditions:

(D2.1) If ex ∈ Lt−1 and e ∈ Yt then ex ∈ Δt.
(D2.2.) w(Yt) ≥ 1

4w(Δt).
(D2.3) Either (a) |Δt|−ξ(Δt) ≥ 8 and |Δt|−ξ(Δt) is even, or (b) |Δt|−ξ(Δt) <

8 and Δt ∪Δt+1 = Lt−1 (in other words, we will remove all arcs in this and
next step).

(D2.4) For any bipod x in Lt−1, if one arc of x is in Δt, then both of them are
in Δt. For any tripod x in Lt−1, if two of the arcs of x are in Δt, then all
three arcs are in Δt.

Recall that Yt is the set of edges collected by the algorithm at step t, including
the two monitor edges and the resulting bridges. Condition (D2.1) ensures that
Lt contains only arcs whose associated edges are available to the algorithm right
after step t. Condition (D2.2) states that 2-Greedy’s gain in this step is at
least 1

4 th of the total weight of arcs removed from Lt−1. Condition (D2.3) says
that we remove a sufficient number of arcs from Lt−1 at step t, guaranteeing
that we will empty Lt at or before step k/2. The parity condition in (D2.3) and
condition (D2.4) are of more technical nature, and their significance will become
apparent in the construction of Δt below.

Before explaining how to construct such a set Δt, we first show that the
existence of Δt implies the 2-approximation of 2-Greedy. As explained earlier,
we define Lt = Lt−1 − Δt, for any t = 1, 2, .... Denoting by ηd the number of
vertices in G∗ of degree d, we have

|L0| − ξ(L0) =
∑

d≥3 dηd − η3 = 2η3 +
∑

d≥4 dηd ≤ 2
∑

d≥3(d− 2)ηd

= 4 · (1
2

∑
d≥3 dηd −

∑
d≥3 ηd) = 4(|E∗| − |V ∗|) ≤ 4k − 4. (1)

From invariant (D2.3), by amortization over all steps, we have |Lk/2|−ξ(Lk/2) ≤
max {0 , |L0| − ξ(L0)− 4k} ≤ 0. On the other hand, for all t, whenever Lt �= ∅,
we have |Lt| > ξ(Lt). We thus conclude that Lk/2 = ∅. This, together with
condition (D2.2) and amortization, implies that w(Xk/2) ≥ 1

4w(L0) = 1
2w(E∗) =

1
2gain∗(G, k). Here Xt =

⋃t
j=1 Yt, t = 1, 2, . . . , k/2 is the set of edges collected

by the algorithm up to and include step t. Thus 2-Greedy approximates the
optimum solution within a factor of 2.
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To complete the analysis, it remains to show how to construct a set Δt that
satisfies conditions (D2.1) to (D2.4). Suppose we have already constructed sets
Δs, for s = 1, 2, ..., t− 1. Given the definition of L0, the assumption that |L0| −
ξ(L0) is even, as well as conditions (D2.1), (D2.3) together imply that Lt−1
satisfies the following three conditions:

(L2.1) If ex ∈ Lt−1 then e /∈ Xt−1.
(L2.2) |Lt−1| − ξ(Lt−1) is even.

We start with a high level idea. We first include in Δt all arcs in Lt−1 as-
sociated with edges in Yt, the set of edges collected at step t. This will satisfy
condition (D2.1). Note that removing additional arcs from the dynamic set L
will not violate (D2.1). The total weight of these arcs will be at most 2w(Yt),
since every edge is associated with at most two arcs and every arc removed is
associated with some edge in Yt. Thus, at least so far, condition (D2.2) holds
as well. To satisfy condition (D2.3), we may need to include more arcs to Δt.
This requires that we keep a delicate balance between the number of additional
arcs to be included and their total weight: If we include too many arcs, we may
violate (D2.2) because the total weight of arcs in Δt is too large. On the other
hand, if we include too few arcs, we may not be able to satisfy (D2.3) which
requires |Δt| − ξ(Δt) to be at least 8.

Thus we will have Δt = Δ′
t ∪Δ′′

t , where Δ′
t and Δ′′

t are the arcs from Lt−1
removed in Stage 1 and Stage 2, respectively. We now describe these two stages.
Stage 1: removing affected arcs. We set Δ′

t to be the set of all arcs ex ∈ Lt−1
such that e ∈ Yt. These arcs can be grouped into the following four categories:

Case (I): Loose arcs. Any loose arc ex ∈ Lt−1 associated with e ∈ Yt, contributes
1 to |Δ′

t| − ξ(Δ′
t).

Case (II): Triples of tripod arcs. Suppose that x is a tripod in Lt−1 and ex, fx,
gx are its arcs. If e, f, g ∈ Yt, then the arcs of x will contribute 2 to |Δ′

t|− ξ(Δ′
t).

Case (III): Single tripod arcs. Suppose that x is a tripod in Lt−1 and ex, fx, gx

be its arcs. If e ∈ Yt but f, g /∈ Yt, then ex contributes 1 to |Δ′
t| − ξ(Δ′

t).
Case (IV): Pairs of bipod arcs. Suppose that x is a bipod in Lt−1 and ex, fx are
its arcs. If e, f ∈ Yt, then the two bipod arcs of x will together contribute 1 to
|Δ′

t| − ξ(Δ′
t).

Note that the above four cases exhaust all possibilities. Clearly (D2.1) holds.
(D2.2) is true because each edge in Yt is associated with at most two arcs. (D2.4)
follows from the algorithm since, if it collects one edge of a bipod, then it also
collects the other; if it collects two of three edges of a tripod, then the third one
is collected as well. So only (D2.3) needs further attention. In Stage 2 we shall
include additional arcs in Δt to satisfy (D2.3).
Stage 2: removing additional arcs. Now we choose a set Δ′′

t ⊆ Lt−1 − Δ′
t of

additional arcs that will be removed from Lt−1. Let L′ = Lt−1 −Δ′
t, and define

δ′ = (|Lt−1| − ξ(Lt−1)) − (|L′| − ξ(L′)) = |Δ′
t| − ξ(Δ′

t). We have two cases,
depending on the value of δ′.
Case 1: δ′ is even. If δ′ ≥ 8, then we are done. Now consider subcases δ′ = 2, 4, 6.
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Case 1.1: δ′ = 2. In this sub-case, Δ′
t may contain either one tripod, two indepen-

dent bipods, or one bipod and one arc that are independent, or two independent
arcs. Here tripods and bipods are with respect to Lt−1, arc may be a tripod
arc or a loose arc, and independent simply means they do not contain two arcs
associated with the same edge. In every case we have w(Δ′

t) ≤ w(Yt) due to the
algorithm. Now we need to bring down |L| − ξ(L) further by 6. Recall L is the
dynamic set of arcs that we are maintaining in the analysis of the algorithm. It
is easy to see that every tripod in L′ = Lt−1−Δ′

t has weight at most w(Yt) and
each counts 2 toward |L|−ξ(L). So if there are enough tripods in L′, then we may
include 3 tripods in Δ′′

t and we are done. If we run out of tripods, then we may
use bipods and loose arcs. Any two independent loose arcs or bipods have total
weight no more than w(Yt) and bring down |L|−ξ(L) by 2. One potential issue is
that a bipod(call it new bipod) might result from removing a tripod arc in con-
structing Δ′

t in Stage 1. Since δ′ = 2, this new bipod together with the tripod arc
will have total weight no more than w(Yt) and bring down |L|− ξ(L) by 2, while
the other arc or bipod in Δ′

t together with the other arc or bipod(could be a new
bipod too) chosen in stage 2 so far will have weight no more than w(Yt)(Either
they both belong to the same tripod in Lt−1 or they are they are independent,
as all arcs or bipods in stage 1 are independent of bipods or arcs in stage 2) and
also bring down |L| − ξ(L) by 2. Overall we are removing arcs with total weight
at most 2w(Yt) and bring down |L|−ξ(L) by 4, and this is the same as if the new
bipod were a bipod in Lt−1. We may further look for two tripods or two pairs
of independent bipods(cannot be new bipods) or loose arcs until we have Δ′′

t

such that δ′′ = |Δ′′
t | − ξ(Δ′′

t ) = 6 and w(Δ′′
t ) ≤ 3w(Yt). If the above completes

successfully, then we have w(Δt) = w(Δ′
t) + w(Δ′′

t ) ≤ w(Yt) + 3w(Yt) = 4w(Yt)
and δ = δ′ + δ′′ = 8 as desired.

It is also possible that we do not have a pair of independent bipods or loose
arcs while δ′′ is still less than 6. And this happens after we removed arcs in Δ′

t

and Δ′′
t from the dynamic set L. We first note that this can happen only when

|L| − ξ(L) ≤ 3. The reason is that, as long as |L| − ξ(L) ≥ 4, and L contains
no tripods, we know the count of bipods and the count of loose arcs combined
must be at least 4. But a bipod can depend on at most two bipods or loose arcs,
hence it must be independent of one of the three bipods or loose arcs. So to be
in this situation we have |L|−ξ(L) ≤ 3 and L has no tripods. The set L contains
either 3 interlocked bipods forming a 3-cycle, or two dependent bipods or loose
arcs. And it is not hard to see that w(L) ≤ 3w(Yt). If we have one more step to
go, then in the next step t + 1 the algorithm gets a gain of at least the weight of
one bipod or loose arc that is in L, and we shall have w(Yt+1) ≥ w(L)/4 since
there are at most 3 bipods or loose arcs, and the set L becomes empty after
those dependent bipods and arcs are removed. Otherwise we are in the last step,
step k/2. Recall inequality (1) is actually |L0| − ξ(L0) ≤ 4(k − 1). Given that
we have kept |L| − ξ(L) down by at least 8 in all previous steps except the last
step, we must have |Lk/2−1| − ξ(Lk/2−1) ≤ 4. It follows that after stage 1 of
step k/2, we shall have |L| − ξ(L) no more than 2. In this case we can simply
include all the dependent bipods or loose arcs in Δ′′

t . Their total weight is no
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more than 3w(Yt) and we have emptied the set L, while maintained (D2.2) since
w(Δk/2) = w(Δ′

k/2) + w(Δ′′
k/2) ≤ w(Yt) + 3w(Yt) ≤ 4w(Yt) as desired.

Case 1.2: δ′ = 4 and w(Δ′
t) ≤ 2w(Yt). If we can find 2 tripods in L′ = Lt−1−Δ′

t,
then we are done since each tripod contributes 2 to δ′′ and its weight is no more
than w(Yt). Otherwise we may use bipods and loose arcs. Because all bipods
and arcs in L′ = Lt−1−Δ′

t are independent of bipods or arcs in Δ′
t, we can pair

up bipods or arcs in Δ′
t and bipods or arcs in L′. Each pair is either from the

same tripod in Lt−1 or the two in that pair are independent with no new bipods,
hence each pair contributes 2 to δ′′ and its weight is no more than w(Yt). So we
are able to construct Δ′′

t such that w(Δ′
t) + w(Δ′′

t ) ≤ 4w(Yt) and δ′ + δ′′ = 8.
Additional pairs of indepdent bipods or loose arcs may be needed to construct
Δ′′

t just described. In case we do not have independent pairs, we argue as in
δ′ = 2 subcase that we are able to empty the set L in the next step.

δ′ = 6 and we have w(Δ′
t) ≤ 2w(Yt). We simply include one tripod, or two

bipods or loose arcs in Δ′′
t . The total weight is no more than 2w(Yt), and we have

δ′′ = 2. Overall we have w(Δt) = w(Δ′
t) + w(Δ′′

t ) ≤ 2w(Yt) + 2w(Yt) = 4w(Yt)
and δ = δ′ + δ′′ = 6 + 2 = 8 as desired. If we are not able to find any tripods,
bipods and loose arcs, then effectively we have already emptied the dynamic set
L while maintained (D2.2), that is, total weight of arcs removed from the set L
at each step is no more than 4 times the gain of the algorithm at that step.

The analysis of the case when δ′ is odd, as well as other the remaining cases,
will appear in the full paper. Summarizing, we obtain our main result.

Theorem 4. Algorithm 2-Greedy is a polynomial-time 2-approximation algo-
rithm for the Weighted Flow Edge-Monitor Problem.

A tight-bound example. The example is essentially the same as the one for
1-Greedy (see Figure 5), except that the edges in the 2-vertex component on
the left side have now weights 1.5 + ε. 2-Greedy will collect edges from this
2-vertex component, so its total gain will be (1.5 + ε)k, while the optimum gain
is 3k − 3. For ε→ 0 and k →∞, the ratio tends to 2.

5 Final Comments

The most intriguing open question is what is the approximation ratio of σ-
Greedy in the limit for σ →∞. We can show that this limit is not lower than
1.5, and we conjecture that 1.5 is indeed the correct answer.

A natural question to ask is whether our results can be extended to directed
graphs. It is not difficult to show that this is indeed true; both the NP-hardness
proof and 2-approximation can be adapted to that case.

Another direction to pursue would be to study the extension of our problem
to arbitrary linear systems of equations. Here we can put k “monitors” on k
variables of the system to measure their values. The objective is to maximize
the number of variables whose values can be uniquely deduced.
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in Linear Cellular Networks

(Extended Abstract)
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Abstract. In the frequency assignment problem we are given a graph
representing a wireless network and a sequence of requests, where each
request is associated with a vertex. Each request has two more attributes:
its arrival and departure times, and it is considered active from the time
of arrival to the time of departure. We want to assign frequencies to
all requests so that at any time no two active requests associated with
the same or adjacent nodes use the same frequency. The objective is to
minimize the number of frequencies used.

We focus exclusively on the special case of the problem when the un-
derlying graph is a linear network (path). For this case, we consider both
the offline and online versions of the problem, and we present three re-
sults. First, in the incremental online case, where the requests arrive over
time, but never depart, we give an algorithm with an optimal (asymp-
totic) competitive ratio 4

3
. Second, in the general online case, where the

requests arrive and depart over time, we improve the current lower bound
on the (asymptotic) competitive ratio to 11

7
. Third, we prove that the

offline version of this problem is NP-complete.

1 Introduction

The frequency assignment problem. In a wireless network, the coverage area is
divided into cells, with each cell covered by a transmitter. Each user within a
given cell is assigned a unique frequency for communicating with the transmitter.
In order to avoid interferences, it is also necessary to ensure that any pair of
adjoining cells uses different sets of frequencies. The set of available frequencies
is a limited resource; thus the frequency assignment policy needs to attempt to
minimize the total number of assigned frequencies.

In the static setting, if the set of users in each cell is fixed, we can model
this problem as a variation of graph coloring, where the network is represented
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by an undirected graph G, whose vertices represent the cells and edges connect
adjacent cells. We are given an integer demand wv ≥ 0 (the number of users in
cell v) for each vertex v. We wish to assign a set Cv of wv colors to each vertex
v, such that Cu ∩ Cv = ∅ for all adjacent vertices u, v. The objective is to find
such a color assignment that minimizes the total number of colors used.

It is natural to consider graphs G with a regular structure. For example, in
the literature it is commonly assumed that the cells are regular hexagons in the
plane, in which case G is a triangular grid graph. As shown by McDiarmid and
Reed [4] the offline frequency assignment problem for such graphs is NP-hard.
They also gave a polynomial-time 4

3 -approximation algorithm for this version.
Another 4

3 -approximation algorithm was designed independently by Narayanan
and Shende [5].

Dynamic setting. Of course, in practice, the set of users in each cell is dynamic
– users arrive and leave over time. Thus it is natural to study the frequency as-
signment in the dynamic setting. Here, each frequency request (user) has three
attributes: a node v where the request is issued, the arrival time and the depar-
ture time. The request is active between its arrival and departure times. We need
to assign frequencies to all requests in such a way that at each time step, fre-
quencies assigned to active requests in the same or adjacent nodes are different.
The objective function is the total number of frequencies used.

Online algorithms. For the dynamic setting described above, online algorithms
are of particular significance, since in realistic applications users’ arrivals and
departures are unknown and unpredictable. In the online scenario, the arrival
and departure events come over time, and the online algorithm has to react
immediately; once a frequency is assigned to a request, it cannot be changed.

For an online frequency assignment algorithm A, let A(I) be the number of
frequencies used by A on an instance I, and let opt(I) be the minimum number
of frequencies required for I. We define A to be R-competitive, if there exists a
constant B independent of I such that A(I) ≤ R · opt(I) + B. When B = 0, we
say that the ratio R is absolute; otherwise, if we need to distinguish the cases,
we say that the ratio R is asymptotic. In this paper, we study the asymptotic
competitive ratio.

In the incremental version of this problem, it is assumed that requests, once
issued, last forever. This version corresponds to the static version of the offline
problem, and it has been intensely studied. Chan et al. [1] derive some bounds
on the asymptotic competitive ratio for hexagonal-cells graphs, proving that the
optimal ratio is between 1.5 and 1.9126. For the absolute ratio, they give a tight
bound of 2. More generally, for ξ-colorable graphs, they show an upper bound
of (ξ + 1)/2.

Again, special classes of graphs can be studied. One natural and simple case,
and the focus of our study, is that of a linear network (path), where the nodes
are represented by integer points on the real line and two nodes are adjacent if
they are at distance 1. For this case, it is known that the asymptotic competitive
ratio is between 4

3 ≈ 1.333 and 1.5, while the optimal absolute ratio is equal to
1.5, see [2].
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In the general version of the online problem departures are allowed, as in the
dynamic version of the offline problem. For the problem on the path,
Chan et al. [2] proved that the asymptotic competitive ratio is between 14

9 ≈
1.556 and 5

3 ≈ 1.667, while the absolute competitive ratio is 1.5. Both upper
bounds are achieved by a simple greedy strategy which always assigns the small-
est frequency that can be used at that time.

Our work. We first consider the incremental case of the online problem on the
path. We give an upper bound of 4/3, matching the lower bound. The idea of our
algorithm is based on a technique that spreads the requests evenly between four
mutually overlapping sets of points, such that within each set we can allocate
frequencies optimally with respect to this set. As each point belongs to three
sets, the ratio 4/3 will follow.

Next, we consider the general online case, where departures are allowed. For
this case we prove a lower bound of 11/7 ≈ 1.571, improving the currently best
bound of 14/9 ≈ 1.556 in [2]. Table 1 summarizes the known bounds for online
algorithms for the path.

Table 1. Competitive ratios for the case of a path. Bounds from this paper are in
boldface; all other bounds are from [2].

Case incremental with departures
Ratio absolute asymptotic absolute asymptotic
lower bound 1.5 4/3 ≈ 1.333 5/3 ≈ 1.667 11/7 ≈ 1.571

upper bound 1.5 4/3 ≈ 1.333 5/3 ≈ 1.667 5/3 ≈ 1.667

In the incremental case (on the path), it is easy to determine the value of the
optimum: It is simply equal to the maximum number of frequencies on two ad-
jacent nodes. This turns out to be false when departures are allowed. Our third
result is that computing this optimum is NP-hard. This proof uses a reduction
from 3-coloring of planar graphs, and it shows that even deciding if three frequen-
cies are sufficient is hard. Thus also achieving a better absolute approximation
ratio than 4/3 is NP-hard. This result complements the NP-hardness result in
[4] and the offline upper bounds in [4,5]. It also indicates that establishing the
optimal competitive ratio for this case is likely to be more challenging, since
it implies that there is probably no simple way to keep track of the optimum
solution.

2 Preliminaries

We identify points on the path with integers, v = . . . ,−2,−1, 0, 1, . . .. Frequen-
cies are denoted by positive integers. At each step, a request can be issued at
some point v. We then need to assign a frequency to this request that is different
from all frequencies already assigned to the active requests at points v − 1, v
and v + 1. The objective is to minimize the number of frequencies used at the
same time.
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For each point v, let Lv be the (dynamic) set of frequencies assigned to v by
the algorithm and 	v = |Lv|. Thus 	v is simply the number of active requests at v
at a given time. A frequency f is called admissible for v if f /∈ Lv−1∪Lv ∪Lv+1.

To estimate the performance of an algorithm, we measure the number of
frequencies used. This is equivalent to measuring the maximum used frequency,
as is done in some literature. Clearly, the number of frequencies cannot exceed
the maximum frequency. On the other hand, any algorithm can be modified to
use only consecutive integers. This is trivial in the incremental case, as we can
simply renumber the frequencies in the order in which they appear. Similarly,
in the general case, if the online algorithm is about to use a frequency f not
used by any active request at this time, we change it to use the lowest unused
frequency f ′, and fix the mapping f �→ f ′ for as long as there are some active
requests with frequency f .

The optimum. As observed in [2], in the static case – and thus also in the
incremental online case – the (offline) optimum number of frequencies is

ω = max
v
{	v + 	v+1}.

Indeed, the “≥” bound is trivial. To see that “≤” bound holds, we can assign
frequencies to nodes as follows: If v is even, assign to it frequencies 1, 2, . . . , 	v,
and if v is odd, assign to it frequencies ω, ω − 1, . . . , ω − 	v + 1. Then no two
adjacent nodes will be assigned the same frequency.

3 An Upper Bound for the Incremental Online Case

Algorithm FourBuckets. We partition all available frequencies 1, 2, 3, . . . into four
disjoint infinite buckets denoted Bσ, for σ = 0, 1, 2, 3. The frequencies in bucket
Bσ are denoted 1σ, 2σ, . . ., and are assumed to be ordered in this way, with 1σ

being the lowest one. How the partition into buckets is defined is not important.
For example, one such partition can be achieved by defining xσ = σ +4x−3, for
each integer x ≥ 1. For any node v and σ ∈ {0, 1, 2, 3}, we say that σ is associated
with v if σ �≡ v (mod 4). Thus each node has three out of four buckets associated
with it.

Suppose that a request is issued at a node v. Choose any σ ∈ {0, 1, 2, 3}
associated with v that minimizes |Lv ∩Bσ|, and assign to this request the lowest
frequency fσ from Bσ admissible at v.

Analysis. The general idea is this: By the assignment of buckets to nodes, each
bucket is associated with groups of exactly three consecutive nodes on the path.
In each bucket, the algorithm is equivalent to the greedy algorithm, which is
optimal for paths of three vertices. At each node, the algorithm spreads the re-
quests evenly among the three buckets associated with this node, so each bucket
gets about one third of all requests at each node. This implies that the number
of frequencies used by the algorithm in each bucket is about 1

3 of the opti-
mum. Multiplying by the number of buckets, we conclude that the competitive
ratio is 4

3 .
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Now we give a formal argument. Let Lσ,v = |Lv∩Bσ| be the set of frequencies
in Bσ assigned to requests at a node v, and 	σ,v = |Lσ,v| be the cardinality of
Lσ,v. For any subset X ⊆ Bσ, we use notation maxσ(X) for the maximum integer
h such that hσ ∈ X ; for the empty set we put maxσ(∅) = 0. The following
lemma subsumes the proof that the greedy algorithm is optimal for paths of
three vertices.

Lemma 1. For each σ and v, maxσ(Lσ,v) ≤ 	σ,v + max {	σ,v−1, 	σ,v+1}.
Proof. Without loss of generality, we can assume that σ = 0 and v ∈ {0, 1, 2, 3}.

For v = 0, since σ is not associated with v, we have L0,0 = ∅, so max0(L0,0) =
0, and the lemma holds trivially.

Suppose v = 1, and let h = max0(L0,1). By the algorithm, each frequency
10, . . . , h0 is either in L0,1 or L0,2, as otherwise the algorithm would not use h0.
Of course, no frequency is in both sets. So h ≤ 	0,1 + 	0,2.

The case v = 3 is symmetric to the previous one.
Finally, consider the case v = 2, and let h = max0(L0,2). Let h̄ = max0(L0,1∪

L0,3); by symmetry, we can assume h̄ = max0(L0,1). Like in the previous case,
each frequency 10, . . . , h̄0 is in either L0,1 or L0,2, but not in both. When h0 is
assigned, each frequency h̄0 + 1, . . . , h0 is in L0,1 ∪ L0,2 ∪ L0,3, as otherwise we
would not use h0. However, by the definition of h̄, none of these frequencies is
in L0,1 ∪ L0,3, thus all of them are in L0,2. Therefore h ≤ 	0,1 + 	0,2 again.

Theorem 1. Algorithm FourBuckets is asymptotically 4
3 -competitive for the in-

cremental frequency assignment on a path.

Proof. Consider any node v and any σ. By the algorithm, if σ is not associated
with v then 	σ,v = 0. On the other hand, if σ and σ′ are associated with v
then 	σ,v ≤ 	σ′,v + 1. This implies that for each σ associated with v we have
	σ,v ≤ �	v/3� ≤ 1

3 (	v + 2). Therefore, using Lemma 1, we get

maxσ(Lσ,v) ≤ 	σ,v + max {	σ,v−1, 	σ,v+1}
≤ 1

3 (	v + 2) + 1
3 max {	v−1 + 2, 	v+1 + 2}

≤ 1
3 [	v + max {	v−1, 	v+1}+ 4]

≤ 1
3 (ω + 4).

Thus |Bσ| = maxv maxσ(Lσ,v) ≤ 1
3 (ω + 4) as well, and we can conclude that

the total number of frequencies used in all four buckets is at most 4
3 (ω + 4).

4 A Lower Bound for the General Online Case

To obtain an improved lower bound, we modify the idea from [2, Section 4.2],
which we first describe informally.

Suppose that we start with k requests on vertices 0 and 2 each. Next, we can
remove k/2 appropriate requests from each of these vertices so that the online
algorithm uses k distinct frequencies in total for the remaining requests. Then we
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issue k/2 requests on vertex 1. The online algorithm will use 3k/2 frequencies,
while the optimum is k. This gives us a lower bound of 3

2 .
The first observation, explored in [2], is that if initially the two k-tuples of re-

quests use slightly distinct sets of frequencies, then the idea above can be refined
to give a better lower bound; this is described below in Procedure FinishOff.

Furthermore, if we start with two k-tuples of requests on vertices 0 and 2, we
can use the key ingredient from [2] (see Procedure Expand below) to create two
k-tuples of requests at distance 2 apart that are served by two sets of frequencies
that differ more than the initial two sets. To this end, issue k requests on point
5. If many new frequencies are used, we are done. Otherwise we can remove
requests from 0 and 2 and then add k requests at 1 so that they use many
distinct frequencies from the k requests at 5. Now, remove all requests from 0
and 2. The last trick is to issue k requests at 3, and these must use at least half
as many distinct frequencies either from the requests at 1 or from the requests at
5. Remove all requests either from 5 or 1, whichever vertex has more frequencies
in common with vertex 3. As it turns out, we end up with two vertices, each
having k active request, whose frequency sets differ by more than the two initial
sets on vertices 0 and 2.

In [2], the 14
9 ≈ 1.556 lower bound is obtained by running first Procedure

Expand followed by Procedure FinishOff. We improve the bound by iterating
Procedure FinishOff. A somewhat careful argument is needed to show that the
overall optimum is still k. Optimizing the parameters, we get the lower bound
of 11

7 ≈ 1.571.

Theorem 2. No deterministic online algorithm for general online frequency as-
signment on a path with 8 vertices has competitive ratio smaller than 11

7 ≈ 1.571.

Proof. Let R = 11
7 be our target competitive ratio. Let ρ > 0 be small and k be

a sufficiently large positive integer. We give an adversary strategy which for a
given online algorithm A generates a sequence on which A uses at least (R−ρ)k
frequencies while the optimum is k. By taking ρ small and k large, we obtain
the desired lower bound.

We first describe the overall adversary strategy and the two procedures
FinishOff and Expand. Then we verify that the optimum is k.

At the beginning, the adversary simply issues k requests at vertex 0 and k
requests at vertex 2. The rest of the adversary strategy is divided into phases.
The invariant at the beginning of each phase is that there are two nodes v and
v + 2 with |Lv| = |Lv+2| = k, and that there are no other active requests. In
each phase, the adversary proceeds as follows. Let s and δ be such that the
online algorithm now uses |Lv ∪ Lv+2| = s = (1 + δ)k frequencies. If δ ≥ 1

7 − ρ,
then the adversary completes the sequence by executing Procedure FinishOff.
Otherwise, it uses Procedure Expand; this either completes a sequence or ends
in a configuration with k requests on each of two points u and u + 2 for some u,
in which case we continue with the next phase.

Procedure FinishOff: Let U be the �k − 1
2s� lowest frequencies in Lv∩Lv+2 and

let U ′ be the �k − 1
2s� highest frequencies in Lv ∩Lv+2. The adversary removes
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the requests using frequencies U from v and the requests using frequencies U ′

from v + 2. Next, he makes �k − 1
2s� requests on v + 1. These requests will have

to be assigned frequencies other than those left at v and v + 2. The remaining
frequencies at v and v+2 are distinct, with ! 12s" frequencies at each vertex. Thus
the current total number of frequencies used is at least k + ! 12s" ≥ 1

2 (3+ δ)k−1.
Note that if δ ≥ 1

7−ρ then the number of frequencies is at least (11
7 − 1

2ρ)k−1 ≥
(R− ρ)k for a large k.

Procedure Expand: Since the path has eight vertices, it must contain either
vertex v + 5 or v − 3. Without loss of generality we suppose that it contains
v + 5; the other case is symmetric.

Issue k requests on v + 5. If |Lv ∪ Lv+2 ∪ Lv+5| ≥ Rk, we stop the input
sequence. In the remaining case we have |Lv ∪Lv+2 ∪Lv+5| ≤ Rk. This implies
two things. First, denoting r = (2 + δ −R)k, we get

|(Lv ∪ Lv+2) ∩ Lv+5| = |(Lv ∪ Lv+2)|+ |Lv+5| − |Lv ∪ Lv+2 ∪ Lv+5|
≥ (1 + δ)k + k −Rk = r.

Second, for each u ∈ {v, v + 2}, we obtain

|Lu ∩ Lv+5| = |Lu|+ |Lv+5 − |Lu ∪ Lv+5|
≥ |Lu|+ |Lv+5| − |Lv ∪ Lv+2 ∪ Lv+5|
≥ (2−R)k ≥ 1

2r,

where the last inequality uses the fact that δ < 1
7 whenever we use Expand.

Therefore there are sets U ⊆ Lv ∩ Lv+5 and U ′ ⊆ Lv+2 ∩ Lv+5 such that
U ∩ U ′ = ∅ and |U | = |U ′| = ! 12r". Remove from v all the requests that do not
use frequencies in U and from v + 2 all the requests that do not use frequencies
in U ′. Then issue k − ! 12r" requests on v + 1. These requests will have to be
allocated frequencies that are not in U ∪ U ′, while those in U ∪ U ′ ⊆ Lv+5 are
still used at v+5. Thus at this point we have |Lv+1−Lv+5| ≥ ! 12r". Then delete
all the remaining requests from v and v + 2 and issue ! 12r" more requests on
v + 1. As a result, we have |Lv+1 ∪ Lv+5| = k + z for z ≥ ! 12r".

Next, the adversary makes k requests on v + 3. Then we have max{|Lv+1 ∪
Lv+3|, |Lv+3∪Lv+5|} ≥ k+ 1

2z. Without loss of generality, assume |Lv+1∪Lv+3| ≥
k + 1

2z. Finally, the adversary removes all requests from Lv+5. Note that at this
time we have |Lv+1| = |Lv+3| = k, |Lv+1∪Lv+3| ≥ k+ 1

2z ≥ (3
2 + 1

4δ− 1
4R)k−1,

and that no vertex other than v+1, v+3 has any active requests. This completes
the description of Procedure Expand.

To finish the description of the adversary strategy, we need to show that it
finishes the sequence after finitely many phases. Suppose that we have a phase
that is not a final one. Thus the phase starts with δ = 1

7 − ρ− ε for some ε > 0
and uses Expand. At the end, the number of used frequencies is at least

(3
2 + 1

4 (1
7 − ρ− ε)− 1

4 )k − 1 = (1 + 1
7 − 1

4 (ρ + ε))k − 1
≥ (1 + δ′)k,
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for δ′ = δ + 1
2ρ and sufficiently large k (independent of ε). Thus, for any ρ > 0

and a sufficiently large k, after a fixed number of phases, δ increases above 1
7−ρ,

at which point the adversary uses FinishOff and completes the sequence.
The description of the strategy shows that at the our the online algorithm A

uses at least (R− ρ)k frequencies.

To finish the proof, it remains to show that the optimum number of frequencies
is k. Given the instance produced by the adversary strategy, we will maintain
an offline solution (that is, a dynamic frequency assignment). In addition to
using only given k frequencies, this offline frequency assignment will maintain
the following invariant:

(∗) Let U and U ′ be the sets of frequencies from the description of the procedure
FinishOff or Expand in the current phase. Consider the corresponding sets
of requests, i.e., the requests at v using frequencies U in the online algorithm
and the requests at v+2 using frequencies U ′. Then these two sets of requests
use the same set of frequencies.

At the beginning of the first phase, after the first 2k requests, we can guar-
antee the invariant while using only k frequencies total, since we can assign the
frequencies arbitrarily. Next, we check that for both FinishOff and Expand

we can serve the sequence with k frequencies and maintain the invariant.
In FinishOff, after removing the requests corresponding to U and U ′, the

same frequencies are used at v and v + 2, by invariant (∗). So we have enough
admissible frequencies for the new requests at v + 1 (among the k original fre-
quencies). This is the last phase, so there is no invariant to be maintained.

In Expand, first we assign the requests at v + 5 arbitrarily, but using the
same k frequencies as at v and v + 2. If the sequence does not stop now, then,
by invariant (∗), after removing the requests not corresponding to U and U ′,
the same frequencies are used at v and v + 2. So we have enough admissible
frequencies for the first batch of requests at v+1. Next we remove the remaining
requests at v and v + 2, thus we have admissible frequencies for the remaining
requests at v + 1. Finally, for the k requests at v + 3, we may assign the k
frequencies arbitrarily. In particular, we can guarantee the invariant for the next
phase.

Thus the optimum uses only k frequencies and the competitive ratio is at least
R = 11

7 , completing the proof of the lower bound.

We remark that the value R = 11
7 , as well as the choice of the breakpoint

δ = 1
7 , is optimal for the strategy described in the proof.

5 NP-Completeness

We have seen that in the incremental version, computing the optimum is easy.
Now we show that this is not the case once we allow dynamic requests.

Let FAL stand for the decision version of the frequency allocation problem for
the path: ”Given a sequence of requests and an integer k, determine whether
these requests can be served with at most k frequencies”.
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Theorem 3. The problem FAL is NP-complete, even for any fixed k ≥ 3.

Proof. We reduce the 3-coloring problem for planar graphs (3CPG) to FAL. Sup-
pose that G is a planar graph. We construct a sequence I of requests such that
I can be served with 3 frequencies if and only if G has a 3-coloring.

Using the result of [3], we can embed G in a plane so that (i) each vertex is
represented by a vertical line segment, and (ii) each edge (u, v) is represented
by a horizontal line segment whose endpoints connect the vertical segments
representing u and v, without intersecting any other vertical segments. (See
Figure 1.) This embedding is also known as visibility representations of planar
graphs (see, for example, [6,7]). We align all segments so that coordinates of all
their endpoints are integral and multiples of 6.

a b

c

d f

e

a b
c

d f

e

Fig. 1. A graph and its embedding

Now we construct an instance I of FAL. The x-axis of the plane will corre-
spond to the path and the y-axis will represent time. It is convenient to think
of requests in I as vertical intervals in the plane. We will denote each such in-
terval by (x, y′, y′′), where x′ is its x-coordinate and y′, y′′ the bottom and top
y-coordinates. As a request, it is a request at point x arriving at time y′ and
departing at time y′′.

For each vertex in G represented by a vertical segment (x, y′, y′′), the in-
stance contains the request (x, y′, y′′). For each edge represented by a segment
from (x′, y) to (x′′, y), x′′ > x′, we build a gadget consisting of a number of
requests. Note that x′′ − x′ is even and at least 6, by our assumptions. We add
two requests (x′+1, y+4, y+5), one request (x′+2, y+2, y+5), and two requests
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(x′ + 2, y, y + 3). Furthermore we will add requests (x′ + i, y, y + 1) for any i,
2 < i < x′′ − x′; we add one such request if i is odd and two such requests if i
is even. By the construction and alignment of the segments, the requests from
different edge gadgets do not interfere. (See Figure 2.)

y

y+2

y+3

y+4

y+5

y+1

x'

Fig. 2. An edge gadget

The edge gadget guarantees that the assignment of frequencies to (the requests
corresponding to) its endpoints can be extended to an assignment of frequencies
to the request in the edge gadget using only three frequencies in total if and
only if the two vertex colors are distinct. Consider again an edge represented by
a segment from (x′, y) to (x′′, y), x′′ > x′. Suppose that the request containing
point (x′, y) (i.e., the first endpoint of an edge) is assigned frequency f . We
show that if only three frequencies f, f ′, f ′′ are used, the assignment is essentially
unique. The two requests (x′+1, y+4, y+5) must use f ′ and f ′′. Now the request
(x′ + 2, y + 3, y + 5) must use f , and the two requests (x′ + 2, y, y + 3) must use
f ′ and f ′′. We continue by induction to show that for i odd, (x′ + i, y, y +1) uses
f and, for i even, the two requests (x′ + i, y, y + 1) use f ′ and f ′′. This implies
that (x′′ − 1, y, y + 1) uses f . Overall, the assignment is valid if and only if the
request containing (x′′, y) is not colored by f .

This implies that G is 3-colorable if and only if the instance I of FAL has a
frequency allocation with only 3 frequencies. The extension to k-colorability for
k ≥ 3 is straightforward: In the gadget, instead of each pair of identical request,
use k − 1 of the same requests.
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6 Final Comments

The most outstanding open problem is to establish the optimal asymptotic com-
petitive ratio for the dynamic case (with expirations) on the path. The current
gap is between 11/7 and 5/3.

We would like to point out that the idea of Algorithm FourBuckets can be
generalized as follows. Suppose that G has k induced subgraphs G1, . . . , Gk with
the following properties: (1) Each vertex of G belongs to exactly 	 subgraphs
Gi, (2) Each subgraph Gi does not contain a 4-path (that is, each Gi is a
collection of disjoint stars. Then G has a k/	-competitive algorithm. In fact,
this can be generalized further: if, instead of (2), we require that all Gi have an
R-competitive algorithm, then G will have an kR/	-competitive algorithm. As
of now, however, we have not been able to apply it to improve upper bounds for
other types of graphs.
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Abstract. We develop algorithms to compute Voronoi diagrams, shortest path
maps, and the Fréchet distance in the plane with polygonal obstacles. Distances
between points are measured either by link distance or by Euclidean shortest path
distance.
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1 Introduction

We develop algorithms to compute Voronoi diagrams, shortest path maps, and the
Fréchet distance in the plane with polygonal obstacles. Our twist on these problems
is to measure the distance between two points either by link distance or by Euclidean
shortest path distance. The link distance [3,9,14,16,17] between two points is the mini-
mum number of edges necessary to connect the points with a polygonal path that avoids
a set of obstacles. Our motivation for studying link distance and shortest path problems
is that they often serve as building blocks for other techniques.

1.1 Related Work

Related work uses various preprocessing schemes to support O(log k) time link dis-
tance queries between two points. In a simple polygon with k vertices, fixed source
queries are supported by Suri [17] after Θ(k) preprocessing, and queries between any
two points are supported by Arkin, Mitchell, and Suri [3] and Efrat et al. [9] after Θ(k3)
preprocessing. In a polygonal domain1 with k vertices, Mitchell, Rote, and Woeginger
[16] support queries from a fixed source after Θ(k4) preprocessing.

Related work on Euclidean shortest path problems also supports O(log k) query
times. In a simple polygon, Guibas et al. [11] support shortest path queries between
any two points after Θ(k) preprocessing. In a polygonal domain, Hershberger and Suri
[13] support queries from a fixed source after Θ(k log k) preprocessing. Chiang and
Mitchell [4] support queries between any two points in a polygonal domain after O(k11)
preprocessing.

� This work has been supported by the National Science Foundation grant NSF CAREER CCF-
0643597. Previous versions of this work have appeared as technical reports [6,7].

1 A polygonal domain is a plane with polygonal obstacles.
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1.2 Terminology

Throughout this paper, N is the total complexity of objects in the plane such as polygo-
nal curves, points, or line segments that are not considered to be obstacles. By contrast,
O = {o1, o2, ..., ok} denotes k obstacle vertices in the plane. π(s, t) denotes a shortest
path between points s and t, and d(s, t) is the Euclidean length of π(s, t). πL(s, t) and
dL(s, t) denote similar concepts for link distance. π(s, oi) ◦ t denotes the shortest path
from s to oi concatenated with the line segment from oi to t. π(s, t) = s◦ t implies that
s has line of sight to t. λs(k) is a near-linear function that is defined by the length of a
Davenport-Schinzel sequence [1]. ab is a line segment with endpoints a and b.

The Fréchet distance [2] is a similarity metric for continuous shapes that is defined
for two N complexity polygonal curves A, B : [0, 1]→ Rd as

δF (A, B) = inf
α,β:[0,1]→[0,1]

sup
t∈[0,1]

d( A(α(t)), B(β(t)) )

where α and β range over continuous non-decreasing reparameterizations, and d is
a distance metric for points. A variant called the weak Fréchet distance permits all
continuous reparameterizations. For a given constant ε ≥ 0, free space is {(s, t) | s ∈
A, t ∈ B, d(s, t) ≤ ε}. A free space cell is the parameter space defined by two
line segments ab ∈ A and cd ∈ B, and the free space inside the cell is all points
{(s, t) | s ∈ ab, t ∈ cd, d(s, t) ≤ ε}.

1.3 Our Results

Link distance is fundamentally different from Euclidean distance and has a wealth of
applications including robotic motion, wireless communications, geographic informa-
tion systems, VLSI, computer vision, solid modeling, image processing, and even water
pipe placement. These applications are naturally modeled by link distance because turns
are costly while straight line movements are inexpensive.

Table 1 summarizes our results. In section 2.1, we present tight bounds and efficient
algorithms to compute two types of link-based Voronoi diagrams in the plane. Surpris-
ingly, this seems to be the first time that link-based Voronoi diagrams have been studied.
In section 2.2, we define a link-based shortest path map that allows the query to be any
point on a line segment. Although there are related Euclidean results [4,11] that support
queries from more than one point in the plane, we are not aware of any related work that
supports link distance queries from a continuous set of source points. In sections 2.3 and
2.4, we compute the link-based Fréchet distance in a simple polygon and a polygonal
domain. A novelty of our approach is that it allows the link-based Fréchet distance to
be computed in the same time and space as the decision problem. This is intriguing
because the only other known scenarios where it is possible to shave off the logarithmic
Fréchet optimization factor are for the weak or discrete Fréchet distance. In these cases,
the free space diagram can be treated as a planar graph [2], and any linear-time shortest
path algorithm (e.g., [12]) can be applied to this planar graph to solve the optimization
problem. We also give a lower bound for the complexity of the link-based free space
diagram in a polygonal domain.

We now describe our Euclidean shortest path results. Sections 3.1 and 3.2 define
structures that encode all shortest paths between two line segments in a polygonal do-
main. Section 3.3 explores the Fréchet distance in a polygonal domain and gives a lower
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Table 1. Our results. The shortest path map SPM(ab,R2) supports queries from s ∈ ab to
t ∈ R2; SPM(ab,cd) supports queries from s ∈ ab to t ∈ cd. P is a simple polygon with k
vertices; D is a polygonal domain with k vertices. N is the complexity of any objects that are not
obstacles. An asterisk * indicates that in addition to the exact runtimes that are shown, we also
have approximation algorithms.

Link Distance Results Time Space

Site-Based Voronoi Diagram P O(N2k log Nk) Θ(N2k)

Distance-Based Voronoi Diagram P O(N(N + k) log N log k) Θ(N(N + k))

SPM(ab,R2) P * O(k2) O(k2)

SPM(ab,cd) D* O(k6λ6(k)) O(k7)

Fréchet Distance P * O(kN + N2) O(k + N2)

D* O(N2k7 log kN), Ω(N2k4) O(Nk2 + k4)

Euclidean Results

Fréchet Distance P [5] O(k + N2 log Nk log N) O(N2 + k)

D O(N2k4 log Nk log k), Ω(N2k2) O(Nk + k4)

Weak Fréchet Distance D O(N2k3λ6(k) log Nk), Ω(N2k2) O(Nk + k4)

SPM(ab,cd) D O(k4λ6(k)), Ω(k2) O(k5)

bound for the free space diagram. Our motivation for studying this problem is that team-
ing up two people for safety reasons is common practice in many real-life situations,
ranging from scouts in summer camp, to fire fighters and police officers, and even to
astronauts exploring the moon. In all of these applications, two team members need to
coordinate their movement to stay within “walking distance” so that fast assistance can
be offered in case of an emergency. The Fréchet distance is an ideal model for this sce-
nario. Section 3.4 contains a lower bound and an algorithm for a shortest path map that
supports all possible queries between a pair of line segments in a polygonal domain.

2 Link Distance Problems

2.1 Voronoi Diagrams

Let P be a simple polygon with vertices o1, ..., ok. Let S = s1, ..., sN be a set of
point or line segment sites in P . Unlike traditional Euclidean Voronoi diagrams, each
region in a link distance Voronoi diagram can be associated with multiple nearest sites.
We define a site-based Voronoi diagram Vs(S) as a partition of P such that all points
within a region have the same set of nearest neighbor sites with respect to link distance.
We define a distance-based Voronoi diagram Vd(S) as a partition of P such that all
points within a region have the same link distance to a nearest site. A distance-based
Voronoi diagram is composed of interior-disjoint layers for i = 0...k such that the ith
layer is Li = {t ∈ P | i = mins∈S dL(s, t)}. Note that all points in a layer need
not share the same set of nearest neighbor sites. Related work [10] has considered the
complexity of the arrangement of visibility polygons for a set of sites but did not explore
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. . .

. . .s1 s2 sN

o1 o2 oΩ(k)

s1

s2 sN/2... ...
sN

sN+1 sN+2

(a) (b)

...

s1
s2

sN/2

...

sN/2+1

sN

...

o1 o2 oΩ(k)

(c)

Fig. 1. Edges in ξ are shown as solid lines. (a) Vs(S) has Ω(N2k) complexity. Vd(S) can have
(b) Ω(Nk) or (c) Ω(N2) edges defining layer L1. For both (b) and (c), layer L1 consists of the
lightly shaded area plus the solid visibility polygon edges, and layer L2 consists of the remaining
(disconnected) heavily shaded areas in P .

this arrangement for all link distances from 0 to k. Candidate edges forVs(S) and Vd(S)
can be defined by precomputing SPM(sj) [17] for each site sj ∈ S in O(Nk) total time
and space. Let ξ be the set of O(Nk) edges defined by SPM(s1),...,SPM(sN ).

Theorem 1. Vs(S) has Θ(N2k) complexity and can be constructed in O(N2k) ex-
pected time and O(N2k log Nk) deterministic time. Link distance and path queries are
supported in O(log Nk + K) time, where K is the complexity of any returned path.

Proof. Consider the arrangement of all edges in ξ. Vs(S) can have Ω(N2k) complex-
ity because Ω(k) pairs of adjacent vertices oi, oi+1 ∈ P can each define an Ω(N2)
arrangement such that Ω(N) edges pass through oi and Ω(N) edges pass through oi+1
(see Figure 1a). Vs(S) has O(N2k) complexity because each of the O(Nk) edges in ξ
can intersect at most three faces in each of SPM(s1),...,SPM(sN ) [3]. The arrangement
for ξ can be constructed with an incremental algorithm [1] in O(N2k) expected time or
in O(N2k log Nk) deterministic time. Since some edges in this arrangement should not
appear in Vs(S), a breadth-first postprocessing step should merge adjacent faces with
link distance i that are separated by a suboptimal edge with link distance j > i. ��
Compared to Vs(S), the distance-based Voronoi diagram Vd(S) has asymptotically
superior complexity bounds because the points in a face of Vd(S) need not have the
same set of nearest neighbor sites.

Theorem 2. Vd(S) has Θ(N(N + k)) complexity (for k ≥ 2) and can be constructed
in O(N(N + k) log N log k) time. Link distance and path queries are supported in
O(log Nk + K) time, where K is the complexity of any returned path.

Proof. Vd(S) has Ω(Nk) complexity because each of the N sites can define Ω(k)
thin line of sight wedges that contribute to a layer (see Figure 1b). Vd(S) has Ω(N2)
complexity because Ω(N) thin line of sight wedges defined by s1, ..., sN/2 can each
intersect Ω(N) thin wedges defined by sN/2+1, ..., sN (see Figure 1c). We now show
that Vd(S) has O(N(N + k)) complexity. Let P i

d be the set of points at link distance
d from site si so that layer Ld equals

⋃N
i=1 P i

d. P i
d cannot enter P j

d in more than one
connected interval without creating a hole in a simple polygon; thus, for each pair of
sites, there are O(1) entrance vertices. If P i

d exits P j
d in more than one interval, then
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a vertex must separate these intervals. Thus, the number of exit vertices defined by
each site si is O(N + k). A divide-and-conquer approach can construct all layers in
O(N(N + k) log N log kN) total time and O(N(N + k)) space. ��

2.2 Shortest Path Maps

We develop link-based shortest path maps that support O(log k) time queries from any
source point s ∈ ab. Approximations accurate to within 1, 2, and 3 links are also
explored. Previous link-based work in a simple polygon with k vertices builds a shortest
path map SPM(s) to support all queries from a fixed source s after Θ(k) preprocessing
[17] and builds another shortest path map SPM(R2, R2) to support queries between
any two points after Θ(k3) preprocessing [3,9]. Our SPM(ab,R2) structure supports
queries from any point s ∈ ab to any point t ∈ R2 after O(k2) preprocessing. Related
work in a link-based polygonal domain with k vertices uses Θ(k4) preprocessing to
build SPM(s) [16]. Our SPM(ab,cd) structure supports all link-based queries from any
s ∈ ab to t ∈ cd.

We use the following terminology of [3]: the combinatorial structure of a shortest
path map is a listing of the combinatorial structures of its edges. The combinatorial
structure of a shortest path map edge E is a vertex-edge pair (v, e) such that E has one
endpoint on an obstacle vertex v and has its other endpoint on an obstacle edge e. As
the source point s varies along ab, the position of E’s endpoint on e is parameterized
homographically by g(s) = A+Bs

C+Ds for constants A, B, C, D (see Figure 2). We define
an edgelet α as a maximal line segment such that the shortest path map for every source
point s ∈ α has the same combinatorial structure.

s ta b
v1

g1(s)

v2v3
g2(s)

g3(s)

s ta b
v1

g1(s)

v2v3
g2(s)

(a) (b)
g3(s)

a
b

c d

s

t

i Links

+1 Link

+1 Link

t’

s’

(c)

Fig. 2. (a) Every shortest path map edge can be described as a vertex-edge pair. (b) All but the
last link of πL(s, t) can be made to overlap a shortest path map edge. (c) All dL(s, t) for s ∈ ab,
t ∈ cd equal either i, i + 1, or i + 2, where i = mins∈ab, t∈cd dL(s, t).

Theorem 3. A link-based shortest path map SPM(ab,R2) can be constructed in a sim-
ple polygon P with k vertices in O(k2) time and space. SPM(ab,R2) allows dL(s, t),
πL(s, t) to be returned for any s ∈ ab and t ∈ R2 in O(log k + K) time, where K is
the complexity of any returned path. These queries can also be answered to within one
link of optimal after O(k) preprocessing.

Proof. Partition ab into O(k) edgelets by computing ab ∩ SPM(oj) [17] for each ob-
stacle vertex oj ∈ P . Each intersection induces at most three edgelets on ab by [3],
and we construct a shortest path map SPM(αi) [17] for each edgelet. A query dL(s, t)
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consists of a one dimensional coordinate for s and a two dimensional coordinate for
t ∈ P . s ∈ ab lies in an edgelet αi, and the edges of SPM(αi) are parameterized by s ∈
αi. t is a point inside SPM(αi). To speed up queries, we compute a non-parameterized
triangulation of SPM(αi) that permits evaluating at most two parameterized edges of
SPM(αi) at query time.

SPM(αi) contains O(k) parameterized edges that are represented as vertex-edge
pairs (v, e). By [3], there are at most two parameterized shortest path map edges (v1, e),
(v2, e) ∈ SPM(αi) that can intersect the interior of a fixed boundary edge e ∈ P . As s
varies over αi, the edge (v1, e) touches a subsegment σς ∈ e such that the three points
v1, σ, and ς define a triangle Δ1. Similarly, the parameterization for (v2, e) defines a
second triangle Δ2. Triangulating Δ1 ∪ Δ2 yields a constant number of triangles that
can be associated with (v1, e),(v2, e). No other parameterized shortest path map edges
can intersect these triangles for any s ∈ αi because shortest path map edges in a simple
polygon never cross each other.

A query dL(s, t) is handled in O(log k) time by identifying the edgelet αi containing
s, point locating the triangle containing t in SPM(αi), and evaluating the at most two
parameterized edges associated with this triangle. πL(s, t) is calculated by following a
chain of predecessors. Approximate queries use a shortest path map SPM(ab) [17] to
return mins′∈ab dL(s′, t). This value always equals either dL(s, t) or dL(s, t) + 1 (see
Figure 2c). The approximate path is s ◦ πL(s′, t). ��
Lemma 1. In a polygonal domain, the intersection of a line segment cd with a link-
based shortest path map SPM(s) of Θ(k4) complexity [16] can be constructed without
precomputing SPM(s) in O(k2α(k) log2 k) time and O(k2) space.

Proof. Mitchell, Rote, and Woeginger [16] represent all points with link distance j to
a source by the union of O(k2) triangles. Since at most three distances define SPM(s)
∩ cd (see Figure 2c), SPM(s) ∩ cd is defined by the union of three sets of O(k2) trian-
gles. Both the triangles and their intersection with cd can be computed in
O(k2α(k) log2 k) time and O(k2) space using the algorithm of [16]. ��
Many problems in a polygonal domain with k vertices are difficult to compute. For
example, Chiang and Mitchell [4] support Euclidean shortest path queries between any
two points in a polygonal domain after O(k11) preprocessing, and Mitchell, Rote, and
Woeginger [16] construct a link-based shortest path map from a fixed source in Θ(k4)
time and space. Theorem 4 presents the first shortest path map in a polygonal domain
that supports link distance queries from a continuous set of source points.

Theorem 4. A link-based shortest path map SPM(ab,cd) can be constructed in a polyg-
onal domain in O(k7) space and either O(k7) expected time or O(k6λ6(k)) determin-
istic time. dL(s, t), πL(s, t) can be returned for any s ∈ ab, t ∈ cd in O(log k + K)
time, where K is the complexity of πL(s, t). Approximate queries are supported for
s ∈ ab, t ∈ R2 to within one link of optimal after O(k4) preprocessing and to within
two links of optimal after O(k

7
3 log3.11 k) time and O(k) space preprocessing.

Proof. SPM(ab,cd) is a partition of the parameter space defined by ab and cd. ab can be
partitioned into O(k3) edgelets by Lemma 1. For each edgelet αi, a shortest path map
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Fig. 3. (a) A bundle of cells. Each cell is marked with its maximum error from a representative
distance in the shaded node. (b) O(N2

B2 ) bundles cover the free space diagram and define (c) a
directed acyclic graph.

edge E ∈ SPM(αi) is a vertex-edge pair (v, e) that is homographically parameterized
by s ∈ αi such that E ∩ cd defines a constant complexity algebraic curve. Constructing
such a curve for each choice of v and e yields O(k2) curves and O(k4) arrangement
complexity. Since there are O(k3) edgelets, SPM(ab,cd) has O(k3 · k4) complexity.
Approximate queries use SPM(ab) [16] to return mins′∈ab dL(s′, t) exactly or approx-
imately. ��

2.3 Fréchet Distance in a Simple Polygon

Lemma 2. Although the free space in a link-based cell C for the Fréchet distance in a
simple polygon need not be convex, it is x-monotone, y-monotone, and connected.

Proof Sketch. Monotonicity follows because the link distance from a point s to each
t ∈ cd defines a piecewise constant function that is decreasing-increasing bitonic. Con-
nectivity follows by a point-sliding argument. ��
Theorem 5. The link-based Fréchet distance in a simple polygon can be computed
exactly in O(kN + N2) time and O(k + N2) space. It can also be computed to within
±B links of optimal in O(kN

B + N2

B2 ) time and O(k + N2

B2 ) space (for B ≥ 2).

Proof. To approximate the Fréchet distance, we compute diamond-shaped2 bundles of
O(B2) adjacent free space cells (see Figure 3). After defining a representative distance
for each bundle with a shortest path map of [17], a directed acyclic graph with O(N2

B2 )
nodes and edges is used to represent all monotone paths through the bundles (see Figure
3c). A breadth first search on this graph yields an approximation for the Fréchet distance
to within±B links of optimal. The exact Fréchet distance can be computed by applying
the approximation algorithm with B = 2 and running the exact decision problem twice.
To solve the exact decision problem, we use shortest path maps [17] to compute free
space on cell boundaries. Since the free space in each cell is x-monotone, y-monotone,
and connected by Lemma 2, reachability information can be propagated via dynamic
programming [2,5]. ��

2 A rectangular bundle of cells can also be used but yields a slightly poorer approximation.
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The bundles technique can also be used to approximate the traditional Euclidean Fréchet
distance (without obstacles) between polygonal curves A and B in Rd. If lmax is the
length of the longest line segment in A∪B, then the result is accurate to within±B·lmax

of the optimal distance after O(N2

B2 ) processing.

2.4 Fréchet Distance in a Polygonal Domain

The Fréchet distance is more difficult to compute in a polygonal domain than in a simple
polygon because the free space inside a cell can be disconnected. We use the shortest
path map SPM(ab, cd) from Theorem 4 to compute the Fréchet distance.

Theorem 6. The link-based Fréchet distance δF (A, B) between polygonal curves A
and B in a polygonal domain can be calculated in O(N2k7 log kN) time and O(Nk2+
k4) space, and the free space diagram can have Ω(N2k4) complexity. Approximations
are available to within 1, 2, and 3 links of δF (A, B) in O(N2k2 α(k) log2 k) time
and O(k2 + N2) space, O(Nk

7
3 log3.11 k + N2k) time and O(k + N2) space, and

O(Nk
7
3 log3.11 k + N2 log k) time and O(k + N2) space.

Proof Sketch. Let i = mins∈ab, t∈cd dL(s, t). Since all link distances in a cell are either
i, i+1, or i+2, even picking a random distance in a cell yields an accurate approxima-
tion for the cell. After approximating δF (A, B), its optimal value can be computed via
O(1) iterations of the exact decision problem. The exact decision problem is computed
by representing each of the O(N2) free space cells by the SPM(ab,cd) structure of
Theorem 4 and combining dynamic programming [2] with a plane sweep to propagate
reachability information in O(N2k7 log kN) time. O(Nk2 + k4) space is sufficient to
store one edgelet of a cell at a time plus the cell boundaries on the two rows required
for dynamic programming [2]. See [7] for our lower bound on the complexity of the
free space diagram. ��

3 Euclidean Shortest Path Problems in a Polygonal Domain

Sections 3.1 and 3.2 introduce shortest path structures in a polygonal domain. These
structures are used to compute the Fréchet distance in section 3.3 and a shortest path
map in section 3.4.

3.1 Dynamic Spotlights

Line of sight shortest paths from s ∈ ab to t ∈ cd are represented by a structure that
we call a dynamic spotlight (see Figure 4). Suppose that Δs,oi,oj is a triangle with
apex s ∈ ab, sides supported by soi and soj , and base on cd. Let Iab ∈ ab be a
maximal connected interval such that Δs,oi,oj contains no obstacles in its interior for
any s ∈ Iab. A dynamic spotlight is defined as LD(Iab, oi, oj) = {(s, t) | π(s, t) =
s◦t, s ∈ Iab, t ∈ Δs,oi,oj∩cd}. As s varies over Iab, the maximal interval Δs,oi,oj∩cd
that is directly visible from s changes continuously and defines LD . The free space for
LD is {(s, t) ∈ LD | ||s − t|| ≤ ε}. Both LD and its free space are contained in a
cell C whose parameter space is defined by ab and cd. Each dynamic spotlight can be
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cd changes continuously and defines (c) LD in a cell C. (d),(e) Free space for LD is the intersec-
tion of a lightly-shaded free space ellipse with LD.

associated with a unique visibility graph edge; thus, a cell C contains O(k2) non-empty
dynamic spotlights. Note that each spotlight is interior-disjoint from all other spotlights
in C because there is at most one line of sight path between any s ∈ ab and t ∈ cd.

Lemma 3. The free space for the O(k2) dynamic spotlights in a cell C has O(k2)
complexity and can be computed in O(k2 log k) time and O(k2) space.

Proof Sketch. Plane sweep techniques are used to compute the dynamic spotlights. Free
space is defined by intersecting each dynamic spotlight with a free space ellipse [2] (see
Figure 4e). ��

3.2 Static Spotlights

Paths from s ∈ ab to t ∈ cd that have their final turn at an obstacle vertex oj have
the form π(s, oj) ◦ t and are represented by a structure that we call a static spotlight
(see Figure 5). Let Iab be an interval on the partition of ab that is defined by SPM(oj)
∩ ab. Note that π(s, oj) has the same combinatorial structure for all s ∈ Iab. Let
Icd be one of the O(k) maximal connected intervals on cd with line of sight to oj . A
static spotlight is defined as LS(Iab, oj , Icd) = {(s, t) | s ∈ Iab, t ∈ Icd}. A cell C
defined by line segments ab and cd contains O(k3) non-empty static spotlights because
each obstacle vertex defines O(k2) possible (Iab, Icd) pairs. The free space for LS is
{(s, t) ∈ LS | d(s, oj) + ||oj − t|| ≤ ε} (see Figure 5).

Unlike dynamic spotlights, static spotlights represent shortest path candidates that
can include suboptimal paths. This follows because a static spotlight for oj forces a
path from s to t to go through oj even when π(s, t) does not have its final turn at oj .
However, every shortest path π(s, t) must be represented by at least one dynamic or
static spotlight because shortest paths can only turn at obstacle vertices [3,14].

Lemma 4. The free space for the O(k3) static spotlights in a cell C has O(k3) com-
plexity and can be computed in O(k3) expected time or O(k2λ6(k)) deterministic time.

Proof. For a fixed obstacle vertex oj , SPM(oj) ∩ ab partitions ab into intervals Iab,1,
... , Iab,O(k) [15]. These intervals induce O(k) vertical slabs in the cell C. Within each
slab, the free space inequality d(s, oj) + ||oj − t|| ≤ ε describes a semi-algebraic set
of constant description complexity (see Figure 5c). The overlay of the vertical slabs for
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Fig. 5. (a) A static spotlight represents paths of the form π(s, oj) ◦ t. (b) A circle centered at oj

with radius ε − d(s, oj) defines a candidate set of free space points in the (c) cell C. (d) Line
of sight from oj can be restricted to visible intervals Icd,1, ..., Icd,O(k) ∈ cd by cutting out (e)
darkly-shaded horizontal slabs.

oi and oj has O(k) complexity, and within each of the O(k) overlayed slabs the semi-
algebraic sets for oi and oj have O(1) intersections. Thus, the union of semi-algebraic
sets has O(k · k2) complexity over all pairs of obstacle vertices.

We now enforce line of sight information from each oj onto the maximal intervals
Icd,1, ..., Icd,O(k) ∈ cd that are visible from oj (see Figures 5d and 5e). For each of the
O(k) intervals on cd that is not directly visible to oj , we cut out a horizontal slab from
the semi-algebraic set for oj . Each of these O(k) horizontal slabs intersects the semi-
algebraic set for oj O(k) times, yielding O(k2) vertices per oj . Thus, the free space has
O(k3) complexity. It can be computed using an incremental algorithm [1]. ��

3.3 Fréchet Distance

Lemma 5. Free space in a cell C has O(k4) complexity and can be constructed for
any ε ≥ 0 in O(k4) expected time or O(k3λ6(k)) deterministic time.

Proof. The free space in a cell C is the union of the free spaces for the dynamic and
static spotlights (see Lemmas 3 and 4). Each of the O(k2) dynamic spotlights can in-
tersect the semi-algebraic set for oj (see Figure 5c) O(k) times, for a total of O(k · k3)
intersections of this type over all oj . Each of the O(k2) dynamic spotlights can also
intersect the O(k2) line of sight enforcing horizontal slabs (see Figure 5e). Hence, the
arrangement of the dynamic and static spotlights has O(k4) complexity. The arrange-
ment can be computed with an incremental algorithm [1]. ��
Theorem 7. The Fréchet distance for polygonal curves A and B in a polygonal domain
with k vertices can be computed in O(N2k4 log k log Nk) time, and the free space dia-
gram can have Ω(N2k2) complexity. N is the complexity of A and B. The weak Fréchet
distance can be computed in O(N2k4 log Nk) expected time or O(N2k3λ6(k) log Nk)
deterministic time. Both approaches use O(Nk + k4) space.

Proof. The decision problem is answered by propagating reachability information
through all cells with a plane sweep. The weak decision problem can be answered by
marking a set of connected free space components as reachable. By Lemma 5, the free
space diagram has O(N2k4) free space vertices. Each of these vertices is parameter-
ized by ε as an algebraic curve that has constant degree and description complexity.
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By applying parametric search [2] to these curves and using the O(N2k4 log k) run-
time for the decision problem, the Fréchet distance can be computed in O(N2k4 log k
log Nk) time. The weak Fréchet distance can be computed similarly. The space bound
follows by storing one cell at a time plus the cell boundaries on the two rows required
for dynamic programming [2]. Our lower bound for the free space diagram can be found
in [6]. ��

3.4 Two-Segment Shortest Path Map

Chiang and Mitchell [4] support queries between any two points in a polygonal domain
with k vertices after O(k11) preprocessing. Using our spotlight structures, we define a
shortest path map SPM(ab, cd) that supports optimal query time from any source point
s ∈ ab to any destination point t ∈ cd after O(k4λ6(k)) preprocessing.

All dynamic spotlights encode π(s, t) = s ◦ t paths and contribute to SPM(ab,
cd). Unlike dynamic spotlights which are always interior-disjoint and consist entirely
of shortest paths, static spotlights can overlap and encode suboptimal paths. The main
task to construct SPM(ab, cd) is to “clip” the static spotlights into an interior-disjoint
set of optimal paths. Regions of overlap between all static spotlights defined by oj and
ol can be resolved with a hyperbolic bisector Bjl(s) = {(s, t) | d(s, oj) + ||oj − t|| =
d(s, ol) + ||ol − t||} that is commonly used in additively weighted Voronoi diagrams.

Theorem 8. SPM(ab, cd) can be constructed in O(k5) expected time or O(k4λ6(k))
deterministic time and O(k5) space. After this preprocessing, queries d(s, t), π(s, t)
for any s ∈ ab and t ∈ cd take O(log k + K) time, where K is the complexity of any
returned path. SPM(ab, cd) can have Ω(k2) complexity.

Proof Sketch. We partition the parameter space defined by ab and cd such that for all
points (s, t) in a region the shortest path π(s, t) has the same combinatorial structure.
This arrangement is defined by inserting a static spotlight bisector for each pair of ob-
stacles into the arrangement of the dynamic and static spotlights (see Lemmas 4 and 5).
The resulting arrangement has O(k5) complexity by a slab argument and can be con-
structed with an incremental algorithm [1]. The Ω(k2) lower bound follows from the
lower bound in Theorem 7. ��

4 Conclusion

We develop algorithms to compute Voronoi diagrams, shortest path maps, and the
Fréchet distance in the plane with polygonal obstacles. We also develop tight bounds for
our Voronoi diagrams. It would be interesting to extend our shortest path map structures
SPM(ab,R2) and SPM(ab,cd) to support queries between any two points in the plane
and to compare the resulting runtimes with the O(k11) Euclidean runtime of Chiang
and Mitchell [4]. It would also be interesting to extend our Fréchet distance approach
to a set of more than two polygonal curves (see related work by Dumitrescu and Rote
[8]). Results on the Hausdorff distance were omitted from this version due to space
concerns.
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Abstract. During the last years, a wide range of huge networks has been
made available to researchers. The discovery of natural groups, a task
called graph clustering, in such datasets is a challenge arising in many
applications such as the analysis of neural, social, and communication
networks.

We here present Orca, a new graph clustering algorithm, which op-
erates locally and hierarchically contracts the input. In contrast to most
existing graph clustering algorithms, which operate globally, Orca is
able to cluster inputs with hundreds of millions of edges in less than
2.5 hours, identifying clusterings with measurably high quality. Our ap-
proach explicitly avoids maximizing any single index value such as mod-
ularity , but instead relies on simple and sound structural operations. We
present and discuss the Orca algorithm and evaluate its performance
with respect to both clustering quality and running time, compared to
other graph clustering algorithms.

1 Introduction

In the exploration and the analysis of large and complex networks such as the
World Wide Web, social and natural networks and recommendation systems or
protein dependencies, graph clustering has become a valuable tool1. The major-
ity of algorithms for graph clustering are based on the paradigm of intra-cluster
density versus inter-cluster sparsity. Several formalizations of this intuition have
been proposed and evaluated, an overview of such techniques is given in [12] and
[14]. Due to the increasing availability of digitized network data, computational
puissance and storage media and upcoming trends such as time-expanded clus-
tering [23], networks comprising up to several millions of vertices are today’s
subjects of research. However, despite of technical advances, instances of this
size still pose algorithmic challenges, and render techniques that are successfully
applied on smaller problems infeasible.

Our Contribution. In this work we present the Orca reduction and con-
traction algorithm, a locally operating, fast graph clustering algorithm, which is

� This work was partially supported by the DFG under grant WA 654/15-1 and by
the EU under grant DELIS (contract no. 001907).

1 We use the two terms network and graph interchangeably.
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capable of handling huge instances that state-of-the-art methods cannot cope
with and which exhibits remarkably good results of community detection. The
emphasis is on the feasibility of applying the algorithm on huge problem in-
stances. Orca is designed to rely on simple structural observations that im-
mediately translate to intra-cluster density and inter-cluster sparsity, avoiding
the direct maximization of some index. On several publicly available networks
we evaluate the performance of Orca with respect to running time and sev-
eral quality measures for clusterings. We show that Orca scales well and solve
instances with half a billion edges, and yields good clustering quality.

This paper is organized as follows. After introducing related work and assets
of local methods, necessary notation is given. In Section 1, we describe Orca.
In Section 3 we show our findings on its general feasibility and on parameter
choices. Our experiments in Section 4 compare Orca to related approaches on a
number of instances. We conclude with a discussion and future work in Section 5.

Related Work. It is common knowledge that there is no single best strategy
for graph clustering, which justifies the plethora of existing approaches. More-
over, most quality indices for graph clusterings have turned out to be NP-hard
to optimize and rather resilient to effective approximations, see e.g., [11,31,8],
allowing only heuristic approaches for optimization. Other approaches often rely
on specific strategies with high running times, e.g., the iterative removal of cen-
tral edges [27], or the direct identification of dense subgraphs [19]. Provably
good methods with a decent running time include such that have a spectral
embedding of the vertices as the basis for a geometric clustering [13], min-cut
tree clustering [21], a technique which guarantees certain bounds on bottlenecks
and an approach which relies on random walks in graphs staying inside dense
regions with high probability [30]. Related to the latter is an effective bottom-up
strategy called walktrap [28] that iteratively updates a distance measure based
on local random walks, which governs hierarchical agglomerations.

The greedy maximization of the quality index modularity via iterative ag-
glomeration of vertices into growing clusters [15] caused a surge of follow-up
studies on related methodologies (see [11] or [14] for an overview). A variant
thereof, which abandons global greedyness, has recently been presented in [10].
Here a significant speedup is achieved by only locally deciding about agglomera-
tion and hierarchically reducing the graph repeatedly. This conceptually simple
but effective local method of greedy modularity maximization constructs con-
secutive hierarchy levels of a clustering by letting each vertex decide to which
neighboring cluster/vertex to affiliate, and then contracts each stable affiliation.
It is worth noting that this approach is similar to Orca, on a rough scale. How-
ever, while this technique is explicitly designed to maximize modularity—which
it achieves quite well—and thus solely relies on one measure as the single crite-
rion, Orca builds a clustering without this bias towards modularity. Although
modularity has proven to be a rather reliable quality measure, it is known to
behave artificially to some extent.
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Methods that potentially identify overlapping clusters, or leave nodes unclus-
tered (see, e.g., [25] and [19]), are a slightly different field and thus not discussed
herein.

A more generous overview of the field calls for a few words about what graph
clustering is not. This context of graph partitioning strongly differs from general
graph clustering in that the number and possibly the size of clusters are crucial
input parameters. Note furthermore that graph clustering is related but essen-
tially different from the field of data clustering where data points are embedded
in a high dimensional feature space and no explicit edge structure is present.

Making a Case for Local Methods. Many widespread clustering algorithms
iterate some global mechanism a linear number of times, which is particularly
typical for classic bottom-up agglomerative approaches (e.g., greedy index max-
imization [15] or the walktrap [28]), or they include some direct technique that
is both time and space consuming (e.g., global Markov chains [30] or iterative
conductance cutting [24]). Operating locally in graphs avoids these issues, if local
operations are simple and bounded in number. Apart from this and their obvi-
ous eligibility for parallelization, more facts encourage local approaches. First,
heuristics that maximize a clustering quality index are known to exhibit what
has been coined scaling behavior [9,11], which can roughly be described as a
technique not reproducing results after, say, doubling an instance. Local meth-
ods can avoid such effects. Second, a limited set of local operations on a graph,
e.g., iterating over incident edges, allows for fast data structures that grant fur-
ther speed-ups and fit most graphs into the main memory of a server with 32GB
of RAM. Third, local strategies are better suited for dynamization. They po-
tentially miss some global structure but since it is natural to assume that local
changes on graphs are of local semantics only, local decisions on the clustering
should suffice.

Notation. We assume that G = (V, E, ω) is an undirected, weighted, and simple
graph2 with the edge weight function ω : E → [0, 1]. We set |V | =: n, |E| =: m
and C = {C1, . . . , Ck} to be a partition of V . We call C a clustering of G and
sets Ci clusters. A clustering is trivial if either k = 1, or all clusters contain only
one element, i.e., are singletons. We identify a cluster Ci with its node-induced
subgraph of G. Then E(C) :=

⋃k
i=1 E(Ci) are intra-cluster edges and E \ E(C)

inter-cluster edges, with cardinalities m(C) and m(C), respectively. We denote
the number of non-adjacent intra-cluster (inter-cluster) pairs of vertices as m(C)c

(m(C)c). A node v’s (standard) neighborhood is N(v) := {w ∈ V | {v, w} ∈ E},
and the set of vertices within distance d of v is denoted as the d-neighborhood
Nd(v) = {w ∈ V | w �= v, dist(v, w) ≤ d}, where dist(v, w) denotes the length of
the shortest path between v and w. since disconnected clusters are unreasonable.

2 We call elements of V vertices, and reserve the term nodes (or super-nodes) for en-
tities that potentially embody several vertices during some contraction stage. How-
ever, the reader is absolutely fine if this distinction eludes her or him. Links between
vertices/nodes are uniformly called edges.
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Quality Indices. We measured the quality of clusterings with a range of quality
indices, discussed, e.g., in [12], however, we set our focus on the indices cover-
age [12], performance [30], inter-cluster conductance [24] and modularity [27]
in this work, since they are the most studied ones. In brief, coverage is the
fraction of intra-cluster edges, and performance is the fraction of correctly clas-
sified vertex pairs, w.r.t. the set of edges. Modularity compares the coverage of a
clustering to the same value after rearranging edges randomly and inter-cluster
conductance returns the worst (i.e. the thickest) bottleneck created by separat-
ing a cluster from the rest of the graph. All these definitions generalize in a
natural way as to take edge weights ω(e) into account, for a discussion thereof
see [12], [26] and [22]. For further discussions of these indices we refer the reader
to the given references, and simply state their formal (unweighted) definitions:

perf(C) :=
m(C) + m(C)c

1
2n(n− 1)

mod(C) :=
m(C)

m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

cov(C) :=
m(C)

m
icc(C) := 1−max

C∈C

∑
v∈C

deg(v)− 2E(C)

min
(∑

v∈C

deg(v),
∑

v∈V \C

deg(v)
)

2 The Orca-Algorithm

The general approach of Orca is as follows: Preliminarily prune the graph of
irrelevant vertices, then, iteratively identify dense neighborhoods and contract
them into super-nodes; after contraction repeat the second step on the next
hierarchy level or, if this fails, remove low-degree nodes and replace them by
shortcuts. Do this until the whole graph is contracted. Due to the widely agreed
on fact that no quality function can be elected best in general, an important
design goal for Orca was to refrain from having any decision base on such an
index. Instead we only rely on fundamental and indisputable structural proper-
ties such as the 2-core, the similarity of a subgraph to a clique and local sparsity.
The following sections detail each step of Orca in the order of their execution,
things are then put together in Section 2. We postpone technical details of our
implementation and our data structures to Section 4.

Core-2 Reduction. The initial preprocessing step of Orca is a simple reduc-
tion of the instance to its 2-core. Introduced in [29], the 2-core of a graph is
the maximal vertex-induced subgraph in which each vertex has at least degree
2. Note that the running time of this procedure Core-2 Reduction is linear
in m + n. The rationale behind this pruning step is as follows. Vertices in the
1-coreshell are tree-like appendices, which are highly ambiguous to cluster sensi-
bly anyway (see Figure 1(a)). Since in a reasonably modeled real-world network
such appendices should not be large, we make the straightforward assumption
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that any tree appendix is to be clustered together with its anchor vertex in the
2-core, which is done in a postprocessing step. Depending on the nature of the
input, this step can significantly reduce the size of the actual problem instance.

Local Search for Dense Regions. We now describe an integral part of Orca,
the elementary detection of dense regions. Roughly speaking, a dense region
R ⊆ V is a set of c nodes within distance d of some seed node v, such that each
node w ∈ R is within distance at most d of at least |Nd(v)|/γ other nodes of
Nd(v). This step is employed repeatedly and iteratively as will be described in
the next section. Each call of the procedure Dense-Region-Local (we omit
pseudocode) is parameterized by a seed node v and two positive reals γ and d
which set the required degree of density and the size of the neighborhood to
be explored, respectively. Low values of γ impose a stricter criterion on density,
which leads to Dense-Region-Local returning smaller regions. First, the dense
region is initialized with v; then each node w within distance d or less from v,
in turn has each node x ∈ Nd(w) increment its seen-attribute. For each node
this attribute thus stores how many nodes of Nd(v) it considered a d-neighbor.
In a second step, this procedure now adds each node w ∈ Nd(v) to the dense
region, which has been seen by at least a γ-fraction of the nodes in Nd(v), and
returns the assembled region as in Figure 1(b). Note that allowing nodes in any
N(w) into a region might produce undesirable “holes”. The time complexity of
this procedure is highly dependent on d. Setting d = 1 at most Δ nodes each
have their at most Δ neighbors increment their attribute, yielding O(Δ2).

Contraction of Dense Regions. The second elementary operation on the
graph is the contraction of a subgraph into a single super-node. The main goal
of Contraction is to reduce the size of the problem instance by summarizing
parts that have already been solved; Figure 1 illustrates its effect. The contrac-
tion of a node-induced subgraph of G is straightforward. A new node replaces
the subgraph, and is receives former adjacencies to other nodes are replaced by
new edges, weighted by their average adjacency to the region. A rough upper
bound on the running time of such a Contraction clearly is O(m), since each
edge is touched only once. An amortized analysis of the time complexity of a
series of calls of Algorithm Dense-Region-Local and Contraction will be
given in the next section.

Global Dense Region Detection. While procedure Dense-Region-Local

identifies a dense region, and procedure Contraction reduces it to a super-node
the following algorithm, called Dense-Region-Global, orchestrates the calls
to these local operations. Roughly speaking, a single run of Dense-Region-

Global assigns each node to a prioritized dense region (Figure 1(b)), and then
abstracts the graph to the next hierarchy level by replacing each dense region
by a super-node (Figure 1(c)). The crucial observation is that Dense-Region-

Global reduces the size of the instance very quickly and in a meaningful way,
paving the way for further and more far-reaching clustering steps.
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(a) The input instance, first it
will be reduced to its 2-core

Priority 1

Priority 4Priority 3

Priority 2

(b) Now, dense regions are
identified (colors)

0.143

0.333

0.25

0.25

(c) Each dense region is
contracted

Fig. 1. Dense regions (by colors) are contracted in the order of contraction priority

Given parameters γ and d as above, Dense-Region-Global first calls for
each node v in the graph Dense-Region-Local using v as the seed node. Each
dense region returned is then inserted into a priority queue with a priority key
that expresses how significant the region actually is, as indicated in Figure 1(b).
This key is computed by evaluating the following simple function ψ that measures
the average edge weight mass incident with a node in the region:

ψ : P(V )→ [0, 1] D �→
∑

e∈E(D) ω(e)

|D| , D ⊆ V

An alternative approach to accomplish this, which we have yet to examine,
is given in [33]. After determining and queuing for each node v ∈ V its dense
region, regions are popped from the queue and contracted. Since we seek a proper
partition of nodes, we first have to reassemble dense regions excluding all nodes
that are assigned to dense regions with a higher priority by tagging them as
invalid. Experiments showed that reordering the queue after such exclusions is
costly and yields a minimal gain in quality, thus initial priorities are kept.

In total, n calls of Dense-Region-Local account for O(nΔ2) and n priority
queue operations require O(n log n) time. During the course of all Contraction

operations each edge is touched at most twice, which yields an amortized time
of O(m). Summing up, Dense-Region-Global is in O(m + n(Δ2 + log n)).

Densification via Shortcuts. While initially, low degree nodes or appendices
are pruned and assigned to clusters in a canonical way (see Core-2 Reduc-

tion), this might not be desirable for super-nodes incorporating thousands of
elementary vertices. However, such low degree elements are potentially incom-
patible with a given choice of the threshold parameter γ Thus, we densify a
graph, by replacing a low-degree node v with a clique construction of shortcuts
among its neighbors as in Figure 2. Similar to nodes removed during the Core-2

Reduction, such a node is then potentially affiliated with the node it is most
strongly connected to.

Algorithm Shortcuts loops through all nodes v with the minimum degree
δ, ensure that all pairs {v1, v2} of nodes adjacent to v become connected and
removes v. The weight on the edge between {v1, v2} is then set to its new con-
ductivity, a concept borrowed from electrical circuits: To the old weight, which
is 0 if the edge was not present, the term 1/( 1

ω({v1,v}) + 1
ω({v2,v}) ) is added that
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0.5 0.5

1 2

3

0.25
1 2

Fig. 2. Shortcuts using δ = 2, a shortcut between nodes 1 and 2, replaces node 3

expresses the conductivity of the path π = v1, v, v2. The rationale is that this
adjustment maintains conductivities between all neighbors while densifying the
graph structurally, again enabling the detection of dense regions. Analyzing the
time complexity very roughly yields a worst case complexity of O(n ·Δ2).

Algorithm 1. Orca

Input: G = (V, E, ω), d, γ ∈ R+

Core-2 Reduction(G)1

while |V | > 2 do2

Dense-Region-Global(G, γ, d)3

if |Vold| > 0.25|V | then4

Shortcuts(G,δ)5

else Store current clustering6

Putting Things Together. This
section details the overall ap-
proach of Orca, i.e., Algorithm 1
which repeatedly calls all neces-
sary procedures. After the Core-

2 Reduction, for as long as
there are more than two nodes
left in the graph, Dense-Region-

Global and Shortcuts itera-
tively reduce and contract the
graph. If at any time no significant contraction is possible (Line 4), Shortcuts

removes low degree nodes and compactifies the graph (Line 5). After each suc-
cessful global contraction stage we store the current clustering (Line 6). Orca

returns the whole clustering hierarchy alongside evaluated quality indices for
manual choice of the preferred clustering. Additionally a recommendation is
given, based on quality indices. In practice, procedure Shortcuts is hardly
ever called, and no value of δ > 2 was ever used, leaving Shortcuts with a
marginal impact on running times. Only with ill-modeled graphs, pathological
examples or unreasonable choices of γ does this procedure ever operate on a
graph with size comparable to the input, usually it is only called after a series
of contraction steps. We discuss good choices for the two parameters γ and d in
the following section.

The total running time of Orca derives from its subroutines, and factor h,
the number of iterations of the main loop or, in other words, the depth of the
clustering hierarchy, which is n in the worst case but always below log n in
practice. Shortcuts However, since this work is on practical performance, we
refrain from a detailed analysis and close with our observation that empirically
the total running time of Orca sums up to O(log n(m + n(log n + Δ2))).

Engineering Orca. We here shortly present two small optimizations for Orca.
It turns out that for particular graphs with a few high-degree vertices the running
time of Orca is dominated by the Δ2 term. Hence, we use a little tweak to
reduce running times: After the Core-2 Reduction, we remove all vertices
with a degree greater than 4 · √n from the graph, as these global hubs hardly
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indicate local density. Later we assign such a vertex to the cluster which contains
most of its neighbors.

At later iteration steps, it is possible that the current clustering still contains
many singleton elementary vertices. In order to reduce these undesirable clusters,
we assign each singleton vertex to the cluster it is connected to most strongly.

3 Parameters and Feasibility

This brief section yields insights on reasonable choices for the parameters γ and d
and corroborates the feasibility of Orca on two toy examples. Parameter testing
was conducted with the aid of two random generators that served as a source
for graphs with an implanted clustering structure.

Parameter Estimation. We employed two generators for random test in-
stances: first, an Attractor Generator, which is based on assigning vertices, ran-
domly placed in the plane, to clusters in a Voronoi fashion and connecting them
with probability based on distance and cluster affiliation; and second, a Sig-
nificant Gaussian Generator which partitions the vertex set into clusters and
then interconnects vertices similar to the Erdős-Rényi model, using intra- and
inter-cluster edge-probabilities. We refer the reader to [16] for details on these
generators, where they are evaluated and shown to produce reasonable and vari-
able pre-clustered graphs with a tunable clarity. In a broad study on smaller
graphs with 50 to 1000 vertices (step size 50), we varied the density parameter
of the Attractor Generator from 0.5 (mostly disconnected stars) to 2.5 (almost
a clique) in steps of 0.1, and we varied the intra-edge probabilities of the Sig-
nificant Gaussian Generator between 0.1 (very sparse) and 0.7 (almost cliques)
in steps of 0.1, having the ratio of inter-cluster edges range between 0.1 and 0.5
(0.05 step size). For each such setup we performed 30 experiments and evaluated
the results of Orca with respect to performance, coverage and modularity.

The results of this parameter exploration revealed that setting depth d to 1
for unweighted graphs is the best choice in general. The main reason for this is
that a broader candidate neighborhood encourages “holes” inside clusters which
at a later stage cannot be repaired. Parameter γ, proved to be feasible for values
between 2 and 10 for sparse graphs, with low values working best in general.

Two Toy Examples. In the following we show clustering results for two graphs,
one of which is well known in the clustering community, and one that very
fundamentally incorporates a clustering hierarchy. The latter graph is clearly
organized into 16 small groups which themselves are organized into four groups,
it was proposed in [25], as a basic benchmark for hierarchy detection. Figure 3
shows Orca’s results, a clear success. The second example was compiled by
Wayne Zachary [32] while doing a study on the social structure of friendship
between the members of a university sports club. The two real-world factions
are indicated by color in Figure 4. Using γ = 2 and d = 1, Orca clusters this
graph as illustrated in Figure 5, where hierarchy levels 1 to 3 are shown. Level 3
misclassifies only a single vertex (vertex number 10, in the original numbering).
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Fig. 3. Hierarchy levels 1 (grouping) and
3 (colors) found by Orca

Fig. 4. Zachary in reality (cov = 0.87,
perf = 0.62, icc = 0.87, mod = 0.37)

(a) cov = 0.73, perf = 0.79,
icc = 0.22, mod = 0.39

(b) cov = 0.82, perf = 0.71,
icc = 0.75, mod = 0.40

(c) cov = 0.87, perf = 0.62,
icc = 0.87, mod = 0.37

Fig. 5. Hierarchy levels 1 to 3 (left to right), using γ = 2 and search depth d = 1

4 Experiments

Implementation Details. Another field with huge datasets in algorithm engineer-
ing is the development of fast shortest path algorithms (see [17]). There we
made the experience that in most cases, the loss with respect to running times
stemming from external libraries is rather high. As the goal of Orca was the de-
velopment of a fast clustering algorithm, our implementation is written in C++,
using only the STL at some points. As priority queue we use a binary heap, and
we represent the graph as an adjacency array. In the following we report running
times and quality achieved by Orca, using fixed parameters γ = 2 and d = 1.
For measuring the quality of a clustering, we evaluate the score achieved by cov-
erage, performance, inter-cluster conductance, and modularity (see Section 1).
Our tests were executed on one core of an AMD Opteron 2218 running SUSE
Linux 10.3. It is clocked at 2.6 GHz, has 32 GB of RAM and 2 x 1 MB of L2
cache. The program was compiled with GCC 4.2, using optimization level 3.

Inputs. We use three different types of inputs. Small world graphs, webgraphs and
road networks. The first group contains three graphs. The first dataset represents
the Internet on the router level, it is taken from the CAIDA webpage [2]. The
second graph is a citation network, obtained from crawling citeseer [1]. The final
dataset is a co-authorship [7] network, which is obtained from DBLP [3]. The



Orca Reduction and ContrAction Graph Clustering 161

second group of inputs are webgraphs taken from [6]. Nodes represent webpages,
edges represent hyperlinks. We use four graphs, namely cnr-2000, eu-2005, in-
2004 and uk-2002. The final group of inputs are road networks taken from the
DIMACS homepage [18]. We use three graphs, the first one represents Florida,
the second one central USA while the last one is the full road network of the
US. Sizes are given in Tables 1-3.
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Fig. 6. Quality of the clustering hierarchy
computed by Orca. The inputs are the we-
bgraph in-2004, the small world citation net-
work, and the road network of the US.

Hierarchy of Clusterings. We
first evaluate the clustering hierarchy
computed by Orca. Figure 6 shows
the score of all quality indices and the
number of clusters for all levels of the
hierarchy. Due to space limitations,
we restrict ourselves to one represen-
tative of each group of our inputs.
As on higher hierarchy levels, the
number of clusters decreases, cover-
age increases. It turns out that inputs
are too large (contain degeneracies)
for the worst-case index inter-cluster
conductance to yield reasonable in-
sights. Interestingly, modularity first
increases and later decreases, yielding
a clear preference. For sparse graphs
performance is known to favor fine
clusterings, but the point where per-
formance severely decreases agrees
with what modularity favors. Sum-
marizing, Orca produces a reason-
able clustering hierarchy from which
a user can choose his favorite. A good
choice seems to be a level, where per-
formance, coverage, and modularity
score best.

Comparison. Next, we compare our
results with competing graph cluster-
ing algorithms. We evaluate the global
greedy modularity algorithm [15], the
new local variant [10], and walk-
trap [28]. We omit a number of other
promising approaches, e.g., via simu-
lated annealing [20], which are com-
putationally too demanding for these instance sizes. The implementations of
global greedy and walktrap are taken from the igraph library [5], the code for
local greedy is taken from [4]. Note that in the following we only report the



162 D. Delling et al.

clustering with maximum modularity for Orca, quality scores of other levels
can be found in Figure 6.

Small World Graphs. Tab. 1 reports running times and quality score achieved
by Orca and competing algorithms applying our three small world inputs. We
observe excellent running times for Orca with feasible quality scores. Moreover,
we observe that in terms of running time, global greedy and walktrap cannot
compete with the local algorithms. While this is to be expected, note that they
do not achieve better quality scores either. Comparing Orca with local greedy
we observe that Orca tends to produce finer clusterings. Roughly speaking,
quality scores are worse than for local greedy but still feasible. For the instance
citation, Orca fails to find a very good clustering, this is mainly due to many
high degree hubs—milestone papers or major surveys, where Orca seems to
take too many simplification steps (see Engineering Orca above).

Webgraphs. Next, we focus on the scalability of our approach. The webgraphs
we have taken from [6] have similar properties but different sizes. It turns out
that the global greedy algorithm needs too much memory to be executed while
walktrap takes too much time. Hence, we compare Orca with the local greedy
algorithm only, Tab. 2 reports running times and quality scores. At a glance
we observe that Orca provides good clusterings within reasonable computa-
tion times. All graphs are clustered in less than 2.5 hours. Only for eu-2005, we
achieve a modularity score of less than 0.85, and do not agglomerate long enough
to find a better clustering. Interestingly, intercluster conductance is always al-
most zero for Orca. This stems from the fact that, intercluster conductance,
being a worst-case quality index, always considers a clustering with at least one
singleton a very poor clustering. While this may make sense for small inputs,
such a worst-case index is not reliable for large inputs. As observed in Fig. 6, in
most cases clusterings on a higher level score higher values. Comparing Orca

with local greedy, we observe that Orca has longer running times but achieves
comparable quality scores on these large inputs, neglecting icc. On cnr-2000 and

Table 1. Running times and quality of the algorithms on small world graphs

Instance n/m Algorithm time [s] clusters icc perf. cov. mod.

caida
Router

global greedy 0:20 1672 0.5667 0.9397 0.9052 0.7639
190 914 Walktrap 0:23 24952 0.0000 0.9858 0.7540 0.6693
607 610 local greedy < 0:01 442 0.6410 0.9720 0.8944 0.8440

Orca < 0:01 492 0.2105 0.9578 0.7113 0.6500

co-
Authors

global greedy 1:15 2930 0.5000 0.9187 0.8638 0.7413
299 067 Walktrap 0:55 37669 0.0000 0.9790 0.7089 0.6432
977 676 local greedy < 0:01 269 0.6196 0.9813 0.8486 0.8269

Orca < 0:01 2038 0.1733 0.9954 0.7274 0.7212

citations

global greedy 2:08 1927 0.2857 0.8253 0.9106 0.6650
268 495 Walktrap 0:51 16822 0.0000 0.9690 0.7449 0.6824

1 156 647 local greedy < 0:01 147 0.5983 0.9544 0.8593 0.8037
Orca < 0:01 4201 0.0000 0.9973 0.5649 0.5100
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Table 2. Running times and quality of the algorithms on webgraphs

Instance n/m Algorithm time [s] clusters icc perf. cov. mod.

cnr-
2000

325 556 local greedy 8 242 0.8571 0.9799 0.9971 0.9130
5 565 376 Orca 28 110 0.0002 0.9632 0.9427 0.8567

eu-2005 862 664 local greedy 23 326 0.7668 0.9643 0.9708 0.9376
32 778 307 Orca 307 217 0.0002 0.9458 0.7965 0.7014

in-2004 1 382 908 local greedy 36 1004 0.0000 0.9931 0.9234 0.9094
27 560 318 Orca 313 740 0.0002 0.9877 0.9503 0.9288

uk-2002 18 520 486 local greedy 432 6280 0.0000 0.9981 0.5693 0.5671
529 444 599 Orca 8807 66595 0.0000 0.9995 0.8758 0.8749

Table 3. Running times and quality of the algorithms on road networks

Instance n/m Algorithm time [s] clusters icc perf. cov. mod.

florida
1 070 376 local greedy 15 541 0.9845 0.9978 0.9971 0.9948
2 687 902 Orca 37 48 0.9609 0.9954 0.9913 0.9866

central 14 081 816 local greedy – – – – – –
33 866 826 Orca 1116 343 0.9319 0.9943 0.9966 0.9909

usa
23 900 746 local greedy – – – – – –
58 389 712 Orca 1317 209 0.9424 0.9980 0.9954 0.9933

eu-2005 local greedy has a slight advantage in terms of quality indices while on
in-2004 and uk-2002 Orca yields higher values. On these two instances, Orca

outperforms the local greedy method in terms of modularity—especially on uk-
2002 by a surprisingly large margin. Although the latter technique merges groups
of nodes until no more improvement in modularity can be attained, it seems to
fundamentally run past the innate clustering structure of this network, since
Orca identifies ten times as many clusters, with both a significantly higher cov-
erage and modularity. At this point it is worth noting that the size of the local
greedy clustering monotonously scales with the number of nodes (except for the
smallest instance). This is paralleled by the predictable and artificial behavior of
the modularity index, favoring a balance of (small) degree sums within clusters
over coverage. This might be the reason for the algorithm’s behavior on uk-2002,
which seems better clustered much finer.

Road Networks. Unfortunately, walktrap and global greedy are way too slow for
this input and the implementation of the local greedy algorithm crashes with a
segmentation fault, for reasons unknown to us. Hence, we conclude that Orca is
currently the only graph clustering algorithm working on large instances of such
kinds of inputs. As observable in Tab. 3, both running times and quality scores
are excellent. All quality indices score a value higher than 0.94. We need less
than 22 minutes to construct all levels of the hierarchy. Note that although usa
is almost double the size of central, and Orca clusters the former even coarser;
running times are very similar. Together with the very high quality values, usa
seems to be an easy instance.
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5 Conclusion

We presented a fast graph clustering algorithm, called Orca. Unlike previous
approaches, Orca works in a local sense: it iteratively contracts dense regions
to supernodes which become the clustering of the current iteration step. It turns
out that Orca clusters graphs up to a size of 530 million edges in less than
2 and half hours on standard server hardware. Only [10]—recently developed
independently from us—can compete with Orca in terms of feasibility on huge
networks. However, the scalability of our approach seems better since Orca can
also cluster big road networks, where the latter approach fails. In terms of qual-
ity the two algorithms both compete with other state-of-the-art algorithms, and
between them, no general assertion which one to prefer can be made. While [10]
is faster, the obtained clustering is strongly dependent on the behavior of the
index modularity, of which Orca is independent. For huge instances the choice
ultimately depends on the application and whether artifacts specific to modu-
larity are acceptable. Future work on Orca includes the adaptation of better
rules for network hubs and a dynamization, which, given the clustering of some
snapshot and a graph update, recomputes only affected parts of the clusterings.
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Equiseparability on Terminal Wiener Index
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Abstract. Wiener index as one of the oldest chemical index has been
well studied. It has been extensive used in Computational Biology, Pre-
liminary screening of drugs and Complex Network. Based on variable
Wiener index, I.Gutman et al [6] introduced the concept of equisepa-
rable pairs of trees and chemical trees, meanwhile they gave a rule on
how to construct such equiseparable pairs. D.Vukic̆ević and I.Gutman
[8] proved almost all trees and chemical trees have equiseparable mates,
which is a disadvantageous property of many molecular-structure graph-
based descriptors. Recently, I.Gutman et al [9] proposed the concept of
Terminal Wiener Index, which equals to the summation of distance be-
tween all pairs of pendent vertices of trees. Following this line, we explore
the properties of terminal Wiener index, and show the fact that there
still exist pairs of trees and chemical trees which can not be distinguished
by it, therefore we give some general methods to construct equisepara-
ble pairs and compare the methods in the case of Wiener index. More
specifically, we show that terminal Wiener index is degenerative to some
extent.

Keywords: Equiseparability, terminal Wiener index, chemical tree.

1 Introduction

There are many chemical indices proposed as molecular-structure descriptors
until now, one of the oldest and well studied chemical index is the Wiener index
which was given by H.Wiener [1] in 1947. It can be expressed as:

W (G) =
∑

1≤i<j≤n

d(vi, vj) (1)

where d(vi, vj) is the distance between vertices vi and vj in a graph G, the
summation goes over all pairs of vertices of the given graph. For trees, H.Wiener
got a very useful formula to calculate the Wiener index:

W (T ) =
∑
e∈T

n1(e|T ) · n2(e|T ) (2)
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where n1(e|T ) and n2(e|T ) are the number of vertices of T , lying on the two
sides of e. The summation on the right-hand side of the equation goes over all
edges of the tree T . Obviously, if the tree T has n vertices, then for all of its
edges,

n1(e|T ) + n2(e|T ) = n

Based on Wiener index, a general index called Variable Wiener Index has
been proposed [3,4]:

Wλ(T ) =
∑
e∈T

[n1(e|T ) · n2(e|T )]λ (3)

where λ is an adjustable parameter.

Definition 1. ([6]). Assuming n1(e|T ) ≤ n2(e|T ), two trees T ′ and T ′′ of order
n are said to be equiseparable if their edges e′1, e′2, · · · , e′n−1 and e′′1 , e′′2 , · · · , e′′n−1
can be labeled so that the equality n1(e′i|T ′) = n1(e′′i |T ′′) holds for all i =
1, 2, · · · , n− 1.

Wiener index has been extensive used in Computational Biology, Preliminary
screening of drugs and Complex Network. For example, it is a measurement
of average distance in network [10,11]. In the design of economical networks,
spanning trees of connected graph with smallest Wiener index are very important
in practice [12]. In Chemistry, Wiener index measures the van der Waals surface
area of an alkane molecule, which explains the correlations found between W
and a great variety of physico-chemical properties of alkanes [5]. But if two or
more chemical trees are equiseparable, then those compounds will have similar
physico-chemical properties which can not be distinguished by Wiener index. It
is a main drawback of many chemical index structure-descriptors.

I.Gutman et al [6] pointed out that there does exist pairs of isomeric alkanes
whose variable Wiener index coincide for all values of the parameter λ. Some
former studies [6,7] showed how to construct such equiseparable chemical trees.
As another point of view, D.Vukic̆ević et al [8] gave a proof on almost all trees
and chemical trees1 have equiseparable mates.

In [13], E.A.Smolenskii et al made use of terminal distance matrices to en-
code molecular structures. The proposed reduced vector is less degenerative than
some other molecular codes. Based on those applications, I.Gutman et al [9] pro-
posed the concept of Terminal Wiener Index, which equals to the summation of
distance between all pairs of pendent vertices2 of trees, i.e.

TW (T ) =
∑

1≤i<j≤k

d(vi, vj) (4)

where vi and vj are pendent vertices of tree T , d(vi, vj) is the distance between
them, and the sum goes over all pairs of such pendent vertices.

1 A tree is a chemical tree if its maximum degree is at most 4.
2 In this paper, pendent vertices means leaves of the tree.
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Similar to the proof of (2), I.Gutman got another way to calculate the terminal
Wiener index.

TW (T ) =
∑
e∈T

p1(e|T ) · p2(e|T ) (5)

where p1(e|T ) and p2(e|T ) are the number of pendent vertices of T , lying on the
two sides of e, and the summation embraces all the n − 1 edges of T . We will
use p1(e), p2(e) instead of p1(e|T ), p2(e|T ) when there is no confusion.

Similar to Wiener index, we define the variable terminal Wiener index so that
it can have more molecular-structure descriptive power.

Definition 2. Variable terminal Wiener index is defined as follows:

TWλ(T ) =
∑
e∈T

[p1(e) · p2(e)]λ (6)

where λ is an adjustable parameter.

Unfortunately, with this more powerful index, there still exit pairs of trees and
chemical trees whose variable terminal Wiener index coincide for all values of
the parameter λ. We can see it from the example in Figure 1, where T1 and T2
have same variable terminal Wiener index, 5 · 2λ.

T1 T2

Fig. 1.

Based on this fact, we define the equiseparability w.r.t. terminal Wiener index.

Definition 3. Assuming p1(e) ≤ p2(e), two trees T ′ and T ′′ of order n are said
to be equiseparable w.r.t. terminal Wiener index if their edges e′1, e

′
2, · · · , e′n−1

and e′′1 , e′′2 , · · · , e′′n−1 can be labeled so that the equality p1(e′i|T ′) = p1(e′′i |T ′′)
holds for all i = 1, 2, · · · , n− 1.

In Section 2, we explore different rules for constructing equiseparable trees w.r.t
Wiener index and terminal Wiener index. In Section 3, we give a formal proof
of the fact that terminal wiener index has the degenerative phenomenon as the
wiener index. We conclude in section 4.

2 Rules for Constructing Equiseparable Trees with
Respect to Terminal Wiener Index

First, we show that the methods of constructing equiseparable trees w.r.t Wiener
index in [6,7] can be extended to construct equiseparable trees w.r.t terminal
Wiener index.
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In [6], I.Gutman got some rules for constructing equiseparable chemical trees
w.r.t. Wiener index. But they are in fact special cases of the method obtained
in [7], which can be stated as:

Theorem 1. ([7]). Let T , X and Y be arbitrary trees, each with more than two
vertices. Let the tree T1 be obtained from T by identifying the vertices u and s,
and by identifying the vertices v and t. Let T2 be obtained from T by identifying
the vertices u and t, and by identifying the vertices v and s. Then if X and Y
have equal number of vertices, the trees T1 and T2 are equiseparable. See Fig.2.

T
X Y

s t

u v

T

X Y

T

Y X

u uv v

T1 T2

Fig. 2.

If we revise the condition felicitously, then Theorem 1 can be extended to con-
struct equiseparable trees w.r.t. terminal Wiener index.

Theorem 2. Let trees T1 and T2 be constructed the same as they are in Fig.2.
If px − ps = py − pt, then the trees T1 and T2 are equiseparable w.r.t. terminal
Wiener index. px and py denote the number of pendent vertices of fragments X
and Y , respectively. ps is equal to 1 if s is a pendent vertex of X, otherwise it
is equal to 0. pt is defined similar to ps.

Proof. We prove it by classifying the edges of T1 and T2 into four types and each
type of edges satisfy Definition 3.

(1) For edges belonging to T , lying on the same side of u and v. For example,
edge e′ of T1 and e′′ of T2, both lying on the left of u. We have p1(e′|T1) =
p1(e′′|T2) = p1(e|T ), p2(e′|T1) = p2(e′′|T2) = p2(e|T ) + px + py − k, where k is



170 X. Deng and J. Zhang

a constant which equals the number of pendent vertices among {u, v, s, t}. So
this type of edges can be labeled so that p1(e′|T1) = p1(e′′|T2) always holds. The
same applies to edges lying on the right of v.

(2) For edges belonging to X . Obviously there is a bijection between the edges
of fragment X of T1 and the edges of fragment X of T2, so this type of edges
can also be labeled so that p1(e′|T1) = p1(e′′|T2) always holds.

(3) For edges belonging to Y . It is the same as case (2).
(4) For edges belonging to T , lying between the vertices u and v. According to

whether vertices u, v, s, t are pendent vertices of their corresponding fragments,
this case can be divided into 24 = 16 subcases. We only check three typical
subcases here, others can be proved similarly.

(4.1) None of them is pendent vertex.
Then we have p1(e′|T1)=p1(e|T )+px, p2(e′|T1)=p2(e|T )+py and p1(e′′|T2) =

p1(e|T ) + py, p2(e′′|T2) = p2(e|T ) + px. Combined with ps = 0 and pt = 0, we
get that the equality px − ps = py − pt implies the edges lying between u and v
satisfy Definition 3.

(4.2) One of them is pendent vertex, for example, s is a pendent vertex of X .
Then we have p1(e′|T1) = p1(e|T ) + px − 1, p2(e′|T1) = p2(e|T ) + py and

p1(e′′|T2) = p1(e|T ) + py, p2(e′′|T2) = p2(e|T ) + px − 1. Combined with ps = 1
and pt = 0, we get that the equality px − ps = py − pt implies the edges lying
between u and v satisfy Definition 3.

(4.3) Two of them are pendent vertices, for example, s is a pendent vertex of
X while v is a pendent vertex of T .

Then we have p1(e′|T1) = p1(e|T ) + px − 1, p2(e′|T1) = p2(e|T ) + py − 1 and
p1(e′′|T2) = p1(e|T ) + py, p2(e′′|T2) = p2(e|T ) + px − 2. Combined with ps = 1
and pt = 0, we get that the equality px − ps = py − pt implies the edges lying
between u and v satisfy Definition 3.

After checking all 16 subcases we get that edges lying between u and v can
be labeled so that p1(e′|T1) = p1(e′′|T2) always holds.

Aggregating these four cases, we can see that if px − ps = py − pt, then
p1(e′i|T ′) = p1(e′′i |T ′′) holds for all i = 1, 2, · · · , n − 1, which implies that trees
T1 and T2 are equiseparable.

On the other hand, trees are equiseparable w.r.t. Wiener index does not imply
they are equiseparable w.r.t. terminal Wiener index, since that the terminal
Wiener index is the sum of the distance between all pairs of pendent vertices but
not pairs of vertices. For example, the trees T1 and T2 in Fig.3 are equiseparable
w.r.t. Wiener index but not equiseparable w.r.t terminal Wiener index. So, it
is worth to find some general rules for constructing equiseparable trees w.r.t
terminal Wiener index only.

The following theorem and corollary are rules to construct equiseparable trees
w.r.t terminal Wiener index but not Wiener index.

Theorem 3. Let Z be an arbitrary tree, u is a vertex of Z, tree T1 is obtained
by identifying the vertices u and i, T2 is obtained by identifying the vertices u
and j. If X and Y have equal number of pendent vertices, then the trees T1 and
T2 are equiseparable. See Fig.4.
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T1

T2

Fig. 3.

X Y

Z

1 i j k... ... ...

X Y
1 i j k... ... ...

Z

T1

T2

u

u

Fig. 4.

Proof. Suppose the number of pendent vertices of fragments X , Y and Z are
px, py and pz, respectively. If u is a pendent vertex of Z then k is equal to 1,
otherwise k is equal to 0.

For each pair of edges e′ of T1 and e′′ of T2 which lying on the left of vertex
i, the number of pendent vertices sit on the two sides of these edges are px and
py + pz− k, respectively. So the edges lying on the left of vertex i can be labeled
so that p1(e′i|T1) = p1(e′′i |T2) always holds.

The same applies to the edges which lying on the right of vertex j and belong-
ing to fragment Z, so we only need to consider the edges lying between vertices
i and j.

For the edge e′ of T1 which lying between i and j, the number of pendent
vertices sit on the two sides of e′ are px + pz − k and py; For the edge e′′ of T2
which lying between i and j, the number of pendent vertices sit on the two sides
of e′′ are px and py + pz − k.
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Since px =py, we can label the edges e′1, e
′
2, · · · , e′n−1 of T1 and e′′1 , e′′2 , · · · , e′′n−1

of T2, so that the equality p1(e′i|T1) = p1(e′′i |T2) holds for all i = 1, 2, · · · , n− 1.
Therefore T1 and T2 are equiseparable w.r.t. terminal Wiener index.

Note that since TW (T ) only depends on the distance between pairs of pendent
vertices, the position of fragment Z can be arbitrary lying on the path from 1 to
k. But for Wiener index, things are different. Fragments X and Y having equal
number of vertices is not sufficient for equiseparability when fragment Z moving
arbitrary between vertex i and j, we can see it from two trees in Fig.1.

Theorem 3 can be extended to the circumstances when they are more than
one fragment on the path from 1 to k.

Corollary 1. If the fragments X and Y have equal number of pendent vertices,
the fragments Z1, Z2, · · · , Zt moving without changing the distance between them,
then the resulting two (chemical) trees are equiseparable w.r.t. terminal Wiener
index. See Fig.5 for illustration.

The proof of Corollary 1 is omitted here.

X

Z1

1 ... ...2 i1 i2

X
1 ... ... ...2 i1 + j i2 + j

Z1

T1

T2

... ... it ... ... Y

Z2 Zt

k

Y... it + j ... ... k

Z2 Zt

Fig. 5.

3 Degeneracy of Terminal Wiener Index

D.Vukic̆ević and I.Gutman [8] developed a powerful technic to prove almost all
trees and chemical trees have equiseparable mates w.r.t. Wiener index, the proof
of the chemical trees case is omitted since it is more complicated than the case
of trees. In this section, we show that the terminal Wiener index is degenerative
by proving almost all chemical trees have equiseparable mates.

Obviously, a necessary condition for two trees to be equiseparable is that they
have same number of pendent vertices. Let T be an n-vertex tree with k pendent
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vertices, e1, e2, · · · , en−1 are its edges, k = 2, 3, · · · , n− 1. Assume that for each
edge e of tree T , p1(e|T ) ≤ p2(e|T ). Let ti(T ) denote the numbers p1(ei|T ) be
equal to i, i = 1, 2, · · · , n−1, i.e., ti(T ) is the number of edges that, when cutting
off the edges ei, lying on the side of ei which has lesser pendent vertices. We
can see that the sequence (t1(T ), t2(T ), · · · , t�k/2�(T )) does not dependent on
the labeling of the edges of T .

Theorem 4. The terminal Wiener index is degenerative in the sense that al-
most all chemical trees have equiseparable mates.

Proof. Let Un and CUn be the number of trees and chemical trees of order n
having no equiseparable mates, Tn and CTn be the number of distinct n-vertices
trees and chemical trees. From the definition of equiseparable trees, we can see
that two trees are equiseparable if and only if their corresponding sequence
coincide. Then what we need to prove is

lim
n→∞

CUn

CTn
= 0

For CUn, it is obviously that CUn ≤ Un.
Let k be fixed, consider tree T of order n with k pendent vertices. Since T has

n− 1 edges, which means the sum of the sequence (t1(T ), t2(T ), · · · , t�k/2�(T ))
equals n− 1, the number of such trees is equal to(!k/2"+ n− 2

!k/2" − 1

)
with k ∈ {2, 3, · · · , n− 1}, we have

Un =
n−1∑
k=2

(!k/2"+ n− 2
!k/2" − 1

)
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(n−1)/2∑
k=2

(
k + n− 2

k − 1

)
for n is odd;

n/2−1∑
k=2

(
k + n− 2

k − 1

)
for n is even

by using simple combinatorial identity, we get

CUn ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n− 1 + n−1

2
n−1

2 − 1

)
− 1 for n is odd;(

n− 1 + n
2 − 1

n
2 − 2

)
− 1 for n is even

For CTn, R.Otter [2] obtained an asymptotic value, i.e., for 3 ≤ m <∞

Tn ∼ α2.5β3am−3

4
√

π

α−n

n2.5

where m is the maximum degree in Tn, α, β and a are constant for any fixed m.
Specifically, for m = 4, i.e., for chemical trees,
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CTn ∼ k · α
−n

n2.5 , k = 0.656319, α = 0.3551817

Obviously, CTn is exponential on n. Then, we have

lim
n→∞

CUn

CTn
= 0.

4 Conclusion

We demonstrated some rules to construct equiseparable trees w.r.t. terminal
Wiener index and compared them in the case of Wiener index. We also showed
that terminal Wiener index is degenerative as Wiener index. An interesting prob-
lem raised naturally is that the difference in constructing equiseparable trees,
i.e., what is the sufficient condition for trees to be equiseparable w.r.t Wiener
index but not equiseparable w.r.t terminal Wiener index, and vice versa. This
may be difficult to solve.
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Abstract. We introduce a reduction technique for the well-known TSP.
The basic idea of the approach consists of transforming a TSP instance to
another one with smaller size by contracting pseudo backbone edges com-
puted in a preprocessing step, where pseudo backbone edges are edges
which are likely to be in an optimal tour. A tour of the small instance can
be re-transformed to a tour of the original instance. We experimentally
investigated TSP benchmark instances by our reduction technique com-
bined with the currently leading TSP heuristic of Helsgaun. The results
strongly demonstrate the effectivity of this reduction technique: for the
six VLSI instances xvb13584, pjh17845, fnc19402, ido21215, boa28924,
and fht47608 we could set world records, i.e., find better tours than the
best tours known so far. The success of this approach is mainly due to
the effective reduction of the problem size so that we can search the more
important tour subspace more intensively.

1 Introduction

The traveling salesman problem (TSP) is a well known and intensively studied
problem [1,11,16,29] which plays a very important role in combinatorial op-
timization. It can be simply stated as follows. Given a set of cities and the
distances between each pair of them, find a shortest cycle visiting each city
exactly once. Formally, for a complete, undirected and weighted graph with n
vertices, find a shortest Hamiltonian cycle. The size of the problem instance is
denoted by n. If the distance between two cities does not depend on the direc-
tion, the problem is called symmetric TSP (STSP). In this paper we consider
only the STSP. Although TSP is easy to understand, it is hard to solve, even
NP-hard. The hardness of a TSP instance depends on the graph structure, but
also very strongly on the size n. The latter dependence comes from the immense
search space, i.e., the number of tours is (n − 1)!/2 for the STSP. Therefore it
is very hard to effectively find good tours for very large problem instances. We
distinguish two classes of algorithms for the STSP, namely heuristics and ex-
act algorithms. For the exact algorithms the program package Concorde [1,33],
which combines techniques of linear programming and branch-and-cut, is the
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currently leading code. Concorde has exactly solved many benchmark instances,
the largest one has even size 85,900 [2]. On the other hand, in the field of STSP
heuristics Helsgaun’s code [12,13,34] (LKH), which is an effective implementa-
tion of the Lin-Kernighan heuristic [17], is one of the best packages. This code
found the currently best tours for the most not exactly solved TSP benchmark
instances [27,28,30,31] including the famous World TSP instance [32].

As the search space for the STSP is huge, we can only traverse a tiny part of it
in reasonable time. An interesting observation is that tours with good quality are
likely to share many edges, which we call pseudo backbone edges [26]. In contrast,
backbone edges are edges which are contained in each optimal tour [15,19,25]. In
this paper we try to improve TSP heuristics by exploiting this observation. Our
main idea is to considerably reduce the size of the TSP instance by contraction of
edges, which have high probability to appear in an optimal tour. Our approach
works as follows. First, we find a number of tours with good quality. Second,
we draw out from these tours the pseudo backbone edges. Third, we compute
the maximal paths from the pseudo backbone edges, and contract each maximal
path to an edge. In this way, we create a new TSP instance with smaller size.
This reduced instance can be attacked more effectively and combined with each
possible TSP heuristic. In our experimental investigation, we used Helsgaun’s
implementation of the Lin-Kernighan-Heuristic [34]. This improved version con-
tains many new efficient features such as general k-OPT moves, different types of
partitioning, tour merging [3], iterative partial transcription [18] and backbone-
guided search [24,26].

The concept of edge fixing without backbone contraction was already used by
Lin, Kernighan [17]. Fischer and Merz [6] extended this idea to size reduction, but
paid more attention to the different reduction heuristics and the enhancement
to evolutionary algorithms than in our approach. Further related ideas are Cook
and Seymour’s tour merging algorithm [3], which merges a given set of starting
tours to get an improved tour, and compression in LKH, which is similar to
contraction, but works for subproblems of partitions. All these approaches are
in some sense a heuristic parallel to FPT kernelization (for an overview over the
theory of parameterized complexity see [4,7,14,20]), albeit TSP is not a problem
of this class. One special concept which is applied during FPT kernelization
is data reduction and iterative compression which reduce a hard instance to a
smaller equivalent problem kernel [10]. Note that our approach is closely related
to this kernelization technique.

Our experiments led to impressive results, e.g., we found record tours for
six VLSI instances [31]: xvb13584, pjh17845, fnc19402, ido21515, boa28924, and
fht47608, where some of the previous record tours had not been improved for
several years.

The paper is structured as follows. Our pseudo backbone contraction approach
is described in Section 2 and the experimental results are presented in Section 3.
Finally, we give conclusions and suggestions for future work in Section 4.
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2 Pseudo Backbone Contraction

2.1 The Phases of Pseudo Backbone Contraction

Let a TSP instance be given as a complete graph G = (V, E), where V is the
set of vertices, and E the set of edges. Our approach undergoes the following
phases:

1. Find a set Ω of good tours for the given instance. We call these tours starting
tours.

2. Collect the pseudo backbone edges, i.e., the edges that appear in all starting
tours. Formally, we have a set B := {e ∈ E : e ∈ ∩Ti∈Ω Ti}. Let VB :=
{v ∈ V : v ∈ e, e ∈ B} and V B := V \ VB .

3. Construct all maximal paths consisting only of pseudo backbone edges con-
tained in B, where a path is called maximal with property P , if it meets P
and cannot be extended by an edge without violating P . Each maximal path
is contracted to an edge, the end points of which are that of the path. We
call such an edge a p-edge (path edge). The p-edge of a path with only one
pseudo backbone edge is just the edge itself. We denote the set of all the end
points of the p-edges by VC .

4. Construct a new TSP instance H = (W, F ), where W = V B ∪ VC , F =
W × W .

5. Find a good tour for the new TSP instance H subject to the condition that
all p-edges must be in the tour, i.e., the p-edges are fixed. Note that the
length of a p-edge can be chosen arbitrarily, as it is fixed.

6. Obtain a tour for the original instance by re-transforming the tour of the
new instance.

a b c

d e f

Fig. 1. Demonstration of the pseudo backbone edge contraction
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2.2 Illustration of the Approach

Our approach is illustrated in Fig. 1 by a small TSP instance. This instance
has 12 points in a two dimensional Euclidean plane, which means the distances
between the points are given by the Euclidean metric. By the three starting
tours in Fig. 1a, 1b, and 1c, we receive the pseudo backbone edges (Fig. 1d).
From the maximal paths consisting only of pseudo backbone edges, only one has
a length greater than 1. Only this path contributes to the size reduction. This
pseudo backbone edge is contracted to a p-edge. After contracting, we receive a
new instance with 8 points (Fig. 1e). The three p-edges are fixed while searching
tours for the new instance. In Fig. 1e an optimal tour for the new instance is
shown. After expanding the p-edges in the tour of the new instance, we receive a
tour for the original instance (Fig. 1f). For this instance the final tour is optimal.

2.3 Why Contracting?

An alternative to this approach is fixing without backbone contraction. In this
case all the pseudo backbone edges are forced to appear in every tour. Thus the
search space is considerably cut, although the size of the problem is not reduced.
In contrast, the main feature of contraction is the reduction of the problem size.
This reduction has great influence to the effectivity of tour searching. The reason
is that all edges incident to the vertices in V \ W do not appear in the new
instance, whilst by only fixing many of them should be traversed – without any
chance to find better tours. Note that also the time used for the edge length
computations becomes smaller by the reduction of the problem size.

2.4 Solving the Reduced TSP-Instance

Local search is an improvement heuristic, which means it steadily improves the
best tour found. Certainly we need an initial tour constructed by other heuris-
tics, e.g., the nearest neighbor heuristic or a random heuristic. Local search
transforms a tour to another one by exchanging k tour edges with k non-tour
edges. This is called a k-OPT move. To improve a tour, the sum of the length
of the k tour edges must be larger than the sum of the length of the k non-tour
edges. A tour which cannot be improved by k-OPT moves for k ≤ r is called
r-optimal. Note that an n-optimal tour is optimal. As finding an r-optimal tour
has complexity O(nr), we are forced to constrain the search space such that we
obtain good tours in tolerable time. LKH uses several parameters for this pur-
pose. The most important ones beside the value of r are the maximal number s
of edges incident to each vertex to be considered while searching tours and the
number t of independent runs. In this context we define a tour as approximated
r-optimal, if it is r-optimal for the given maximal number s of edges incident to
each vertex. The larger r, s, and t are, the larger is the search space. With large
search space we can find better tours against cost of time. The parameter values
that make the search space large are called strong parameter values, otherwise
weak.
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In our approach, LKH was used for searching both the starting tours of the
original instances and tours for the reduced instances. To collect the starting
tours, we could not afford strong parameter values because of the time limit.
Therefore, the search for the starting tours was associated with relative weak
parameter values and the search for the reduced instances with stronger ones.
More exactly, for the reduced instances we used r = 8, 10, s = 5, 6 and t =
10, 20, while the standard parameter values are r = 5, s = 5, and t = 10. It
is just the reduction by contraction that makes the choice of strong parameter
values possible. Note that LKH with standard parameter values finds optimal
solutions frequently for small instances, e.g., most instances from TSPLIB. Since
the reduced instances in this work have sizes not larger than 18,242 and stronger
searching parameter values are applied to them, we have not tried to solve them
with the program package Concorde [33]. In addition, the reduced instances have
fixed edges to be treated specifically which is not implemented in Concorde.

2.5 Starting Tours

As starting tours we used tours received by previous experiments with many
different variants of LKH. The main distinctions between these variants are that
the candidate edges are chosen by different criteria, which are mostly tolerances
(for an overview over the theory of tolerances see [8,9]). Note that the number
of starting tours we used is different for each instance. In particular, it depends
on the size of the TSP instance.

3 Experimental Results

We ran the programs on several computers to attack different instances simul-
taneously, where for solving the reduced instances we used LKH-2.0 and for
computing the starting tours the older version LKH-1.3. The time limit for the
reduced instances was set to two weeks. Mostly, we used the default parameter
values of LKH, whereas we varied only the already mentioned parameters r, s, t.
The main goal of this work is to find tours as good as possible, therefore we
pay less attention to the running time. Furthermore the running times strongly
depend on the instances, i.e, smaller size does not necessarily mean less time.
Unfortunately our running times cannot be compared with those of previous
experiments listed at [29], as in most cases no times were given there. To get
a feeling for the running times we also applied LKH to several large original
TSP instances with the same parameter values r, s, t as applied to the reduced
instances. After more than one month we could not find any better tours for the
original instances.

All experimental information such as starting tours, parameter values of LKH,
running times and machines are available at [35].

3.1 Investigated Instances

All the TSP instances investigated in this work are shown in Table 1, where
their sizes can be seen in their names. These instances come from three different
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Table 1. TSP instances investigated and the best tour lengths found before and by us

Instance Src Best Ours Instance Src Best Ours
1 dsj1000 1 18659688 = 27 ei8246 2 206171 =
2 pr1002 1 259045 = 28 dga9698 3 27724 =
3 u1060 1 224094 = 29 kz9976 2 1061881 =
4 pcb1173 1 56892 = 30 xmc10150 3 28387 =
5 rl1304 1 252948 = 31 fi10639 2 520527 =
6 rl1323 1 270199 = 32 xvb13584 3 37084 37083
7 nrw1379 1 56638 = 33 brd14051 1 469385 469392
8 fl1400 1 20127 20188 34 xrb14233 3 45462 45464
9 u1432 1 152970 = 35 xia16928 3 52850 =

10 u1817 1 57201 = 36 pjh17845 3 48094 48093
11 rl1889 1 316536 = 37 frh19289 3 55798 =
12 u2152 1 64253 = 38 fnc19402 3 59288 59287
13 xqc2175 3 6830 = 39 ido21215 3 63519 63518
14 pr2392 1 378032 = 40 fma21553 3 66527 =
15 pcb3038 1 137694 = 41 lsb22777 3 60977 60983
16 pia3056 3 8258 = 42 xrh24104 3 69294 =
17 xqe3891 3 11995 = 43 irx28268 3 72607 =
18 bgb4355 3 12723 = 44 icx28698 3 78090 78095
19 rl5915 1 565530 = 45 boa28924 3 79624 79623
20 rl5934 1 556045 = 46 pbh30440 3 88313 88314
21 tz6117 2 394718 = 47 xib32892 3 96767 96780
22 xsc6880 3 21535 = 48 fry33203 3 97240 97242
23 bnd7168 3 21834 = 49 ics39603 3 106821 106826
24 lap7454 3 19535 = 50 fht47608 3 125124 125119
25 ym7663 2 238314 = 51 fna52057 3 147802 147818
26 ida8197 3 22338 =

areas: TSPLIB instances [21,28] (Src 1), national instances [30] (Src 2) and
VLSI instances [31] (Src 3). In column Best the length of the best tour found
so far is given for each instance. The length of our best tour can be seen in
column Ours. If for an instance we found a tour with the same length as that in
column Best, an equal sign “=” is used in column Ours. The six VLSI instances
xvb13584, pjh17845, fnc19402, ido21215, boa28924, and fht47608, for which we
found new best tours, are highlighted in the table.

3.2 The Effectivity of the Pseudo Backbone Contraction

From the column Ours of Table 1 we observe the effectivity of the pseudo
backbone contraction approach. For all but two (fl1400, brd14051) of the TSPLIB
and national instances (Src=1, 2), we found tours that are equally good as
that of the best known ones, most of them are optimally solved. For the VLSI
instances we have all three cases: we found better, equally good or worse tours in
comparison with the best tours known before this work. Actually for the instance
fht47608 we found three tours that are better than the previously best known



Effective Tour Searching for TSP by Contraction of Pseudo Backbone Edges 181

Table 2. Reduction data of the investigated TSP instances

Instance BEP(%) #Tours NewSize Impr Grade(%)

1 dsj1000 95.40 35 88 – 53.41
2 pr1002 98.20 35 34 – 55.88
3 u1060 90.09 35 143 – 74.13
4 pcb1173 94.63 35 118 – 54.24
5 rl1304 94.33 35 136 – 55.15
6 rl1323 95.16 35 120 – 54.17
7 nrw1379 88.18 35 301 – 54.49
8 fl1400 32.50 35 1002 -24 94.41
9 u1432 52.51 35 799 – 85.23

10 u1817 73.75 35 730 – 65.48
11 rl1889 92.80 35 245 – 55.92
12 u2152 72.96 35 826 – 70.58
13 xqc2175 79.91 66 733 0 59.75
14 pr2392 95.40 35 212 – 52.36
15 pcb3038 86.44 35 754 – 54.77
16 pia3056 75.26 66 1307 0 57.92
17 xqe3891 77.87 66 1447 0 59.57
18 bgb4355 73.69 66 1917 0 59.83
19 rl5915 91.46 35 905 14 55.91
20 rl5934 91.94 35 882 43 54.31
21 tz6117 77.90 66 2185 11 61.92
22 xsc6880 75.74 66 2850 0 58.60
23 bnd7168 70.69 64 3482 0 60.37
24 lap7454 78.84 65 2715 0 58.12
25 ym7663 85.03 66 2029 3 56.58
26 ida8197 77.50 66 3132 0 58.91
27 ei8246 84.00 67 2363 0 55.86
28 dga9698 77.41 67 3694 0 59.34
29 kz9976 84.13 66 2895 4 54.72
30 xmc10150 75.67 66 4146 2 59.58
31 fi10639 78.13 35 4099 21 56.79
32 xvb13584 65.89 100 7577 1 61.17
33 brd14051 76.63 35 5719 8 57.44
34 xrb14233 77.17 15 5637 2 57.65
35 xia16928 65.50 57 9392 3 62.20
36 pjh17845 70.71 39 8887 1 58.83
37 frh19289 82.91 8 5877 1 56.12
38 fnc19402 69.79 59 9754 8 60.11
39 ido21215 64.65 58 12233 9 61.31
40 fma21553 69.09 59 10965 11 60.77
41 lsb22777 80.95 6 7717 4 56.24
42 xrh24104 66.63 60 13073 6 61.54
43 irx28268 74.15 23 12398 13 58.94
44 icx28698 67.42 58 15200 11 61.52
45 boa28924 67.13 59 15518 5 61.28
46 pbh30440 81.46 9 10009 6 56.40
47 xib32892 65.55 54 18242 8 62.13
48 fry33203 79.66 8 11817 8 57.17
49 ics39603 84.26 3 11434 79 54.54
50 fht47608 83.04 8 14568 30 55.43
51 fna52057 82.00 5 16620 30 56.40
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tour. The reasons that we could not find better tours for some instances can be
described as follows. First, we gave a time limit of two weeks to the calculation.
Second, we used mostly standard parameter values for all the instances, i.e.,
we did not do any tuning work except for parameters r, s, and t. The third
reason, which is the most important one, is that some of the pseudo backbone
edges may be no real backbones, since the starting tours were found also by local
search. And finally, the best tours of some instances may be optimal and it is not
possible to improve them. Note that even for the case that we found only worse
tours, the length differences between our best tours and the best ones known so
far are usually very small. In summary, our approach based on pseudo backbone
edge contraction gives satisfiable, in some cases excellent results.

3.3 Discussion

Now let’s consider some details about our approach. In Table 2 we give some
data about the reduction for the investigated instances. The column BEP(%)
gives the percentage of pseudo backbone edges with respect to the size of the
instance. The number of the starting tours is given in column #Tours. After
the reduction we have an instance with smaller size, where the new size can
be seen in column NewSize. The column Impr gives the improvement by the
reduction which is the length difference between the best starting tour and the
best tour we found by pseudo backbone contraction. If the best tour in the set
of starting tours is optimal, then we certainly could not improve it at all. In this
case, a “–” symbol is shown in this column, if our approach finds also an optimal
tour. Note that there is only one instance, for which we found only worse tours
(fl1400). The last column Grade will be explained later.

We analyzed the distribution of all edges in the starting tours for every in-
stance. Some of these edges appear in all the starting tours, therefore they are
just the pseudo backbone edges. Some of them may appear in only one starting
tour. These edges have the smallest probability to keep in an optimal tour. Other
edges appear between these two extreme cases. Fig. 2 shows the frequency dis-
tribution of all tour edges for the instance boa28924. From this figure we observe
that about 200 edges appear in exactly 40 (different) of the 59 starting tours
and about 20,000 edges are pseudo backbone edges, i.e., appear in each of the
59 starting tours. Note that the y-axis is in logarithmic scale. Interestingly, the
shape of this curve is typical for most of the investigated instances. From this
curve it is easy to understand the high BEP values. This curve also shows a
large frequency difference between that of the pseudo backbone edges (t = 59 in
the figure) and that of the almost pseudo backbone edges for t = 58. As in most
instances BEP is large it suffices to reduce the original instances by contracting
the pseudo backbone edges, whereas almost pseudo backbone edges have not to
be considered. Fig. 3 shows the pseudo backbone edges of the instance nrw1379,
for which we found an optimal tour. From this figure, we observe that there are
very long tour segments which can be contracted to corresponding p-edges. This
means that all vertices in the middle of the segments are not included in the
reduced instance. Note that for this instance all these segments are contained
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Fig. 2. Frequency distribution of starting tour edges for the TSP instance boa28924

in an optimal tour. Fig. 4 shows all p-edges from Fig. 3. It can be seen that
the original instance can be strongly reduced. The new instance obtained after
the contraction of the pseudo backbone edges has a size of 301, which is much
smaller than the original size 1379. Because of the smaller size, we can search
the more “important” and “difficult” areas more intensively by choosing stronger
parameters.

The number of starting tours ranges from 3 to 100 (#Tours). For the just
discussed instance nrw1379 we have 35 starting tours. It is interesting to point
out that the number of starting tours is not the most important factor. For
example, for the instance fht47608, for which we could find three new best tours
in two weeks, we have only 8 starting tours. Instead, the quality of the starting
tours and also the independence among the tours play an important role. This
can also be seen from the contrast of the BEP values between fht47608 and
ei8246. The former has slightly smaller BEP than the latter, although the latter
has many more starting tours.

The length distribution of the tour segments of the pseudo backbone edges
determines the new size of the reduced instance. Let b be the number of pseudo
backbone edges and d the new size, then for b > n/2, which is the case for all
investigated instances except one, we have:

n − (b − 1) ≤ d ≤ 2(n − b) < n.

The above equation follows from the following reasoning. If all the pseudo
backbone edges lie in only one path, then by contracting this path to a p-edge,
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Fig. 3. Tour segments for the TSP instance nrw1379 showing only the backbone edges

we have b−1 vertices fewer in the new instance than in the original instance. On
the other hand, we have exactly n−b non-pseudo backbone edges for constructing
a tour from the b pseudo backbone edges. We have at most 2(n − b) vertices in
the reduced instance, if all these non-backbone edges are disjoint. At this point,
we introduce the grade of reduction as

γ =
n − b + 1

d

and calculate the grade of the contraction for each instance. They are listed
in the last column Grade of Table 2. The larger this value is, the longer are
the average paths consisting of only pseudo backbone edges. For most of the
instances the grade of contraction has a value between 50% and 60%, but we
also see a few large reduction grades. The instance fl1400 has even a reduction
grade of 94%, which indicates few but very long pseudo backbone edge paths for
this instance.
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Fig. 4. Contracted pseudo backbone edges (p-edges) of TSP instance nrw1379

4 Conclusions and Current Work

Our approach of effectively finding good tours by contracting pseudo backbone
edges is justified by the excellent results. For all instances except one we could
find improved tours or tours with the same length. Especially we found better
tours than the best ones known so far for six VLSI instances with sizes from
13, 584 to 47, 608, where some of the previous record tours had not been improved
for several years.

A natural generalization of our idea would be to fix also edges, which do not
appear in all starting tours, but in almost all of them. By this idea, it would be
no problem, if among the starting tours also a bad one would appear.

Our current work concentrates on enhancing the central idea of our approach
presented in this paper in order to attack even larger TSP instances with more
than 100,000 vertices. In the present work we use the contraction of pseudo
backbone edges only once, but for larger TSP instances the approach has to be
extended. In [5] we suggest to apply the contraction idea in a iterative manner.
This iterative approach which doesn’t require starting tours is a dynamic and
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automatic process, i.e., the number of the contraction steps is dynamically deter-
mined during the run of the program depending on the hardness of the instance.
In each iteration, the pseudo backbone edges are computed by a window based
technique in which the TSP instance is tiled in non-disjoint sub-instances. We
hope that a further development of this approach makes it possible in (near)
future to successfully attack the World TSP instance or further large TSP
instances.
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Abstract. Most sponsored search auctions use the Generalized Second
Price (GSP) rule. Given the GSP rule, they try to give an optimal al-
location, an easy task when the only need is to allocate ads to slots.
However, when other practical conditions must be fulfilled –such as bud-
get constraints, exploration of the performance of new ads, etc.– optimal
allocations are hard to obtain. We provide a method to optimally allo-
cate ads to slots under the practical conditions mentioned above. Our
auctions are stochastic, and can be applied in tandem with different pric-
ing rules, among which we highlight two: an intuitive generalization of
GSP and VCG payments.

1 Introduction

In the framework of sponsored search, advertisers compete in an auction to place
their ads on a web page. Each advertiser places a bid, and the search engine de-
cides, based on the bids and other public or private parameters, which ads will
be published and where. In the widely used pay-per-click model, each advertiser
is charged only when her ad receives a click. The position in which an ad is
displayed has an impact on its likelihood of being clicked, and advertisers’ pref-
erences follow accordingly. Nevertheless, it is generally assumed that all clicks
(independently of the ads’ position) have the same value for an advertiser; con-
sequently, search engines establish a price for a click that is not conditioned on
the position where the ad is presented.

The most widely used mechanism for sponsored search auctions combines the
sort-by-revenue allocation and Generalized Second Price (GSP) rules: bidders
are ranked according to the revenue the auctioneer expects to obtain from them,
while the price associated to each of the winning bidders –which are precisely
the top-ranked bidders– is the minimum amount each of them needs to bid in
order to maintain their position in the ranking [3,10].

� This research was funded by a Yahoo! Research Alliance Grant, and in part by
UBACYT project X436 “Algoritmos de selección y asignación y mecanismos de
pago para la publicidad online en Internet”.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 188–201, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Optimal Auctions Capturing Constraints in Sponsored Search 189

Although in a basic setting the aforementioned tandem sort-by-revenue/GSP
yields good revenue for the auctioneer, actual implementations must address
many extra features, for instance: (a) Click-through-rates and expected revenues
are not really known a priori, so they must be learned somehow by the auctioneer.
In order to avoid leaving out ads with high potential revenue, there is a need
to alternate among ads with high, small and unknown revenue expectation.
This is known as the explore/exploit trade-off [25]. In terms of the allocation
mechanism, the implementation of that trade-off may be seen as adding extra
constraints to the problem, for example stating that each ad must receive at least
a certain fraction of the impressions. (b) Users may aim at different meanings of
a same query. Hence, the overall clickability of the published ads, and likewise
the auctioneer’s revenue may increase when the set of published ads covers a
wide range of meanings, independently of the revenue expectation of each ad
considered separately [14,30]. (c) The publication of certain ads may have a
(possibly negative) influence on the click-probability of other ads. Therefore, the
set of ads with the highest aggregate click probability is not necessarily the set of
the best individual ads. These are called “contextual effects” [14,30]. (d) In the
process of optimizing the performance of an auction, we must decide how many
ads to display. This number influences the revenue in several conflicting ways.
On the one hand, the more ads published the higher the probability that a user
finds one that suits her needs. On the other hand, as the number of ads increases
the fraction of the user’s attention that each ad attracts decreases; moreover,
there is also evidence that the user experience suffers [4]. (e) Bidders usually set
budget constraints, i.e., upper bounds on the amount they are willing to spend
for a keyword or set of keywords over a time period. These kind of constraints
have been studied in [21,1,2]. (f) Advertisers may be allowed to place special
requests such as being displayed only in certain positions.

Instead of performing ad-hoc modifications to allocations and pricing rules to
model each of these extra features, it is useful to have an auction mechanism
general enough to easily adapt to a changing environment. We provide such
a mechanism, which simplifies and improves the usability of sponsored search
auctions, by means of stochastic auctions. Stochastic auctions are auctions in
which the allocation or the pricing rule (or both) are random variables. These
auctions may be preferable to deterministic ones for several reasons: (1) they
are less prone to vindictive and/or strategic bidding, since strategic behavior is
impaired by the non-deterministic nature of the output [20]; (2) the fact that
anyone can eventually win the auction contributes to have a wider advertisers
base and therefore higher revenue in the medium term [16]; (3) they bear higher
diversity of ads, which improves user experience and increases aggregate click
through rates [14,30]; (4) they provide an implicit mechanism to implement an
explore/exploit trade-off [12]; (5) they are in general less vulnerable to fraudulent
behavior [26].

The method we propose, based on mathematical programming, creates a
stochastic auction that achieves the best allocation with respect to some ob-
jective, that satisfies the constraints of the problem. Concretely, we provide an
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algorithm M, which can be subdivided into two parts: (1) a template algorithm
A that, given as input typical parameters (the advertisers’ bids, estimations of
the ad- and/or position-CTRs), possibly a set of constraints (e.g., budget or
variety restrictions), and an objective function O, produces an equivalence class
of stochastic allocations that satisfy the constraints, and are best possible ac-
cording to O, and (2) a drawing algorithm that allocates ads according to the
probabilities of some stochastic allocation in the class obtained through A.

The method just described can be combined with several pricing rules, as we
examine in Section 4. This combination yields, for a class of pricing rules which
we will call a priori, optimal auctions –according to different objectives. A priori
pricing rules include, among others, First-price and GSP. Other pricing rules
we can use include VCG payments and Myerson’s optimal truthful mechanism,
which requires an assumption about the bidders’ valuations (see Section 4).

We also introduce a natural extension of GSP for stochastic allocations, the
Extended Generalized Second Price (EGSP) rule: prices are not only associated
to the top-ranked bidders, but to all the bidders with a positive probability of
being allocated a slot. Prices are computed in the same way as in GSP, there-
fore the prices associated to the top-ranked bidders coincide under both pricing
rules.

EGSP is an a-priori pricing and can be coupled with different stochastic allo-
cation rules, in particular those obtained using algorithm M. This combination
becomes a way of extending mechanisms currently in use towards a framework
where a rich set of constraints can be explicitly included.

The computational complexity of algorithm A depends on the objective func-
tion and the type of restrictions. A key observation is that, thanks to the stochas-
tic nature of the allocations, there is no need to impose integrality restrictions.
In particular, there are many interesing objective functions and restrictions that
are linear (see Section 3), and yield polynomial time algorithms1.

As opposed to auctions currently in use, which (to the best of our knowledge)
can only handle constraints and objective functions in an ad-hoc way, M can
handle many of those constraints and objectives seamlessly, providing an optimal
allocation for many pricing rules, including EGSP. Indeed, M combined with
EGSP brings the same or better allocations than sort-by-revenue/GSP auctions.
Another advantage of M is related to the nature of the stochastic allocations
involved: we are able to optimize over a (continuous) polytope, as opposed to a
discrete lattice, where optimization is computationally inefficient.

In summary, we present an extension to the most popular pricing rule in spon-
sored search, and a method to derive best stochastic allocation rules based on
mathematical programming under different pricings. Neither of these contribu-
tions is a break-through result, yet their combination provides a powerful way to
obtain optimal auctions in some real-life settings of sponsored search. Another

1 Even when the types of restrictions entail a non-polynomial running time algorithm,
if the size of the problem is reasonably small, M may still be used in practice; e.g.,
by combining our approach with techniques for subdividing query-bidder graphs into
smaller instances [8].
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application is their use as benchmarks to measure the impact of the introduction
of constraints on the overall performance of an auction.

Related work. The subject of including budgets in the design of sponsored
auctions has received a lot of attention recently, for example in [7] and [1].
Mehta, Saberi, Vazirani and Vazirani [21] explore the problem from a competitive
analysis point of view: they aim at optimizing the total revenue for a set of
queries in an on-line manner, by trying to consume the maximum amount of
each bidder’s budget through a sequence of queries, of which neither the total
length nor the frequency of each are known in advance, obtaining an optimal
(1− 1/e)-competitive algorithm. Mahdian, Nazerzadeh and Saberi [19] consider
the same framework, and present an algorithm that takes advantage of good
estimations on the frequencies of keywords, while maintaining a good worst-case
competitive ratio in case that those estimates are incorrect.

Linear Programming and Stochastic Algorithms have been used before in the
framework of mechanism design. Just to cite a recent example in the framework
of truthful mechanism design for combinatorial problems, Lavi and Swamy [17]
propose a way to convert LP-based approximation algorithms into stochastic
mechanisms that give approximate solutions to the winner determination prob-
lem and are truthful in expectation (i.e., all players maximize their expected
utility by revealing their true values). One of the consequences of that work is
a truthful approximation algorithm for both multi-unit auctions and multi-unit
combinatorial auctions, which are problems related to ours. The focus there is,
however, on a different aspect of the problem, more related to computational
complexity of one-time auctions.

Much related to our approach, Abrams, Mendelevitch and Tomlin [2] use
LP trying to optimize sponsored search auctions subject to budget constraints.
The difference with our work is manifold. Firstly, they impose restrictions on
allocations: no ad can appear in a worse position than another ad with lower
ranking. Secondly, while our formulation supports diverse pricing rules, theirs
gets restricted to one: the price associated to each bidder is the minimum price
needed to beat the ad allocated to the next slot. Thirdly, their model is more
involved than ours, and requires more elaborated LP techniques such as delayed
column generation; our model is then computationally far more efficient. Finally,
it lacks the extra flexibility (given by stochastic allocations) for easily including
other kinds of restrictions.

LP has been used in the framework of on-line advertising under the more
traditional pay-per-impression model, for example in [23,29]. Finally, the use of
stochastic auctions for sponsored search has been recently considered in [20], [12],
[13] and [6].

2 The Model

Assumptions and notation. The setting we consider involves n risk-neutral
bidders that compete for slots, but no bidder can win more than one; the number
of slots is not set in advance. Each bidder i has a private value vi for each click
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received, and for which she places a bid of bi. Following each query, the auctioneer
decides which ads will be published along with their order.

A bid vector is a vector b = (b1, . . . , bn) ∈ Rn, while B denotes the set of all
bid vectors. An allocation s is an ordered subset of the ads to be displayed on a
particular occurrence of a query; its size is denoted by |s| (the number of ads to
be displayed).

Unless stated otherwise, we assume that the click probability of an ad is not
influenced by the identity of the other published ads. We denote by CTRi,j,k the
expected click probability of ad i when presented in the j-th position while a total
of k ads are displayed. The expected click-through rate of an ad i in an allocation
s, denoted by CTRi,s, is then CTRi,j,|s|, where j is the position of i in s. A
stochastic allocation S is a random variable with some probability distribution
over allocations. The expected click through rate of ad i in S, denoted by CTRi,S ,
is the sum over all possible allocations s of CTRi,sP (S = s) (where P (S = s)
denotes the probability that allocation s is chosen).

Let S be the set of all stochastic allocations. An allocation rule is a function
σ : B → S. A pricing μ = 〈μ1, . . . , μn〉 ∈ Rn is a vector of prices per click for
each bidder. A stochastic pricing is a probability distribution over pricings. Let
M be the set of all stochastic pricings. A pricing rule is a function p : B → M.
An auction is a pair (a, p), where a is an allocation rule and p is a pricing
rule.

Basic Model. Now we present a basic model that uses mathematical pro-
gramming in the framework of sponsored search auctions. First we define an
equivalence relation over stochastic allocations, along with a polyhedron whose
feasible region is the set of those equivalence classes. Then we provide an ef-
ficient algorithm that, given a point x in the polyhedron, obtains a stochastic
allocation S from the equivalence class of x, followed by an allocation according
to the probability distribution of S. Finally, we show that many typical auction
measures (such as social welfare or the auctioneer’s expected revenue) may be
described as linear functions over the polyhedron, being therefore possible to
efficiently compute the optimal equivalence class of allocations for that measure
using linear programming.

We say that two stochastic allocations S and S′ are equivalent if, and only
if, for each ad i, each position j and each k, the probability that ad i is as-
signed to slot j when displaying k ads is the same under S as under S′. That
two equivalent stochastic allocations are not necessarily equal is shown in the
following simple example. Consider two stochastic allocations S1 and S2; S1 al-
locates three bidders in order (1, 2, 3), (2, 3, 1), and (3, 1, 2) each allocation with
probability 1/3, and S2 allocates them in order (1, 3, 2), (3, 2, 1), and (2, 1, 3)
each with probability 1/3 as well. While S1 and S2 are different, both have
the same probability of allocation for each combination of advertiser and po-
sition (there are always three ads displayed), and thus CTRi,S1 = CTRi,S2

for each ad i.
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If two stochastic allocations are equivalent, the expected CTR of each ad
coincides in both stochastic allocations and consequently, (noting that the price
per click charged to any bidder is independent of the slot assigned to her) both
the expected revenue for each bidder and for the auctioneer are the same as well
in both auctions (under equal pricings).

The Stochastic Allocations Polyhedron. By regarding yk as the proba-
bility of having k ads displayed, and xi,j,k as the probability of ad i being
displayed on position j when a total of k ads are displayed (1 ≤ i ≤ n,
1 ≤ j ≤ k ≤ n), we define the Stochastic Allocations Polyhedron (SAP) by

xi,j,k ≥ 0 for each i, j, k (1)

n∑
i=1

xi,j,k ≤ yk for each j, k (3)

n∑
k=1

yk = 1 (2)

k∑
j=1

xi,j,k ≤ yk for each i, k. (4)

For convenience we also define an extension of SAP (SAP-e), by adding non-
negative (slack) variables xi,j,k for j > k, and replacing inequalities (3) and (4)
with

n∑
i=1

xi,j,k = yk for each j, k (3a)
n∑

j=1

xi,j,k = yk for each i, k. (4a)

It is easy to see that the feasible region of SAP-e may be partitioned into
subsets such that each of these subsets is associated with one feasible solution
of SAP (by dropping the slack variables). While each feasible solution of SAP
represents a class of stochastic allocations, SAP-e will prove useful for technical
purposes.

Note that if we replace yk by 1, and remove the third coordinate of the vari-
ables xi,j,k, then (1), (3a) and (4a) describe the bipartite perfect matching poly-
tope [11,27,18]. As in the bipartite matching polytope, we state in the next
lemma that SAP extremes are also integral.

Lemma 1. Every extreme of SAP (SAP-e) is integral.

A drawing algorithm. Each solution of SAP (or SAP-e) can be associated with
a set of equivalent stochastic allocations. Given such solution (xi,j,k, yk)1≤i,j,k≤n

in SAP-e, we show next how to obtain a stochastic allocation in its equivalence
class.

For each k such that yk > 0 we define the n×n matrix Z(k) = (z(k)
i,j )1≤i,j≤n by

z
(k)
i,j = xi,j,k/yk. From this definition and restrictions (3a) and (4a) follows that

each row and column of Z(k) sums up to 1, that is, Z(k) is a doubly stochastic
matrix. In consonance with the Birkhoff-von Neumann theorem [5], Z(k) is a
convex combination of permutation matrices. Accordingly, we give the following
probabilistic algorithm that produces an allocation given a point in SAP:
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Choose k with probability yk.
Construct Z(k).
Find permutation matrices Pl and positive numbers λl

such that
∑

l λl = 1 and Z(k) =
∑

l λlPl.
Choose a permutation matrix Pl with probability λl.
For j = 1 to k

Let i be such that P [i, j] = 1.
Display ad i in position j.

We can see that with the preceding algorithm the probability of displaying
exactly k ads is yk, and the probability that ad i is displayed in position j while
having k ads on display is ykz

(k)
i,j = xi,j,k. Therefore, the stochastic allocation

that results from the application of the algorithm to a point in SAP belongs
to the equivalence class of the point (the stochastic allocation selected from
the equivalence class depends on the convex combination found, which is not
necessarily unique).

Now our procedure is clear: apply an instance of the template algorithm A in
order to obtain a solution of SAP, and feed that solution to the drawing algorithm
in order to obtain an allocation. Since the convex combination for any given
matrix Z(k) can be attained in polynomial time, the drawing algorithm takes
polynomial time as well. As long as the instance of A also runs in polynomial
time, so will our procedure.

Lemma 1 implies that we are modeling an assignment problem, which can
be solved with faster methods than using linear programming plus the drawing
algorithm. Nevertheless, as it will become clear in in the next section, this model
provides an extra flexibility that enables the inclusion of different extensions.

3 Optimizing over SAP and Extensions

In order to round up the description of our model, we note that we can opti-
mize any function over SAP. In particular, we consider linear functions, that
yield linear programs. A natural instance of such functions is the social wel-
fare, which can be maximized if we have the bidders’ private values (or an
estimation):

∑n
i=1
∑n

k=1
∑k

j=1 xi,j,kCTRi,j,kvi. Alternatively, we can maximize
the expected revenue of the auctioneer,

∑n
i=1
∑n

k=1
∑k

j=1 xi,j,kCTRi,j,kμi. We
can also maximize any linear combination of measures, therefore being able to
tweak the trade-off between different objectives. We give an example of this kind
of objective functions at the end of the next subsection.

We note that the model depends on some parameters of the environment,
mainly the pricing and the click probabilities. As for the pricing, the vector
μ = 〈μ1, . . . , μn〉 that we use may be a function of the bids and eventually other
variables (like the click probabilities themselves), but we restrict μ to not depend
on the allocation rule2. In other words, when the objective function depends on
2 We could also use μi,j,k, allowing the price to depend on the number of ads displayed

and their positions.
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the price (e.g., the revenue function), the model is general enough to represent
any stochastic sponsored search auction in which the prices are calculated “a
priori” of the assignment. This includes classical pricing rules such as first-price
or appropriate variants of the second-price rule. In Section 4 we present a natural
extension of the broadly used Generalized Second Price (GSP) rule [10], which
is suitable for our auctions. Note that we make no equilibrium analysis in these
cases.

Since the extremes of SAP are binary solutions, maximizing any continuous
objective function may be seen as an assignment problem. It is only natural then
that we can obtain the same solutions with less sophisticated methods than linear
programming. Nevertheless, the power of the model presented in Section 2 lies on
its flexibility: it may be combined with different objective functions, restricted by
adding different types of constraints, and extended by adding new variables that
represent other features of the auction. Next we show a few practical instances
of these extensions.

We restrict our analysis to linear programming, therefore both the objective
functions and constraints considered are linear. We also note that although we
consider each extension separately, they can be combined according to the fea-
tures being modeled.

3.1 Variety Constraints

The first extension to the basic model that we consider are variety constraints.
They are introduced as a means of granting each bidder some minimum reward
in terms of impressions or click probability.

We consider two types of variety constraints: 1. Each ad is granted some
probability of appearance on each occurrence of the query, 2. Each ad is granted
a minimum expected click probability on each occurrence of the query. Both of
them can be modeled by linear constraints to restrict the solution set of SAP. The
first one may be appealing to some advertisers who are interested in impressions
rather than clicks. However, the usual model for sponsored search considers that
bidders only get profit on clicks, so we focus on type 2 constraints. In order
to define type 2 constraints we make use of the separability assumption [3]:
the CTR may be separated into two factors, one advertisement-specific, the ad-
CTR, and the other position-specific, the position-CTR. Formally, denoting by
ai the ad-CTR of ad i, and by wj,k the position-CTR of slot j when k ads
are displayed, the separability assumption states that CTRi,j,k = aiwj,k. For
convenience, we assume without loss of generality that the weights are sorted in
such a way that CTRi,j,k ≥ CTRi,j+1,k (wj,k ≥ wj+1,k). We also assume that
CTRi,j,k ≥ CTRi,j,k+1 (wj,k ≥ wj,k+1), since having additional ads displayed
can only reduce the visibility of the others. If the maximum number of ads to
be displayed is m, then we set wj,k = 0 for all k > m.

By denoting with lai and lpi the lower bounds on bidder i’s expected impression
probability and position-CTR, respectively, constraints of type 1 and 2 can be
respectively expressed by
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n∑
k=1

k∑
j=1

xi,j,k ≥ lai for each i and

n∑
k=1

k∑
j=1

wj,kxi,j,k ≥ lpi for each i.

Since the lower bounds are part of the input to M, different alternatives are
possible. They are beyond the scope of this article. Nevertheless, we observe that
for constraints of type 1, no feasible solution exists unless

∑n
i=1 lai < k, for the

largest k satisfying wk,k > 0. It is less evident that for constraints of type 2 and
assuming lpi > lpi+1, no feasible solution exists unless there is k such that for each
1 ≤ t ≤ n,

∑t
i=1 lpi ≤∑t

i=1 wi,k; we omit the proof due to space limitations.
Alternatively, the need of periodically publishing every ad can be expressed via

another objective function such as
∑n

i=1
∑n

k=1
∑k

j=1 xijk(wjkaiμi + Ei), where
Ei is a measure of the benefit of exploring ad i, provided by an external source
devoted to manage the explore/exploit trade-off [25].

3.2 Budget Constraints

We introduce now budget constraints, describing how much bidders are willing to
spend. In order to model these constraints, we slightly modify our polyhedron,
increasing its dimension. Nevertheless, all the results presented thus far can be
easily extended to support this change.

Instead of working with a single query, we consider now a set of queries Q;
each bidders may place bids on many (possibly different) queries; Thus, we need
to add to the variables and constants presented in Section 2 a new subindex q
ranging over Q. For instance, we will have variables yk,q and xi,j,k,q whenever
bidder i bids on q; a priori prices μi,q may be part of the input. The basic
restrictions of Section 2 become

xi,j,k,q ≥ 0 for each q, i, j, k

n∑
i=1

xi,j,k,q ≤ yk,q for each q, j, k

n∑
k=1

yk,q = 1 for each q

n∑
j=1

xi,j,k,q ≤ yk,q for each q, i, k.

Each query q ∈ Q is expected to occur cq times during a certain time window;
each bidder i may set a maximum budget B

(q)
i for q and/or a maximum overall

budget Bi. Note that some of the budgets may be set to infinity by dropping
the associated restriction. Bidders that do not participate in a given query can
be modeled with a 0 price, as they should never be displayed for that query.

Naturally, the objective function must be modified accordingly; e.g., the rev-
enue maximization goal would be

∑
q

∑n
i=1
∑n

k=1
∑k

j=1 cqxi,j,k,qCTRi,j,k,qμi,q.
We state now the restrictions that in expectation preclude bidders from going

over their budgets: the expected payments of each bidder should not exceed her
budget during a time window.
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∑
q

n∑
k=1

k∑
j=1

cqxi,j,k,qCTRi,j,k,qμi,q ≤ Bi for each i

n∑
k=1

k∑
j=1

cqxi,j,k,qCTRi,j,k,qμi,q ≤ B
(q)
i for each i, q.

Note that in practice it would be possible to display an ad whose budget
has been exhausted. In such cases we may choose to replace this ad by any
other one, without significantly affecting the expected revenue. A possible way
of reducing the incidence of such situations is to use Bi − ε instead of Bi in
the LP constraints. We note that artificially retaining bidders with exhausted
budgets may result in some illegitimate price hikes for other bidders, depending
on the pricing rule. This effect however can be controlled if needed.

3.3 Contextual Effects and Other Restrictions

We consider now situations where the click probability of an ad is influenced by
the other ads displayed. These are called externalities or contextual effects, and
have been considered recently in [14,15]. The latter argues through experimental
evidence that contextual effects do exist in sponsored search, and quantifies
them.

One possible way of modeling contextual effects in our framework is by group-
ing together ads that have negative effects on each other’s clickability and intro-
ducing a new kind of restriction, that aims at avoiding the joint publication of
ads in the same group. In order to establish incompatibilities among groups of
similar ads, ads are partitioned into incompatibility groups (each ad in exactly
one group). The restriction states that at most one ad of each group can be dis-
played at the same time. This approach may be useful, for instance, when a query
has different meanings – so users that search for that query may have different
intentions– and the auctioneer tries to cover all the range without increasing the
total number of ads shown.

In this extension, apart from adding restrictions to SAP, we also need to refine
the drawing algorithm given in Section 2 that produces the allocation. This can
be done with minor adjustments. Let m be the number of incompatibility groups.
Since we will assign m groups instead of n bidders to the slots, we set n to be m.
We need to ensure that each group receives, for each particular k, an aggregated
probability of exactly yk of being assigned some position. Letting G be the set
of groups, this is captured by

∑
i∈g

m∑
j=1

xi,j,k = yk for each g ∈ G, k.

We can maximize different objective functions over this new polyhedron, look-
ing for good “group allocations”. Concrete ad allocations will be produced by
a modified version of the drawing algorithm. For each k such that yk > 0, we
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construct an m × m matrix Z(k) that is used to choose group permutations in-
stead of bidder permutations, and then for each selected group g, choose a bidder
from g and assign it to the slot. Z(k) is defined by z

(k)
l,j =

∑
i∈Gl

xi,j,k/yk for
1 ≤ l, j ≤ m. Note that again Z(k) is a doubly stochastic matrix, so we apply
the Birkhoff-von Neumann theorem as in Section 2. The new drawing algorithm
will then be:

Choose k with probability yk.
Construct Z(k).
Find permutation matrices Pl and positive numbers λl

such that
∑

l λl = 1 and Z(k) =
∑

l λlPl.
Choose a permutation matrix Pl with probability λl.
For j = 1 to k

Let g be such that P [g, j] = 1.
Choose ad i of group g with probability xi,j,k∑

i∈g xi,j,k
.

Display ad i in position j.

It follows immediately that the probability of ad i of group l being placed on
position j when k ads are displayed is ykz

(k)
l,j xi,j,k/

∑
i∈Gl

xi,j,k = xi,j,k.
Grouping can also be used in other ways, such as setting the minimum num-

ber of ads to display from each group. However, this would require a deeper
modification in the drawing algorithm.

4 Pricing Rules

Auctions are constituted by two main components: the allocation rule and the
pricing rule. So far we have focused on obtaining optimal allocations (according
to some criteria) that satisfy a number of restrictions. In this section, we focus
on the pricing rules that can be combined with those allocation rules.

We divide our analysis in two directions: first we analyze pricing rules that
are best suited for our optimization framework, and then we consider incentive-
compatible (truthful) pricing rules. In the first case we do not make a
game-theoretic analysis, we assume that bids do not change in response to the
allocation rule. With truthful pricings, however, we can assume that the bids are
in equilibrium since by definition every bidder maximizes her expected revenue
by bidding her true value.

A priori pricing rules and EGSP. When the prices associated to the ads may
depend on the ranking, but not on the allocation, these prices may be part of the
input of M, so as to find the best allocation with respect to some objective that
depends on them3. We call these pricing rules a priori. Several well-known and
3 In the general case, we do allow a light dependence on the allocation: we only asso-

ciate a non-zero price when an item is allocated; nevertheless, in the pay-per-click
model this distinction disappears since an ad that is not displayed cannot be clicked
and therefore will not be charged.
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widespread pricing rules are indeed a priori; most notorious examples of this class
are First-Price and the Generalized Second Price (GSP) [3,10]. While the former
may be applied in our framework, it has been dropped from sponsored-search
settings due to its instability. On the other hand, GSP has become the most
widely used rule in that framework, enjoying good properties such as envy-free
equilibria (see [10] for details).

We introduce a natural extension of GSP for stochastic allocations, the Ex-
tended Generalized Second Price (EGSP) rule. Like in GSP, EGSP assumes that
the auctioneer ranks bidders according to some function on their bids while each
winning bidder pays (for a click) the minimum price needed to retain her po-
sition in the ranking. However, with EGSP prices are not only associated to
the top-ranked bidders, but to all the bidders with a positive probability of be-
ing allocated a slot. Since prices are computed in the same way as in GSP, the
prices associated to the top-ranked bidders coincide under both pricing rules.
Note that, as we are dealing with stochastic allocations, the ranking order is
not necessarily the order in which ads are displayed each time; nevertheless, the
resulting stochastic allocation rule will tend to allocate more/better slots to ads
with a higher ranking.

Another extension of GSP to an allocation rule different than the simple sort-
by-revenue rule has been proposed in [2]: given allocations that are subsets of
the ads ordered by ranking, the price associated to each bidder is the minimum
price needed to beat the ad allocated to the following slot (the price associated
to the last ad is the reserve price). It is easy to see that, given any set of bids,
EGSP charges strictly more than the pricing rule in [2].

Incentive Compatibility. Although the variations over the GSP rule currently
in use in sponsored search auctions are not truthful, there are many reasons that
make truthfulness a desirable property, which can be summarized in the fact
that advertisers can define their optimal bids by themselves, without the need
of invoking consultants or gurus, driving more resources to the sponsored search
business, for the benefit of advertisers, auctioneer and users.

A natural way to incorporate truthfulness into our framework consists of
the classical VCG approach [28,9], that is, the incentive-compatible pricing rule
corresponding to the allocation obtained through M that is individually rational
and makes no positive transfers [24]. For instance, when bidder i’s bid is bi

(interpreted as values vi, since in a truthful auction we can assume that each
bidder bids her own private valuation), and the objective funcion is the social
welfare

∑n
i=1
∑n

k=1
∑k

j=1 xi,j,kCTRi,j,kbi, we associate to each bidder a price
equal to the difference between social welfare value obtained with and without
her participation. In this way, in order to compute the price for the n bidders
we run the mathematical program n + 1 times. In practice the computation can
be done “on demand”, that is, only when an ad indeed receives a click.

Another approach to truthfulness within our framework is the following: given
a distribution Fi on the valuation of each bidder i (known or inferred through
historical data), we apply Myerson’s incentive-compatible mechanism [22,16],
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which maximizes the (expected) revenue of the auctioneer4. For an explanation
on how to apply this mechanism, see for example [24].

Further Research. We are currently studying “a priori” pricing methods and
their consequences, in particular the existence of equilibra for stochastic auctions
under EGSP.

Another interesting research subject are auctions in which the expected
position-CTR of the i-th ranked bidder is set to a value pi. Such auctions, though
stochastic in nature, behave like deterministic ones, so paired with EGSP will
have interesting properties, such as the existence of envy-free equilibria [10].

Acknowledgments. We thank Ofer Mendelevitch and John Tomlin for pro-
viding us with data for the simulations.
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A Note on Estimating Hybrid Frequency
Moment of Data Streams

Sumit Ganguly

Indian Institute of Technology, Kanpur

Abstract. We consider the problem of estimating the hybrid frequency
moment of matrix data that is updated point-wise in arbitrary order
by a data stream. In this model, data is viewed to be organized in the
form of a matrix (Ai,j)1≤i,j,≤n. The entries Ai,j are updated coordinate-
wise (both increments and decrements are allowed), in arbitrary order
and possibly multiple times. The hybrid frequency moment Fp,q(A) is
defined as

∑n
j=1

(∑n
i=1|Ai,j |p

)q and is a generalization of the frequency
moment of one-dimensional data streams.

Prior work [10] presented a nearly space-optimal algorithm for esti-
mating Fp,q for p ∈ [0, 2] and q ∈ [0, 1]. Here, we complement that work
by presenting a nearly space-optimal algorithm for estimating Fp,q for
p ∈ [0, 1] and q ∈ [0, 2].

1 Introduction

The data stream model of computation is an abstraction for a variety of moni-
toring applications. A problem of basic utility and relevance in this setting is the
following hybrid frequency moments estimation problem. Consider a networking
application where a stream of packets with schema (src-addr, dest-addr,nbytes,
time) arrives at a router. The problem is to warn against the following scenario
arising out of a possible distributed denial of service attack, where, a few des-
tination addresses receive messages from an unusually large number of distinct
source addresses. This can be quantified as follows: let A be an n × n matrix
where Ai,j is the count of the number of messages from node i to node j. Then
(Ai,j)0 is 1 if i sends a message to j and is 0 otherwise. Thus,

∑n
i=1 A0

i,j counts
the number of distinct sources that send at least one message to j. Define the
hybrid moment F0,2(A) =

∑n
j=1(

∑n
i=1 A0

i,j)
2. In an attack scenario, F0,2(A) be-

comes large compared to its average value. Thus, it is advantageous to track the
values of F0,2(A). However, since n can be very large (e.g., in the millions), it is
not feasible to store and update the traffic matrix A at network line speeds. We
propose instead to use the data streaming approach to this problem, namely, to
design a sub-linear space data structure that, (a) processes updates to the en-
tries of A, and, (b) provides a randomized, approximate algorithm for estimating
F0,2(A).

Quantities such as F0,2(A) are known as the hybrid moment of a matrix A
[10]. They are more generally defined [16] as follows. Given an n × n integer
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matrix A with columns A1, A2, . . . , An, the hybrid frequency moment Fp,q(A) is
the qth moment of the n-dimensional vector [Fp(A1), Fp(A2), . . . , Fp(An)]. That
is,

Fp,q(A) =
n∑

j=1

(
n∑

i=1

|Ai,j |p
)q

=
n∑

j=1

(Fp(Aj))q .

Data Stream Model. We will be interested in algorithms in the data stream
model, that is, the input is abstracted as a potentially infinite sequence σ of
records of the form (position, i, j, Δ), where, i, j ∈ {1, 2, . . . , n} and Δ ∈ Z is the
change to the value of Ai,j . The position attribute is simply the sequence number
of the record. Each input record (position, i, j, Δ) changes Ai,j to Ai,j + Δ. In
other words, the value Ai,j is the sum of the changes made to the (i, j)th entry
since the inception of the stream:

Ai,j =
∑

(position ,i,j,Δ)∈σ

Δ, 1 ≤ i, j ≤ n .

In this paper, we consider the problems of estimating Fp,q and allow general
matrix streams, that is, matrix entries may be positive, zero or negative.

Prior work. Hybrid frequency moments Fp,q(A) are a generalization of the
frequency moment Fp(a) of an n-dimensional vector a, defined as Fp(a) =∑n

j=1|ai|p. The problem of estimating Fp(a) has been studied in the data stream
model where the input is a stream of updates to the components of a. This prob-
lem has been influential in the development of algorithms for data streams. As
terminology, we will say that a randomized algorithm computes an ε-approxima-
tion to a real valued quantity L, provided, it returns L̂ such that |L̂ − L| < εL,
with probability ≥ 3

4 .
Alon, Matias and Szegedy [1] present a seminal randomized sketch tech-

nique for ε-approximation of F2(a) in the data streaming model using space
O(ε−2 log F1(a)) bits. Using the techniques of [1], it is easily shown that deter-
ministically estimating Fp(a) for any real p ≥ 0 requires Ω(n) space [1]. Hence,
work in the area of sub-linear space estimation of moments has considered only
randomized algorithms. Estimation of F0(a) was first considered by Flajolet and
Martin in [9]; the work in [1] presents a modern version of this technique for esti-
mating F0(a) to within a constant multiplicative factor and using space O(log n).
Gibbons and Tirthapura [11] present an ε-approximation algorithm using space
O(ε−2 log F1(a)); this is further improved in [3]. The use of p-stable sketches
was proposed by Indyk [12] for estimating Fp(a), for 0 < p ≤ 2, using space
Õ(ε−2(log F1(a))). Indyk and Woodruff [13] present a near optimal space algo-
rithm for estimating Fp, for p > 2. Woodruff [20] presents an Ω(ε−2) space lower
bound for the problem of estimating Fp, for all p ≥ 0, implying that the sta-
ble sketches technique is space optimal up to logarithmic factors. A space lower
bound of Ω(n1−2/p) was shown for the problem Fp in a series of developments
[1,2,5]. Cormode and Muthukrishnan [8] present an algorithm for obtaining



204 S. Ganguly

an ε-approximation for F0,2(A) using space Õ(
√

n). In [10], a bi-linear stable
sketches technique is presented that estimates Fp,q(A), for p ∈ [0, 2] and q ∈ [0, 1]
in Õ(1) space.

Contributions. We present randomized algorithms for the problem of estimating
hybrid moments Fp,q(A) of a matrix A in the data stream model. We consider the
range p ∈ [0, 1] and q ∈ [0, 2]. We present a novel variation of the stable sketches
technique to obtain a Õ(1) space algorithm for estimating Fp,q in this range.
This gives the first poly-logarithmic space complexity algorithm for estimating
Fp,q in this interesting range, as motivated by the example in the introduction.

2 Preliminaries and Previous Work

In this section, we review salient properties of stable distributions and briefly
review Indyk’s [12] and Li’s [14] techniques for estimating moments of one-
dimensional vectors in the data streaming model. We use the notation y ∼ D to
denote that a given random variable y that follows a distribution D.

2.1 Stable Sketches

Indyk [12] proposed the use of stable sketches for estimating Fq(a), q ∈ [0, 2],
in the streaming model. A stable sketch is a linear combination X =

∑n
i=1 aisi,

where each si is drawn at random from the stable distribution S(q, 1), where, the
first parameter in S(q, 1) is the stability parameter and the second parameter
is the scale factor (set to 1). The random variables si’s are independent of each
other. By property of stable distributions,

X ∼ S

(
q, (Fq(a))1/q

)
.

The problem now reduces to the estimation of the scale parameter of the
distribution of X . Indyk proposed keeping t = O( 1

ε2 ) independent stable sketches
X1, X2, . . . , Xt and returning

F̂q(a) = CI · mediant
r=1|Xr|q.

Li [14] uses the geometric means estimator

F̂q(a) = CL

t∏
r=1

|Xr|q/t

and shows that this is asymptotically unbiased for a proper choice of the constant
CL. Both estimators satisfy

|F̂q(a) − Fq(a)| ≤ εF̂q(a), with probability
7
8
.
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We will jointly refer to Indyk’s median estimator or Li’s geometric means estima-
tor for Fp(a) as StableEstq({X1, X2, . . . , Xt}), where, q ∈ (0, 2] is the stability
index.

Estimation of hybrid moments generalizes the problem of estimating the reg-
ular moment Fp(a) for an n-dimensional vector a. In particular, for any p,
Fp,1(A) = Fp(a) where a is the n2-dimensional vector obtained by stringing
out the matrix A row-wise (or column-wise). Therefore, Fp,1(A) can be esti-
mated using standard techniques for estimating Fp of one-dimensional vectors,
that is, using space Õ(ε−2) sketches.

2.2 Bi-linear Stable Sketches

We now review the bilinear stable sketches technique [10] for estimating Fp,q in
the range p ∈ [0, 2] and q ∈ [0, 1] using bilinear stable sketches.

We first consider p ∈ (0, 2] and q ∈ (0, 1]. Consider two families of fully
independent stable variables {xi,j : 1 ≤ i ≤ j ≤ n} and {ξj : 1 ≤ j ≤ n}, where,
xi,j ∼ S(p, 1) and ξj ∼ S(q, 1). A p, q bi-linear stable sketch is defined as

X =
n∑

j=1

n∑
i=1

Ai,jxi,jξ
1/p
j .

Corresponding to each stream update (pos, i, j, Δ), the bi-linear sketch is up-
dated as follows: X := X + Δ · xi,j · ξ1/p

j .
A collection of s1s2 bi-linear sketches {Xu,v | 1 ≤ u ≤ s1, 1 ≤ v ≤ s2} is kept

such that for each distinct value of v, the family of sketches {Xu,v}u=1,2,...,s1

uses the independent family of stable variables {xi,j(u, v)} but uses the same
family of stable variables {ξi(v)}. That is,

X(u, v) =
n∑

i=1

n∑
j=1

Ai,jxi,j(u, v)(ξi(v))1/p, u = 1, . . . , s1, v = 1, . . . , s2. (1)

Note that this construction is possible, since, for 0 < q ≤ 1, there exist stable dis-
tributions S(q, 1) with non-negative support. Thus, ξj ∼ S(q, 1) is non-negative
and ξ

1/p
j is non-negative. The estimate F̂p,q is obtained using the following steps.

1. Ŷ (v) = StableEst(p)({X(u, v)}u=1,...,s1), v = 1, 2, . . . s2 .

2. F̂p,q = StableEst(q)({Ŷ (v) | v = 1, . . . , s2})

The correctness of the estimator is shown in [10] and is summarized below.

Lemma 1 ([10]). For each 0 < p ≤ 2 and 0 < q < 1, the estimator
BilinStable(p, q, s1, s2, {X(u, v)}u∈[1,s1],v∈[1,s2]) with parameters s2 = Θ( 1

q2ε2 )

and s1 = Θ( 1
p2ε2 log 1

εq ) satisfies |F̂p,q − Fp,q| ≤ εFp,q with probability 3
4 . �
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Reducing random bits. We can now use a technique of Indyk [12] to reduce the
number of random bits from n2 bits to O(S log(nS)), where, S is the space used
by the algorithm assuming access to fully independent random bits.

The following lemma summarizes the continuity property of Fp,q as a function
of p and q. This allows the estimation of quantities at the boundary points of
p = 0 and q = 0, 1 by estimating for p′ = ε/(5 logF1,1) and q′ = ε/5 and 1− ε/5
respectively.

Lemma 2 ([10]). For every ε < 1/8, p ≥ 0 and 0 ≤ q ≤ 2

Fp′,q′ ≥ Fp,q ≥ (1 − 5ε)Fp′,q′

where, p′ = max(p, t), q′ = max(q, ε) and t ≤ ε
log F1,1

. �


3 Estimating Fp,q Using the Envelope Technique

In this section, we present an algorithm for estimating Fp,q in the region 0 <
p < 1 and 0 < q ≤ 2. By the continuity properties of Fp,q discussed in Lemma 2,
this will imply an ε-close estimator for the boundary points, namely, p = 0, 1
and q = 0.

3.1 Algorithm

Assume that 0 < p < 1 and 0 < q < 2. Let 1 ≤ u ≤ s1 and 1 ≤ v ≤ s2, where,
s1 and s2 are specified later. We keep 2s1s2 sketches as follows. Let

xi,j(u, v) ∼ S(p, 1), i, j ∈ [n], u ∈ [s1], v ∈ [s2]
yj(v) ∼ S(q, 1), j ∈ [n], v ∈ [s2].

The random variables are assumed independent (later we will use Indyk’s
technique [12] for reducing the number of random bits). For each v ∈ [s2], we
construct two families of sketches {Xu,v,+}1≤u≤s1 and {Xu,v,−}1≤u≤s1 as follows.

Xu,v,+ =
∑

j:yj(v)≥0

Ai,jxi,j(u, v)|yj(v)|1/p, u ∈ [s1], v ∈ [s2]

Xu,v,− =
∑

j:yj(v)<0

Ai,jxi,j(u, v)|yj(v)|1/p, u ∈ [s1], v ∈ [s2].

Next, we derive two families of sketches.

Yv,+ = StableEsts2
u=1(p, {Xu,v,+}), v = 1, 2, . . . , s2, and

Yv,− = StableEsts2
u=1(p, {Xu,v,−}), v = 1, 2, . . . , s2.

Finally, the estimate F̂p,q(A) is obtained as

F̂p,q(A) =

(
Quantiles2

v=1(Q, {∣∣Yv,+ − Yv,−
∣∣}v=1,...,s2)

Quantile(Q, |S(p, 1)|)

)q
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where, (1) Quantile(Q, {x1, . . . , xr}) returns the element among x1, . . . , xr that
forms its Qth quantile, and, (2) Quantile(Q, |S(p, 1)|) is the Qth quantile of
the absolute value of a variable ∼ S(p, 1). Although any value of quantile Q
may be chosen as observed by Ping Li [15], for simplicity, Q is chosen so that
G(Q) ∈ [0.2, 1.0], where, G is the probability function for the absolute value of
a q-stable distributed variable.

3.2 Analysis

By construction, we have for each fixed v,

Xu,v,+ ∼ S

(
p,

( n∑
j:yj(v)≥0

Fp(Aj)|yj(v)|
)1/p)

and

Xu,v,− ∼ S

(
p,

( n∑
j:yj(v)<0

Fp(Aj)|yj(v)|
)1/p)

.

If s1 = O(ε′−2p−2q2), then, by properties of StableEst, for each v ∈ [s2], we
have,

Yv,+ = α+
v

∑
j:yj(v)≥0

Fp(Aj)|yj(v)|, and Yv,− = α−
v

∑
j:yj(v)<0

Fp(Aj)|yj(v)|.

where, 1 − ε′/(4q) ≤ α+
v , α−

v ≤ 1 + ε′/(4q) with high probability. Therefore,

Yv = Yv,+ − Yv,− =
n∑

j=1

F ′
p,v(Aj)yj(v) (2)

where F ′
p,v(Aj) is defined to be a small displacement from Fp(Aj) as follows.

F ′
p,v(Aj) =

{
(Fp(Aj)α+

v if yj(v) ≥ 0
Fp(Aj)α−

v if yj(v) < 0.

Since 1 − ε′/(4q) ≤ α+
v , α−

v ≤ 1 + ε′/(4q), then,

|F ′
p,v(Aj) − Fp(Aj)| ≤ ε′

2q
Fp(Aj), for each v = 1, 2, . . . , s2.

For simplicity of notation define

F ′
p,q,v(A) def=

n∑
j=1

(F ′
p,v(Aj))q

From (2), we obtain Yv =
∑n

i=1 F ′
p,v(Aj) ∼ S

(
q,
(
F ′

p,q,v(A)
)1/q
)

.
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Let G = Gq denote the cumulative probability function of the random variable
|z| where z ∼ S(q, 1). As noted in [12], a straightforward application of Chernoff’s
bound shows that if z1, . . . , zs are independent, zi ∼ S(q, 1), s = O(ε′−2 log(1/δ))
and

Z = medians
v=1|Zv|q/medianq(|S(q, 1)|),

then, Pr {G(Z) ∈ Fq(a)[1/2 − ε′, 1/2 + ε′]} ≥ 1 − δ . We will use a slight gener-
alization of this property here.

For 0 < a < b < 1, let Kq(a, b) be the Lipschitz constant for the probability
function Gq in the neighborhood x ∈ G−1[a, b].

Lemma 3. Suppose s2 = Ω
(

(Kq(0.1,0.8))2q2

ε2

)
and 1− ε′

8q ≤ α+
v , α−

v ≤ 1+ ε′
8q , for

each v = 1, 2, . . . , s2. Then,

Pr {Quantiles2
v=1(Q, {|Yv|q}) ∈ Fp,q(A)[1 − ε, 1 + ε]} ≥ 31

32
.

where, Q is chosen so that Q ∈ [0.25, 0.65].

Proof. Let R be the interval [(1−ε′)Fp,q(A), (1+ε′)Fp,q(A)]. Since, 1−ε′/(8q) ≤
α+

v , α−
v ≤ 1 + ε′/(8q), we have, |F ′

p,v(Aj) − Fp(Aj)| ≤ ε′
(4q)Fp(Aj) . Therefore,

∣∣F ′
p,q,v(Aj) − Fp,q(A)

∣∣ ≤ ε′

2
Fp,q(A) (3)

Consider Yv ∼ S
(
q, (F ′

p,q,v(Aj))1/q
)
. Let G denote the cumulative probability

function of S(q, 1). Define Zv = Yv

(F ′
p,q,v)1/q . Then, Zv ∼ S(q, 1) and

Pr

{ |Yv|q
F ′

p,q,v

∈ [(G−1(Q − ε′))q, (G−1(Q + ε′))q]
}

= 2ε′. (4)

It would be sufficient to require that [(G−1(Q− ε′))q, (G−1(Q+ ε′))q] has length
at most ε/4. That is

(G−1(Q + ε′))q − (G−1(Q − ε′))q ≤ ε/4.

This is implied by (using Taylor series expansion for G−1(Q ± ε) up to the first
differential term)

ε′ =
ε

8qG′(ξ)
≤ ε

8qKq
(5)

where, ξ is the value that minimizes G′(x) in the neighborhood [Q − ε′, Q + ε′].
With this condition, (4) becomes

Pr

{∣∣∣∣ |Y q
v |

G−1(Q)
− Fp,q(A)

∣∣∣∣ ≤ Fp,q(A)(2ε′ + ε/2)
}

≥ 2ε′ (6)
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A straightforward application of Chernoff’s bound shows that if s2 = Ω(ε′−2),
then,

Pr

{∣∣∣∣Quantiles2
v=1

(
Q,

Yv
q

G−1(Q)

)
− Fp,q(A)

∣∣∣∣ ≤ Fp,q(A)(2ε′ + ε/2)
}

≥ 31/32.

�

We therefore have the following lemma. The notation Kq(Q − ε, Q + ε) denotes
the Lipschitz constant for the function G−1 in the ε-neighborhood of Q.

Lemma 4. For each value of 0 < p < 1 and 0 < q < 2, there ex-
ists an algorithm that returns F̂p,q satisfying |F̂p,q − Fp,q| ≥ 15/16 using

O
(

K2
q (Q−ε,Q+ε)K2

p(Q+ε,Q+ε)
ε4p2q2 log 1

ε′p′

)
bi-linear stable sketches.

Proof. We can obtain 1 − ε′
8q ≤ α+

v , α−
v ≤ 1 + ε′

8q , for each v = 1, 2, . . . , s2,
with total error probability of 1/32, or, individual error probability of 1/(32s2)
provided,

s1 = Θ

(
(Kp(Q − ε, Q + ε))2

ε′2p2 log
1
s2

)
.

The number of sketches required is s1 · s2. By Lemma 3, if s2 =
Θ(Kq(Q−ε,Q+ε)2q2

ε2 ), then, with the above choice of s1, the premises of Lemma 3
are satisfied, with probability 31/32. By union bound, the probability of correct
answer is 1 − 1/32 − 1/32 = 15/16. This proves the lemma. �

We can now use a previously suggested technique of Indyk [12] to conclude
that (1) each sketch can be represented using O(log(nF1,1(A))) bits, and, (2)
the random bits can be reduced to O(S log(n2S) using Nisan’s pseudo-random
generator that fools Turing machines using space S bits. We thus obtain the
following theorem.

Theorem 1. For each value of 0 ≤ p ≤ 1 and 0 ≤ q ≤ 2, quantile value
0 < Q < 1, and 0 < ε < 1/5, there exists an algorithm that returns F̂p,q

satisfying |F̂p,q − Fp,q| ≥ 15/16 using O(S(log(nF1,1(A) log(nS log(nF1,,1(A)))
bits, where,

S = O
(

K2
q (Q−ε,Q+ε)K2

p(Q−ε,Q+ε)q2

ε4p2 log 1
εp

)
bilinear stable sketches. �


Lower Bounds. The problem of estimating Fp,q by reducing the problem of esti-
mating the pqth one-dimensional moment Fp·q to Fp,q as follows [19].1 Consider
an n-dimensional vector a and view it as the first row of the n × n matrix A,
the rest of whose entries are zeros. Then, by definition, Fp,q(A) = Fp·q(a). For
pq ∈ [0, 2], Fpq has a lower bound of Ω(1/ε2) [20]. This implies that the bilinear
stable sketches technique presented for the range p ∈ [0, 1] and q ∈ [0, 2] is close
to optimal, up to polynomial factors in 1/ε.

1 The author thanks David Woodruff for pointing this out.
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4 Conclusion

We present a novel technique for estimating the hybrid frequency moment
Fp,q(A) of an n × n dimensional matrix A whose entries are updated by a data
stream. Our technique requires space Õ(q2/(p2ε4) and is nearly space-optimal.
The problem of obtaining matching upper or lower bounds for the problem is
left open.
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Abstract. We describe a two-level push-relabel algorithm for the maxi-
mum flow problem and compare it to the competing codes. The algorithm
generalizes a practical algorithm for bipartite flows. Experiments show
that the algorithm performs well on several problem families.

1 Introduction

The maximum flow problem is classical combinatorial optimization problem with
applications in many areas of science and engineering. For this reason, the prob-
lem has been studied both from theoretical and practical viewpoints for over
half a century. The problem is to find a maximum flow from the source to the
sink (a minimum cut between the source and the sink) given a network with arc
capacities, the source, and the sink. We denote the number of vertices and arcs
in the input network by n and m, respectively. Some time bounds also depend
on the maximum arc capacity U . When U appears in the bound, we assume that
the capacities are integral.

A theoretical line of research led to development of augmenting path, network
simplex, blocking flow, and push-relabel methods and to a sequence of improved
bounds; see [17] for a survey. Under the assumption log U = O(log n) [12], the
bound ofO(min{n2/3, m1/2}m log(n2/m) log U) is achievedby the binaryblocking
flow algorithm [15]. The best strongly polynomial bound of O(nm logm/(n log n) n)
is achieved by the algorithm of [21].

From the practical point of view, good implementations of Dinitz blocking
flow method [6,19] proved superior to the network simplex and the augmenting
path algorithms. The blocking flow method remained the method of choice until
the development of the push-relabel method [16]. For a long time, the HI-PR
implementation [7] of the highest-level push-relabel method served as a bench-
mark for maximum flow algorithms. This implementation uses both the global
update (see e.g. [13]) and gap [9] heuristics.

Mazzoni et al. [22] introduced a number of variations of the push-relabel
method, including the partial augment-relabel method, which on the basis of
limited experiments they claimed to be computationally superior. A variant of
the method has been further studied in [24]. Recently, the author [18] developed
an efficient implementation, PAR, of the algorithm and conducted more extensive
experiments confirming that it outperforms HI-PR.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 212–225, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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The partial augment-relabel algorithm moves flow along paths of k arcs. In
the efficient implementations the best value of k is less then ten but greater
than two. However, the idea of looking ahead or moving flow two steps has been
used for several problems closely related to the maximum flow problem. In the
context of the minimum-cost flow, [13] suggests an algorithm that pushes flow
into a vertex that can push flow further without being relabeled. In the context
of the assignment problem, an operation that moves a flow excess two levels at a
time appears in [14]. For bipartite graphs, maximum flow algorithms that move
flow excess two steps at a time and leave no excess on one side of the graph
achieve better theoretical bounds [1] and practical performance [23].

The main contribution of this paper is a maximum flow algorithm that pushes
flow on two adjacent levels of the network. The resulting algorithm is different
from the partial augment-relabel algorithm with k = 2 and can be viewed as
a generalization of the bipartite graph algorithm of [1] to general graphs. We
present an efficient implementation, P2R, of this algorithm. Another contribu-
tion is an experimental evaluation of the algorithms, which compares P2R with
several other codes, including a version of PAR that is an improved implementa-
tion of the algorithm used in [18]. The experiments show that P2R is comparable
to PAR.

Our work makes progress towards unifying previous work on practical max-
imum flow algorithms and getting a better understanding of what works best
in practice. The push-relabel method leads to practical algorithms for related
problems, such as minimum-cost flows [13], assignment problem [14], bipartite
matching [8] and parametric flows [2]. It is possible that some of the techniques
discussed in this paper will lead to improved algorithms for some of the related
problems as well.

2 Definitions and Notation

The input to the maximum flow problem is (G, s, t, u), where G = (V, A) is
a directed graph, s, t ∈ V, s �= t are the source and the sink, respectively,
u : A ⇒ [1, . . . , U ] is the capacity function, and U is the maximum capacity.

Let aR denote the reverse of an arc a, let AR be the set of all reverse arcs,
and let A′ = A ∪ AR. A function g on A′ is anti-symmetric if g(a) = −g(aR).
Extend u to be an anti-symmetric function on A′, i.e., u(aR) = −u(a).

A flow f is an anti-symmetric function on A′ that satisfies capacity constraints
on all arcs and conservation constraints at all vertices except s and t. The capac-
ity constraint for a ∈ A is 0 ≤ f(a) ≤ u(a) and for a ∈ AR it is −u(aR) ≤ f(a) ≤
0. The conservation constraint for v is

∑
(u,v)∈A f(u, v) =

∑
(v,w)∈A f(v, w). The

flow value is the total flow into the sink: |f | =
∑

(v,t)∈A f(v, t).
A cut is a partitioning of vertices S∪T = V with s ∈ S, t ∈ T . The capacity of

a cut is defined by u(S, T ) =
∑

v∈S,w∈T,(v,w)∈A u(S, T ). The max-flow, min-cut
theorem [11] says that the maximum flow value is equal to the minimum cut
capacity.
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A preflow is a relaxation of a flow that satisfies capacity constraints and a
relaxed version of conservation constraints

∑
(u,v)∈A f(u, v) ≥∑(v,w)∈A f(v, w).

We define the flow excess of v by ef (v) =
∑

(u,v)∈A f(u, v) −∑(v,w)∈A f(v, w).
For a preflow f , ef (v) ≥ 0 for all v ∈ V \ {s, t}.

The residual capacity of an arc a ∈ A′ is defined by uf (a) = u(a)− f(a). Note
that if f satisfies capacity constraints, then uf is non-negative. The residual
graph Gf = (V, Af ) is the graph induced by the arcs in A′ with strictly positive
residual capacity.

An augmenting path is an s–t path in Gf .
A distance labeling is an integral function d on V that satisfies d(t) = 0. Given

a preflow f , we say that d is valid if for all (v, w) ∈ Ef we have d(v) ≤ d(w)+ 1.
Unless mentioned otherwise, we assume that a distance labeling is valid with
respect to the current preflow in the graph.

We say that an arc (v, w) is admissible if (v, w) ∈ Af and d(w) < d(v), and
denote the set of admissible arcs by Ad.

3 The Push-Relabel Method

The push-relabel method maintains a preflow and a distance labeling, which are
modified using two basic operations:
Push(v, w) applies if ef (v) > 0 and (v, w) ∈ Ad. It chooses δ : 0 < δ ≤
min{uf(v, w), ef (v)}, increases f(v, w) and ef (w) by δ and decreases ef(v) and
f((v, w)R) by δ. A push is saturating if after the push uf(v, w) = 0 and non-
saturating otherwise.
Relabel(v) applies if d(v) < n and v has no outgoing admissible arcs. A relabel
operation increases d(v) to the maximum value allowed: 1+min(v,w)∈Af

d(w) or
to n if v has no outgoing residual arcs.

The method can start with any feasible preflow and distance labeling. Unless
mentioned otherwise, we assume the following simple initialization: f is zero on
all arcs except for arcs out of s, for which the flow is equal to the capacity;
d(s) = n, d(t) = 0, d(v) = 1 for all v �= s, t. For a particular application,
one may be able to improve algorithm performance using an application-specific
initialization. After initialization, the method applies push and relabel operations
until no operation is applicable.

When no operation applies, the set of all vertices v such that t is reachable
from v in Gf defines a minimum cut, and the excess at the sink is equal to the
maximum flow value. For applications that need only the cut, the algorithm can
terminate at this point. For applications that need the maximum flow, we run
the second stage of the algorithm.

One way to implement the second stage is to first reduce flow around flow
cycles to make the flow acyclic, and then to return flow excesses to the source
by reducing arc flows in the reverse topological order with respect to this acyclic
graph. See [25]. Both in theory and in practice, the first stage of the algorithm
dominates the running time.
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The current arc data structure is important for algorithm efficiency. Each
vertex maintains a current arc a(v). Initially, and after each relabeling of v,
the arc is the first arc on v′s arc list. When we examine a(v), we check if it is
admissible. If not, we advance a(v) to the next arc on the list. The definition of
basic operations implies that only relabeling v can create new admissible arcs
out of v. Thus as a(v) advances, arcs behind it on the list are not admissible.
When the arc advances past the end of the list, v has no outgoing admissible
arcs and therefore can be relabeled. Thus the current arc data structure allows
us to charge to the next relabel operation the searches for admissible arcs to
apply push operations to.

3.1 HI-PR Implementation

Next we review the HI-PR implementation [7] of the push-relabel algorithm. It
uses highest-label selection rule, and global update and gap heuristics. We say
that a vertex v �= s, t is active if d(v) < n and ef > 0.

The method uses a layers of buckets data structure. Layers correspond to
distance labels. Each layer i contains two buckets, active and inactive. A vertex
v with d(v) = i is in one of these buckets: in the former if ef (v) > 0 and in
the latter otherwise. Active buckets are maintained as a singly linked list and
support insert and extract-first operations. Inactive buckets are maintained as
doubly linked lists and support insert and delete operations. The layer data
structure is an array of records, each containing two pointers – to the active and
the inactive buckets of the layer. A pointer is null if the corresponding bucket
is empty. We refer to the active and inactive buckets of layer i by αi and βi,
respectively.

To implement the highest-label selection, we maintain the index μ of the
highest layer with non-empty active bucket. The index increases if an active
vertex is inserted into a layer higher than the current value of μ, which can
happen during a relabel operation.

At each step of the algorithm, we examine αμ. If it is empty, we decrease μ
or terminate if μ = 0. Otherwise, let v be the first active vertex of αμ. We look
for an admissible arc out of v. If such an arc (v, w) is found, we push flow along
this arc. In addition to changing f , the push can have two side-effects. First,
ef (w) may change from zero to a positive value, making w active. We delete w
from βd(w) and insert it into αd(w). Second, ef (v) can decrease to zero, making
it inactive. We extract v from the head of αd(v) and insert it into βd(v). If no
admissible arc out of v exists, we relabel v. This increases d(v). We extract v
from the head of αd′(v), where d′(v) is the old distance label of v, and insert it
into αd(v). In this case we also increase μ to d(v). Then we proceed to the next
step.

The gap heuristic [10] is based on the following observation. Suppose for 0 <
i < n, no vertex has a distance label of i but some vertices w have distance
labels j : i < j < n. The validity of d implies that such w’s cannot reach t in Gf

and can therefore be deleted from the graph until the end of the first phase of
the algorithm.
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Layers facilitate the implementation of the gap heuristic. We maintain the
invariant that the sequence of non-empty layers (which must start with layer
zero containing t) has no gaps. During relabeling, we check if a gap is created,
i.e., if increasing distance label of v from its current value d(v) makes both
buckets in layer d(v) empty. If this is the case, we delete v and all vertices at
the higher layers from the graph, restoring the invariant, and set μ = d(v) − 1.
Note that deleting a vertex takes constant time, and the total cost of the gap
heuristic can be amortized over the relabel operations.

Push and relabel operations are local. On some problem classes, the algo-
rithm substantially benefits from the global relabeling operation. This operation
performs backwards breadth-first search from the sink in Gf , computing exact
distances to the sink and placing vertices into appropriate layer buckets. Vertices
that cannot reach the sink are deleted from the graph until the end of the first
phase. Global update places the remaining vertices in the appropriate buckets
and resets their current arcs to the corresponding first arcs. HI-PR performs
global updates after O(m) work has been done by the algorithm; this allows
amortization of global updates.

The following improvements to the implementation of global relabeling have
been proposed in [18]: (i) incremental restart, (ii) early termination, and (iii)
adaptive amortization. Suppose flows on arcs at distance D or less have not
change. The incremental restart takes advantage of this fact: We can start the
update from layer D as lower layers are already in breadth-first order. This
change can be implemented very efficiently as the only additional information we
need is the value of D, which starts at n after each global update, and is updated
to min(d(w), D) each time we push flow to a vertex w. The early termination
heuristic stops breadth-first search when all vertices active immediately before
the global update have been placed in their respective layers by the search.

With incremental restart and early termination, global updates sometimes
cost substantially less than the time to do breadth-first search of the whole
graph, and an amortization strategy can be used to trigger a global update. Our
new implementation of PAR uses a threshold that is different from that used
in [18]. Every time we do a global update, we set the threshold T to T = S + C
where S is the number of vertices scanned during the global update and C is
a constant that represents the cost of calling the global update routine. The
next global update is performed when WF > T , where W is the number of
vertex scans since the last global update and F is the global update frequency
parameter. In our experiments we use C = 500 and F = 0.2.

Note that buckets have constant but non-trivial overhead. For instances where
heuristics do not help, the buckets slow the code down by a constant factor. When
the heuristics help, however, the improvement can be asymptotic.

3.2 PAR Implementation

The partial augment-relabel (PAR) algorithm is a push-relabel algorithm that
maintains a preflow and a distance labeling. The algorithm has a parameter k.
At each step, the algorithm picks an active vertex v and attempts to find an
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admissible path of k vertices starting at v. If successful, the algorithm executes
k push operations along the path, pushing as much flow as possible. Otherwise,
the algorithm relabels v.

PAR looks for augmenting paths in the depth-first manner. It maintains a
current vertex x (initially v) with an admissible path from v to x. To extend
the path, the algorithm uses the current arc data structure to find an admissible
arc (x, y). If such an arc exists, the algorithm extends the path and makes y the
current vertex. Otherwise the algorithm shrinks the path and relabels x. The
search terminates if x = t, or the length of the path reaches k, or v is the current
vertex and v has no outgoing admissible arcs.

As in the push-relabel method, we have the freedom to choose the next active
vertex to process. Our PAR implementation uses layers and highest-level selec-
tion. The gap heuristic is identical to that used in HI-PR. After experimenting
with different values of k we used k = 4 in all of our experiments. Results for
2 ≤ k ≤ 6 would have been similar.

Note that HI-PR relabels only active vertices currently being processed, and
as a side-effect we can maintain active vertices in a singly-linked list. PAR can
relabel other vertices as well, and we may have to move an active vertex in the
middle of a list into a higher-level list. Therefore PAR uses doubly-linked lists
for active as well as inactive vertices. List manipulation becomes slower, but the
overall effect is very minor. No additional space is required as the inactive list
is doubly-linked in both implementations and a vertex is in at most one list at
any time.

Our new implementation of PAR includes two optimizations. The first opti-
mization is to use regular queue-based breadth-first search (instead of the incre-
mental breadth-first search described in Section-3.1) for the first global update.
This is because the first update usually looks at the majority of the vertices, and
the queue-based implementation is faster. The second optimization is a more
careful implementation of the augment operation that, when flow is pushed into
and then out of a vertex, moves the vertex between active and inactive lists
only if the vertex status changed from the time before the first push to the time
after the second one. The effects of these optimizations are relatively minor, but
noticeable on easy problems, which includes some practical vision instances and
some of the DIMACS problems.

4 The P2R Algorithm

The two-level push-relabel algorithm (P2R) at each step picks a vertex u to
process and applies the two-level push operation to it. Although u can be any
active vertex, the implementation discussed in this paper uses the highest label
selection. It uses the same data structures and heuristics as PAR.

The two-level push operation works as follows. Using the current arc data
structure, we examine admissible arcs out of u. If (u, v) is such an arc, and v
is the sink, we push flow on (u, v). If v is not a sink, we make sure v has an
outgoing admissible arc, and relabel v if it does not.
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When we find an admissible arc (u, v) such that v has an outgoing admissible
arc, we consider two cases. If v is active, push the maximum possible amount
from u to v, and then push flow on admissible arcs out of v until either v is no
longer active or v has no outgoing admissible arcs. In the latter case, relabel v.

If v has no excess, we proceed in a way that avoids activating v, i.e., we do
not push to v more flow than v can push out along its admissible arcs. To keep
the same asymptotic complexity, we do it in such a way that the work can be
amortized over distance label increases of v. First, we set δ = min(uf (u, v), ef(u))
and set Δ = δ+ef(v). Then we compute the amount C that v can push along its
admissible arcs as follows. We start with C = 0 and examine arcs of v starting
from the current arc. Each time we see and admissible arc (v, w), we add uf(v, w)
to C. We stop either when we reach the end of the arc list of v or when C ≥ Δ.

In the former case, we push C − ef (v) units of flow on (u, v), push C units of
flow out of v, and relabel v. Note that the push on (u, v) may move less than δ
units of flow and therefore neither get rid of the excess at u nor saturate (u, v).
However, we can charge the work of this push to the relabeling of v.

In the latter case, we push δ units of flow on (u, v) and then push δ units of
flow out of v on admissible arcs starting from the current arc of v and advancing
the current arc to the last arc used for pushing flow. Note that while doing so,
we examine the same arcs as we did when computing C. Therefore the work
involved in computing C is amortized over the current arc advances.

P2R does something different from a generic push-relabel algorithm in two
places. First, a push from u to v may move less flow. Second, extra work is
involved in computing C. As has been mentioned above, non-standard work can
be amortized over other work done by the algorithm. Therefore generic push-
relabel bounds apply to P2R. We also believe that the O(n2√m) bound for the
highest-label push-relabel algorithm [5,26] can be matched but omit details due
to the lack of space.

Note that if we apply P2R to a bipartite graph, the algorithm will maintain
the invariant that except in the middle of the two-level push operation, all excess
is on one side of the network. In this sense, the algorithm generalizes the bipartite
flow algorithm of [1].

5 Experimental Results

We test code performance on DIMACS problem families [20] (see also [19]) and
on problems from vision applications.1 We use RMF-Long, RMF-Wide, Wash-
Long, Wash-Wide, Wash-Line, and Acyc-Dense problem families. To make sure
that the performance is not affected by the order in which the input arcs are
listed, we do the following. First, we re-number vertex IDs at random. Next, we
sort arcs by the vertex IDs. The vision problems have been made available at
http://vision.csd.uwo.ca/maxflow-data/ and include instances from stereo
vision, image segmentation, and multiview reconstruction.

1 Due to space restrictions we omit problem descriptions. See the references.
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The main goal of our experiments is to compare P2R to PAR and HI-PR.
We use the latest version, 3.6, of HI-PR, version 0.43, of PAR and version 0.45
of P2R. We also make a comparison to an implementation of Chandran and
Hochbaum [4]. A paper describing this implementation is listed on authors’ web
sites as “submitted for publication” and no preprint is publicly available. The au-
thors do make their code available, and gave several talks claiming that the code
performs extremely well. These talks were about version 3.1 of their code, which
we refer to as CH. Recently, an improved version, 3.21, replaced the old version
on the web site. We also compare to this version, denoted as CH-n. Finally, for
vision problem we compare to the code BK of Boykov and Kolmogorov [3]. As
code is intended for vision applications and does not work well on the DIMACS
problems, we restrict the experiments to the vision problems.

Our experiments were conducted on an HP Evo D530 machine with 3.6 HGz
Pentium 4 processor, 28 KB level 1 and 2 MB level 2 cache, and 2GB of RAM.
The machine was running Fedora 7 Linux. C codes HI-PR, PAR, P2R, BK, and
CH-n were compiled with the gcc compiler version 4.1.2 using “-O4” optimiza-
tion option. C++ code CH was compiled with the g++ compiler using “-O4”
optimization.

For synthetic problems, we report averages over 10 instances for each problem
size. In all tables and plots, we give running time in seconds. For our algorithms,
we also give scan count per vertex, where the scan count is the sum of the number
of relabel operations and the number of vertices scanned by the global update
operations. This gives a machine-independent measure of performance.

5.1 Experiments with DIMACS Families

Figures 1 – 6 give performance data for the DIMACS families. We discuss the
results below.

P2R vs. PAR vs. HI-PR. First we note that P2R and PAR outperform HI-PR,
in some cases asymptotically so (e.g., RMF and Acyc-Dense families).

Compared to each other, P2R and PAR performance is very similar. The
latter code is faster more often, but by a small amount. The biggest difference
is on the Acyc-Dense problem family, where P2R is faster by roughly a factor
of 1.5.

Note that for P2R and PAR, many DIMACS problem families are easy. For the
biggest Wash-Long, Wash-Line, and Acyc-Dense problems, these codes perform
less than two scans per vertex, and for RMF-Long – around six. Note that Acyc-
Dense are highly structured graphs, and the fact that P2R does about 50% fewer
operations than PAR is probably due to the problem structure and is not very
significant.

The “wide” instances are harder, but not too hard. For Wash-Wide problems,
the number of scans per vertex grows slowly with the problem size, and stops
growing between the two largest problem sizes. Even for the largest problems
with over eight million vertices, the number of scans per vertex is around 25.
RMF-Wide problems are the hardest and the number of scans per vertex slowly
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grows with the problem size, but even for the largest problem with over four
million vertices, the number of scans per vertex is in the 70’s.

Comparison with CH. On RMF-Long problem families, the CH codes are
asymptotically slower, and CH-n is somewhat faster than CH. On the RMF-
Wide family, CH is significantly slower than CH-n. Performance of both codes
is asymptotically worse than that of P2R and PAR. In particular, for larger
problem the CH codes exhibit very large variance from one instance to another,
which is not the case for the push-relabel codes. CH is always slower than P2R
and PAR, losing by an order of magnitude on the largest problem. CH-n is faster
than P2R and PAR by about a factor of 1.3 on the smallest problem, but slower
by about a factor of 3.4 on the largest one.

On Wash-Long problem family, P2R and PAR are faster than the CH codes,
although the latter are within a factor of two. It looks like the CH codes are
asymptotically slower, but the difference in the growth rates are small. On Wash-
Wide problem family, CH and CH-n are the fastest codes, but P2R and PAR
never lose by much more than a factor of two. On Wash-Line problems, the four
codes are within a factor of two of each other, but while P2R and PAR show
clear linear growth rate, CH and CH-n running times grow erratically with the
problem size.

On Acyc-Dense problems, where P2R is about 1.5 times faster than PAR,
CH and CH-n performance falls in the middle of the push-relabel codes: the CH
codes are almost as fast as P2R for the smallest problem and about as fast as
PAR for the largest one.

5.2 Vision Instances

Stereo vision problems three problem sequences: tsukuba has 16, sawtooth – 20,
venus – 22 subproblems. As suggested in [3], we report the total time for each
problem sequence (Table 1), but for operation counts we report the average over
subprobelms for each sequence (Table 2). On these problems, BK is the fastest
code by a large margin. PAR is about a factor of six slower, and P2R is 10–20%
slower than PAR. However, PAR does improve on HI-PR by a factor of two to
three. CH performance is extremely poor; it loses to BK by over three orders of
magnitude. CH-n is faster than PAR and P2R, but by less than a factor of two.

Operation counts show that PAR and P2R perform between 8 and 14 scans
per vertex on the stereo problems. This suggests that BK performance is not too
far from optimal, as the push-relabel codes need to reduce the number of scans
per vertex to about two in order to catch up with BK.

On multiview instances, PAR and P2R perform similarly to each other, and
about a factor of two better than HI-PR. The comparison of these codes to BK
is non-conclusive. We consider four multiview instances: camel and gargoyle,
each in two sizes, small and medium. BK is faster than P2R/PAR on camel,
by about a factor of four on the smaller problem and by less than a factor of
two on the larger one. BK is slower on gargoyle instances by a factor of four to six.
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CH crashes on multiview problems. CH-n fails feasibility and optimality self-
checks on the smaller problems and fails to allocate sufficient memory for the
larger problems.

Next we consider segmentation instances. PAR and P2R performance is very
close, and two to three times better than that of HI-PR. CH-n is faster by
less than a factor of two – much less for liver and babyface instances. BK is
competitive with PAR and P2R on most problems except for liver-6-10 and
babyface-6-10, where BK is about 2.5 and 4 times faster, respectively. CH crashes
on the segmentation problems.

6 Concluding Remarks

We introduce the two-level push-relabel algorithm, P2R, and show that its per-
formance is close to that of our improved implementation of PAR and superior
to that of HI-PR. The new algorithm is also significantly better than the CH
code and better overall than the CH-n code. For vision problems, P2R is worse
than the BK algorithm for stereo problems, but competitive for multiview and
segmentation problems.

An interesting question is why P2R and PAR perform better than HI-PR.
Partial intuition for this is as follows. The motivation behind PAR given in [22]
is that it mitigates the ping-pong effect (e.g., a push from u to v immediately
followed by a relabeling of v and a push back to u). In PAR, a flow is pushed
along the partial augmenting path before any vertex can push the flow back. In
P2R, the flow pushed from u to v is pushed to v’s neighbors before v would push
flow back to u. In addition, P2R avoids activating some vertices, which has a
theoretical motivation in the bipartite case [1] and seems to help in general.

The main idea behind P2R is to push flow on length two paths, and not to
create new excesses in the middle of such paths. This idea generalizes several
previous algorithms. It would be interesting to investigate this idea in related
contexts, such as minimum-cost flow, bipartite matching, assignment, and para-
metric flow problems.
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Appendix: Experimental Data
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Fig. 1. RMF-Long problem data: time (plot), scans/vertex (table)
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Fig. 2. RMF-Wide problem data: time (plot), scans/vertex (table)
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Fig. 3. Wash-Long problem data: time (plot), scans/vertex (table)
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Fig. 4. Wash-Wide problem family: time (plot), scans/vertex (table)
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Fig. 5. Wash-Line problem data: time (plot), scans/vertex (table)
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Fig. 6. Acyclic-Dense problem data: time (plot), scans/vertex (table)

Table 1. Stereo vision data – running times. Problems ordered by size (n + m).

name n m HI-PR PAR P2R CH CH-n BK
BVZ-tsukuba 110,594 513,467 8.07 3.60 3.91 643.62 2.80 0.59
BVZ-sawtooth 164,922 796,703 12.45 6.81 8.00 3,127.23 5.45 1.01
BVZ-venus 166,224 795,296 23.65 10.19 11.02 2,707.32 7.23 1.86
KZ2-tsukuba 199,822 1,341,101 30.39 11.81 13.09 4,020.49 6.85 1.82
KZ2-sawtooth 294,936 1,956,194 31.88 14.57 16.69 13,472.85 11.70 2.77
KZ2-venus 301,610 2,026,283 61.64 21.31 26.75 12,898.89 15.84 4.49

Table 2. Stereo vision data – operation counts

name n m HI-PR PAR P2R
BVZ-tsukuba 110,594 513,467 10.37 8.15 9.67
BVZ-sawtooth 164,922 796,703 14.73 9.55 10.84
BVZ-venus 166,224 795,296 19.34 11.87 13.01
KZ2-tsukuba 199,822 1,341,101 10.84 6.63 8.05
KZ2-sawtooth 294,936 1,956,194 20.96 12.34 13.29
KZ2-venus 301,610 2,026,283 20.03 9.65 12.51

Table 3. Multiview reconstruction – running times

name n m HI-PR PAR P2R CH CH-n BK
gargoyle-sml 1,105,922 5,604,568 4.39 2.72 2.28 dnf dnf 12.29
camel-sml 1,209,602 5,963,582 8.50 4.14 4.41 dnf dnf 1.14
gargoyle-med 8,847,362 44,398,548 125.03 47.5 52.32 dnf dnf 193.58
camel-med 9,676,802 47,933,324 159.53 67.03 72.41 dnf dnf 43.61
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Table 4. Multiview reconstruction – operation counts

name n m HI-PR PAR P2R
gargoyle-sml 1,105,922 5,604,568 8.93 8.61 6.77
camel-sml 1,209,602 5,963,582 15.91 12.61 13.14
gargoyle-med 8,847,362 44,398,548 29.25 19.95 19.49
camel-med 9,676,802 47,933,324 33.76 25.33 24.83

Table 5. Segmentation data – running times. Instances sorted by size (n + m).

name n m HI-PR PAR P2R CH CH-n BK
bone-xyzx-6-10 491,522 2,972,389 1.06 0.35 0.34 dnf 0.20 0.28
bone-xyzx-6-100 491,522 2,972,389 1.08 0.37 0.35 dnf 0.25 0.33
bone-xyz-6-10 983,042 5,929,493 2.39 0.82 0.80 dnf 0.50 0.85
bone-xyz-6-100 983,042 5,929,493 2.46 0.85 0.86 dnf 0.58 1.32
bone-xyzx-26-10 491,522 12,802,789 2.88 0.90 0.93 dnf 0.60 0.85
bone-xyzx-26-100 491,522 12,802,789 3.16 0.93 0.89 dnf 0.58 1.01
bone-xy-6-10 1,949,698 11,759,514 6.65 1.80 1.94 dnf 1.19 1.77
bone-xy-6-100 1,949,698 11,759,514 6.90 1.95 2.01 dnf 1.36 3.10
bone-xyz-26-10 983,042 25,590,293 6.36 2.01 1.99 dnf 1.20 2.52
bone-xyz-26-100 983,042 25,590,293 6.75 2.13 2.10 dnf 1.39 3.4
liver-6-10 4,161,602 25,138,821 34.88 18.73 20.77 dnf 14.18 7.59
liver-6-100 4,161,602 25,138,821 46.74 20.32 21.87 dnf 17.59 19.68
babyface-6-10 5,062,502 30,386,370 52.55 27.88 31.58 dnf 22.77 6.90
babyface-6-100 5,062,502 30,386,370 71.37 28.74 33.70 dnf 37.85 15.15

Table 6. Segmentation data – operation counts

name n m HI-PR PAR P2R
bone-xyzx-6-10 491,522 2,972,389 3.97 2.42 2.28
bone-xyzx-6-100 491,522 2,972,389 4.03 2.47 2.33
bone-xyz-6-10 983,042 5,929,493 4.63 2.75 2.62
bone-xyz-6-100 983,042 5,929,493 4.76 2.88 2.82
bone-xyzx-26-10 491,522 12,802,789 3.96 2.36 2.37
bone-xyzx-26-100 491,522 12,802,789 4.45 2.38 2.27
bone-xy-6-10 1,949,698 11,759,514 5.96 2.89 2.91
bone-xy-6-100 1,949,698 11,759,514 6.01 3.08 2.93
bone-xyz-26-10 983,042 25,590,293 4.59 2.72 2.67
bone-xyz-26-100 983,042 25,590,293 4.83 2.82 2.79
liver-6-10 4,161,602 25,138,821 13.95 14.80 14.07
liver-6-100 4,161,602 25,138,821 17.88 15.81 14.69
babyface-6-10 5,062,502 30,386,370 20.78 20.17 19.03
babyface-6-100 5,062,502 30,386,370 26.75 20.14 19.66
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Abstract. We introduce the s-Plex Editing problem generalizing the
well-studied Cluster Editing problem, both being NP-hard and both
being motivated by graph-based data clustering. Instead of transforming
a given graph by a minimum number of edge modifications into a dis-
joint union of cliques (Cluster Editing), the task in the case of s-Plex

Editing is now to transform a graph into a disjoint union of so-called
s-plexes. Herein, an s-plex denotes a vertex set inducing a (sub)graph
where every vertex has edges to all but at most s vertices in the s-
plex. Cliques are 1-plexes. The advantage of s-plexes for s ≥ 2 is that
they allow to model a more relaxed cluster notion (s-plexes instead of
cliques), which better reflects inaccuracies of the input data. We develop
a provably efficient and effective preprocessing based on data reduction
(yielding a so-called problem kernel), a forbidden subgraph characteri-
zation of s-plex cluster graphs, and a depth-bounded search tree which
is used to find optimal edge modification sets. Altogether, this yields
efficient algorithms in case of moderate numbers of edge modifications.

1 Introduction

The purpose of a clustering algorithm is to group together a set of (many) objects
into a relatively small number of clusters such that the elements inside a cluster
are highly similar to each other whereas elements from different clusters have
low or no similarity. There are numerous approaches to clustering and “there is
no clustering algorithm that can be universally used to solve all problems” [16].
To solve data clustering, one prominent line of attack is to use graph theory
based methods [14]. In this line, extending and complementing previous work
on cluster graph modification problems, we introduce the new edge modification
problem s-Plex Editing.

In the context of graph-based clustering, data items are represented as ver-
tices and there is an edge between two vertices iff the interrelation between the
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two corresponding items exceeds some threshold value. Clustering with respect to
such a graph then means to partition the vertices into sets where each set induces
a dense subgraph (that is, a cluster) of the input graph whereas there are no
edges between the vertices of different clusters. In this scenario, the algorithmic
task then typically is to transform the given graph into a so-called cluster graph
by a minimum number of graph modification operations [14]. Herein, a cluster
graph is a graph where all connected components form clusters and a graph mod-
ification is to insert or delete an edge. One of the most prominent problems in
this context is the NP-hard Cluster Editing problem (also known as Corre-

lation Clustering) [14, 2], where, given a graph G and an integer k ≥ 0, one
wants to transform G into a graph whose connected components all are cliques,
using at most k edge insertions and deletions. In this work, with the NP-hard
s-Plex Editing problem, we study a more relaxed and often presumably more
realistic variant of Cluster Editing: Whereas in the case of Cluster Edit-

ing the clusters shall be cliques, in the case of s-Plex Editing we only demand
them to be s-plexes. A vertex subset S ⊆ V of a graph G = (V, E) is called s-plex
if the minimum vertex degree in the induced subgraph G[S] is at least |S| − s.
Note that a clique is nothing but a 1-plex. Replacing cliques by s-plexes for
some integer s ≥ 2 allows one to reflect the fact that most real-world data are
somewhat “spurious” and so the demand for cliques may be overly restrictive in
defining what a cluster shall be (also see [5] concerning criticism of the overly
restrictive nature of the clique concept).

Problem formulation. In the following, we call a graph an s-plex cluster graph
if all its connected components are s-plexes.

s-Plex Editing

Input: An undirected graph G = (V, E) and an integer k ≥ 0.
Question: Can G be modified by up to k edge deletions and insertions
into an s-plex cluster graph?

Indeed, seen as an optimization problem, the goal is to minimize the number of
edge editing operations. Note that 1-Plex Editing is the same as Cluster

Editing. Compared to Cluster Editing, s-Plex Editing with s ≥ 2 is a
more flexible tool for graph-based data clustering: For increasing s, the num-
ber of edge modifications should decrease. This important advantage of s-Plex

Editing reflects the observation that fewer edge modifications mean that we
introduce fewer “errors” into our final cluster solution, because the computed
s-plex cluster graph is closer to the original data. This is in accordance with the
natural hypothesis that the less one perturbs the input graph the more robust
and plausible the achieved clustering is (maximum parsimony principle, also see
Böcker et al. [3] for making this point in terms of Cluster Editing). Figure 1
presents a simple example comparing Cluster Editing (that is, 1-Plex Edit-

ing) with 2-Plex Editing and 3-Plex Editing in terms of the (number of)
necessary editing operations.

Previous work and motivation. The s-plex concept was introduced in 1978
by Seidman and Foster [13] in the context of social network analysis. Recently, a
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(b)

(c) (d)

(a)

Fig. 1. An example for different optimal modifications that are applied to (a) an in-
put graph using (b) Cluster Editing (equivalently, 1-Plex Editing), (c) 2-Plex

Editing, and (d) 3-Plex Editing. Deleted edges are dashed, inserted edges are bold.

number of theoretical and experimental studies explored (and confirmed) the use-
fulness of s-plexes in various contexts [1, 6, 10, 11]. Finding maximum-cardinality
s-plexes is NP-hard [1] and further hardness results in analogy to clique finding
hold as well [10]. Hence, there is no hope for polynomial-time algorithms.

Cluster Editing has recently been intensively studied from the viewpoints
of polynomial-time approximability as well as parameterized algorithmics. As to
approximability, the currently best known approximation factor is 2.5 [17]. Con-
sidering the parameter k defined as the number of allowed edge modifications, a
search tree of size O(1.83k) [3] has been developed and several studies concerning
provably efficient and effective preprocessing by data reduction (which is called
problem kernelization in the context of parameterized algorithmics [12]) have
been performed [7, 8]. Parameterized algorithms have led to several successful
experimental studies mainly in the context of biological network analysis [3, 4].
The parameterized algorithms only run fast in case of moderate values of the pa-
rameter k, the number of allowed edge editing operations. Hence, it is desirable
to have the parameter k small not only for the sake of not too much perturbing
the input graph but also for the sake of obtaining efficient solving algorithms.
We mention in passing that slightly modifying a proof of Shamir et al. [14] for
Cluster Editing one can show that s-Plex Editing is NP-complete for each
specific choice of s as well.

Our contributions. We develop a polynomial-time preprocessing algorithm
that allows to provably simplify input instances of s-Plex Editing to smaller
ones. More specifically, the corresponding data reduction rules, given an instance
(G = (V, E), k) of s-Plex Editing with s ≥ 2, in polynomial time construct
an equivalent reduced instance (G′ = (V ′, E′), k′) with V ′ ⊆ V , k′ ≤ k, and
|V ′| ≤ (4s2−2)·k+4(s−1)2. In other words, the number of vertices of the reduced
graph only depends on s and k (in fact, in case of s being a constant, it is linear
in k), implying that if k is small then the data reduction will greatly simplify
the instance basically without loosing information. In terms of parameterized
algorithmics, the reduced instance gives a problem kernel. Moreover, we provide
a graph-theoretic characterization of s-plex cluster graphs by means of forbidden
induced subgraphs. In particular, we obtain a linear-time recognition algorithm
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for s-plex cluster graphs for every constant s. This is a result of independent
graph-theoretic interest and is also of decisive algorithmic use for clustering:
Based on the forbidden subgraph characterization of s-plex cluster graphs, we
show that s-Plex Editing can be solved in O((2s + �√s�)k · s · (|V | + |E|))
time (which is linear for constant values of s and k). Moreover, interleaving the
problem kernelization and the search tree leads to a running time of O((2s +
�√s�)k + |V |4).

Due to the lack of space, many technical details are deferred to a full version
of this paper.

2 Preliminaries

We only consider undirected graphs G = (V, E), where n := |V | and m := |E|.
The (open) neighborhood NG(v) of a vertex v ∈ V is the set of vertices that
are adjacent to v in G. The degree of a vertex v, denoted by degG(v), is the
cardinality of NG(v). For a set U of vertices, NG(U) :=

⋃
v∈U NG(v) \ U . We

use NG[v] to denote the closed neighborhood of v, that is, NG[v] := NG(v)∪{v}.
For a set of vertices V ′ ⊆ V , the induced subgraph G[V ′] is the graph over the
vertex set V ′ with edge set {{v, w} ∈ E | v, w ∈ V ′}. For V ′ ⊆ V we use G− V ′

as an abbreviation for G[V \V ′] and for a vertex v ∈ V let G−v denote G−{v}.
A vertex v ∈ V (G) is called a cut-vertex if G−v has more connected components
than G.

Parameterized algorithmics [12] aims at a multivariate complexity analysis
of problems without giving up the demand for finding optimal solutions. This
is undertaken by studying relevant problem parameters and their influence on
the computational hardness of problems. The hope lies in accepting the seem-
ingly inevitable combinatorial explosion for NP-hard problems, but confining it
to the parameter. Hence, the decisive question is whether a given parameter-
ized problem is fixed-parameter tractable (FPT) with respect to a parameter k.
In other words, one asks for the existence of a solving algorithm with running
time f(k) · poly(n) for some computable function f . A core tool in the devel-
opment of parameterized algorithms is polynomial-time preprocessing by data
reduction rules, often yielding a problem kernel [9, 12]. Herein, the goal is, given
any problem instance G with parameter k, to transform it in polynomial time
into a new instance G′ with parameter k′ such that the size of G′ is bounded from
above by some function only depending on k, k′ ≤ k, and (G, k) is a yes-instance
iff (G′, k′) is a yes-instance.

3 Data Reduction and Kernelization

In this section, we indicate that s-Plex Editing for s ≥ 2 admits a problem
kernel with (4s2 − 2) ·k + 4(s− 1)2 vertices. Since s-Plex Editing is a general-
ization of Cluster Editing, the first idea coming to mind in order to achieve
a linear kernelization is to adapt an approach developed by Guo [8]. However,
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since the “critical clique” concept used there does not work for s-Plex Edit-

ing, we need a more sophisticated strategy; correspondingly, the accompanying
mathematical analysis requires new tools.

The first data reduction rule is obvious and its running time is O(n + m):

Reduction Rule 1: Remove connected components that are s-plexes from G.

Our problem kernelization consists of only one further, technically complicated
data reduction rule. Roughly speaking, the idea behind this rule is that a data
reduction can be performed if there is a vertex with a “dense local environment”
that is only weakly connected to the rest of the graph. Unfortunately, the proof
details are technical and require quite some mathematical machinery.

We start with explaining in more detail the purpose of introducing the second
data reduction rule. Let Gopt denote the s-plex cluster graph resulting from ap-
plying a solution S with |S| ≤ k to the graphG = (V, E), and let K1, . . . , Kl be the
s-plexes in Gopt. The vertex set V can be partitioned into two subsets, namely, X ,
the set of vertices that are endpoints of the edges modified by S, and Y := V \X .
For each s-plex Ki, let Xi := X ∩ Ki and Yi := Y ∩ Ki. Clearly, |X | ≤ 2k. To
achieve a problem kernel with O(k) vertices for constant s, it remains to bound |Y |.
To this end, we use a function linear in |Xi| to bound |Yi| for each 1 ≤ i ≤ l.
If |Yi| ≤ (s − 1) · |Xi| or |Yi| ≤ 2(s − 1) for all i, then we are done; otherwise, we
have at least one s-plex Ki with |Yi| > max{(s − 1) · |Xi|, 2(s− 1)}. Because the
vertices in Yi are not affected by the edge modifications in S, the fact that Ki is
an s-plex implies that every vertex in Xi is adjacent to at least |Yi|−s+1 vertices
in Yi in the input graph G. With |Yi| > (s−1)·|Xi|, there has to be a vertex u ∈ Yi

with Xi ⊆ NG(u) by the pigeonhole principle. Moreover, if |Yi| > 2(s − 1), then
every vertex in Yi has, in G, distance at most two to u: Suppose that this is not
true. Let x be a vertex in Yi with distance at least three to u. Then, since Ki is an s-
plex, we must have |Yi\NG[u]| ≤ s−1 (since otherwise u would be non-adjacent to
more than s−1 vertices) as well as |NG[u]∩Yi| ≤ s−1 (since otherwise x would be
non-adjacent to more than s−1 vertices—the vertices NG[u]∩Yi are non-adjacent
to x since x has distance at least three to u), contradicting |Yi| > 2(s − 1).

Let us summarize our findings: If we do not apply a second data reduction rule
to G, then there can be arbitrarily large s-plexes Ki in Gopt, in particular, |Yi| >

max{(s − 1) · |Xi|, 2(s − 1)}. However, then, there must be a vertex u ∈ Yi

satisfying the following conditions:

C1. Xi ⊆ NG(u),
C2. NG(u) ⊆ Ki,
C3. |Yi \ NG[u]| ≤ s − 1, and
C4. all vertices in Yi \ NG[u] have distance two to u in G.

Thus, if |Yi| is very large, then |NG[u]| is very large and we need a data reduction
rule to reduce NG[u]. This is exactly what the second rule does.

To simplify notation, let ŝ = s − 1 and write N(u) and N [u] for NG(u)
and NG[u], respectively. Let N2(u) denote the set of vertices that have, in G,
distance two to u. Further, we partition N2(u) into two sets, where the first
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u

N1
2 (u)

N1(u)

N2
2 (u)

N2(u)

Fig. 2. An illustration of the partitions of N2(u) and N(u) for ŝ = 2. Vertex u satisfies
the first two preconditions of Reduction Rule 2.

set N1
2 (u) consists of vertices tightly coupled with u:

N1
2 (u) := {v ∈ N2(u) : |N(v) ∩ N(u)| ≥ |N [u]| − ŝ},

N2
2 (u) := N2(u) \ N1

2 (u).

Analogously, N(u) is also partitioned into two sets,

N1(u) := {v ∈ N(u) :
(
N(v) ⊆ N [u] ∪ N1

2 (u)
) ∧ (|N [v]| ≥ |N [u] ∪ N1

2 (u)|− ŝ
)},

N2(u) := N(u) \ N1(u).

Figure 2 illustrates the above definitions. It is easy to see that the sets N1(u),
N2(u), N1

2 (u), and N2
2 (u) can be computed in O(n2) time for any vertex u.

Following the above analysis, we need a data reduction rule which shrinks
the set of the vertices tightly coupled with a vertex u that has a very special
neighborhood: There can be many vertices in N1(u), but only few (at most ŝ)
tightly coupled vertices from N2(u), that is, the N1

2 (u)-vertices. Further, these
N1

2 (u)-vertices are only adjacent to vertices in N(u) or to N1
2 (u)-vertices. Re-

duction Rule 2 applies in this situation and replaces N1(u) ∪ N1
2 (u) by smaller

“simulating” cliques.

Reduction Rule 2
If there is a vertex u for which
(1) |N1

2 (u)| ≤ ŝ
(2) ∀v ∈ N1

2 (u) : (N(v) ⊆ N(u) ∪ N1
2 (u)) ∧ (|N [v]| ≥ |N [u] ∪ N1

2 (u)| − ŝ), and
(3) |A| > α, where A := {u}∪N1(u)∪N1

2 (u) and α := 2 ŝ ·(|N2(u)|+|N2
2 (u)|+ŝ),

then replace A by a clique C with α vertices for even |A| or α + 1 vertices for
odd |A|. Further, perform the following case distinction for every vertex v ∈
N2(u). Herein, for a vertex set U and a vertex w /∈ U , let Uw := U ∩ N(w)
and Uw := U \ Uw.

Case 1. If |Av|− |Av| ≥ |N2(u)|+ |N2
2 (u)|, then connect v to |C|−min{ŝ , |Av|}

many vertices of C and decrease the parameter k by max{|Av| − ŝ , 0}.
Case 2. If |Av| − |Av| ≥ |N2(u)| + ŝ , then decrease the parameter k by |Av|.
Case 3. If |N2(u)| + |N2

2 (u)| > |Av| − |Av| > −|N2(u)| − ŝ, then insert edges
between v and the vertices in C such that |Cv| − |Cv| = |Av| − |Av| and
decrease the parameter k by max{|Av| − |Cv|, 0}.
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To show the correctness of Reduction Rule 2, we need to prove that the input
graph G has a solution S of size at most k iff the graph G′ resulting by one
application of this rule has a solution S′ of size at most k′, where k′ is the new
parameter after the application of the rule. To this end, we need two claims.
The first one (Lemma 1) says that if a vertex u satisfies the three preconditions
of Reduction Rule 2 then all vertices in A as defined in the rule should be
completely contained in one s-plex K in the s-plex cluster graph generated by
some optimal solution and K ⊆ A ∪ N2(u). The second claim (Lemma 2) says
that, after replacing A by a clique C, all vertices in C are tightly coupled with
the vertices in N2(u). Using the second claim, we can show that there must be a
vertex in C satisfying the preconditions of the first claim. Thus, according to the
first claim, there exists an optimal solution of G′ which generates an s-plex K ′

with C ⊆ K ′ and K ′ ⊆ C ∪N2(u). Then, by focussing on the edge modifications
in S and S′ that generate K and K ′, respectively, we can directly compare the
sizes of S and S′ and, thereby, establish the “iff”-relation between G and G′.

Lemma 1. Let u be a vertex satisfying the first two preconditions of Reduction
Rule 2 and |A| ≥ α with A and α defined as in Reduction Rule 2. Then, there
exists always an optimal solution generating an s-plex cluster graph where
(1) the set A is completely contained in one s-plex K and
(2) K ⊆ A ∪ N2(u).

Now, before coming to the second claim (Lemma 2), we discuss in more detail
the strategy behind. Based on Lemma 1, we can conclude that, with respect
to a vertex u which satisfies the preconditions of Reduction Rule 2, it remains
to decide which vertices of N2(u) should build, together with A, an s-plex in
the resulting s-plex cluster graph. Herein, Reduction Rule 2 distinguishes three
cases. In the first two cases, a vertex v ∈ N2(u) has either much more or much
less neighbors in A than outside of A (Cases 1 and 2). We can then easily decide
whether v should be in the same s-plex with A (Case 1) or not (Case 2) and
make the corresponding edge modifications. However, in the third case, where the
“neighborhood size difference” is not so huge for a vertex v ∈ N2(u), the decision
whether or not to put v in the same s-plex with A could be influenced by the
global structure outside of N(u)∪N2(u). To overcome this difficulty, Reduction
Rule 2 makes use of the simulating clique C which should play the same role as A
but has a bounded size. Moreover, for every vertex v ∈ N2(u) the construction
of C in Reduction Rule 2 guarantees that after its application v again adheres
to the same case (Cases 1–3, distinguishing according to the neighborhood size
difference of v) as it has before. The second claim shows then that C plays the
same role as A.

Lemma 2. Let u be a vertex satisfying the three preconditions of Reduction
Rule 2 and let G′ denote the graph resulting from applying Reduction Rule 2
once to u. Then, in G′, with the described implementation of Reduction Rule 2,
each vertex in clique C has at most ŝ non-adjacent vertices in NG′(C).

With these two claims, we can prove the correctness and the running time of
Reduction Rule 2.
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Lemma 3. Reduction Rule 2 is correct and can be carried out in O(n3) time.

Finally, we prove the main theorem in this section. Note that the running time
upper bound is a pure worst-case estimation; improvements are conceivable.

Theorem 1. s-Plex Editing admits a problem kernel with (4s2−2)·k+4(s−1)2

vertices for s ≥ 2. It can be computed in O(n4) time.

Proof. Let Gopt denote the s-plex cluster graph resulting from applying a so-
lution S with |S| ≤ k to the input graph G = (V, E), and let K1, . . . , Kl be
the s-plexes in Gopt. The vertices V of Gopt can be partitioned into two sub-
sets, namely, X , the set of vertices that are endpoints of the edges modified
by S, and Y := V \ X . For an s-plex Ki, let Xi := X ∩ Ki and Yi := Y ∩ Ki.
As stated in the beginning of this section, we know that |X | ≤ 2k. Moreover,
if |Yi| > max{ŝ ·|Xi|, 2 ŝ} for some i, then there must be a vertex u ∈ Yi that sat-
isfies conditions C1–C4. By N1

2 (u) ⊆ Yi and N [u] ⊆ Ki, vertex u fulfils the first
two preconditions of Reduction Rule 2. Since |Yi| ≤ |N1(u) ∪N1

2 (u) ∪ {u}|, this
implies either |Yi| ≤ α := 2 ŝ ·(|N2(u)|+ |N2

2 (u)|+ ŝ) or Reduction Rule 2 can be
applied to u. If we assume that the input graph is reduced with respect to both
data reduction rules, then the former case applies. Note that N2(u)∪N2

2 (u) ⊆ X
and, for every deleted edge, each of its two endpoints in X might be counted
twice, once in N2(v) for a vertex v ∈ Ki ∩ Y and once in N2

2 (w) for another
vertex w ∈ Kj ∩ Y with i �= j. Hence, considering all s-plexes, we then have

∑
1≤i≤l

|Yi| ≤
∑

1≤i≤l

max{2 ŝ, ŝ ·|Xi|, 4 ŝ ·(|Xi| + ŝ))}
(∗∗∗)
≤ 8 ŝ k + 4 ŝ2 ·(k + 1).

The inequality (***) follows from |X | ≤ 2k and the fact that deleting at most k
edges from a connected graph results in at most k + 1 connected components.
Together with |X | ≤ 2k, we obtain a problem kernel with |X | + |Y | ≤ 4 ŝ2(k +
1) + 8 ŝ k + 2k = (4s2 − 2)k + 4(s − 1)2 vertices.

The running time O(n4) follows directly from Lemma 3 and the fact that
Reduction Rule 2 can be applied at most n times. �


4 Forbidden Subgraph Characterization and Search Tree

This section presents a forbidden subgraph characterization of s-plex cluster
graphs for any s ≥ 1 as well as an exact search tree algorithm that makes use
of this characterization. We provide a characterization of s-plex cluster graphs
by means of induced forbidden subgraphs. More specifically, we specify a set F
of graphs such that a graph G is an s-plex cluster graph iff G is F-free, that is,
G does not contain any induced subgraph from F . If s = 1, where all connected
components of the cluster graph are required to form cliques, the only forbidden
subgraph is a path induced by three vertices [14]. By way of contrast, if s ≥ 2,
we face up to exponentially in s many forbidden subgraphs. To cope with this,
we develop a characterization of these subgraphs that still allows us to derive
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Input: G = (V, E) from C(s, i) with i · (i + 1) > s
Output: An induced subgraph G′ ∈ C(s, i′) of G with i′ < i
1 Let v = argminw∈V {degG(w)}
2 if degG(v) < i then
3 return a connected graph induced by NG[v] and further s arbitrary vertices
4 Let Cutvertices be the set of cut-vertices of G
5 if (NG(v) \ Cutvertices) �= ∅ then
6 return graph G − w for an arbitrary w ∈ (NG(v) \ Cutvertices)
7 Let NG(v) = {u1, u2, . . . , ui}
8 Let Uj ⊆ V be the vertices not reachable from v in G − uj , for 1 ≤ j ≤ i
9 Let r = argminj=1,...,i{|Uj |}
10 return G − (Ur \ {w}) for an arbitrary vertex w ∈ Ur

Fig. 3. Algorithm A to compute smaller forbidden subgraphs

efficient algorithms. More specifically, we show that s-plex cluster graphs are
characterized by forbidden subgraphs with O(s) vertices and that if a graph is not
an s-plex cluster graph then a forbidden subgraph can be found in O(s · (n+m))
time.

The starting point for the forbidden subgraph characterization are the con-
nected graphs that contain a vertex that is non-adjacent to s vertices. These
graphs clearly are no s-plex cluster graphs. Let C denote the set of connected
graphs. Define C(s, i) := {G = (V, E) ∈ C |(|V | = s+1+i)∧(∃v ∈ V : degG(v) =
i)} and F(s, i) :=

⋃i
j=1 C(s, j). The following lemma shows that the graphs in

F(s, n − s − 1) are forbidden.

Lemma 4. A graph G is an s-plex cluster graph iff G is F(s, n − s − 1)-free.

Next, we show that instead of studying graphs with O(n) vertices, we can focus
on graphs with O(s) vertices by presenting an algorithm (Algorithm A, see Fig. 3)
shrinking the size of large forbidden subgraphs. More precisely, we show that if
the forbidden subgraph G ∈ C(s, i) with i ·(i+1) > s then we can always remove
at least one vertex from G and still obtain a forbidden induced subgraph. For
brevity, let Ts be the maximum integer satisfying Ts · (Ts + 1) ≤ s, that is,
Ts = �−0.5 +

√
0.25 + s�.

Lemma 5. Given a graph G = (V, E) ∈ C(s, i) such that i > Ts, Algorithm A
(Fig. 3) computes in O(|V | + |E|) time an induced subgraph G′ ∈ C(s, i′) of G,
with i′ < i.

Proof. Consider lines 1 to 3 of the algorithm. If a vertex v in G has degree less
than i, then we can clearly find a graph from C(s, degG(v)) by choosing NG[v]
and a set S ⊆ V of s further (arbitrary) vertices such that G[NG[v] ∪ S] is
connected. This is doable in linear time by breadth-first search starting at v.

Consider lines 4 to 6. If one of the neighboring vertices of v, say w, is no
cut-vertex, then we can delete w from G obtaining a graph from C(s, i−1). Note
that cut-vertices can be computed in linear time [15].
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Consider lines 7 to 9. All neighboring vertices NG(v) = {u1, u2, . . . , ui} of v
are cut-vertices and the minimum vertex degree is i with i·(i+1) > s. On the one
hand, note that |Uj | ≥ i for every 1 ≤ j ≤ i since the minimum vertex degree of G
is i and since for every vertex w ∈ Uj it holds that NG(w) ⊆ (Uj∪{uj})\{w}. On
the other hand, since

∑i
j=1 |Uj | ≤ s, there must exist at least one r, 1 ≤ r ≤ i,

with |Ur| ≤ s/i < i · (i + 1)/i = i + 1. Therefore, |Ur| = i. Moreover, since the
minimum vertex degree in G is i, Ur ∪ {ur} forms a clique of size i + 1 and thus
by deleting all but one vertex of Ur we obtain a graph from C(s, 1). Note that
Tarjan’s algorithm [15] also computes a so-called block-tree. With the help of
this data structure, the sets Uj can be easily computed in linear time. �

We can iteratively use Algorithm A to compute an induced subgraph of G′

from C(s, i′) with i′ ≤ Ts. This results in the following forbidden subgraph
characterization that is—in contrast to the one of Lemma 4—tight concerning
the number of vertices of the forbidden subgraphs.

Theorem 2. A graph G = (V, E) is an s-plex cluster graph if and only if G
is F(s, Ts)-free.

Proof. On the one hand, due to Lemma 4 we know that an s-plex cluster graph
is F(s, n−s−1)-free and, hence, F(s, Ts)-free. On the other hand, if G contains
a forbidden subgraph from C(s, i′) with i′ · (i′ + 1) > s, and, hence, according to
Lemma 4 is not an s-plex cluster graph, then we can iteratively use Algorithm A
(Figure 3) to find a forbidden subgraph from C(s, i) with i ≤ Ts. �

To show our main result, we develop an O(s · (n + m))-time algorithm (Algo-
rithm B, see Figure 4) to find a forbidden subgraph from F(s, s). Since the
number of vertices in such a subgraph is upper-bounded by O(s), we can then
apply Algorithm A iteratively (O(s) times) to obtain a forbidden subgraph
from F(s, Ts). Overall, this approach yields linear-time for any constant s.

Lemma 6. Algorithm B (Figure 4) is correct and has running time O(s · (|V |+
|E|)).
Proof. Consider lines 1 to 3. If degG(u) ≤ s, then we can clearly find a set S ⊆ V
of s vertices such that G[NG[u] ∪ S] is connected. This graph is in C(s, i′) for
an i′ ≤ s.

In the following, we need the observation that if one of the neighboring vertices
of v is a cut-vertex, then there exists at least one vertex in G′ with degree at
most s. This can be seen as follows. Assume that x ∈ NG(v) is a cut-vertex
and let U ⊆ V denote the vertices not reachable from v in G − x. Since a
vertex w ∈ U can only be adjacent to vertices in U ∪ {x} and |U | ≤ s, we have
that degG(w) ≤ s.

According to this observation, when entering line 5 of Algorithm B, we know
that none of the vertices in NG(v) = {u1, u2, . . . , ui} is a cut-vertex. To make
use of the observation, the remaining part of the algorithm is devoted to find-
ing a set of vertices from NG(v) whose removal leads to a connected graph
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Input: G = (V, E) from C(s, i) with i > s
Output: An induced subgraph G′ ∈ C(s, i′) of G with i′ ≤ s

1 Let u = argminw∈V ′{degG(w)}
2 if degG(u) ≤ s then
3 return a connected graph induced by NG[u] and further s arbitrary vertices
4 Let v ∈ V ′ be a vertex with degG(v) = i
5 Let NG(v) = {u1, u2, . . . , ui}
6 Let K = {K1, K2, . . . , Kl} with l ≤ s

denote the connected components of G − NG[v]
7 Construct an auxiliary bipartite graph H = (WN , WK , F ) with
8 WN := {wuj | 1 ≤ j ≤ i},
9 WK := {wKq | 1 ≤ q ≤ l}, and
10 F := { {wuj , wKq} | ∃{uj , v

′} ∈ E with v′ ∈ Kq}
11 Let r := arg minq=1,...,l{degH(wKq )}
12 Let CC := {uj | wuj ∈ NH(wKr )}
13 Let Ĝ = G − (CC \ {w}) for an arbitrary vertex w ∈ CC
14 Let v′ = argminw∈V (Ĝ){degĜ(w)}
15 return a connected graph induced by NĜ[v′] and further s arbitrary vertices

Fig. 4. Algorithm B to compute in linear time a forbidden subgraph with O(s) vertices

in which one neighbor of v is a cut-vertex. To this end, one builds an auxil-
iary bipartite graph H = (WN , WK , F ) (lines 5-10). As to the running time
needed for the construction of H , note that the degree of a vertex in WN is at
most s since G − (NG(v) ∪ {v}) contains exactly s vertices and, hence, WK has
size at most s. Thus, to construct F , we can iterate over the edge set E and,
given an edge {uj, v

′} with v′ ∈ Kq, we can decide in O(s) time whether the
edge {wuj , wKq} is contained in F . Thus, the bipartite auxiliary graph H can
be constructed in O(s · (|V | + |E|)) time.

Consider lines 11 to 13. By choosing a “component vertex” wKr of mini-
mum degree, we ensure that the set CC is a minimum-cardinality set of vertices
from NG(v) separating at least one connected component in K from v. In par-
ticular, CC separates the vertices in Kr from v. Let w be an arbitrary vertex
of CC. By the deletion of all but one vertex from CC (line 13), we ensure that
the graph Ĝ = G − (CC \ {w}) is still connected and contains at least one
cut-vertex, namely w. Hence, according to the observation above, Ĝ contains a
vertex of degree at most s. Let v′ be a minimum-degree vertex of Ĝ (line 14).
As a consequence, degĜ(v′) ≤ s and we can clearly find a set S ⊆ V (Ĝ) of s

vertices such that G′ := Ĝ[NĜ[v′] ∪ S] is connected. Note that G′′ is contained
in C(s, degĜ(v′)) ⊆ F(s, s).

Altogether, the running time is O(s · (|V | + |E|)). �

Summarizing, we obtain a linear-time algorithm for finding an induced forbidden
subgraph if s is a constant.

Theorem 3. Let G = (V, E) be a graph that is not an s-plex cluster graph.
Then, a forbidden subgraph from F(s, Ts) can be found in O(s · (n + m)) time.
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Proof. Let C = (W, F ) be a connected component of G that is not an s-plex.
Let v be a vertex of minimum degree in C. Clearly, by breadth-first search
starting at v we can find a set S ⊆ W of s vertices such that G′ := G[NG[v] ∪
S] is connected. Note that G′ ∈ C(s, degG′(v)). If degG′(v) > s, then we can
apply Algorithm B (Figure 4) once to find an induced forbidden subgraph G′′

from F(s, s). In order to find a forbidden subgraph from F(s, Ts), we apply
Algorithm A (Figure 3) at most O(s) times. �

Next, we present a search tree algorithm that is based on this forbidden subgraph
characterization. To obtain an s-plex cluster graph, every forbidden subgraph
has to be destroyed via edge modifications. To this end, we apply a branching
strategy.

Theorem 4. s-Plex Editing can be solved in O((2s + �√s�)k · s · (n + m))
time.

Proof. Given an instance (G, k) of s-Plex Editing, we search in G for a for-
bidden subgraph from F(s, Ts). By Theorem 3, this can be done in O(s ·(n+m))
time. If G does not contain a subgraph from F(s, i), then G already is an s-plex
cluster graph and we are done. Otherwise, let S be a set of vertices inducing a
forbidden subgraph G[S] ∈ C(s, i′) ⊆ F(s, i), where i′ ≤ Ts. In the following,
let v denote a vertex with degG[S](v) = i′. By the definition of C(s, i′), such
a vertex must exist. We now branch into the different possibilities to destroy
the forbidden subgraph G[S] and then recursively solve the instances that are
created in the respective search tree branches.

For branching, we either insert edges incident to v or delete edges in G[S]. It
is sufficient to only consider these edge modifications since, if none of these is
performed, then G[S] remains connected and there are s vertices in G[S] that
are not adjacent to v, contradicting the s-plex (cluster graph) definition.

First, we consider edge insertions between v and vertices u ∈ S \ N [v].
Since G[S] ∈ C(s, i′) and degG[S](v) = i′, we have |S \ N [v]| = s. Therefore,
we branch into s cases, inserting a different edge in each search tree branch. The
parameter decreases by 1 in each branch.

Besides this, we consider edge deletions. Hence, in each remaining branch,
there is at least one vertex u ∈ S such that u and v are not connected, that is,
they are in different connected components of the final s-plex cluster graph. We
now show that for each u ∈ S we can create a search tree branch in which at
least one edge deletion is performed for the case that u and v are not connected
in the final cluster graph. Let Sl ⊂ S denote the vertices that have distance
exactly l to v in G[S]. We first consider the vertices in S1 (the neighbors of v
in G[S]), then the vertices in S2, and so on.

For each u ∈ S1, we create a search tree branch in which we disconnect u
and v. Clearly this means that we have to delete the edge {u, v}. To branch
on the vertices in S2, we can assume that the vertices from N [v] = {v} ∪ S1
end up in the same cluster, since we have already considered all possibilities of
removing edges between v and the vertices in S1. Therefore, when considering
the case that a vertex u ∈ S2 and v are not connected in the final cluster graph,
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we must delete all edges between u and its neighbors in S1. At least one such
edge must exist because u ∈ S2. Therefore, for each case, we create a search tree
branch in which the parameter is decreased by at least 1.

The case distinction is performed for increasing values of l, always assuming
that v and the vertices in S1 ∪ S2 ∪ . . . ∪ Sl−1 end up in the same cluster of the
final cluster graph. Hence, when considering the case that v and a vertex u ∈
Sl end up in different clusters, we create a search tree branch in which the
edges between u and its neighbors in Sl−1 are deleted, and at least one of these
edges must exist. Hence, we create |S|−1 = s+i′ ≤ s+Ts branches in which edges
are deleted. Together with the s cases in which edge insertions are performed,
we branch into 2s+ Ts cases, and in each branch, the parameter is decreased by
at least 1. Branching is performed only as long as k > 0. The search tree thus
has size O((2s + Ts)k) = O((2s + �√s�)k). Using breadth-first search, the steps
at each search tree node can be performed in O(s · (n + m)) time which results
in the claimed running time bound. �

Using Theorems 1 and 4, by interleaving the problem kernelization and the
search tree [12], we get:

Theorem 5. s-Plex Editing can be solved in O((2s + �√s�)k + n4) time.

5 Conclusion

We initiated the study of the graph modification problem s-Plex Editing. We
believe that s-Plex Editing may have practical relevance for graph-based data
clustering in a similar way as its well-studied special case Cluster Editing.
Our results lead to numerous opportunities for future research. First, from the
viewpoint of algorithm theory, we concentrated on parameterized algorithms,
leaving open the study of approximation algorithms. Second, we left unstudied
the sometimes desirable case of having a specified number of clusters to be
generated. As to applications, important issues of interest for future study would
be to deal with weighted inputs or to try to obtain faster algorithms for special
cases such as s = 2. A thorough empirical study as recently undertaken for
Cluster Editing [4] is a natural next step for future work.
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the early phase of this research.
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Abstract. Building upon the static model of Athey and Ellison [1], we
demonstrate the efficient convergence of dynamic position auctions in
the presence of consumer search. The entry of low-quality advertisers
does not slow this convergence. Our methods are extensions of those
introduced by Cary et al. [2]. The applicability of these methods in the
presence of consumer search indicates the robustness of the approach
and suggests that convergence of dynamic position auction models is
demonstrable whenever the associated static equilibrium strategies are
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1 Introduction

“Position auctions,” the mechanisms search engines use to allocate sponsored
search links, are often modeled as games in which advertisers submit bids and
then are assigned positions in descending bid order. The utility of each advertiser
then depends upon the advertiser’s bid, his per-click valuation, and the click-
through rate of his position.

Early position auction models, such as those of Aggarwal et al.[3], Edelman
et al. [4], and Varian [5] assumed positions’ click-through rates to be entirely
exogenous. New approaches have introduced the effects of consumer behavior,
as in the models of Chen and He [6] and Athey and Ellison [1]. Position auction
models that include consumer search reflect the setting of sponsored search more
accurately than do earlier models and also allow for the examination of consumer
welfare. However, these newer models have only been studied in static settings.
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By contrast, some of the earlier models of position auctions have been ex-
tended to dynamic settings. Most recently in this vein, Cary et al. [2] showed the
convergence of a dynamic formulation of the static model of Edelman et al. [4].

In Sections 2.1 and 2.2, we model a dynamic position auction in the presence
of consumer search. This model builds upon the static framework of Athey and
Ellison [1]. Then, in Sections 2.3 and 2.4, we extend the methods of Cary et al. [2]
to our framework, proving that the dynamic position auction with consumer
search converges to a unique equilibrium when advertisers play a particular
best-response bidding strategy. The contribution of this result is twofold: First,
it assures that the addition of consumer behavior does not detract from the
eventual stability of the dynamic position auction. Second, it demonstrates a
surprising robustness of the approach used by Cary et al. [2]—similar analysis
yields the convergence of position auctions in significantly different settings. In
Section 3, we discuss the extent to which this apparent robustness is structural
and indicates general facts about the convergence behavior of position auctions.

2 A Dynamic Model with Consumer Search

2.1 Underlying Framework

We consider an auction in which N advertisers bid on M < N sponsored link
positions. Each advertiser π has a quality score qπ, interpreted as the probability
of meeting an individual consumer’s need. We assume that the quality scores qπ

are drawn independently from a public, atomless distribution with support on
[0, 1]. An advertiser receives a payoff of 1 every time it meets a consumer’s
need. This assumption does not mean that the advertisers have the same per-
click valuations: the expected per-click revenue of advertiser π is qπ · 1 = qπ.
Throughout, we label the advertisers π by {1, . . . , N} so that the quality scores
qπ satisfy q1 > · · · > qN .

At all times, there is a continuum of consumers seeking to meet their needs by
searching through the sponsored link list. Consumers are assumed to be ignorant
of the positions’ dynamics, so that their beliefs are independent of the dynamics
of advertisers’ bid updating.1 Additionally, consumers are assumed to believe
that the advertisers’ bidding strategies are strictly monotone in their qualities.2

Each consumer i must pay a search cost of ci for each click on a sponsored search
link. The search costs ci are assumed to be distributed according to a public, atom-
less distribution with support on [0, 1] and CDF G. Since search is costly and con-
sumers believe the links to be sorted in order of descending quality, they search in
a top-down manner. Consumers update their predictions about advertisers’ qual-
ities in a Bayesian manner: when a website does not meet consumer i’s need, she
1 A typical consumer will only use a search engine to seek a given product once, hence

no consumer has an opportunity to learn about the positions’ dynamics.
2 This is a reasonable assumption for our purposes. Indeed, Proposition 5 of Athey

and Ellison [1] shows that the static position auction game in this framework has a
symmetric pure strategy monotone equilibrium. In our model this equilibrium the
unique equilibrium of both the static game in each round and the dynamic game.
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reduces her estimate of the lower websites’ qualities and continues searching if and
only if the expected value of clicking on the next link exceeds ci.3

Formally, an assignment of advertisers to positions is an injection

P : {1, . . . , M} ↪→ {1, . . . , N}
such that advertiser P(j) is assigned position j. We suppose that the advertisers
with quality scores qPπ1

, . . . , qPπM
are respectively assigned positions 1, . . . , M in

some assignment P of the advertisers to positions. If zPπ1
, . . . , zPπM

are Bernoulli
variables taking the value 1 with these probabilities, then a searching consumer
whose need has not been met by the advertisers in the first j ≥ 1 positions
expects that the quality of the firm in position j + 1 is

q̄Pj+1 := E(qπj+1 | zPπ1
= · · · = zPπj

= 0).

The expected probability of the advertiser in the first position meeting a con-
sumer’s need is always q̄P1 := E(qπ). All consumers can compute this value, as
the distribution of advertiser quality is assumed to be public. From these def-
initions, it is apparent that q̄Pj > q̄Pj+1 for any 1 ≤ j ≤ M . With this setup,
we may compute directly that the advertiser assigned position j will receive
(1 − qPπ1

) · · · (1 − qPπj−1
) · G(q̄Pj ) clicks.4

2.2 Auction Model and Bidding Dynamics

We assume a dynamic setting with sequential rounds of play t = 1, 2, . . .. In each
round t > 0, the search engine will allocate all its positions through a generalized
second-price auction:5 the advertiser submitting the j-th highest bid in round t
is assigned position j and is charged a per-click price pt

j equal to the (j + 1)-st
highest bid submitted in round t.6

3 Since consumers are unable to learn about the positions’ dynamics, we assume that
consumers are slightly myopic: an individual consumer will maintain her belief that
the advertisers below position j have lower qualities than do the advertisers in posi-
tions 1, . . . , j, even if she discovers while searching that the advertisers are not sorted
in order of quality.

4 See Proposition 2 of Athey and Ellison [1].
5 The exact details of the implementation of such an auction in the presence of con-

sumer search are specified by Athey and Ellison [1]. The mechanism is analogous to
a second-price ascending bid auction for the M positions.

6 Note that this is a rank-by-bid mechanism: although payment is made per-click, adver-
tisers are ranked in strict bid order. This is in contrast to rank-by-revenue mechanisms,
in which advertisers are ranked after their bids are weighted by their ads’ expected
click-through rates. We have focused on rank-by-bid mechanisms for two reasons.
First, to effectively model a dynamic rank-by-revenue mechanism, we would have to
model fluctuations in advertisers’ expected click-through rates, and click-through rate
dynamics are not well-understood from either empirical or theoretical perspectives.
Second, as examples presented by Athey and Ellison [1] illustrate, rank-by-revenue
mechanisms render equilibrium bidding behavior unclear in the presence of consumer
search, even in the static position auction setting.
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For convenience, we denote

q̄t
j := q̄P

t

j , q̄j := q̄P
∗

j ,

where Pt is the assignment of positions in round t and P∗ is the assignment of
advertisers to positions in order of descending valuation. With our assumption
that q1 ≥ · · · ≥ qN , this means that qP

∗
πj

= qj . We observe that, by construction,
q̄j ≥ q̄Pj for any assignment P and 1 ≤ j ≤ M .

We assume that each advertiser π plays a best-response strategy in each round
t > 0, submitting a bid under the assumption that all other advertisers will
repeat their bids from round t− 1 in round t.7 Under this assumption, we define
a restricted balanced bidding strategy.

Definition 1. The restricted balanced bidding (RBB) strategy is the strategy
for advertiser π which, given the bids of the other advertisers in round t,

– targets the position s∗π which maximizes the utility of advertiser π among the
positions with no higher expected click-through rate than her current posi-
tion sπ,

– chooses the bid b∗π for round t + 1 so as to satisfy the equation

(1 − qπ)G(q̄t
s∗

π
)(qπ − pt

s∗
π
) = G(q̄t

s∗
π−1)(qπ − b∗π).8 (1)

(We define G(q̄t
0) := 2G(q̄t

1), so that this strategy is well-defined in the first
position.)

The condition (1) is not ad-hoc—it arises as the local bidding condition in round
t+1 of our model when all advertisers play according to an envy-free symmetric
strictly monotone equilibrium strategy.9 Indeed, if advertiser π expects other
advertisers to repeat their bids from round t, then she must bid as in (1) if she
is to be indifferent between receiving position s∗π − 1 at price b∗π and receiving
position s∗π at price pt

s∗
π
.10

7 So that advertisers’ strategies are well-defined in the first round, we must assume a
random assignment of advertisers to positions at the beginning of the game (round 0),
with all initial bids set to 0.

8 Instead, we could require that each advertiser π updates her bidding with attention
to long-run equilibrium click-through rates, choosing b∗π to satisfy

(1 − qπ)G(q̄s∗π )(qπ − pt
s∗π ) = G(q̄s∗π−1)(qπ − b∗π).

With this bidding assumption, the proof of Theorem 1 goes through directly. In
this case, the assumption that consumers always search in a top-down manner is
unnecessary, as this search behavior arises endogenously.

9 Locally envy-free equilibria, introduced independently by Varian [5] and Edelman
et al. [4], are those in which an advertiser cannot improve her payoff by exchanging
bids with the advertiser assigned the position directly above her. The focus on these
particular equilibria and the associated envy-free bidding strategies is common within
the sponsored search literature.

10 Recall that pt
s∗π is the price of position s∗π in round t + 1 if all advertisers other than

π repeat their bids from round t.
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The requirement that advertisers target only positions with no higher ex-
pected click-through rate than their current positions is less natural. This is a
technical condition which is necessary in order to obtain convergence in the syn-
chronous bidding model. As we discuss in Section 2.4, our convergence results
for synchronous bidding under RBB imply that convergence obtains in an asyn-
chronous bidding model even when this technical condition is lifted. Therefore,
this condition does not appear overly confining.

Our Definition 1 is analogous to that of the restricted balanced bidding strat-
egy which Cary et al. [2] specify for the Edelman et al. [4] auction mechanism.
The key differences between this strategy and that of Cary et al. [2] appear in
equation (1): the click-through rate factors in equation (1) are round-dependent,
and an additional factor of 1 − qπ arises from the consumer search process.11

2.3 Convergence of the Auction

At the unique fixed point of the RBB strategy, the advertisers choose their bids
according to the recursive strategy presented in Proposition 5 of Athey and
Ellison [1].12 That is, the bids at the fixed point are given by

bπj =

{
qπj − G(q̄j)

G(q̄j−1) (1 − qπj )(qπj − bπj+1) 1 < j ≤ M,

qπj M < j ≤ N,
(2)

where the j-th highest bid bπj is submitted by advertiser πj . Our main result is
the convergence of the dynamic position auction to this fixed point.

Theorem 1. In a synchronous model of dynamic bidding in which each adver-
tiser bids every round, the RBB strategy always converges to its fixed point within
finitely many rounds.

This result is analogous to the convergence result of Cary et al. [2] for the
auction mechanism of Edelman et al. [4]. Our proof follows the approach of
Cary et al. [2]. However, the addition of consumer search greatly increases the
technical difficulty of the argument. Consequently, we deliver slightly weaker
bounds on convergence time than do Cary et al. [2].

Proof. We denote γt
j(q) := (1 − q) G(q̄t

j)
G(q̄t

j−1) and let

γ∗(q) := (1 − q)max
P

[
max
j>0

(
G(q̄Pj )

G(q̄Pj−1)

)]
, γ∗∗ := max

1≤π≤N
γ∗(qπ).

11 Since consumers search in a top-down manner, advertiser π expects to lose a fraction
of clicks equal to 1 − qπ when she switches from position s∗π − 1 to position s∗π, as
1− qπ is the expected fraction of consumers meeting their needs at position s∗π − 1.

Additionally, once consumer search is included, the computation of the position
s∗π is different from that of Cary et al. [2]. However, this fact does not materially
affect our arguments.

12 This is a direct consequence of the proof of Proposition 5 of Athey and Ellison [1],
which shows that these bids satisfy the condition (1).
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We observe that, by construction,

γt
j(qπ) ≤ γ∗(qπ) ≤ γ∗∗ < 1

for any t > 0, 1 ≤ j ≤ M , and 1 ≤ π ≤ N .13

We begin with two simple lemmata which are respectively analogous (and
proven similarly) to Lemma 1 and Lemma 2 of Cary et al. [2].

Lemma 1. Advertiser π prefers to target position j over position j−1 in round
t + 1 if and only if (1 − γt

j(qπ))qπ + γt
j(qπ)pt

j < pt
j−1.

Proof. This follows from the fact that advertiser π prefers to target position j
over position j − 1 if and only if

(1 − qπ)G(q̄t
j)(qπ − pt

j) > G(q̄t
j−1)(qπ − pt

j−1),

upon algebraic manipulation.

Lemma 2. At every round t such that t > t1 := 2 + logγ∗∗((1 − γ∗∗)(qM −
qM+1)/qM+1), we have {

bπ > qM+1 π < M + 1,

bπ = qπ π ≥ M + 1,

where bπ is the bid of advertiser 1 ≤ π ≤ N .

Proof. If b is the (M + 1)-st highest bid, then b ≤ qM+1. If b < qM+1 in some
round, then in the next round any advertiser π ∈ {1, 2, . . . , M + 1} will either
bid b′π = qπ or target some position j ∈ {1, . . . , M} with bid

b′π := (1 − γt
j(qπ))qπ + γt

j(qπ)pj

≥ (1 − γt
j(qπ))qM+1 + γt

j(qπ)b

= b + (1 − γt
j(qπ))(qM+1 − b)

≥ b + (1 − γ∗∗)(qM+1 − b).

In both of these cases, it is clear that qM+1 − b′π ≤ γ∗∗(qM+1 − b).
It follows that we will have

qM+1 − b < (1 − γ∗∗)(qM − qM+1)

within at most r ≤ logγ∗∗((1−γ∗∗)(qM−qM+1)/qM+1) rounds. Then, the bidders
π ∈ {1, . . . , M} will bid at least

(1 − γt
j(qπ))qπ + γt

j(qπ)pj ≥ (1 − γt
j(qπ))qπ + γt

j(qπ)b

≥ b + (1 − γt
j(qπ))(qπ − b)

> b + (1 − γ∗∗)(qM − qM+1) > qM+1

in round r + 1. In round r + 2, advertiser M + 1 will bid qM+1 while advertisers
π ∈ {1, . . . , M} bid above qM+1.
13 The last of these inequalities follows from the fact that q̄Pj > q̄Pj+1 for any P and

1 ≤ j ≤ M , since then
G(q̄Pj )

G(q̄Pj−1)
< 1.
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Lemma 2 proves that, within finitely many rounds, the set of advertisers com-
peting for the M positions will stabilize and that this set will be the collection
of advertisers of maximal quality, {1, . . . , M}. Furthermore, at this time, the
N − M advertisers {M + 1, . . . , N} will bid their values in every round. Thus,
we may assume that these rounds have already elapsed; all that remains is to
show that the bids for the M actual positions eventually converge to the desired
fixed point. Since the fixed point is unique, it suffices to prove convergence.

For any j ∈ [0, M ], we say that the advertisers assigned positions [j + 1, M ]
are stable if their allocation is in order of decreasing quality and their prices
satisfy equation (1).14 If all M positions are stable, then it is clear that we have
reached the fixed point of the RBB strategy.

We suppose that, at some round t > t1, the set S = [s + 1, M ] of stable
positions is not the full set [1, M ]. We let P denote the set of advertisers in
positions [1, s] and denote the minimum bid of these advertisers by b. We define
a partial order � on stable sets: S′ � S if either S � S′ or if the advertiser of
minimum quality in (S ∪ S′) \ (S′ ∩ S) belongs to S′.

In round t + 1, all advertisers in S repeat their bids. We let the new lowest
bid of advertisers in P be b′π, bid by advertiser π. We must consider three cases:

Case 1: b′π < pt
s. We let j be the position targeted by π. By Lemma 1 and the

definition of RBB, we have pt
j < (1 − γt

j(qπ))qπ + γt
j(qπ)pt

j = b′π < pt
j−1.

We denote by πj ∈ S the advertiser who assigned position j in round t. By
the stability of S, we have pt

j−1 = (1 − γt
j(qπj ))qπj + γt

j(qπj )pt
j . Then, we have

pt
j−1 = (1 − γt

j(qπj ))qπj + γt
j(qπj )p

t
j > (1 − γt

j(qπ))qπ + γt
j(qπ)pt

j ,

from which it follows that

(qπj − qπ)

(
1 +

G(q̄t
j)

G(q̄t
j−1)

(
(qπj − pt

j) + qπ − 1
))

> 0. (3)

Since advertiser πj is assigned position j in round t, we know that qπj ≥ pt
j .

Furthermore, 0 <
G(q̄t

j)
G(q̄t

j−1) ≤ 1, so

Gj

Gj−1

(
(qπj − pt

j) + qπ − 1
)

> −1.

It follows that (3) holds if and only if qπj > qπ. Likewise, we find that qπj−1 < qπ.
Thus, S′ := {π′ ∈ S : qπ′ < qπ} ∪ {π} is stable and S′ � S.

Case 2: π targets position s. Then π is allocated position s and S ∪ {π} � S is
stable.

14 This is analogous to the definition of stability given by Cary et al. [2].



Dynamic Position Auctions with Consumer Search 247

Case 3: π targets some position j ≤ s − 1. Then, S remains stable and the
minimum bid of advertisers in P has increased. We will show that this case may
occur only finitely many times between occurrences of Cases 1 and 2.

As in Section 2.1, we respectively denote the qualities of the advertisers in
positions 1, . . . , M by qπ1 , . . . , qπM . We then let

ε :=
G(q̄M )
2G(q̄1)

(1 − γ∗∗) min
π �=π′

|qπ − qπ′ |
⎛
⎝ M∏

j=1

(1 − qj)

⎞
⎠

and let x := log1/γ∗∗((q1 − qM+1)/ε). We will see that at most x instances of
Case 3 may occur between instances of Cases 1 and 2.
Lemma 3. If ps−1 > qπ − ε then advertiser π prefers position s to any position
j < s.

Proof. We have

qπ − ps = (1 − γt
s+1(qπs+1))(qπ − qπs+1) + γt

s+1(qπs+1)ps+1

≥ (1 − γ∗∗) min
π �=π′

|qπ − qπ′ |. (4)

The ratio of the expected utility of position k < s to that of position s is less
than

G(q̄t
k)(qπ − ps−1)(∏s

j=k(1 − qπj )
)

G(q̄t
s)(qπ − ps)

≤ ε
G(q̄t

k)(∏s
j=k(1 − qπj )

)
G(q̄t

s)(qπ − ps)

≤ ε
G(q̄1)(∏s

j=k(1 − qπj )
)

G(q̄t
s)(qπ − ps)

≤ 1,

where the last inequality follows from (4), the fact that G(q̄t
s) ≥ G(q̄M ) (since

t > t1), and the definition of ε.

Now, we suppose that Case 3 occurs for x consecutive rounds. We let π be the
advertiser in P of minimal quality qπ and denote by b(t′) the minimal bid of
advertisers in P after t′ consecutive rounds of Case 3. If π′ ∈ P submits the
minimal bid b(t′+1) in the next round, then

b(t′+1) ≥ (1 − γ∗(qπ′))qπ′ + γ∗(qπ′)b(t′)

≥ (1 − γ∗(qπ′))qπ + γ∗(qπ′)b(t′)

= qπ − γ∗(qπ′)(qπ − b(t′))

≥ qπ − γ∗∗(qπ − b(t′)).

After x consecutive rounds of Case 3, then, we have

b(x) ≥ qπ − (γ∗∗)x(qπ − b(0)).

Hence, we have that b(x) ≥ qπ − ε. It follows from Lemma 3 that π will target
position s in the next round, so the next round is an instance of Case 2. Thus, we
have shown that Case 3 may occur only finitely many times between instances
of Cases 1 and 2.
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2.4 Remarks

In Theorem 1, the number of rounds until convergence is constant in N , holding
max1≤π≤N qπ fixed. Thus, the entry of low-quality advertisers will not slow the
auction’s convergence.

Following the analysis of Cary et al. [2], it is possible to extend this result
further, proving an analogous convergence result for an asynchronous auction
game in a less restricted strategy space.15

Definition 2. The balanced bidding (BB) strategy is the strategy for advertiser
π which, given the bids of the other advertisers in round t,

– targets the position s∗π which maximizes the utility of advertiser π,
– chooses the bid b∗π for round t + 1 so as to satisfy the equation

(1 − qπ)G(q̄t
s∗

π
)(qπ − pt

s∗
π
) = G(q̄t

s∗
π−1)(qπ − b∗π).16 (5)

(As in RBB, we define G(q̄t
0) := 2G(q̄t

1), so that this strategy is well-defined
in the first position.)

The BB strategy is a natural envy-free bidding strategy. Unlike RBB, each ad-
vertiser π playing BB may target any position. But like RBB, the bid condition
(5) arises as the advertisers’ envy-free condition in a symmetric strictly mono-
tone equilibrium. As in RBB, the bid profile (2) is a unique fixed point of the
BB strategy.17

Our next result, which follows from the proof of Theorem 1, shows that the dy-
namic position auction converges under BB in an asynchronous bidding model.18

The bound on convergence time has the same form as that of Theorem 2 of Cary
et al. [2].

Theorem 2. In the asynchronous model in which advertisers bid in a (uni-
formly) random order and follow a balanced bidding strategy, the system con-
verges to the bid profile (2) with probability 1 and expected convergence time

O
(
t1(N log M) + N log N + M2M(1+x)

)
.

We omit the proof of this result, as it follows directly from the analysis used by
Cary et al. [2] in the proof of their Theorem 2.

15 The asynchronous bidding model seems more realistic than does synchronous bid-
ding, since in reality advertisers may update their sponsored search bids at any
time.

16 As before, the result goes through if instead each advertiser π updates her bidding
with attention to long-run equilibrium click-through rates.

17 This follows directly from Proposition 5 of Athey and Ellison [1].
18 This model differs from that of Section 2 only in that advertisers update their bids

asynchronously, bidding in a (uniformly) random order.



Dynamic Position Auctions with Consumer Search 249

3 Discussion and Conclusion

We have shown the convergence of a dynamic position auction in the presence
of consumer search. Our approach closely follows the Cary et al. [2] analysis of
the Edelman et al. [4] position auction model. The apparent robustness of the
Cary et al. [2] methods to multiple position auction models is surprising, espe-
cially since these models differ substantially in their treatments of consumers.
We believe that this robustness is structural, arising not only from the model
frameworks but also from facts about the behavior of position auctions.

To clarify our observations, we discuss the three key steps of the Cary et al. [2]
method for proving position auction convergence:

1. restriction of the strategy space (as in Definition 1),
2. demonstration that the advertisers with the lowest valuations must eventu-

ally bid their values (as in Lemma 2),
3. analysis of the late-stage behavior of the advertisers who win positions in

equilibrium (as in Cases 1–3).

Step 1 is required in order to ensure that the bidding equilibrium in each
stage is uniquely selected; an assumption of this form is present in most game-
theoretic models of position auctions. Additional restriction may be required in
the dynamic setting, in order to render the analysis of Step 3 tractable.19

Since it is always weakly dominant for advertisers to bid their values, the
advertisers who actually receive positions in any position auction should be
those with the highest valuations among bidders. We therefore expect Step 2 to
be possible in most position auction settings, irrespective of the specific model
framework. Notably, an analogue of Lemma 2 should hold even if the equilibrium
bidding strategy is not strictly monotone in advertisers’ valuations.20

The most complex analysis arises in Step 3, which proves the convergence
of the auction amongst the advertisers with the largest valuations. The crux of
this argument is the demonstration that the advertisers who win positions in
equilibrium do not bid over their equilibrium bid “too often.”21 Although this
cannot always be ensured,22 it seems likely to occur—for a sufficiently restricted
strategy space—whenever the equilibrium strategy is monotone.

19 Edelman et al. [4] and Athey and Ellison [1] directly study the “balanced bid-
ding” strategies appropriate to their models. However, both Cary et al. [2] and we
have found it necessary to require additional restrictions in the synchronous bidding
model, as convergence may not arise when balanced bidding is used in this model.
As the name suggests, restricted balanced bidding is a substrategy of the balanced
bidding strategy. Since balanced bidding leads to a unique equilibrium, these two
strategies are equivalent in equilibrium.

20 Of course, the difficulty of actually proving such a result will depend upon modeling
decisions.

21 This is encapsulated in two parts of our proof: Case 1 and Lemma 3.
22 For example, Cary et al. [2] and Bu et al. [7] have demonstrated how “bid cycling,” in

which advertisers bid a sequence of values repeatedly, may arise in position auctions.
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The conditions we have suggested for Steps 2 and 3 hold in many position auc-
tion settings.23 Consequently, convergence should be demonstrable in dynamic
position auctions with sufficiently well-behaved static equilibrium strategies.
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Abstract. We consider the problem of optimizing a nonlinear objec-
tive function over a weighted independence system presented by a linear
optimization oracle. We provide a polynomial-time algorithm that deter-
mines an r-best solution for nonlinear functions of the total weight of an
independent set, where r is a constant depending on certain Frobenius
numbers of the weights and is independent of the size of the ground set.
In contrast, we show that finding an optimal (0-best) solution requires
exponential time even in a very special case of the problem.
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1 Introduction

An independence system is a nonempty set of vectors S ⊆ {0, 1}n with the
property that x ∈ {0, 1}n , x ≤ y ∈ S implies x ∈ S . The general nonlin-
ear optimization problem over a multiply-weighted independence system is as
follows.

Nonlinear optimization over a multiply-weighted independence sys-
tem. Given independence system S ⊆ {0, 1}n , weight vectors w1, . . . , wd ∈ Zn ,
and function f : Zd → R , find x ∈ S minimizing the objective

f(w1x, . . . , wdx) = f

⎛
⎝ n∑

j=1

w1
j xj , . . . ,

n∑
j=1

wd
j xj

⎞
⎠ .

The representation of the objective in the above composite form has several
advantages. First, for d > 1 , it can naturally be interpreted as multi-criteria opti-
mization: the d given weight vectors w1, . . . , wd represent d different
criteria, where the value of x ∈ S under criterion i is its i-th total weight
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wix =
∑n

j=1 wi
jxj ; and the objective is to minimize the “balancing” f(w1x, . . . ,

wdx) of the d given criteria by the given function f . Second, it allows us to clas-
sify nonlinear optimization problems into a hierarchy of increasing generality
and complexity: at the bottom lies standard linear optimization, recovered with
d = 1 and f the identity on Z ; and at the top lies the problem of minimizing an
arbitrary function, which is typically intractable, arising with d = n and wi = 1i

the i-th standard unit vector in Zn for all i .
The computational complexity of the problem depends on the number d of

weight vectors, on the weights wi
j , on the type of function f and its presentation,

and on the type of independence system S and its presentation. For example,
when S is a matroid, the problem can be solved in polynomial time for any fixed
d , any {0, 1, . . . , p}-valued weights wi

j with p fixed, and any function f presented
by a comparison oracle, even when S is presented by a mere membership oracle,
see [1]. Also, when S consists of the matchings in a given bipartite graph G ,
the problem can be solved in polynomial time for any fixed d , any weights wi

j

presented in unary, and any concave function f , see [2]; but on the other hand,
for convex f , already with fixed d = 2 and {0, 1}-valued weights wi

j , it includes
as a special case the notorious exact matching problem, the complexity of which
is long open [5].

In view of the difficulty of the problem already for d = 2 , in this article
we take a first step and concentrate on nonlinear optimization over a (singly)
weighted independence system, that is, with d = 1 , single weight vector w =
(w1, . . . , wn) ∈ Zn , and univariate function f : Z → R . The function f can be
arbitrary and is presented by a comparison oracle that, queried on x, y ∈ Z ,
asserts whether or not f(x) ≤ f(y) . The weights wj take on values in a p-tuple
a = (a1, . . . , ap) of positive integers. Without loss of generality we assume that
a = (a1, . . . , ap) is primitive, by which we mean that the ai are distinct positive
integers having greatest common divisor gcd(a) := gcd(a1, . . . , ap) that is equal
to 1 . The independence system S is presented by a linear-optimization oracle
that, queried on vector v ∈ Zn , returns an element x ∈ S that maximizes
the linear function vx =

∑n
j=1 vjxj . It turns out that solving this problem to

optimality may require exponential time (see Theorem 5), and so we settle for
an approximate solution in the following sense, that is interesting in its own
right. For a nonnegative integer r , we say that x∗ ∈ S is an r-best solution to
the optimization problem over S if there are at most r better objective values
attained by feasible solutions. In particular, a 0-best solution is optimal. Recall
that the Frobenius number of a primitive a is the largest integer F(a) that is
not expressible as a nonnegative integer combination of the ai . We prove the
following theorem.

Theorem 1. For every primitive p-tuple a = (a1, . . . , ap) , there is a constant
r(a) and an algorithm that, given any independence system S ⊆ {0, 1}n presented
by a linear-optimization oracle, weight vector w ∈ {a1, . . . , ap}n , and function
f : Z → R presented by a comparison oracle, provides an r(a)-best solution to the
nonlinear problem min{f(wx) : x ∈ S} , in time polynomial in n . Moreover:
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1. If ai divides ai+1 for i = 1, . . . , p−1 , then the algorithm provides an optimal
solution.

2. For p = 2 , that is, for a = (a1, a2) , the algorithm provide an F(a)-best
solution.

In fact, we give an explicit upper bound on r(a) in terms of the Frobenius
numbers of certain subtuples derived from a .

Because F (2, 3) = 1 , Theorem 1 (Part 2) assures us that we can efficiently
compute a 1-best solution in that case. It is natural to wonder then whether, in
this case, an optimal (i.e., 0-best) solution can be calculated in polynomial time.
The next result indicates that this cannot be done.

Theorem 2. There is no polynomial time algorithm for computing an optimal
(i.e., 0-best) solution of the nonlinear optimization problem min{f(wx) : x ∈ S}
over an independence system presented by a linear optimization oracle with f
presented by a comparison oracle and weight vector w ∈ {2, 3}n.

The next sections gradually develop the various necessary ingredients used to
establish our main results. §2 sets some notation. §3 discusses a näıve solution
strategy that does not directly lead to a good approximation, but is a basic
building block that is refined and repeatedly used later on. §4 describes a way
of partitioning an independence system into suitable pieces, on each of which a
suitable refinement of the näıve strategy will be applied separately. §5 provides
some properties of monoids and Frobenius numbers that will allows us to show
that the refined näıve strategy applied to each piece gives a good approxima-
tion within that piece. §6 combines all ingredients developed in §3–5, provides
a bound on the approximation quality r(a) , and provides the algorithm estab-
lishing Theorem 1. §7 demonstrates that finding an optimal solution is provably
intractable, proving a refined version of Theorem 2. §8 concludes with some final
remarks and questions. Due to lack of space, some of the proofs are omitted
here. More details can be found in our Oberwolfach preprint [4].

2 Some Notation

In this section we provide some notation that will be used throughout the article.
Some more specific notation will be introduced in later sections. We denote by
R , R+ , Z and Z+ , the reals, nonnegative reals, integers and nonnegative
integers, respectively. For a positive integer n, we let N := {1, . . . , n} . The j-th
standard unit vector in Rn is denoted by 1j . The support of x ∈ Rn is the index
set supp(x) := {j : xj �= 0} ⊆ N of nonzero entries of x . The indicator of a
subset J ⊆ N is the vector 1J :=

∑
j∈J 1j ∈ {0, 1}n , so that supp(1J) = J .

The positive and negative parts of a vector x ∈ Rn are denoted, respectively,
by x+, x− ∈ Rn

+ , and defined by x+
i := max{xi, 0} and x−

i := −min{xi, 0} for
i = 1, . . . , n . So, x = x+ − x− , and x+

i x−
i = 0 for i = 1, . . . , n .

Unless otherwise specified, x denotes an element of {0, 1}n and λ, μ, τ, ν denote
elements of Z

p
+ . Throughout, a = (a1, . . . , ap) is a primitive p-tuple, by which we
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mean that the ai are distinct positive integers having greatest common divisor
gcd(a) := gcd(a1, . . . , ap) equal to 1 . We will be working with weights taking
values in a , that is, vectors w ∈ {a1, . . . , ap}n . With such a weight vector w
being clear from the context, we let Ni := {j ∈ N : wj = ai} for i = 1, . . . , p ,
so that N =

⊎p
i=1 Ni . For x ∈ {0, 1}n we let λi(x) := |supp(x) ∩ Ni| for

i = 1, . . . , p , and λ(x) := (λ1(x), . . . , λp(x)) , so that wx = λ(x)a . For integers
z, s ∈ Z and a set of integers Z ⊆ Z , we define z + sZ := {z + sx : x ∈ Z} .

3 A Näıve Strategy

Consider a set S ⊆ {0, 1}n , weight vector w ∈ {a1, . . . , ap}n , and function
f : Z → R presented by a comparison oracle. Define the image of S under w to
be the set of values wx taken by elements of S ,

w · S :=
{
wx =

∑n
j=1 wjxj : x ∈ S

}
⊆ Z+ .

As explained in the introduction, for a nonnegative integer r , we say that x∗ ∈ S
is an r-best solution if there are at most r better objective values attained by
feasible solutions. Formally, x∗ ∈ S is an r-best solution if

|{f(wx) : f(wx) < f(wx∗) , x ∈ S}| ≤ r .

We point out the following simple observation.

Proposition 1. If f is given by a comparison oracle, then a necessary condition
for any algorithm to find an r-best solution to the problem min{f(wx) : x ∈ S}
is that it computes all but at most r values of the image w · S of S under w .

Note that this necessary condition is also sufficient for computing the weight wx∗

of an r-best solution, but not for computing an actual r-best solution x∗ ∈ S ,
which may be harder.

Any point x̄ attaining max{wx : x ∈ S} provides an approximation of the
image given by

{wx : x ≤ x̄} ⊆ w · S ⊆ {0, 1, . . . , wx̄} . (1)

This suggests the following natural näıve strategy for finding an approximate
solution to the optimization problem over an independence system S that is
presented by a linear-optimization oracle.

Näıve Strategy

input independence system S ⊆ {0, 1}n presented by a
linear-optimization oracle, f : Z → R presented by a comparison oracle,
and w ∈ {a1, . . . , ap}n ;
obtain x̄ attaining max{wx : x ∈ S} using the linear-optimization
oracle for S ;
output x∗ as one attaining min{f(wx) : x ≤ x̄} using the algorithm of
Lemma 1 below .
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Unfortunately, as the next example shows, the number of values of the image
that are missing from the approximating set on the left-hand side of equation (1)
cannot generally be bounded by any constant. So by Proposition 1, this strategy
cannot be used as is to obtain a provably good approximation.

Example 1. Let a := (1, 2) , n := 4m , y :=
∑2m

i=1 1i , z :=
∑4m

i=2m+1 1i , and
w := y + 2z , that is,

y = (1, . . . , 1, 0, . . . , 0) , z = (0, . . . , 0, 1, . . . , 1) , w = (1, . . . , 1, 2, . . . , 2) ,

define f on Z by

f(k) :=
{

k , k odd;
2m , k even,

and let S be the independence system

S := {x ∈ {0, 1}n : x ≤ y} ∪ {x ∈ {0, 1}n : x ≤ z} .

Then the unique optimal solution of the linear-objective problem max{wx : x ∈
S} is x̄ := z , with wx̄ = 4m , and therefore

{wx : x ≤ x̄} = {2i : i = 0, 1, . . . , 2m} , and
w · S = {i : i = 0, 1, . . . , 2m} ∪ {2i : i = 0, 1, . . . , 2m} .

So all m odd values (i.e., 1, 3, . . . , 2m − 1) in the image w · S are missing
from the approximating set {wx : x ≤ x̄} on the left-hand side of (1), and
x∗ attaining min{f(wx) : x ≤ x̄} output by the above strategy has ob-
jective value f(wx∗) = 2m , while there are m = n

4 better objective values
(i.e., 1, 3, . . . , 2m − 1) attainable by feasible points (e.g.,

∑k
i=1 1i , for k =

1, 3, . . . , 2m − 1).

Nonetheless, a more sophisticated refinement of the näıve strategy, applied re-
peatedly to several suitably chosen subsets of S rather than S itself, will lead
to a good approximation. In the next two sections, we develop the necessary
ingredients that enable us to implement such a refinement of the näıve strategy
and to prove a guarantee on the quality of the approximation it provides. Before
proceeding to the next section, we note that the näıve strategy can be efficiently
implemented as follows.

Lemma 1. For every fixed p-tuple a , there is a polynomial-time algorithm that,
given univariate function f : Z → R presented by a comparison oracle, weight
vector w ∈ {a1, . . . , ap}n , and x̄ ∈ {0, 1}n , solves

min{f(wx) : x ≤ x̄} .
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Proof. Consider the following algorithm:

input function f : Z → R presented by a comparison oracle,
w ∈ {a1, . . . , ap}n and x̄ ∈ {0, 1}n ;
let Ni := {j : wj = ai} and τi := λi(x̄) = |supp(x̄) ∩ Ni|, i = 1, . . . , p ;
for every choice of ν = (ν1, . . . , νp) ≤ (τ1, . . . , τp) = τ do

determine some xν ≤ x̄ with λi(xν) = |supp(xν ) ∩ Ni| = νi,
i = 1, . . . , p ;

end
output x∗ as one minimizing f(wx) among the xν by using the
comparison oracle of f .

Since the value wx depends only on the cardinalities |supp(x)∩Ni|, i = 1, . . . , p ,
it is clear that

{wx : x ≤ x̄} = {wxν : ν ≤ τ} .

Clearly, for each choice ν ≤ τ it is easy to determine some xν ≤ x̄ by zeroing out
suitable entries of x̄ . The number of choices ν ≤ τ and hence of loop iterations
and comparison-oracle queries of f to determine x∗ is

p∏
i=1

(τi + 1) ≤ (n + 1)p . �


4 Partitions of Independence Systems

Define the face of S ⊆ {0, 1}n determined by two disjoint subsets L, U ⊆ N =
{1, . . . , n} to be

SU
L := {x ∈ S : xj = 0 for j ∈ L , xj = 1 for j ∈ U} .

Our first simple lemma reduces linear optimization over faces of S to linear
optimization over S . We omit the proof which can be found in our preprint [4].

Lemma 2. Consider any nonempty set S ⊆ {0, 1}n , weight vector w ∈ Zn ,
and disjoint subsets L, U ⊆ N . Let α := 1 + 2n max |wj | , let 1L,1U ∈ {0, 1}n

be the indicators of L, U respectively, and let

v := max {(w + α(1U − 1L))x : x ∈ S} − |U |α
= max

{
wx − α

(∑
j∈U (1 − xj) +

∑
j∈L xj

)
: x ∈ S

}
. (2)

Then either v > − 1
2α, in which case max{wx : x ∈ SU

L } = v and the set of
maximizers of wx over SU

L is equal to the set of maximizers of the program (2),
or v < − 1

2α , in which case SU
L is empty.

Let S ⊆ {0, 1}n and w ∈ {a1, . . . , ap}n be arbitrary, and let Ni := {j ∈
N : wj = ai} as usual. As usual, for x ∈ S , let λi(x) := |supp(x) ∩ Ni|
for each i . For p-tuples μ = (μ1, . . . , μp) and λ = (λ1, . . . , λp) in Z

p
+ with

μ ≤ λ , define
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Sλ
μ :=

{
x ∈ S : λi(x) = μi , if μi < λi ,

λi(x) ≥ μi , if μi = λi .

}
. (3)

The proof of the following statement is easy and omitted.

Proposition 2. Let S ⊆ {0, 1}n be arbitrary. Then every λ ∈ Z
p
+ induces a

partition of S given by
S =

⊎
μ≤λ

Sλ
μ .

Lemma 3. For all fixed p-tuples a and λ ∈ Z
p
+ , there is a polynomial-time algo-

rithm that, given any independence system S presented by a linear-optimization
oracle, w ∈ {a1, . . . , ap}n , and μ ∈ Z

p
+ with μ ≤ λ , solves

max
{
wx : x ∈ Sλ

μ

}
.

Proof. Consider the following algorithm:

input independence system S ⊆ {0, 1}n presented by a
linear-optimization oracle , w ∈ {a1, . . . , ap}n , and μ ≤ λ ;
let I := {i : μi < λi} and Ni := {j ∈ N : wj = ai}, i = 1, . . . , p ;
for every Si ⊆ Ni with |Si| = μi, i = 1, . . . , p, if any, do

let L :=
⋃

i∈I (Ni \ Si) and U :=
⋃p

i=1 Si ;
find by the algorithm of Lemma 2 an x(S1, . . . , Sp) attaining
max{wx : x ∈ SU

L } if any;
end
output x∗ as one maximizing wx among all of the x(S1, . . . , Sp) (if any)
found in the loop above .

It is clear that Sλ
μ is the union of the SU

L over all choices S1, . . . , Sp as above, and
therefore x∗ is indeed a maximizer of wx over Sλ

μ . The number of such choices
and hence of loop iterations is

p∏
i=1

(|Ni|
μi

)
≤

p∏
i=1

nμi ≤
p∏

i=1

nλi ,

which is polynomial because λ is fixed. In each iteration, we find x(S1, . . . , Sp)
maximizing wx over SU

L or detect SU
L = ∅ by applying the algorithm of Lemma

2 using a single query of the linear-optimization oracle for S . �


We will later show that, for a suitable choice of λ , we can guarantee that, for
every block Sλ

μ of the partition of S induced by λ , the näıve strategy applied to
Sλ

μ does give a good solution, with only a constant number of better objective
values obtainable by solutions within Sλ

μ . For this, we proceed next to take a
closer look at the monoid generated by a p-tuple a and at suitable restrictions
of this monoid.
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5 Monoids and Frobenius Numbers

Recall that a p-tuple a = (a1, . . . , ap) is primitive if the ai are distinct positive
integers having greatest common divisor gcd(a) = gcd(a1, . . . , ap) is 1 . For
p = 1 , the only primitive a = (a1) is the one with a1 = 1 . The monoid of
a = (a1, . . . , ap) is the set of nonnegative integer combinations of its entries,

M(a) =
{
μa =

∑p
i=1 μiai : μ ∈ Z

p
+
}

.

The gap set of a is the set G(a) := Z+ \ M(a) and is well known to be finite
[3]. If all ai ≥ 2 , then G(a) is nonempty, and its maximum element is known as
the Frobenius number of a , and will be denoted by F(a) := maxG(a) . If some
ai = 1 , then G(a) = ∅ , in which case we define F(a) := 0 by convention. Also,
we let F(a) := 0 by convention for the empty p-tuple a = () with p = 0 .

Example 2. If a = (3, 5) then the gap set is G(a) = {1, 2, 4, 7} , and the Frobenius
number is F(a) = 7 .

Classical results of Schur and Sylvester, respectively, assert that for all p ≥ 2 and
all a = (a1, . . . , ap) with each ai ≥ 2 , the Frobenius number obeys the upper
bound

F(a) + 1 ≤ min {(ai − 1)(aj − 1) : 1 ≤ i < j ≤ p} , (4)

with equality F(a)+1 = (a1−1)(a2−1) holding for p = 2 . See [3] and references
therein for proofs.

Define the restriction of M(a) by λ ∈ Z
p
+ to be the following subset of M(a) :

M(a, λ) := {μa : μ ∈ Z
p
+ , μ ≤ λ} .

We start with two simple facts, the proofs of which are omitted.

Proposition 3. For every λ ∈ Z
p
+ , M(a, λ) is symmetric on {0, 1, . . . , λa} ,

that is, we have that g ∈ M(a, λ) if and only if λa − g ∈ M(a, λ) .

Recall that for z, s ∈ Z and Z ⊆ Z , we let z + sZ := {z + sx : x ∈ Z} .

Proposition 4. For every λ ∈ Z
p
+ , we have

M(a, λ) ⊆ {0, 1, . . . , λa} \ (G(a) ∪ (λa − G(a)) ) . (5)

Call λ ∈ Z
p
+ saturated for a if (5) holds for λ with equality. In particular, if some

ai = 1 , then λ saturated for a implies M(a, λ) = {0, 1, . . . , λa} .
Example 2, continued. For a = (3, 5) and say λ = (3, 4) , we have λa = 29, and it
can be easily checked that there are two values, namely 12 = 4 ·3+0 ·5 and 17 =
4·3+1·5 , that are not in M(a, λ) but are in {0, 1, . . . , λa}\(G(a) ∪ (λa − G(a)) ) .
Hence, in this case λ is not saturated for a .

Let max(a) := max{a1, . . . , ap} . Call a = (a1, . . . , ap) divisible if ai divides
ai+1 for i = 1, . . . p − 1 . The following theorem asserts that, for any fixed
primitive a , every (component-wise) sufficiently large p-tuple λ is saturated.
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Theorem 3. Let a = (a1, . . . , ap) be any primitive p-tuple. Then the following
statements hold:

1. Every λ = (λ1, . . . , λp) satisfying λi ≥ max(a) for i = 1, . . . , p is saturated
for a .

2. For divisible a , every λ = (λ1, . . . , λp) satisfying λi ≥ ai+1
ai

− 1 for i =
1, . . . , p − 1 is saturated for a .

Proof. We provide only the proof of Part 2. The proof of Part 1 which is some-
what lengthy and tedious is omitted and can be found in our preprint [4].

To prove Part 2, we begin by using induction on p . For p = 1 , we have
a1 = 1 , and every λ = (λ1) is saturated because every 0 ≤ v ≤ λa = λ1 satisfies
v = μa = μ1 for μ ≤ λ given by μ = (μ1) with μ1 = v .

Next consider p > 1 . We use induction on λp . Suppose first that λp = 0 .
Let a′ := (a1, . . . , ap−1) and λ′ := (λ1, . . . , λp−1) . Consider any value 0 ≤
v ≤ λa = λ′a′ . Since λ′ is saturated by induction on p , there exists μ′ ≤ λ′

with v = μ′a′ . Then, μ := (μ′, 0) ≤ λ and v = μa . So λ is also saturated.
Next, consider λp > 0 . Let τ := (λ1, . . . , λp−1, λp − 1) . Consider any value
0 ≤ v ≤ τa = λa − ap . Since τ is saturated by induction on λp , there is a
μ ≤ τ < λ with v = μa , and so v ∈ M(a, τ) ⊆ M(a, λ) . Moreover, v + ap = μ̂a
with μ̂ := (μ1, . . . , μp−1, μp + 1) ≤ λ , so v + ap ∈ M(a, λ) as well. Therefore

{0, 1, . . . , τa} ∪ {ap, ap + 1, . . . , λa} ⊆ M(a, λ) . (6)

Now,

τa =
p∑

i=1

τiai ≥
p−1∑
i=1

λiai ≥
p−1∑
i=1

(
ai+1

ai
− 1
)

ai =
p−1∑
i=1

(ai+1 − ai) = ap − 1 ,

implying the left-hand side of (6) is in fact equal to {0, 1, . . . , λa} . So λ is indeed
saturated. This completes the double induction and the proof of Part 2. �


6 Obtaining an r-Best Solution

We can now combine all the ingredients developed in the previous sections and
provide our algorithm. Let a = (a1, . . . , ap) be a fixed primitive p-tuple. Define
λ = (λ1, . . . , λp) by λi := max(a) for every i . For μ ≤ λ define

Iλ
μ := {i : μi = λi} and aλ

μ :=
(

ai

gcd(ai : i ∈ Iλ
μ )

: i ∈ Iλ
μ

)
.

Finally, define
r(a) :=

∑
μ≤λ

F(aλ
μ) . (7)

The next corollary gives some estimates on r(a) , including a general bound
implied by Theorem 3.
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Corollary 1. Let a = (a1, . . . , ap) be any primitive p-tuple. Then the following
hold:

1. An upper bound on r(a) is given by r(a) ≤ (2 max(a))p .
2. For divisible a , we have r(a) = 0 .
3. For p = 2 , that is, for a = (a1, a2) , we have r(a) = F(a) .

Proof. Define λ = (λ1, . . . , λp) by λi := max(a) for every i . First note that if
Iλ
μ is empty or a singleton then aλ

μ is empty or aλ
μ = 1 , and hence F(aλ

μ) = 0 .
Part 1: As noted, F(aλ

μ) = 0 for each μ ≤ λ with |Iλ
μ | ≤ 1 . There are at most

2p(max(a))p−2 p-tuples μ ≤ λ with |Iλ
μ | ≥ 2 and for each, the bound of equation

(4) implies F(aλ
μ) ≤ (max(a))2 . Hence

r(a) ≤ 2p(max(a))p−2(max(a))2 ≤ (2 max(a))p
.

Part 2: If a is divisible, then the least entry of every nonempty aλ
μ is 1 , and

hence F(aλ
μ) = 0 for every μ ≤ λ . Therefore r(a) = 0 .

Part 3: As noted, F(aλ
μ) = 0 for each μ ≤ λ with |Iλ

μ | ≤ 1 . For p = 2 , the
only μ ≤ λ with |Iλ

μ | = 2 is μ = λ . Because aλ
λ = a , we obtain r(a) = F(a) . �


We are now in position to prove the following refined version of our main theorem
(Theorem 1).

Theorem 4. For every primitive p-tuple a = (a1, . . . , ap) , with r(a) as in (7)
above, there is an algorithm that, given any independence system S ⊆ {0, 1}n

presented by a linear-optimization oracle, weight vector w ∈ {a1, . . . , ap}n , and
function f : Z → R presented by a comparison oracle, provides an r(a)-best
solution to the nonlinear problem min{f(wx) : x ∈ S} , in time polynomial in
n . Moreover:

1. If ai divides ai+1 for i = 1, . . . , p−1 , then the algorithm provides an optimal
solution.

2. For p = 2 , that is, for a = (a1, a2) , the algorithm provide an F(a)-best
solution.

Proof. Consider the following algorithm:

input independence system S ⊆ {0, 1}n presented by a
linear-optimization oracle, f : Z → R presented by a comparison oracle,
and w ∈ {a1, . . . , ap}n ;
define λ = (λ1, . . . , λp) by λi := max(a) for every i ;
for every choice of p-tuple μ ∈ Z

p
+ , μ ≤ λ do

find by the algorithm of Lemma 3 an xμ attaining
max{wx : x ∈ Sλ

μ} if any;
if Sλ

μ �= ∅ then find by the algorithm of Lemma 1 an x∗
μ attaining

min{f(wx) : x ∈ {0, 1}n , x ≤ xμ} ;
end
output x∗ as one minimizing f(wx) among the x∗

μ .
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First note that the number of p-tuples μ ≤ λ and hence of loop iterations and
applications of the polynomial-time algorithms of Lemma 1 and Lemma 3 is∏p

i=1(λi + 1) = (1 + max(a))p which is constant since a is fixed. Therefore the
entire running time of the algorithm is polynomial.

Consider any p-tuple μ ≤ λ with Sλ
μ �= ∅ , and let xμ be an optimal solution

of max{wx : x ∈ Sλ
μ} determined by the algorithm. Let I := Iλ

μ = {i : μi =
λi} , let g := gcd(ai : i ∈ I) , let ā := aλ

μ = 1
g (ai : i ∈ I) , and let

h :=
∑{μiai : i /∈ I} . For each point x ∈ {0, 1}n and for each i = 1, . . . , p ,

let as usual λi(x) := |supp(x) ∩ Ni| , where Ni = {j : wj = ai} , and let
λ̄(x) := (λi(x) : i ∈ I) . By the definition of Sλ

μ in equation (3) and of I above,
for each x ∈ Sλ

μ we have

wx =
∑
i/∈I

λi(x)ai +
∑
i∈I

λi(x)ai =
∑
i/∈I

μiai + g
∑
i∈I

λi(x)
1
g
ai = h + gλ̄(x)ā .

In particular, for every x ∈ Sλ
μ we have wx ∈ h + gM(ā) and wx ≤ wxμ =

h + gλ̄(xμ)ā , and therefore

w · Sλ
μ ⊆ h + g

(
M(ā) ∩ {0, 1 . . . , λ̄(xμ)ā}) .

Let T := {x : x ≤ xμ} . Clearly, for any ν̄ ≤ λ̄(xμ) there is an x ∈ T obtained
by zeroing out suitable entries of xμ such that λ̄(x) = ν̄ and λi(x) = λi(xμ) = μi

for i /∈ I , and hence wx = h + gν̄ā . Therefore

h + gM
(
ā, λ̄(xμ)

) ⊆ w · T .

Since xμ ∈ Sλ
μ , by the definition of Sλ

μ and I , for each i ∈ I we have

λi(xμ) = |supp(x) ∩ Ni| ≥ μi = λi = max(a) ≥ max(ā) .

Therefore, by Theorem 3, we conclude that λ̄(xμ) = (λi(xμ) : i ∈ I) is saturated
for ā and hence

M
(
ā, λ̄(xμ)

)
=
(
M(ā) ∩ {0, 1 . . . , λ̄(xμ)ā}) \ (λ̄(xμ)ā − G(ā)

)
.

This implies that

w · Sλ
μ \ w · T ⊆ h + g

(
λ̄(xμ)ā − G(ā)

)
,

and hence
|w · Sλ

μ \ w · T | ≤ |G(ā)| = F(ā) .

Therefore, as compared to the objective value of the optimal solution x∗
μ of

min{f(wx) : x ∈ T } = min{f(wx) : x ≤ xμ}
determined by the algorithm, at most F(ā) better objective values are attained
by points in Sλ

μ .
Since S =

⊎
μ≤λ Sλ

μ by Proposition 2, the independence system S has alto-
gether at most ∑

μ≤λ

F(aλ
μ) = r(a)
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better objective values f(wx) attainable than that of the solution x∗ output
by the algorithm. Therefore x∗ is indeed an r(a)-best solution to the nonlinear
optimization problem over the (singly) weighted independence system. �

In fact, as the above proof of Theorem 4 shows, our algorithm provides a better,
g(a)-best, solution, where g(a) is defined as follows in terms of the cardinalities
of the gap sets of the subtuples aλ

μ with λ defined again by λi := 2 max(a) for
all i (in particular, g(a) = |G(a)| for p = 2),

g(a) :=
∑
μ≤λ

|G(aλ
μ)| . (8)

7 Finding an Optimal Solution Requires Exponential
Time

We now demonstrate that our results are best possible in the following sense.
Consider a := (2, 3). Because F (2, 3) = 1, Theorem 1 (Part 2) assures that
our algorithm produces a 1-best solution in polynomial time. We next establish
a refined version of Theorem 2, showing that a 0-best (i.e., optimal) solution
cannot be found in polynomial time.

Theorem 5. There is no polynomial time algorithm for computing a 0-best (i.e.,
optimal) solution of the nonlinear optimization problem min{f(wx) : x ∈ S}
over an independence system presented by a linear optimization oracle with f
presented by a comparison oracle and weight vector w ∈ {2, 3}n. In fact, to solve
the nonlinear optimization problem over every independence system S with a
ground set of n = 4m elements with m ≥ 2, at least

( 2m
m+1

) ≥ 2m queries of the
oracle presenting S are needed.

Proof. Let n := 4m with m ≥ 2, I := {1, . . . , 2m}, J := {2m + 1, . . . , 4m}, and
let w := 2 · 1I + 3 · 1J . For E ⊆ {1, . . . , n} and any nonnegative integer k , let(
E
k

)
be the set of all k-element subsets of E. For i = 0, 1, 2 , let

Ti :=
{

x = 1A + 1B : A ∈
(

I

m + i

)
, B ∈

(
J

m − i

)}
⊂ {0, 1}n .

Let S be the independence system generated by T0 ∪ T2, that is,

S := {z ∈ {0, 1}n : z ≤ x , for some x ∈ T0 ∪ T2} .

Note that the w-image of S is

w · S = {0, . . . , 5m} \ {1, 5m− 1} .

For every y ∈ T1 , let Sy := S ∪ {y} . Note that each Sy is an independence
system as well, but with w-image

w · Sy = {0, . . . , 5m} \ {1} ;

that is, the w-image of each Sy is precisely the w-image of S augmented by the
value 5m − 1 .
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Finally, for each vector c ∈ Zn , let

Y (c) := {y ∈ T1 : cy > max{cx : x ∈ S}} .

Claim: |Y (c)| ≤ ( 2m
m−1

)
for every c ∈ Zn .

Proof of Claim: Consider two elements (if any) y, z ∈ Y (c) . Then y = 1A + 1B

and z = 1U +1V for some A, U ∈ ( I
m+1

)
and B, V ∈ ( J

m−1

)
. Suppose, indirectly,

that A �= U and B �= V . Pick a ∈ A \ U and v ∈ V \ B . Consider the following
vectors,

x0 := y − 1a + 1v ∈ T0 ,

x2 := z + 1a − 1v ∈ T2 .

Now y, z ∈ Y (c) and x0, x2 ∈ S imply the contradiction

ca − cv = cy − cx0 > 0 ,

cv − ca = cz − cx2 > 0 .

This implies that all vectors in Y (c) are of the form 1A + 1B with either A ∈(
I

m+1

)
fixed, in which case |Y (c)| ≤ ( 2m

m−1

)
, or B ∈ ( J

m−1

)
fixed, in which case

|Y (c)| ≤ ( 2m
m+1

)
=
( 2m
m−1

)
, as claimed.

Continuing with the proof of our theorem, consider any algorithm, and let
c1, . . . , cp ∈ Zn be the sequence of oracle queries made by the algorithm. Suppose
that p <

( 2m
m+1

)
. Then∣∣∣∣∣

p⋃
i=1

Y (ci)

∣∣∣∣∣ ≤
p∑

i=1

|Y (ci)| ≤ p

(
2m

m − 1

)
<

(
2m

m + 1

)(
2m

m − 1

)
= |T1| .

This implies that there exists some y ∈ T1 that is an element of none of the
Y (ci) , that is, satisfies ciy ≤ max{cix : x ∈ S} for each i = 1, . . . , p . Therefore,
whether the linear optimization oracle presents S or Sy , on each query ci it can
reply with some xi ∈ S attaining

cixi = max{cix : x ∈ S} = max{cix : x ∈ Sy} .

Therefore, the algorithm cannot tell whether the oracle presents S or Sy and
hence can neither compute the w-image of the independence system nor solve
the nonlinear optimization problem correctly. �


8 Discussion

We view this article as a first step in understanding the complexity of the gen-
eral nonlinear optimization problem over an independence system presented by
an oracle. Our work raises many intriguing questions including the following.
Can the saturated λ for a be better understood or even characterized? Can a
saturated λ smaller than that with λi = max(a) be determined for every a and
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be used to obtain better running-time guarantee for the algorithm of Theorem 1
and better approximation quality r(a) ? Can tighter bounds on r(a) in equation
(7) and g(a) in equation (8) and possibly formulas for r(a) and g(a) for small
values of p, in particular p = 3, be derived? For which primitive p-tuples a can
an exact solution to the nonlinear optimization problem over a (singly) weighted
independence system be obtained in polynomial time, at least for small p, in
particular p = 2 ? For p = 2 we know that we can when a1 divides a2 , and we
cannot when a := (2, 3) , but we do not have a complete characterization. How
about d = 2 ? While this includes the notorious exact matching problem [5] as
a special case, it may still be that a polynomial-time solution is possible. And
how about larger, but fixed, d ?

In another direction, it can be interesting to consider the problem for functions
f with some structure that helps to localize minima. For instance, if f : R → R

is concave or even more generally quasiconcave (that is, its “upper level sets”
{z ∈ R : f(z) ≥ f̃} are convex subsets of R , for all f̃ ∈ R ), then the optimal
value min{f(wx) : x ∈ S} is always attained on the boundary of conv(w · S) ,
i.e., if x∗ is a minimizer, then either wx∗ = 0 or wx∗ attains max{wx : x ∈ S} ,
so the problem is easily solvable by a single query to the linear-optimization
oracle presenting S and a single query to the comparison oracle of f . Also, if
f is convex or even more generally quasiconvex (that is, its “lower level sets”
{z ∈ R : f(z) ≤ f̃} are convex subsets of R , for all f̃ ∈ R), then a much
simplified version of the algorithm (from the proof of Theorem 4) gives an r-
best solution as well, as follows (see our preprint [4] for a proof).

Proposition 5. For every primitive p-tuple a = (a1, . . . , ap) , there is
an algorithm that, given independence system S ⊆ {0, 1}n presented by a linear-
optimization oracle, weight vector w ∈ {a1, . . . , ap}n , and quasiconvex function
f : R → R presented by a comparison oracle, provides a (max(a) − 1)-best
solution to the nonlinear problem min{f(wx) : x ∈ S}, in time polynomial in n.
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Abstract. Motivated by providing differentiated services in the Inter-
net, we consider online buffer management algorithms for quality-of-
service network switches. We study a multi-buffer model. Packets have
values and deadlines; they arrive at a switch over time. The switch con-
sists of multiple buffers whose sizes are bounded. In each time step, only
one pending packet can be sent. Our objective is to maximize the total
value of the packets sent by their deadlines. We employ competitive anal-
ysis to measure an online algorithm’s performance. In this paper, we first
show that the lower bound of competitive ratio of a broad family of online
algorithms is 2. Then we propose a (3 +

√
3 ≈ 4.723)-competitive deter-

ministic algorithm, which is improved from the previously best-known
result 9.82 (Azar and Levy. SWAT 2006).

1 Introduction

Motivated by providing quality-of-service for the next-generation networks, we
study a model called a multi-buffer model. Time is discretized into time steps.
Packets arrive at a switch over time and each packet p is associated with an
integer arriving time (release time) rp ∈ R+, a non-negative weight wp ∈ R+,
an integer deadline dp ∈ Z+ (dp ≥ rp, ∀p), and a target buffer (of the switch)
that it can reside in. In the context of this paper, we use “value” and “weight”
interchangeably. The deadline dp specifies the time by which p should be sent.
This model is preemptive: Packets already existing in the buffers can be dropped
any time before they are transmitted. A dropped packet cannot be delivered any
more. The switch consists of m size-bounded buffers: B1, B2, . . . , Bm. At
any time, each buffer Bi queues at most bi ∈ Z+ packets, ∀i = 1, 2, . . . , m.
(If m = 1, we call this variant a single-buffer model.) A packet has only one
destined buffer to stay in before it is either sent or preempted/dropped. In each
time step, at most one pending packet can be sent. Our objective is to maximize
weighted throughput, defined as the total value of the transmitted packets by
their respective deadlines.

Scheduling packets with deadlines is essentially an online decision problem.
In order to evaluate the worst-case performance of an online algorithm lacking
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of future input information, we compare it with a clairvoyant algorithm which is
empowered to know the whole input sequence in advance to make its decision. In
contrast to stochastic algorithms that provide statistical guarantees under some
mild assumptions on input sequences, competitive online algorithms guarantee
the worst-case performance. Moreover, competitive analysis is of fundamental
importance, if a reasonable approximation of the input probability distribution
is not available or reliable, or if analytical worst-case performance guarantee is
what we are seeking for.

Definition 1. Competitive ratio [4]. A deterministic online algorithm ON is
called k-competitive if its weighted throughput on any instance is at least 1/k of
the weighted throughput of an optimal offline algorithm on the same instance:

k = max
I

OPT(I) − γ

ON(I)
where γ is a constant, OPT(I) is the optimal solution of an input I. The param-
eter k is known as ON’s competitive ratio. The optimal offline algorithm OPT is
also called adversary.

The upper bounds of competitive ratio are achieved by some known online algo-
rithms. A competitive ratio less than the lower bound is not reachable by any
online algorithm. If the additive constant γ is no larger than 0, the online al-
gorithm ON is called strictly k-competitive. In this paper, we design and analyze
better online algorithms, in terms of competitive ratio, for scheduling weighted
packets with deadlines in bounded buffers.

1.1 Related Work

The first quality-of-service buffer management model is introduced in [1]. Since
then, quite a few researchers have studied this model as well as its variants [5], [9],
[10], [11], [13], [14]. Many previous studies address the single buffer case with an
infinitely-large buffer. Such model is called a bounded-delay model. The only work
addressing scheduling packets in size-bounded buffer(s) is the multi-buffer model
proposed by Azar and Levy in [3]. A deterministic 9.82-competitive algorithm
is presented. This is the model we study in this paper. Note that if the buffer
sizes are unlimited, the multi-buffer model is the same as the bounded-delay
buffer model. Thus, the lower bound of competitive ratio φ := (1 +

√
5)/2 ≈

1.618 [2], [5] for the bounded-delay model directly applies to the multi-buffer
model. For the size-bounded single-buffer model (that is, when the number of
buffers m = 1), a 3-competitive deterministic algorithm and a (φ2 ≈ 2.618)-
competitive randomized algorithm have been proposed in [12].

1.2 Our Contributions

Our main contributions in this paper include a (3 +
√

3 ≈ 4.732)-competitive
deterministic algorithm and a lower bound 2 of competitive ratio for a broad
family of algorithms. Both lower bounds and upper bounds of competitive ratio
of the multi-buffer model are improved.
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2 Algorithms and Analysis

At first, we introduce a few concepts. Then we prove the lower bound 2 of
competitive ratio for a broad family of online algorithms. At last, we present an
online algorithm and its analysis.

Definition 2. Provisional schedule [6], [9]. At any time t, a provisional
schedule St is a schedule for the pending packets at time t (assuming no new
arriving packets). This schedule specifies the set of packets to be transmitted, and
for each it specifies the delivery time.

Definition 3. Optimal provisional schedule [6], [9]. Given a set of pending
packets, an optimal provisional schedule is the one achieving the maximum total
value of packets among all provisional schedules.

We use St to denote both the provisional schedule for time steps [t, +∞) and
the set of packets specified by the schedule. All known online algorithms for
the bounded-delay model [5], [7], [9], [10], [11], [13], [14] calculate the optimal
provisional schedules at the beginning of each time step. These algorithms differ
only by the packets they select to send. The online algorithms in such a broad
family are defined as the best-effort admission algorithms.

Definition 4. Best-effort admission algorithm. Consider an online algo-
rithm ON and a set of pending packets Pt at any time t. If ON calculates the
optimal provisional schedule St on Pt and selects one packet from St to send in
step t, we call ON a best-effort admission algorithm.

2.1 The Lower Bound of Competitive Ratio

In this section, we create an instance to prove that the lower bound of competitive
ratio for all best-effort admission algorithms is 2. Note that for the bounded-delay
model in which the single buffer size b = +∞, the lower bound of competitive
ratio is φ ≈ 1.618 [5], [1]. This lower bound holds for best-effort admission
algorithms as well. Here, we improve the lower bound from 1.618 to 2 for the
model in which buffer sizes are restricted.

Theorem 1. Consider the single-buffer model in which the number of buffers
m = 1. The lower bound of competitive ratio for best-effort admission algorithms
is 2. This lower bound holds for the multi-buffer model in which m > 1 as well.

Proof. In the following instance, we show: If the buffer size is bounded, the
packets that the optimal offline algorithm chooses to send may not be from the
optimal provisional schedule calculated by the online algorithm, even if both al-
gorithms have the same set of pending packets. This property does not hold for
the bounded-delay model; and it leads that any best-effort admission algorithm
cannot achieve a competitive ratio better than 2.

Assume the buffer size is b. Let a best-effort admission online algorithm be
ON. We use (wp, dp) to represent a packet p with a value wp and a deadline dp.
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Initially, the buffer is empty. A set of packets are released: (1, b + 1),
(1, b + 2), . . . , (1, b + b). Notice that all packets released have deadlines larger
than the buffer size b. The optimal offline algorithm will accept b − 1 packets:
It drops (1, b + 1), and keeps (1, b + 2), . . . , (1, b + b) in its buffer. On the
other hand, based on its definition, upon these packets’ arrival, ON will select all
of them to put into its buffer.

In the same time step, b packets (1 + ε, 1), (1 + ε, 2), . . . , (1 + ε, b) are
released afterwards. Then there are no more new packets arriving in this step.
The optimal offline algorithm only accepts (1 + ε, 1). Instead, ON calculates the
optimal provisional schedule in step 1 which includes all these newly arriving
packets with value 1+ε. All such packets will be accepted by ON, but the packets
(1, b + i), ∀i = 1, 2, . . . , b, will be dropped due to the buffer size constraint.
After processing arrivals in step 1, the optimal offline algorithm sends the packet
(1 + ε, 1). Since ON’s buffer is full of packets with value 1 + ε, ON sends one of
these packets in the first step.

At the beginning of each step i = 2, 3, . . . , b, only one packet (1 + ε, i) is
released. Since the end of step b, no new packets will be released. Note that since
the time after the first step, all packets available to ON have their deadlines ≤ b
and values ≤ (1 + ε). Thus, in the time steps 2, 3, . . . , b, ON cannot schedule
packets with a total value > (1 + ε) · (b − 1).

Since there is one empty buffer slot at the beginning of each time step
i = 2, 3, . . . , b, the optimal offline algorithm can accept and send all newly re-
leased packets (1+ε, i) in steps i = 2, 3, . . . , b. At the end of step b, the packets
(1, b + 2), (1, b + 3), . . . , (1, b + b) are still remained in the optimal offline
algorithm’s buffer (they are not in ON’s buffer though). Since there is no future
arrivals, these b − 1 packets with value 1 will be transmitted eventually by the
optimal algorithm in the following b − 1 steps. The total value of ON achieves is
(1+ε)·b while the optimal offline algorithm gets a total value (1+ε)·b+1·(b−1).
The competitive ratio for this instance is

c =
(1 + ε) · b + 1 · (b − 1)

(1 + ε) · b = 2 − 1 + b · ε
b + b · ε ≥ 2 − 2

b
, if ε · b = 1 and b ≥ 2.

If b is large, ON cannot perform asymptotically better than 2-competitive.
This lose is due to ON calculating an optimal provisional schedule to find out the
packets to send in each time step. Theorem 1 is proved. �

2.2 A Deterministic Online Algorithm DON

Our idea straightforwardly follows the logic of the modified earliest-deadline-
first policy: EDFα. In each time step, we calculate a provisional schedule. Then,
we identify the earliest-deadline packet e and the maximum-value packet h (ties
broken in favor of the earliest-deadline one). If e is with a sufficiently large value
compared with h (say, we ≥ wh/α for some α ≥ 1), then e is sent. Otherwise, h
is sent. (If α = 1, EDFα is the greedy algorithm.) However, because the buffers
are size-bounded, there is still one question (also, the most important question
in designing online algorithms for the multi-buffer model) unanswered yet:



Improved Online Algorithms for Multiplexing Weighted Packets 269

Problem 1. Given a set of packets, how do we identify a subset of them to put
into the size-bounded buffers as pending packets?

Unlike the bounded-delay model with a single buffer, in the multi-buffer model,
there are two constraints to locate packets in the buffers in addressing Prob-
lem 1: (C1) Not all unexpired-yet packets can be put into the buffers due to the
buffer size constraints; and (C2) the order of the buffers that the optimal offline
algorithm chooses packets from to send is unknown to the online algorithms. The
first constraint has been expressed in the lower bound construction (see Theo-
rem 1). On the second constraint, we here show that if we consider each buffer
separately (that is, we maximize the value gained by the buffer Bi, assuming
the packets selected to send are from this buffer only since a time step t), we
will conclude that any best-effort admission algorithm cannot perform better
than m-competitive, where m is the number of buffers. Consider the following
instance:

Example 1. A packet p is represented by a triple (wp, dp, bp), where bp is the
buffer that p should be in. Without loss of generality, we assume all buffers have
the same size b.

Initially, we have 2 · b packets arriving at the buffer Bi, ∀i = 1, 2, . . . , m:
(1 + ε, j, Bi) and (1, (i − 1) · b + j, Bi), ∀j = 1, 2, . . . , b. There will be no
future packet arrivals.

Consider a best-effort admission algorithm ON. If ON considers each buffer
separately, all packets (1 + ε, j, Bi), ∀j = 1, 2, . . . , b, will be stored in the
buffer Bi. Note that all stored packets have deadlines ≤ b, thus, ON achieves a
total value ≤ (1 + ε) · b. On the other hand, the optimal offline algorithm picks
the packets (1, (i− 1) · b + j, Bi), ∀j = 1, 2, . . . , b, to store into the buffer Bi.
All such packets will be successfully delivered from the buffers B1, B2, . . . , Bm

consequently. Hence, the optimal offline algorithm achieves a total value 1 · b ·m,
asymptotically m times of what ON gains. For this instance, ON’s competitive ratio
is m/(1+ε). �

Example 1 motivates us to identify the provisional schedule with the considera-
tions of the packets already in the buffer, new packet arrivals, and their respec-
tively buffers for a given time step t. In our algorithm DON, we apply two actions
on the pending packets P:

– Identify a provisional schedule S, S ⊆ P. All packets in S are put into the
buffers; and they are feasibly sent if there are no future arrivals.

– For those packets ∈ (P \ S) (if any), we simply drop them.

Motivated by Theorem 1 (on the constraint C1 above) and Example 1 (on
the constraint C2 above), we will detail a procedure PS(P, t) in identifying
a provisional schedule S for a set of packets P at a time t; this procedure is
different from the one described in [3]. We note that S may not be optimal but
2-approximation (see Lemma 2).
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How do we calculate a provisional schedule? Let us consider a set of pend-
ing packets P. Notice that for any algorithm, it can send at most
L (L :=

∑m
l=1 bl) packets from P, given the assumption of no future arrivals.

Thus, we identify at most L packets from P, in a greedy manner, to fill in a
“super-queue” Q with size L in calculating a provisional schedule starting at
time t. Note that the “super-queue” Q is a supplementary data structure only
but not a real buffer to store packets.

Assume the buffer slots in Q are indexed as 1, 2, . . . , L. Without loss of
generality, we assume the current time t = 1. We sort all pending packets P in
non-increasing weight order and fill each packet p ∈ P in the “super-queue” Q
as later as it could be — an empty buffer slot i with a larger index satisfying
dp ≥ i is favored to store p. Then, if a packet p can be filled in an empty buffer
slot of the “super-queue”, we try to put p into its own target buffer (which
has been specified when p is released) as long as there is an empty buffer slot
there as well. If either p’s buffer is full or p cannot find an empty buffer slot in
the “super-queue” Q, p is discarded. We extract and examine each packet in P
in order till P becomes empty. The procedure PS(P, t) of locating S from the
pending packets P in the buffers at time t is described in Algorithm 1.

Algorithm 1. PS(P, t)
1: Sort all packets in P in decreasing weight order, with ties broken in favor of the

larger deadlines. S is initialized as an empty set.
2: while P �= ∅ do
3: Pick up a packet p from P.
4: for each buffer slot i indexed from min{tp − t,

∑m
l=1 bl} down to 1 in the super-

queue Q do
5: if the super-queue’s buffer slot indexed as i is empty and there is a buffer slot

in p’s target buffer then
6: Put p into the super-queue’s buffer slot i and its target buffer. S ← S ∪ p.
7: Break.
8: end if
9: end for

10: end while
11: Sort the selected packets in each buffer in increasing deadline order with ties broken

in favor of the larger-value ones.

Immediately from Algorithm 1, we have:

Property 1. The maximum-value packet (with ties broken in favor of the earliest-
deadline one) h ∈ P is selected in S.

Lemma 1. If the number of buffers m = 1, PS(P, t) calculates an optimal
provisional schedule.

Proof. This is a standard greedy algorithm, whose correctness follows from the
fact that feasible schedules form a matroid [8]. �
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Note that for multiple bounded buffers (m > 1), we have not developed an
efficient algorithm in identifying the optimal provisional schedule S∗ nor proved
its NP-completeness. Specifically, we have

Lemma 2. Given a set of pending packets P, the set of packets S selected by
PS(P, t) is with a total value at least 1/2 of that of an optimal provisional sched-
ule S∗ out of P. For each packet p∗ ∈ (S∗ \S), there is a uniquely corresponding
packet p ∈ S with wp ≥ wp∗ .

Proof. Let the subset of packets chosen by an optimal provisional algorithm
(respectively, PS(P, t)) be S∗ (respectively, S). We show that for any packet
p ∈ (S∗ \ S), if p is rejected, one of the following cases must happen:

– We can uniquely locate a packet q in Q corresponding to p with wq ≥ wp; or
– We can uniquely locate a packet q in the same target buffer as p is in with

wq ≥ wp.

This packet q has been already chosen by PS (that is, q ∈ S) at the time when
p is being evaluated by PS. Thus, we can always find such a unique corresponding
packet q ∈ S with wq ≥ wp for p. Note∑

p∈S∗
wp =

∑
p∈(S∗∩S)

wp +
∑

p∈(S∗\S)

wp ≤
∑
p∈S

wp +
∑
q∈S

wq ≤ 2 ·
∑
p∈S

wp.

Thus, Lemma 2 is proved. �

The following example shows that for PS, the approximation ratio 2 is tight.
This infers that the calculated provisional schedule S (= PS(P, t)) may not be
optimal for P in the interval [t, +∞).

Example 2. Consider two buffers B1 and B2 with the same buffer size b. We use
a triple (wp, dp, bp) to denote a packet p with a weight wp, a deadline dp, and
its target buffer bp.

For the buffer B1, 2 · b packets are available: (1+ ε, i, B1) and (1, b+ i, B1),
∀i = 1, 2, . . . , b. For the buffer B2, b packets are available: (1, i, B2), ∀i =
1, 2, . . . , b. There are no other packets.

PS will store packets (1 + ε, i, B1), ∀i = 1, 2, . . . , b, in the buffer B1 and no
packets will be stored in the buffer B2. On the other hand, an optimal provisional
schedule will store packets (1, b+ i, B1) for the buffer B1 and (1, i, B2) for the
buffer B2, ∀i = 1, 2, . . . , b. It is easy to see that the optimal provisional schedule
achieves a total value 2 · b of packets, which is asymptotically 2 times as what PS
stores (1+ε)·b. �

Note that given a set of pending packets without future arrivals, any algorithm
has a total value no more than two times of what our provisional schedule (cal-
culated by PS) has.
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How does the online algorithm DON work? Now, we are ready to introduce
the deterministic online algorithm DON. In each time step, given a provisional
schedule, either the earliest-deadline packet (if it has a sufficiently large value)
or the maximum-value packet in the buffers is sent.

Before we choose a packet to send, we employ another technique in admitting
packets. In calculating the provisional schedule, we associate “virtual deadlines”
rather than the deadlines specified in the input sequence with packets. A moti-
vating example of introducing virtual deadlines has been presented in [12], and
to save space, we skip repeating it. A packet’s virtual deadline is initialized as
its deadline specified at its arrival. Then, the virtual deadline will be updated
to be the tentative time step in which the provisional schedule sends it. Since
we use packets’ virtual deadlines in calculating a provisional schedule, hence we
may update a packet’s virtual deadline along the course of our algorithm. To
avoid confusion, we still use dp to denote a packet p’s virtual deadline in DON’s
buffer.

Assume the set of pending packets at time t be P. In each time step, our
algorithm works as in Algorithm 2. The delivery part of the algorithm (that is,
line 3 to line 7 of Algorithm 2) is the same as the one described in [3].

Algorithm 2. DON(P, t)
1: S = PS(P, t). Drop the packets ∈ (P \ S).

{S is the provisional schedule.}
2: Update a packet p ∈ S’s virtual deadline dp, if necessary, to be the time step S

supposes to send p.
{All packets in S have distinct virtual deadlines: t, t + 1, t + 2, . . ..}

3: Let e be the earliest-(virtual)-deadline packet in S and h be the maximum-value
packet in S, with ties broken in favor of the earliest virtual deadline one.
{Note de = t.}

4: if we ≥ wh/α then
5: Send e.
6: else
7: Send h (and e expires).
8: end if

2.3 Analysis of DON

Our main result in this section is

Theorem 2. DON is (3 +
√

3 ≈ 4.732)-competitive in maximizing weighted
throughput for the multi-buffer model, where α = 1 +

√
3 ≈ 2.732.

Proof. Let Γ := τ1τ2 . . . be a series of events: arrival events and delivery events.
Those arrival events construct the packet input sequence I. We use OPT to
denote the optimal offline algorithm. Let the set of packets sent by OPT be
O := {p1, p2, . . . , p|O|}, the packet pi is sent in the time step i. If there is
nothing to send in a time step i, we let pi be a null packet with value wpi = 0
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and deadline dpi = i. More specifically, we let Ot denote the set of packets that
OPT will deliver in steps [t, +∞). Clearly, O = O1. Without loss of generality,
we enforce OPT to be the one such that

Remark 1. OPT only accepts the packets that it will send.

Remark 2. When OPT chooses a packet from the buffer Bi to send, it always
picks up the packet with the earliest deadline.

The following observation will be used in our analysis:

Remark 3. Given a packet pi ∈ O, which is supposed to be sent by OPT in the
step i, we can always modify the deadline dpi to d′pi

for pi in OPT’s buffers, as
long as i ≤ d′pi

≤ dpi .

In our analysis, we feed DON and OPT the same original input I. However, we
may modify the deadlines of packets in OPT’s buffers (as in Remark 3) to simplify
the invariants (see below). One aspect of modifying packets in OPT’s buffer is to
make sure: Given a packet p in DON’s buffer Bi and a packet q in OPT’s same
buffer Bi, if wp = wq and dp = d′q, we can regard p and q the same packet. Also,
we use d′q to represent the deadline of a packet q in OPT’s buffers. For each new
packet q ∈ O, d′q is initialized as dq.

We prove DON’s competitiveness using the analysis approach proposed in [13],
[14]. Recall that the potential function approach is a commonly used method in
analyzing online algorithms [4]. However, we do not use the potential function
argument explicitly. Instead, our analysis relies on modifying DON’s buffers (using
virtual deadlines instead of real ones) and OPT’s buffers (such as changing the
deadlines from dpi to d′pi

) as well as the packet sending sequence Ot judiciously
in each step t. We need to assign an appropriate credit to OPT to account for
these modifications but keep a set of invariants always hold for each time step.
Then, we bound the competitive ratio by comparing the modified OPT’s gain to
that of DON’s in each step.

We use QDON
t (respectively, QOPT

t ) to denote the buffers of DON (respectively,
OPT) at time t. We use Φ(QDON

t ) (respectively, Φ(QOPT
t )) to denote the potential

of the buffers of QDON
t (respectively, QOPT

t ). In a step t, we use XDON
t and XOPT

t to
denote the set of packets sent by DON and charged (by us) to OPT respectively.
Our goal is to prove that at the end of each event, the main Inequality 1 holds.

c ·
∑

j∈XDON
t

wj + Φ(QDON
t ) ≥

∑
k∈XOPT

t

wk + Φ(QOPT
t ). (1)

where c = 3 +
√

3 ≈ 4.732. As a consequence, this yields Theorem 2.
In our analysis, we will prove that the competitive ratio c of DON is (α ≥ 1)

c ≤ max{2 + α, 4 + 2/α}.
c is optimized at 3 +

√
3 ≈ 4.732 when we set α = 1 +

√
3 ≈ 2.732. In order

to prove Inequality 1, we first present a set of invariants. We then prove them
hold at the end of each event.
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I1. c ·∑j∈XDON
t

wj ≥∑k∈XOPT
t

wk.
I2. For each packet p ∈ QDON

t , p maps to at most one packet p′ ∈ (QOPT
t \ QDON

t )
with wp ≥ wp′ and p and p′ have the same target buffer.
For each packet p ∈ (QDON

t \QOPT
t ), p maps to at most one packet q ∈ (QOPT

t \
QDON

t ) with wp ≥ wq, dp ≥ d′q, and p and q do not have to have the same
target buffer.
(Hence a packet p ∈ (QDON

t \ QOPT
t ) may map two distinct packets, a packet

p′ ∈ (QOPT
t \QDON

t ) in same target buffer and a packet q ∈ (QOPT
t \QDON

t ), which
may or may not be in the same target buffer as p.)

I3. For each packet q′ ∈ (QOPT
t \QDON

t ), q′ must be mapped uniquely by a packet
p ∈ QDON

t .
(Such q′ must be either the packet p′ or the packet q in the invariant I2.)

I4. Assume a packet p ∈ QDON
t maps a packet p′ ∈ (QOPT

t \ QDON
t ). For any packet

i ∈ QDON
t with the same target buffer as p′, either di ≥ d′p′ or wi ≥ wp′ .

We prove that the set of invariants hold separately for the events of both
packet arrivals and packet deliveries. In the following, we case study to prove
the existence of these invariants.

Packet deliveries. DON either delivers the earliest-deadline packet e or the
maximum-value packet h in the current buffers. We assume OPT sends j. From
Invariant I3 and Property 1, we claim that wj ≤ wh, no matter whether j
is in the provisional schedule (j is in DON’s buffer; j ∈ (QDON

t ∩ QOPT
t )) or not

(j ∈ (QOPT
t \ QDON

t )). For the earliest-virtual-deadline packet e in the provisional
schedule, we have we ≤ wh and de = t.

We summarize all the possible consequences into the following 4 cases, based
on the packet DON sends and the packet OPT sends in each step. We use Wt and
Vt to denote the value we charge to (the modified) OPT and DON, respectively. To
prove Invariant I1, we need to show that Wt/Vt ≤ max{2 + α, 4 + 2/α}.

Note that if a considered packet ∈ QDON
t is not in a mapping, we assume its

“mapped” packets be null packets with value 0. This facilitates us that we can
assume every packet in QDON

t has mapped packets in QOPT
t . Also, remember that

every packet in DON’s buffers are in the provisional schedule.

1. Assume DON sends e and j ∈ (QDON
t ∩ QOPT

t ).
wj ≤ wh. Since DON sends e, we ≥ wh/α ≥ wj/α.
– If j = e, we charge DON a value we, and we charge OPT a value wj + wj′

(since j may map another O-packet j′ ∈ (QOPT
t \ QDON

t )). We remove j
and j′ out of OPT’s buffers. Then

Wt

Vt
=

wj + wj′

we
≤ wj + wj

we
=

we + we

we
= 2.

– If j �= e, then e /∈ QOPT
t (otherwise, OPT will send e in this step to avoid

losing its value; see Remark 2).
We charge DON a value we, and we charge OPT a value we′ + we′′ + wj .
Note e /∈ QOPT

t may map an O-packet e′ ∈ (QOPT
t \QDON

t ) in the same target
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buffer as e is in, and another O-packet e
′′ ∈ (QOPT

t \ QDON
t ) in a possibly

different target buffer from which e is in. We remove e′, e
′′
, and j out

of OPT’s buffers. Based on Invariants I2 and I3, we ≥ max{we′ , we′′ }.
Then

Wt

Vt
=

we′ + we′′ + wj

we
≤ we + we + wh

we
≤ we + we + α · we

we
= 2 + α.

2. Assume DON sends e and j ∈ (QOPT
t \ QDON

t ).
wj ≤ wh. Since DON sends e, we ≥ wh/α ≥ wj/α.
Since j �= e, then e /∈ QOPT

t (otherwise, OPT will send e in this step to avoid
losing its value; see Remark 2).
We charge DON a value we, and we charge OPT a value we′ + we′′ + wj . Note
e /∈ QOPT

t may map an O-packet e′ ∈ (QOPT
t \ QDON

t ) in the same target buffer
as e is in, and another O-packet e

′′ ∈ (QOPT
t \ QDON

t ) in a possibly different
target buffer from which e is in. We remove e′, e

′′
, and j out of OPT’s buffers.

Based on Invariants I2 and I3, we ≥ max{we′ , we′′ }, Then

Wt

Vt
=

we′ + we′′ + wj

we
≤ we + we + wh

we
≤ we + we + α · we

we
= 2 + α.

3. Assume DON sends h and j ∈ (QDON
t ∩ QOPT

t ).
wj ≤ wh. Since DON sends h, we < wh/α.
We charge DON a value wh. Assume e maps e′ ∈ (QOPT

t \ QDON
t ) (and e maps

e
′′ ∈ (QOPT

t \QDON
t ) if e /∈ O). From Invariants I2 and I3, we ≥ max{we′ , we′′ }.

Assume j maps j′, from Invariant I2, wj ≥ wj′ . Assume h maps h′ ∈ (QOPT
t \

QDON
t ). wh ≥ max{wh′ , wj , wj′}.
– If j = e, we charge OPT a value wj + wj′ + wh + wh′ , and we remove j,

j′, h and h′ out of OPT’s buffer.
(If h /∈ QOPT

t , we replace h with the possibly mapped packet h
′′ ∈ (QOPT

t \
QDON

t ) in the following Wt’s calculation.)

Wt

Vt
=

wj + wj′ + wh + wh′

wh
≤ we + we + wh + wh′

wh

≤ wh/α + wh/α + 2 · wh

wh
≤ (2 + 2/α) · wh

wh
= 2 + 2/α.

– If j �= e, then e /∈ QOPT
t (otherwise, OPT will send e in this step to avoid

losing its value; see Remark 2).
• If h ∈ O, we charge OPT a value wj + wj′ + we′ + we′′ + wh + wh′ ,

and we remove e′, e
′′
, j, j

′′
, h and h′ out of OPT’s buffer.

Wt

Vt
=

wj + wj′ + we′ + we′′ + wh + wh′

wh

≤ wh + wh + wh/α + wh/α + 2 · wh

wh
≤ (4 + 2/α) · wh

wh
=4+2/α.
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• If h /∈ O, we charge OPT a value wj + wj′ + we′ + we′′ + wh′ + wh′′ ,
and we remove e′, e

′′
, j, j′, h′ and h

′′
out of OPT’s buffer.

Wt

Vt
=

wj + wj′ + we′ + we′′ + wh′ + wh′′

wh

≤ wh + wh + wh/α + wh/α + 2 · wh

wh
≤ (4 + 2/α) · wh

wh
=4+2/α.

4. Assume DON sends h and j ∈ (QOPT
t \ QDON

t ).
wj ≤ wh. Since DON sends h, we < wh/α.
We charge DON a value wh. Assume e maps e′ ∈ (QOPT

t \ QDON
t ) (and e maps

e
′′ ∈ (QOPT

t \QDON
t ) if e /∈ O). From Invariants I2 and I3, we ≥ max{we′ , we′′ }.

Assume h maps h′ ∈ (QOPT
t \ QDON

t ). wh ≥ max{wh′ , wj}.
– If h ∈ O, we charge OPT a value wj + we′ + we′′ + wh + wh′ , and we

remove e′, e
′′
, j, h and h′ out of OPT’s buffer.

Wt

Vt
=

wj + we′ + we′′ + wh + wh′

wh
≤ wh + wh/α + wh/α + 2 · wh

wh

≤ (3 + 2/α) · wh

wh
= 3 + 2/α.

– If h /∈ O, we charge OPT a value wj + we′ + we′′ + wh′ + wh′′ , and we
remove e′, e

′′
, wj , h′ and h

′′
out of OPT’s buffer.

Wt

Vt
=

wj + we′ + we′′ + wh′ + wh′′

wh
≤ wh + wh/α + wh/α + 2 · wh

wh

≤ (3 + 2/α) · wh

wh
= 3 + 2/α.

Packet arrivals. Upon new packets arriving, we consider the possible changes
of mappings, from the packets in the provisional schedule in DON’s buffers QDON

t

to those packets only in OPT’s buffers (QOPT
t \QDON

t ), such that we can ensure that
Invariants I2 to I4 still hold.

Let (wp, dp) denote a packet p with value wp and deadline dp. Besides Re-
mark 3, we also have the following remark to help us modify OPT’s buffers ap-
propriately (if necessary) and facilitate us in the mapping reconstruction.

Remark 4. Consider any two packets p = (wp, dp) and q = (wq , dq) in QOPT
t .

We are allowed to swap these packets’ values such that we use p′ = (wq , dp)
and q′ = (wp, dq) to replace p and q respectively. We extend this claim such
that given any n packets in OPT’s buffers with values {w1, w2, . . . , wn}, we
can always permute their values as {w′

1, w′
2, . . . , w′

n} for them, as long as
{w′

1, w′
2, . . . , w′

n} = {w1, w2, . . . , wn}.
Consider a continuous part of the provisional schedule (packets) S1 in QDON

t (a
packet j is represented by (wj , dj), where dj is the virtual deadline)

S1 : i = (wi, t), p1 = (wp1 , t + 1), p2 = (wp2 , t + 2), . . . , pk = (wpk
, t + k).
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Since accepting (wp, dp) with dp ≥ t+k enforces i to leave DON’s buffers, from
Algorithm 1, we have

min{wp1 , wp2 , . . . , wpk
, wp} ≥ wi. (2)

Then, the provisional schedule S1 is updated as follows with packets’ new virtual
deadlines:

S2 : p′1 = (wp1 , t), p′2 = (wp2 , t+1), . . . , p′k = (wpk
, t+k−1), p = (wp, t+k).

Now, based on Remark 3, Remark 4 and Inequality 2, we are going to claim
the set of packets ∈ (QOPT

t \ QDON
t ) mapped by packets in S1 can be mapped by

S2 without violating Invariants I2 to I4.
Here, we consider the case when a packet i in mappings is moved out of the

provisional schedule after accepting a packet p. The case in which an O-packet
is accepted by OPT but rejected by DON can be analyzed in a similar way.

Value constraints in the mappings. Let us consider the packets ∈ (QOPT
t \ QDON

t )
that are mapped by packets in S1. Note the set {wp1 , wp2 , . . . , wpk

, wp}
dominates the set {wi, wp1 , wp2 , . . . , wpk

} in values (see Inequality 2). Thus,
based on Remark 4, we can always permutate the values of the mapped packets
∈ (QOPT

t \ QDON
t ) such that the value-relationship in Invariants I2 to I4 holds.

Deadline constraints in the mappings. We address two issues here: (1) i /∈ QOPT
t

is with possible two mapped packets ∈ (QOPT
t \ QDON

t ) but p ∈ (QDON
t ∩ QOPT

t ) is
allowed to map at most one packet; and (2) packets ∈ S2 have their virtual
deadlines updated and earlier than the time step OPT sends them.

First, we claim that we can always find a packet q ∈ (S1 \QOPT
t ) which has at

most one mapped O-packet ∈ (QOPT
t \ QDON

t ) before p’s arrival; since otherwise,
OPT cannot deliver all mapped packets successfully (see the deadline constraints
specified in Invariant I2). Note wq ≥ wi (from Inequality 2), q can replace i to
map those mapped packets by i ∈ S1.

Second, we take p as an example. Assume p, sent in a step t′ by OPT, has
its virtual deadline updated to dp < t′ in S2. Then, p cannot map another O-
packet with deadline ≤ dp; otherwise, OPT cannot deliver all such packets by their
deadlines. We regard p as a non-O-packet p′ and we get a mapping in Invariant
I2: p′ ∈ QDON

t maps to p ∈ (QOPT
t \ QDON

t ), p′ and p have the same target buffer.
Based on our case study at packet arrival and delivery events discussed above,

Theorem 2 is proved. �

3 Conclusion

In this paper, we study a multi-buffer model for buffer management in quality-of-
service network switches. We first show that the lower bound of competitive ratio
of best-effort admission algorithms is 2. Then we propose a (3 +

√
3 ≈ 4.723)-

competitive deterministic algorithm, which is better than the previously best-
known result 9.82 (Azar and Levy. SWAT 2006).
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It is unknown that for the single-buffer model, whether a non-best-effort ad-
mission online algorithm can achieve an upper bound better than 2. It is an
open problem to close or shrink the gap [1.618, 4.732] between the lower bound
and the upper bound of competitive ratio for deterministic online algorithms for
the multi-buffer model. We are also interested to know whether randomness can
help improve competitive ratios in these problem settings.
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Abstract. This paper studies the aggregation of messages in networks
that consist of a chain of nodes, and each message is time-constrained
such that it needs to be aggregated during a given time interval, called
its due interval. The objective is to minimize the maximum cost incurred
at any node, which is for example a concern in wireless sensor networks,
where it is crucial to distribute the energy consumption as equally as
possible. First, we settle the complexity of this problem by proving its
NP-hardness, even for the case of unit length due intervals. Second, we
give a QPTAS, which we extend to a PTAS for the special case that the
lengths of the due intervals are constants. This is in particular interesting,
since we prove that this problem becomes APX-hard if we consider tree
networks instead of chain networks, even for the case of unit length due
intervals. Specifically, we show that it cannot be approximated within
4/3 − ε for any ε > 0, unless P=NP.

1 Introduction

The aggregation of distributed information to a central powerful node, called
sink, is a basic task in many networks. This is for example a concern in wireless
sensor networks (WSN) [1,13,18], whose nodes are small battery-powered devices
which sense the environment. Whenever an event occurs at some node (e.g. seis-
mic activity, temperature, wind-speed, etc.), then this event needs to reported
to the sink. To save energy, messages are delivered to the sink via a precomputed
tree topology. If a node runs out of energy, then the network becomes discon-
nected. Hence, to maximize the lifetime of the network, we need to minimize
the maximum energy consumption of any node. If there are no time constraints,
then the optimal strategy is that each node waits until it has received all mes-
sages from its successors in the tree, and then passes a single combined message,
that aggregates all collected ones, to its predecessor. However, in most appli-
cations timing issues are a concern, and it is often required that each message
is delivered to the sink before a specified individual deadline expires. Finding
an optimal data aggregation schedule results in a combinatorial optimization
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problem, called Latency Constrained Data Aggregation Problem (DA), treated
before by Becchetti et al. [2]. In this paper, we mostly consider networks where
the underlying tree structure is a chain, called chain networks. We refer to DA in
this special case as DAC. Chain networks are useful when the WSN is installed
along highways, runways, shopping miles etc. We will see in the following that
this results in a natural generalization of the Interval Stabbing Problem that,
given a set of horizontal intervals, asks to find a minimal set of vertical lines
such that each interval intersects with at least one of them. We investigate an
off-line perspective. However, all results in this paper can be also applied to the
case where the measurements are periodically repeated over time.

Formal problem definition. An instance A of DA consists of an intree T =
(V, E) rooted in a single sink that describes the network topology, a set of n
messages M , and a sending cost function c : V → R+. Each message in M is
described by a tuple (v, r, d), where v ∈ V is the release node, r ∈ R+ is the
release time, and d ∈ R+ is the due time (we do not distinguish between an
instance and its message set, e.g., we also write (v, r, d) ∈ A if (v, r, d) ∈ M). A
schedule S for such an instance assigns a sequence of sending times to each node.
Let Sv be the number of sending times of a node v ∈ V . Whenever v sends, all
messages currently stored at this node are passed to the node at the other end
of the single outgoing edge in one combined message, which implies sending cost
c(v). We say that such a schedule is feasible if each message is aggregated to the
sink before its due time, i.e., if for each message (v, r, d) ∈ A, the nodes on the
simple path from v to the sink have sending times such that (v, r, d) is delivered
to the sink during its due interval [r, d] in a sequence of combined messages. As
Becchetti et al. [2], we distinguish two different objective functions:

(MinMax) (MinSum)
max

v
c(v)Sv

∑
v

c(v)Sv

We denote the cost of a schedule S with respect to both objectives by cost(S),
since the used objective is always clear from the context. Moreover, let OPT(A)
be the cost of an optimal schedule. This leads to two variants, DA and DA-

Sum: Given an instance A, find a feasible schedule S for A that minimizes
the MinMax- and MinSum-objective, respectively. For the special case of chain
networks, we denote the corresponding problems by DAC and DAC-Sum, re-
spectively. As noted in [2], the MinMax-objective is more reasonable in a dis-
tributed environment, where due to a decentralized energy-supply via batteries,
we have to equally distribute the energy consumption. Becchetti et al. [2] intro-
duced this model with transit times, i.e., they assume that it takes some time
to pass a combined message over an edge. However, we do not consider transit
times in this paper, since the following lemma says that it is possible to reduce
the case with transit times to the case without transit times (proof in the full
version):
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Lemma 1. For any of the considered problems DA, DAC, DA-Sum, and DAC-

Sum, an approximation algorithm for the case without transit times yields an
approximation algorithm for the case with transit times with the same approxi-
mation ratio.
Previous work. Becchetti et al. [2] proved the NP-hardness of DA and DA-

Sum. Moreover, they showed that both problems are in APX by presenting a 2-
approximation algorithm. Recall that an α-approximation algorithm returns, in
polynomial time, a solution whose cost is at most α times larger than the cost of an
optimal solution. In contrast, they showed that the chain case DAC-Sum is poly-
nomially solvable via dynamic programming. The same dynamic programming
approach was independently presented by Gijswijt et al. [6], whereas they inter-
preted this problem as a batch processing problem. However, Bechetti et al. [2]
left the complexity of DAC open.

A closely related problem is the Multicast Acknowledgment Problem [3,11,15],
where we also want to aggregate messages in a tree topology, but we do not have
fixed deadlines. Instead, the objective is to minimize the sum of sending costs
plus the sum of delays, which is closely related to the well-known flow time ob-
jective from scheduling. Papadimitriou et al. [16] used a similar model for the
communication structure of a company, whereas they assumed that messages
are queued according to the Poisson process. However, since our main motiva-
tion are distributed sensor networks, it is reasonable to minimize the maximum
energy consumption of any node instead of the energy consumption of the whole
network. Furthermore, Korteweg et al. [12] discussed the multiobjective problem
of trading sending costs for delay. They presented several distributed algorithms
that balance these objectives.

Contributions and outline. We settle the complexity of DAC by proving its
NP-hardness in Section 5, even if all due intervals have unit length (d − r = 1,
for each messages (v, r, d) ∈ A), which solves an open problem from [2]. Since
Becchetti et al. [2] showed that DA and hence DAC are constant factor ap-
proximable, we are mostly interested in approximation schemes. Recall that
an approximation scheme is a family of algorithms which contains a (1 + ε)-
approximation algorithm for any ε > 0. First, we show in Section 3 that there
is a quasipolynomial time approximation scheme (QPTAS), that is, an approx-
imation scheme that runs in time O(npolylog(n)). This implies that DAC is not
APX-hard, unless NP ⊆ DTIME(npolylog(n)). In the following Section 4, we in-
vestigate the special case where the due interval lengths are constants, i.e., these
lengths are not part of the input, which includes the case of unit length due
intervals (recall that DAC is NP-hard, even for unit length due intervals). This
is reasonable especially from a practical point of view, since it is likely to have
a finite set of priority levels that indicate how fast a message needs to be ag-
gregated, and each level corresponds to a specific due interval length. For this
special case, we extend the QPTAS to a polynomial time approximation scheme
(PTAS) which is based on an interesting iterative LP-rounding strategy. Finally,
in contrast to DAC, we prove in Section 5 that the tree case DA is APX-hard,
even for unit length due intervals, which solves another open problem from [2].
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Specifically, we give a quite strong inapproximability results by showing that
DA cannot be approximated within 4/3− ε for any ε > 0, unless P = NP (recall
that there is a 2-approximation algorithm).

2 Preliminaries

Restricting the search space. In chain networks, we can label the non-sink
nodes with 1, 2, . . . , k, where node 1 ≤ v ≤ k has hop-distance k − v + 1 to the
sink (since the sink does not send any messages, we can omit it in the chain case
for the sake of simplicity). The following simple observation allows us to restrict
the search space:

Observation 1 ([2]). For any instance, there is an optimal feasible schedule
such that (1) all messages only wait at their respective release nodes, and (2)
each sending time is the due time of a message.

Hence, we only consider schedules with the properties listed in Observation 1.
Using this, we can interpret a schedule S as a set of lines such that each line
is defined by a tuple (v, t), where 1 ≤ v ≤ k is the starting node and t ∈ R+ is
the time of this line, which is the due time of some message. Specifically, a node
u sends at time t if and only if there is a line (v, t) ∈ S with v ≤ u, and hence
Su = |{(v, t) ∈ S | v ≤ u}|. Thus, we say that a message (u, r, d) is covered by a
line (v, t) if and only if v ≤ u and r ≤ t ≤ d, and a message is hence aggregated
if and only if it is covered by at least one line. If there is more than one such
line, then assume that the message is aggregated by the first one.

Subinstances. Given some instance A, observe that each open interval (a, b) ⊆
R+ ∪ {∞} defines a subinstance A(a, b) of A that only contains the messages
whose due intervals are contained in the open interval (a, b), that is {(v, r, d) ∈
A | a < r ≤ d < b}. Moreover, A(a, b) inherits the sending cost function from A.
Naturally, we say that two subinstances A1, A2 of A are disjoint if A1 ∩A2 = ∅.
Relations to interval stabbing. Consider the instance A depicted in Fig. 1
with k = 4. The four vertical levels in this figure correspond to the four non-sink
nodes in A. Consequently, we depict the due intervals of the messages in A at
their respective levels. Specifically, nodes 1 and 2 both release two messages, and
so on. As explained above, we have to cover these messages with vertical lines.
The vertical dashed lines represent such a schedule S. Specifically, there are two
lines in S starting at node 1, and so on. Since each message is covered by some
line, S is clearly feasible.

Observe that if k = 1, then we obtain the Interval Stabbing Problem (IS), that
is, we simply have to cover intervals with a minimal number of vertical lines.
We conclude that we can interpret DAC and DAC-Sum as a generalization
of IS. Therefore, except for finding application in the area of data aggregation,
we think that these problems are of independent interest. IS is equivalent to
Clique Cover in interval graphs, and can be solved optimally via a simple greedy
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1
2
3
4

t1 t2 t3 t4

Fig. 1. An example instance A with k = 4 and a feasible schedule S which contains
the lines (1, t2), (1, t4), (3, t1), and (3, t3)

procedure in linear time [8]. Due to its fundamental nature, several extensions
have been considered in the past. For instance, Even et al. [4] showed that even
the capacitated version can be solved in polynomial time, that is, each possible
line has a capacity contraint that indicates how many intervals it is allowed to
cover. However, IS becomes NP-hard for two dimensions [9], i.e., if we want to
cover rectangles with vertical and horizontal lines, but there is a 2-approximation
algorithm [5] for this extension.

Monotonicity of sending times. Since our interpretation of a schedule as a
set of vertical lines implies that the number of sending times can only increase,
we obtain that S1 ≤ S2 ≤ . . . ≤ Sk. We also refer to the number of sending times
Sk of the last non-sink node k as the number of sending times of S. This raises
the question whether we can strengthen this monotonicity property. To this end,
we need the following definition:

Definition 1 (normal form). Let S be a feasible schedule. We say that a line
(v, t) ∈ S can be pushed if replacing this line with the line (v + 1, t) does not
affect the feasibility of S (if v = k, then we remove (v, t) instead of replacing
it), i.e., there is no message that becomes uncovered. Using this, we say that a
feasible schedule S is in normal form if (1) no line can be pushed and (2) there
is no pair of lines (v, t), (u, s) ∈ S such that we can replace these lines with
the lines (u, t), (v, s) without affecting the feasibility of S, and then additionally
push (v, s).

In words, a feasible schedule given in normal form cannot be trivially improved by
the simple local improvements of pushing, respectively by replacing and pushing.
Note that the schedule in Fig. 1 is not given in normal form, since we can replace
the first two lines (3, t1), (1, t2) with the lines (1, t1), (3, t2), and then additionally
push (3, t2) without affecting the feasibility of S.

Lemma 2. Any feasible schedule can be transformed into normal form in poly-
nomial time.

Proof. Observe that we can interpret the two normal form properties in Defini-
tion 1 as operations on a feasible schedule. Iteratively applying these operations
as often as possible clearly yields a feasible schedule in normal form. Each time
such an operation is successful, Sv decreases by one for some node v, which gives
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the polynomial running time, since initially Sv ≤ n. On the other hand, note
that Sv does not increase for any node v during this process. �

By Lemma 2, we can wlog assume in the following that every feasible schedule
is given in normal form. Using this, the following definition gives a stronger
monotonicity property:

Definition 2 (exponential growth). For two constants η, γ > 1, we say that
an instance A has (η, γ)-exponential growth if for any feasible schedule S for A
(given in normal form) and any pair of nodes v < u < k, Su > ηu−v/γ · Sv.

In words, starting with any node v, the number of sending times grows ex-
ponentially with respect to η and γ, whereas we have to exclude the single
node k for technical reasons. We need the assumption that any feasible schedule
is given in normal form, since otherwise, we cannot find instances with expo-
nential growth. To see this, observe that there is always the feasible schedule
{(1, d) | (v, r, d) ∈ A}, which clearly does not fulfill the exponential growth prop-
erty for v = 1. Using Definition 2, the following technical reduction lemma says
that we can wlog assume that any given instance has exponential growth. We
will use this lemma multiple times in the following (proof in full version):

Lemma 3. If for any pair of constants η, γ, there is a (Q)PTAS for DAC re-
stricted to instances with (η, γ)-exponential growth, then there is a (Q)PTAS for
DAC.

3 Dynamic Programming and a QPTAS

In this section, we present a dynamic programming approach which can be
applied to DAC-Sum and DAC, whereas it runs only in polynomial time for
DAC-Sum. Let d1 < d2 < . . . < dn be an ordering of the due times in A,
and let d0 := 0 and dn+1 := ∞ (assume wlog that the due times are distinct).
For any pair 0 ≤ s < t ≤ n + 1, if A(ds, dt) �= ∅, then let v(s, t) := min{v |
∃(v, r, d) ∈ A(ds, dt)} be the least numbered node that releases a message in
A(ds, dt) (recall that A(ds, dt) is a subinstance of A). In this case, we choose
an arbitrary message (v(s, t), r, d) ∈ A(ds, dt). Clearly, in any optimal feasible
schedule S for A(ds, dt), there must be a line (v(s, t), di) with s < i < t which
covers this message. Observe that this line decomposes the instance A(ds, dt) in
two subinstances A(ds, di), A(di, dt) such that there are two feasible schedules
S1 and S2 for A(ds, di) and A(di, dt), respectively, with

S = S1 ∪ S2 ∪ {(v(s, t), di)}.
This immediately yields a polynomial time dynamic programming approach for
DAC-Sum as follows: For each pair 0 ≤ s < t ≤ n + 1, it suffices to store
OPT(A(ds, dt)) in a dynamic programming array, since we can inductively fill
this array by using the following recurrence:

OPT(A(ds, dt)) = min
s<i<t

(OPT(A(ds, di)) + OPT(A(di, dt)) +
k∑

v=v(s,t)

c(v),
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where k is the number of non-sink nodes as explained in Subsection 2. This
approach was used in [2] and [6] to construct a polynomial time algorithm for
DAC-Sum.

To adapt this approach to DAC, observe that we can think of DAC as a
multi-objective variant of DAC-Sum, where the dimensions are the costs of the
nodes. For an introduction to the notions of multi-objective optimization, we
refer to [17]. We use the following two definitions from this area:

Definition 3 (dominate). We say that a schedule S is α-dominated by an-
other schedule S′ if S′

v ≤ αSv, for each node v. If α = 1, then we simply say
that S′ dominates S.

Definition 4 (Pareto front). We call a set of feasible schedules D for an
instance A a Pareto front if for each feasible schedule S for A, there is a sched-
ule S′ ∈ D that dominates S. Moreover, we say that D is μ-restricted if this
property only holds for each feasible schedule S for A with at most μ sending
times.

Note that our definition of a Pareto front slightly differs from the usual definition
of a Pareto front, since we do not require that there is no pair of schedules
S, S′ ∈ D such that S dominates S′.

Clearly, having a Pareto front D, we can find an optimal feasible schedule
by computing cost(S) = maxv c(v)Sv, for every schedule S ∈ D. But since the
number of nodes is part of the input, we obtain a multi-objective optimiza-
tion problem with an unbounded number of dimensions. Therefore, a Pareto
front might have superpolynomial size. However, we can use the following
lemma:

Lemma 4. The dynamic programming approach for DAC-Sum can be adapted
to DAC such that given some positive integer μ, it computes a μ-restricted Pareto
front of size at most (μ + 1)k in time polynomial in n and μk.

Proof. We use a larger dynamic programming array Π , which contains one entry
Π(s, t, f) for each pair 0 ≤ s < t ≤ n + 1 and each function f : {1, . . . , k} →
{0, 1, . . . , μ} that indicates if there exists a feasible schedule S for the subinstance
A(ds, dt) with Sv = f(v), for each node v. The following recurrence allows us to
inductively fill this array:

Π(s, t, f) = true ⇐⇒ ∃i, f1, f2 : (Π(s, i, f1) = true) ∧ (Π(i, t, f2) = true) ∧

(s < i < t) ∧ f(v) =

{
0 1 ≤ v < v(s, t)
f1(v) + f2(v) + 1 v(s, t) ≤ v ≤ k

We initialize Π by setting Π(s, t, f) to false if A(ds, dt) does not contain a
message. Finally, the set of schedules D that realizes the entries Π(0, n + 1, f),
f ∈ {0, 1, . . . , μ}{1,...,k}, is returned. The claim clearly follows. �




286 T. Nonner and A. Souza

Theorem 1. There is a QPTAS for DAC.

Proof. Consider a fixed pair η, γ > 1, and let A be an instance with (η, γ)-
exponential growth. Since any schedule S for A has at most n sending times,
i.e., Sk ≤ n, we immediately conclude with the exponential growth property
of A that the number of nodes is logarithmically bounded in the number of
messages, i.e., k = O(log(n)). In this case, for the parameter choice μ = n,
the dynamic programming approach from Lemma 4 has quasipolynomial run-
ning time O(nO(log(n))), and the returned Pareto front D has quasipolynomial
size. Note that μ = n implies that D contains an optimal feasible schedule,
which we can hence find in quasipolynomial time. The claim then follows from
Lemma 3. �


4 A PTAS for Constant Length Due Intervals

In this section, we present a PTAS for DAC for the case that the due interval
lengths are constants. For simplicity, we assume throughout this section that we
have unit length due intervals. However, all arguments can be easily extended
to due intervals with arbitrary but constant length.

Starting with the seminal work of Hochbaum and Maass [10], it has become
a common approach in the design of approximation schemes for geometric opti-
mization problems to exploit the geometric structure in order to decompose an
instance in smaller subinstances. Such an approach has also been already used
in the context of multiobjective optimization to obtain a PTAS for Multiobjec-
tive Disk Cover [7]. We apply a similar approach. Specifically, we decompose an
instance in subinstances that have smaller Pareta fronts. However, there is one
significant difference to the approach in [7]: They have a finite number of dimen-
sions, and consequently, their Pareto front has polynomial size. Therefore, it is
possible to combine the Pareto fronts of the subinstances to a Pareto front of the
original instance in polynomial time. This does not hold in our case. Hence, we
need to compute a schedule from the Pareto fronts of the subinstances without
computing the Pareto front of the original instance. To this end, we use an LP-
rounding approach. This rounding approach iteratively solves a linear program
such that after each iteration we obtain some new integral variables. We think
that this approach is likely to find application in other multi-objective scenar-
ios with an unbounded number of dimensions. The decomposition used in this
section is defined as follows:

Definition 5 (ε-conserving decomposition). Given some ε > 0 and an in-
stance A, we call a sequence of pairwise disjoint subinstances A1, A2, . . . , An of A
an ε-conserving decomposition if there is some (possibly non-feasible) schedule
S0 for A with cost(S0) ≤ εOPT(A), and for any sequence of feasible sched-
ules S1, S2, . . . , Sn for the subinstances A1, A2, . . . , An, respectively, the union
∪n

i=0S
i is a feasible schedule for A.
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The following lemma is proven in the full version of this paper:

Lemma 5. For any sufficiently small ε > 0 and any instance A with unit length
due intervals, there is an ε-conserving decomposition A1, A2, . . . , An such that
any feasible schedule for one of these subinstances has at most κε sending times
for some constant κε.

Extending a combination of schedules. Assume now that given an instance
A and a sufficiently small ε > 0, we have an ε-conserving decomposition
A1, A2, . . . , An with an associated schedule S0 as described in Lemma 5. It fol-
lows from this lemma that in order to find an arbitrary good approximation of
an optimal feasible schedule for A, it suffices to select an optimal combination
of feasible schedules S1, S2, . . . , Sn for the subinstances A1, A2, . . . , An, respec-
tively. We exploit this in the following. Assume that we have a Pareto front Di

for each subinstance Ai. Moreover, assume that we have already selected some
feasible schedules Si, i ∈ Q, for a subset Q ⊆ {1, . . . , n}, where we define Q :=
{1, . . . , n}\Q. Clearly, finding some optimal feasible schedules S1, S2, . . . , Sn

with respect to the already selected schedules corresponds then to finding some
feasible schedules Si, i ∈ Q, that minimize the following objective:

max
v

c(v)
(∑

i∈Q

Si
v +
∑
i∈Q

Si
v

)
.

We can formulate this problem as an integer program by introducing an integral
variable xi,S for each i ∈ Q and each schedule S ∈ Di that indicates whether
this schedule is part of this selection. We need a more general integer program
which allows us to restrict the nodes to a subset C ⊆ {1, . . . , k}:

minimize z

subject to z ≥ c(v)
( ∑

i∈Q,S∈Di

xi,SSv +
∑
i∈Q

Si
v

)
for v ∈ C (1)

∑
S∈Di

xi,S ≥ 1 for i ∈ Q (2)

xi,S ∈ {0, 1} for i ∈ Q, S ∈ Di (3)

Constraints (2) ensure that exactly one schedule is picked from each Pareto
front Di, and constraints (1) enforce that the objective is minimized. Observe
that the number of variables in this integer program depends on the sizes of the
sets Di, i ∈ Q. We refer to the corresponding linear program in which we relax
the integrality constraints (3) by xi,S ≥ 0 as LP (Q, C). This linear program
is used multiple times in the following procedure EXTEND which extends a
given combination of feasible schedules Si, i ∈ Q, to some feasible schedules
S1, S2, . . . , Sn:
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EXTEND(Q)

1. Set v∗ ← min{v | ∃i ∈ Q, S ∈ Di : Sv > 0}.
2. (inner loop) While Q �= ∅:

(a) If |Q| = 1, then, for the single element i ∈ Q, set Si to an
arbitrary schedule in Di, and terminate this procedure.

(b) Set C ← {v∗, . . . , min{k, v∗ + |Q| − 2}}.
(c) Compute an optimum x of the linear program LP (Q, C).
(d) Set Q′ ← {i ∈ Q | ∃S ∈ Di : xi,S �∈ {0, 1}}.
(e) For each i ∈ Q\Q′, set Si to the schedule in Di indicated by the

corresponding integral variable in x.
(f) Set Q ← Q′.

The node v∗ in step 1 is simply the smallest labeled node such that there
exists a set Di with a schedule S ∈ Di that has at least one sending time at
v∗. Moreover, we set Q′ in each step 2(d) to the ’non-integral part’ of Q with
respect to x.

Lemma 6. The inner loop has at most n iterations, and hence procedure EX-
TEND terminates in linear time.

Proof. By the setting of C in step 2(b), we have in each iteration that |C| < |Q|.
We have to show that this yields that the optimum x of the linear program
LP (Q, C) has an integral part, since then the cardinality of Q decreases by
at least one in each iteration, which yields the claim. To this end, we follow
the arguments from Theorem 1 in [14]. Let z be the cost of x. Moreover, let
w :=

∑
i∈Q |Di|, u := |Q| and l := |C|. Hence, x is a point on the polyhedron in

Rw defined by the following l + u + w constraints:

z/c(v) −
∑
i∈Q

Si
v ≥

∑
i∈Q,S∈Di

xi,SSv for v ∈ C

∑
S∈Di

xi,S ≥ 1 for i ∈ Q (4)

xi,S ≥ 0 for i ∈ Q, S ∈ Di (5)

We can wlog assume that x is a vertex on this polyhedron. In this case, since
this polyhedron is w-dimensional, we have that x satisfies at least w of these
constraints with equality. Consequently, at least w − u− l of constraints (5) are
satisfied with equality by x. Therefore, at least w−u− l of the variables in x are
0. Define hi := |{S ∈ Di | xi,S �= 0}|, for each i ∈ Q. By the arguments above,∑

i∈Q hi ≤ u + l. Hence, since l = |C| < |Q| = u,

1
|Q|
∑
i∈Q

hi < 2. (6)
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This term is the average size of the integers hi, i ∈ Q. But on the other hand,
constraints (4) ensure that hi ≥ 1, for each i ∈ Q. Hence, by inequality (6), we
obtain that there must be at least one i ∈ Q with hi = 1, and therefore, there is
at least one S ∈ Di with xi,S = 1. This proves the claim of the lemma. �


The algorithm. Using procedure EXTEND, we can now formulate the final
algorithm, which takes an instance A, a sufficiently small ε > 0, and a positive
integer parameter β as input. The parameter β affects the running time of the
algorithm, and we will show in the following that we can choose a constant β
such that the algorithm yields a PTAS:

ALGORITHM(A, ε, β)

1. Compute an ε-conserving decomposition A1, A2, . . . , An of A accord-
ing to Lemma 5 with an associated schedule S0 for A.

2. For i = 1, . . . , n: Compute a Pareto front Di for Ai according to
Lemma 4 with μ = κε.

3. (outer loop) For each set Q ⊆ {1, . . . , n} of size n − β and each
combination of schedules Si ∈ Di, i ∈ Q:
(a) Use procedure EXTEND to extend the combination of schedules

Si, i ∈ Q, to some schedules S1, S2, . . . , Sn.
(b) Set S ← ∪n

i=0S
i.

4. Return the best schedule S computed in the outer loop.

Lemma 7. If the input instance A has (η, γ)-exponential growth for some pair
η, γ > 1, then the algorithm has polynomial running time.

Proof. If A has exponential growth, then we have that k = O(log(n)), since the
number of sending times Sk is at most n. Therefore, by the parameter choice μ =
κε, we conclude with Lemma 4 that the dynamic programming approach yields
the Pareto fronts D1, D2, . . . , Dn in polynomial time O(κO(log(n))

ε ), and these sets
have also polynomial size. In each iteration of the inner loop, we have to solve a
linear program, where the size of this linear program is O(

∑n
i=1 |Di|), and hence

polynomial. Consequently, we can solve this linear program with the Ellipsoid
method in polynomial time. Now we count the number of times we have to solve
such a linear program. First, again since the Pareto fronts D1, D2, . . . , Dn have
polynomial size and β is constant, we see that the outer loop has polynomially
many iterations. Second, Lemma 6 shows that each inner loop has at most n
iterations. The claim follows by combining all these facts. �

The following lemma is proven in the full version of this paper:

Lemma 8. If the input instance A has (η, γ)-exponential growth for some pair
η, γ > 1, then, for any ε > 0, we can choose a constant β such that the algorithm
returns a feasible schedule S with cost(S) ≤ (1 + 2ε)OPT(A).
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Theorem 2. There is a PTAS for DAC with unit length due intervals.

Proof. Combine Lemmas 3, 7, and 8. �


5 Hardness Results

The following theorems are proven in the full version of this paper:

Theorem 3. DAC is strongly NP-hard, even for unit length due intervals.

Theorem 4. For any ε > 0, DA cannot be approximated within 4/3 − ε in
polynomial time, even for unit length due intervals, unless P=NP.
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Abstract. Given a heterogeneous cake and 5 players, we give the first
bounded algorithm for computing an envy-free division of the cake, such
that each person thinks he gets the largest piece. The case with 4 players
was solved in a famous paper by Brams et al. in 1997. Our algorithm can
be discretized to obtain an ε envy-free division in O(polylog (1/ε)) time.
The algorithm is based on augmenting the irrevocable advantage graph
in a new way.

We also look at the open problem of finding discrete procedures for
computing envy-free division among 4 players. We present a simple al-
gorithm that finds an envy-free division of a portion of the cake, such
that each player gets at least 1/4 of the whole cake (in his valuation).

1 Introduction

Since the beautiful works of Steinhaus and Banach and Knaster [1,2], cake cut-
ting problems have been a favorite among mathematicians. They have found
various applications in the fields of economics, political science, operations re-
search, and computer science.

The main objective in the cake cutting problem is fairness. The two most
commonly used notions of fairness are “proportionality” and “envy-freeness”.
In proportional cake cutting, each person gets a piece which he considers as at
least 1

n of the whole cake. “Envy-free” is a stronger condition, saying that each
person must get the piece he thinks is largest (or at least tied with the largest).

Despite the simplicity of the model, the envy-free cake cutting problem has
been eluding researchers for many decades. In 1976, Selfridge and Conway gave
a simple discrete procedure for computing an envy-free allocation for 3 players.
Later in 1980, the existence of envy-free divisions with n− 1 cuts was proved by
Stromquist [3]. Not much progress was made until 1995, when Brams and Taylor
[4] gave the first finite discrete algorithm for envy-free division for general n.
However, the number of cuts needed in their algorithm depends on the actual
utility function of the players, and it may be unbounded. Finding a bounded
algorithm for general n is known to be one of the most important open problems
in the field. Even for n = 4 no such algorithm is known.

In 1997, Brams et al. gave a moving-knife procedure for an envy-free division
for 4 people [5]. In the paper they pointed out that a solution for n = 5 exists if a
certain extension of Austin’s procedure [6] exists. The existence of that extension
seems to be unlikely.

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 292–300, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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In this paper we solve the case for n = 5 using a different approach. In
particular, we give the first moving-knife procedure for n = 5. Our algorithm
is based on the idea of irrevocable advantage (IA) used in [4]. Assume the cake
has been allocated partially, we say A has IA over B if A will not envy B even
if B is given the rest of the cake. Our algorithm first computes an envy-free
division over a portion of the cake in a way such that some IA relationships can
be obtained when dividing the leftover. We then recurse on the leftover until a
certain structure exists in the graph of IA relationships. At that point we can
divide the remaining part directly, without any trimming. The idea is similar
to the Selfridge-Conway procedure. However, new ideas are used for obtaining a
partial allocation and augmenting the IA graph, and these ideas may be useful
for bigger n.

A desirable property of our procedure is that it is “almost discrete”, in the
sense that all operations used are discrete except for the Austin’s procedure. We
show how the Austin’s procedure can be discretized, yielding an ε-approximate
envy-free division in O(polylog

( 1
ε

)
) time, using only a constant number of cuts.

Based on the same idea, we also give a discrete procedure for n = 4. The
procedure produces an envy-free division such that each person gets at least 1

4
of the cake (in his own valuation), but it does not always allocate the whole
cake.

1.1 Related Work

A more popular line of research in theoretical computer science is computing
proportional (or approximately proportional) divisions. In [7], Even and Paz
gave a deterministic divide-and-conqueror algorithm that computes a propor-
tional division, and it uses only O(n log n) queries. In the last few years, there
has been several papers on the lower bound of query complexity of computing
proportional division. Sgall and Woeginger [8] showed that every proportional
protocol (either deterministic or randomized) has query complexity Ω(n log n),
under the constraint that each player must receive a consecutive piece. Edmonds
and Pruhs [9] showed the same lower bound for any deterministic approximate-
fair protocol, and later they gave randomized algorithms for computing approxi-
mate proportional divisions, using a linear number of cuts with high probability
[10,11].

For envy-free divisions, Su [12] gave a constructive proof of the existence of an
envy-free division with n− 1 cuts. The proof can be turned into an approximate
algorithm. However, the running time of the algorithm is exponential. Deng et
al. [13] use that proof to give a O(polylog

( 1
ε

)
) algorithm for the case n = 3. No

such algorithm is known for bigger n. The major difference between their work
and this paper is that in this paper we may use more than n − 1 cuts.

2 Notations and Assumptions

The cake cutting problem involves a cake, denoted by the [0, 1] interval, and
n players P1, P2, . . . , Pn. Each player has a utility function ui : 2[0,1] → R+



294 A. Saberi and Y. Wang

which is a measure over subsets of [0, 1], i.e., ui(∅) = 0, ui([0, 1]) = 1, and
u(∪∞

i=1Si) =
∑∞

i=1 u(Si) if Si’s are disjoint.
A division of the cake is a partition of the interval [0, 1] = C1 ∪ C2 · · · ∪ Cn,

where Ci is assigned to the ith player. A division is fair (or proportional) if
ui(Ci) ≥ 1

n for all i. It is envy-free if ui(Ci) ≥ ui(Cj) for all i and j, and ε
envy-free if ui(Ci) ≥ ui(Cj) − ε. In this paper, we consider only the case where
each Ci is the union of finitely many intervals.

In a discrete procedure, only two types or queries are allowed.

1. Value query Q1(i, S): The query takes a player i and a set S, and it returns
ui(S).

2. Cut query Q2(i, [a, b], p): The query takes a player i, an interval [a, b], and
a real number 0 < p < 1, and it outputs the minimum number c such that
ui([a, c]) = p × ui([a, b]).

The value query is natural, and the cut query allows a player to divide an interval
into any integral number of equal pieces.

When considering approximation algorithms for the problem we only consider
value queries, and we assume utility functions are upper bounded by M , i.e.,
ui(I) ≤ M |I| for all players i and intervals I. This assumption is necessary
because otherwise the utility can concentrate on a very small interval and it
may take the algorithm arbitrarily long to find that interval using only value
queries.

3 5-Person Envy-Free Division

First we define the concept of irrevocable advantage formally:

Definition 1. Let S be the part of cake that has been allocated and assume the
piece assigned to player i is Ci. Let T be part of the leftover, we say player i has
IA over player j when dividing T if ui(Ci) ≥ ui(Cj ∪ T ). In other words, i does
not envy j even if j is given the whole piece T .

Before we state the algorithm, we need to introduce the Austin’s procedure:

Lemma 1. Assume there are 2 players and the utility functions ui([0, x]) are
continuous in x, then there is a moving-knife procedure that cuts the cake into k
pieces, such that both players think all pieces have equal values.

Proof. Suppose k = 2. Denote the cake by the interval [0, 1]. Initially put one
knife at 0, and another knife at x such that u1([0, x]) = 1/2. Now move both
knives towards right such that the value of the cake in between remains 1/2 for
P1. The claim is that at some point the middle part also values 1/2 for P2.

Suppose u2([0, x]) ≤ 1/2. When the left knife moves to x, the right knife is at
1. Therefore for P2, initially the middle part values u2([0, x]) ≤ 1/2 and at the
end it values u2([x, 1]) = 1 − u2([0, x]) ≥ 1/2. By continuity, there must be a
moment where the middle part values 1/2 for P2 as well. The above procedure
can be easily generalized to the case k > 2. �
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Using Austin’s procedure as a black box, we are now ready to state the main
procedure.

Lemma 2. Given a cake and 5 players, there exists a procedure that produces
an envy-free division for part of the cake, using a constant number of cuts. Fur-
thermore, the leftover can be divided into two parts L1 and L2, such that when
dividing L1, both P1 and P2 have IA over some player in P3, P4, P5, and when
dividing L2, P1 and P2 have IA over another player.

Proof. First, use Austin’s procedure on P1 and P2 to produce 5 equal pieces for
both players. Depending on the favorite pieces of the rest of the players, there
are 3 cases.

– The favorite pieces of P3, P4, P5 are all different.
In this case we can let P3, P4 and P5 take their favorite pieces and let P1, P2
take whatever is left. Since P1 and P2 are indifferent about the five pieces,
we get an envy-free division.

– All of P3, P4, P5 like the same piece.
Without loss of generality assume all of P3, P4, P5 prefer the first piece. Sup-
pose we shrink the first piece gradually, then at some point one of P3, P4, P5
will think the first piece is as large as another piece. Again without loss of
generality, assume P3 is now tied between the first piece and the second.
Now we shrink the first piece and the second piece simultaneously such that
P3 is always indifferent between them. Two cases can happen here:

(i) At some point, one of P4 and P5 thinks his favorite piece (either first
or second) is tied with one of the rest (either the third, the fourth, or
the fifth). Without loss of generality assume P4’s favorite pieces become
the first and the third. Now we have obtained an envy-free division: Let
P5 takes his favorite piece, and P4 takes the third piece, and P3 takes
whatever is left in the first two pieces, and P1 and P2 take the fourth
and the fifth pieces.

(ii) P3 is tied with another piece, say the third piece. In this case, if P4 and
P5 prefer different pieces then we are done; otherwise, suppose they both
like the first piece. Shrink the first piece until one of them is tied with
another piece. It is easy to check that no matter which piece it is, we get
a perfect matching (and hence an envy-free division).

– Two of P3, P4, P5 like the same piece.
Assume P3 and P4 prefer the first piece and P5 prefers the second. Trim the
first piece until one of P3 and P4 is tied between the first piece and another
piece. If that piece is not the second, then we have a perfect matching; If
it is the second piece, the problem reduces to the previous case, where we
shrink the first piece and the second piece simultaneously. �


Denote the previous procedure by “Procedure 1”. The proof of the following
theorem shows how the leftover can be handled.
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Theorem 1. Given a cake and 5 players, there exists a moving-knife procedure
which produces an envy-free division, using a constant number of cuts.

Proof. Use Procedure 1 to obtain an envy-free division for part of the cake, and
assume the leftover is T1∪T2, such that when allocating T1 both P1 and P2 have
IA over P3, and for T2 both P1 and P2 have IA over P4. We show how T1 can
be divided, and T2 can be handled similarly.

On T1, run Procedure 1 again with P1 and P3 performing the Austin’s proce-
dure. Part of T1 might remain unallocated, which can be divided into R1 ∪ R2
such that P1 and P3 have IA over another player when dividing R1 and R2 re-
spectively. Suppose P1 and P3 have IA over P4 on R1, then R1 can be divided
in the following way: Let P2 and P5 divide R1 into 5 equal pieces by performing
the Austin’s procedure, and let the players take the largest remaining piece in
the following order: P4, P3, P1, P2, P5. P4 envies no one because he picks first;
P3 does not envy P4 because of IA; P1 envies neither P4 nor P3 because of IA;
P2 and P5 do not envy anyone because they are indifferent about the five pieces.
R2 can be divided similarly. �

The proof of the theorem essentially gives the algorithm, which can be viewed
as a recursive algorithm that always ends at depth 3. It should be noted that
Procedure 1 is “almost discrete”. The only part that uses moving knives is the
Austin’s procedure. To see this, it suffices to check all other operations can be
done discretely. Essentially there are two types of operations we used.

1. We decrease a piece until some player is tied with this piece and another
one. It can be done by letting each player mark a point on this piece which
makes him tied if the part to the left of the point is removed. Then cut along
the leftmost mark.

2. We decrease two pieces simultaneously such that some player is always tied
between the two, and end when a player is tied between a piece within the
two and a piece outside the two. This can be done similarly by making marks
and cut along the leftmost one.

Moving-knife procedures are not desirable from an algorithmic perspective. Next
we show Procedure 1 can be discretized to yield an approximate solution.

Theorem 2. Procedure 1 can be discretized such that it computes an ε envy-free
solution in time O(log

(
M
ε

)2
), using a constant number of cuts.

Proof. We show how to discretize The Austin’s procedure by performing binary
search on the position of the left knife. The difficulty comes from the fact that
a small perturbation of the left knife can result in a large move in the right
knife (because the valuation of P1 can be 0 on some interval), and also the exact
location of the right knife can not be found using only value queries.

For simplicity, we only show the case of cutting the cake into k = 2 equal
parts, while the algorithm for k > 2 is essentially the same. Let x be a point
satisfying u1([x, 1]) ≥ 1

2 . We define Lx to be the largest number that is found by
binary search such that u1(x, Lx) ≤ 1

2 , and similarly Rx as the smallest number
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(found by binary search) such that u1(x, Rx) ≥ 1
2 . Formally, Lx and Rx are

computed by the following binary-search algorithm:

(1) Initialize Lx = 0, Rx = 1.
(2) Repeat the following process log

(
M
ε

)
times: Let m = Lx+Rx

2 . Set Lx = m if
u1([x, m]) ≤ 1

2 , otherwise set Rx = m.

The following facts hold for Lx and Rx.

1. Lx and Rx are nondecreasing functions of x.
2. Every point y that satisfies u1([x, y]) = 1

2 is contained in the interval [Lx, Rx].
3. 1

2 − ε ≤ u1([x, Lx]) ≤ 1
2 ≤ u1([x, Rx]) ≤ 1

2 + ε,

We prove the first property briefly: Let 0 < x1 < x2 < 1, assume we run
one procedure for x1 and one for x2. The two procedures differ at a step only
when u(x1, m) ≥ 1

2 and u(x2, m) ≤ 1
2 , but then we have Lx1 , Rx1 ≤ m and

Lx2 , Rx2 ≥ m. If no such step exists, then both procedures produce the same
Lx and Rx. In either case, Lx1 ≤ Lx2 and Rx1 ≤ Rx2 . The second property is
trivial from the algorithm. Notice that the length of the interval [Lx, Rx] halves
in each iteration, so Rx −Lx = ε

M at the end of the algorithm. By boundedness
of the utility function we have u1([Lx, Rx]) ≤ ε, and together with the second
property this implies the third property.

We are now ready to state the discretized Austin’s procedure. Assume that
u2([0, t]) < 1

2 where t satisfies u1([0, t]) = 1
2 .

(1) Initialize l = 0, r = 1.
(2) Set x = l+r

2 . If u1([0, x]) > 1
2 then set r = x and go to (4); Otherwise,

compute Lx, Rx.
(3) If u2([x, Lx]) > 1

2 + ε set r = x; Otherwise if u2([x, Rx]) < 1
2 − ε set l = x;

Otherwise, find a point y ∈ [Lx, Rx] by binary search such that u2([x, y]) ∈
[12 − 2ε, 1

2 + 2ε]. Return the cut (x, y) and terminate the algorithm.
(4) Repeat step (2) and (3) log

(
M
ε

)
times.

(5) If the algorithm has not terminated, find a point y in [Ll, Rr] by binary
search such that u2([l, y]) ∈ [12 − ε, 1

2 + ε]. Return the cut (l, y).

Claim. The above algorithm returns a cut (x, y) such that 1
2 − 2ε ≤ ui([x, y]) ≤

1
2 + 2ε for i = 1, 2.

Proof. For any x such that u1([0, x]) ≤ 1
2 , we use Hx to denote the smallest num-

ber such that u1([x, Hx]) = 1
2 . By previous arguments we know Lx ≤ Hx ≤ Rx.

We claim that at each step, the algorithm either terminates or the following in-
variant holds: u2([l, Hl]) < 1

2 and u2([r′, Hr′ ]) > 1
2 , where r′ = min(r, t). Initially

this is true by assumption; At step (3), we set r = x only when u2([x, Lx]) > 1
2+ε,

but then u2([r, Hr]) ≥ u2([r, Lr]) > 1
2 . Similarly when we set l = x the invariant

still holds. Also notice that at each step, any point y ∈ [Lx, Rx] yields a feasible
cut (x, y) for player 1 (an interval I is said to be feasible if 1

2−ε ≤ u(I) ≤ 1
2 +ε). If

at step (3) the third case happens, i.e. u2([x, Lx]) ≤ 1
2 +ε and u2([x, Rx]) ≥ 1

2−ε,
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then we know there also exists a feasible point for player 2 in the interval [Lx, Rx].
We may not find this point exactly but we lose at most an additive ε by per-
forming binary search.

If the algorithm reaches step (5), we must have r−l ≤ ε
M . By the invariant just

proved, u2([l, Ll]) < 1
2 and u2([l, Rr]) = u2([l, r])+u2([r, Rr]) > 1

2 , so we can find
y ∈ [Ll, Rr] such that u2(l, y) ∈ [12 − ε, 1

2 + ε]. We must have 1
2 − ε ≤ u1(l, Ll) ≤

u1(l, y) ≤ u1(l, r) + u1(r, Rr) ≤ 1
2 + 2ε. (note: it might happen that r > t at

step (5) and Rr is not well defined. In that case just consider r′ = min(r, t) as
in proving the invariant.) �

In practice we can not find t exactly so we do not know if u2([0, t]) is less
than 1/2 or not. To overcome this, we can compute L0 and R0. If u2([0, L0]) ≤
1/2 ≤ u2([0, R0]), then we directly perform a binary search and return; Other-
wise, either u2([0, L0]) > 1/2 or u2([0, R0]) < 1/2 and correspondingly we have
u2([0, t]) > 1/2 or u2([0, t]) < 1/2. �


4 4-Person Discrete Procedure

Theorem 3. Given a cake and 4 players, there exists a discrete procedure which
produces an envy-free division of part of the cake, such that P1 gets at least 1

4
of the whole cake. Furthermore, the leftover can be divided into two parts, such
that P1 has IA over another player when dividing each part.

Proof. The procedure is essentially the same as Procedure 1. Instead of per-
forming Austin’s procedure in the first step, just let P1 cut the cake into 4 equal
pieces. Everything that follows is the same. �

Theorem 4. Given a cake and 4 players, there exists a discrete procedure which
produces an envy-free division of part of the cake, and each player gets at least
1
4 of the whole cake (in his valuation).

Proof. Apply the previous procedure with P1 dividing first, and apply it again
to the leftover with P2 dividing, and do the same for P3 and P4. By Theorem 3,
P1 already gets at least 1

4 of the whole cake in the first round. P2 gets at least
1
4 of the part that was divided in the first round, and he gets at least 1

4 of the
leftover in the second round. The same argument holds for P3 and P4. �


5 Conclusion

In this paper we discussed envy-free divisions among 4 and 5 players. We pre-
sented a moving-knife procedure that yields envy-free division for 5 players, and
a discrete procedure that partially allocates the cake among 4 players and the
allocating is both envy-free and proportional. Both procedures use a constant
number of cuts. The moving-knife procedure for 5 people can be discretized
to obtain an ε envy-free allocation. The running time is O(log

(
M
ε

)2
) and the

number of cuts is still constant.
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The moving-knife procedure for 5 players is based on two ideas: First, we can
obtain a partial allocation, such that some IA relationships are created when
dividing the remaining part. Second, when the graph of IA has a certain graph
minor, we can allocate the whole piece without trimming. In our example, the
minor can be found after two recursive calls.

An interesting question is whether this idea can be generalized to n > 5. Here
the two challenging questions are how a partial allocation can be found, and
what kind of IA graph is sufficient for a direct allocation.

An interesting aspect of the problem is its inherent connection to classic algo-
rithmic concepts such as maximum weight matching or price equilibria. Suppose
the cake-cutter is allowed to charge different amounts for each piece. Then it is
easy to see that she can take an arbitrary cut of the cake and make it envy free
by using the dual prices of the maximum weight matching between the players
and the pieces. Our problem can be seen as finding the right placement of cuts
so that the dual prices of the corresponding maximum weight matching is zero.

Finding a discrete procedure for 4 players is a more challenging open question.
Our discrete algorithm finds a partial allocation, and it guarantees that each
player has at least one out edge in the IA graph. However in the worst case we
can have two cycles of length 2, and we were not able to design a procedure
which can augment that particular IA graph.
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Abstract. This paper presents PLDA, our parallel implementation of Latent
Dirichlet Allocation on MPI and MapReduce. PLDA smooths out storage and
computation bottlenecks and provides fault recovery for lengthy distributed com-
putations. We show that PLDA can be applied to large, real-world applications
and achieves good scalability. We have released MPI-PLDA to open source at
http://code.google.com/p/plda under the Apache License.

1 Introduction

Latent Dirichlet Allocation (LDA) was first proposed by Blei, Ng and Jordan to model
documents [1]. Each document is modeled as a mixture of K latent topics, where each
topic, k, is a multinomial distribution φk over a V -word vocabulary. For any document
d, its topic mixture θd is a probability distribution drawn from a Dirichlet prior with
parameter α. For each ith word wd,i in d, a topic zd,i is drawn from θd, and wd,i is
drawn from φzd,i

.
Given an input corpus W , the LDA learning process consists of calculating Φ, a

maximum-likelihood estimate of model parameters. Given this model, we can infer
topic distributions for arbitrary documents. The idea of describing documents in terms
of their topic compositions has seen broad application in information-management ap-
plications. For example, in a query ‘apple pie’, LDA can infer from the presence of
‘pie’ that the meaning of ‘apple’ is closer to ‘fruit’ than ‘computer’. Using this meaning
information obtained by learning an LDA model, documents with the meaning ‘fruit’
can be effectively identified and returned to answer the ‘apple pie’ query.

In this paper, we first present LDA and related work in Section 2. In Section 3 we
present parallel LDA (PLDA) and explain how it works via a simple example. We then
present our two fault-tolerant PLDA implementations (the current core algorithm of
PLDA is the AD-LDA algorithm [2]), one on MPI [3] and the other on MapReduce [4].
Section 4 uses two large-scale applications to demonstrate the scalability of PLDA.
Finally, we discuss future research plans in Section 5.

2 Learning Algorithms for LDA

Blei, Ng and Jordan [1] proposed using a Variational Expectation Maximization (VEM)
algorithm for obtaining maximum-likelihood estimate of Φ from W . This algorithm

A. Goldberg and Y. Zhou (Eds.): AAIM 2009, LNCS 5564, pp. 301–314, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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iteratively executes an E-step and an M-step, where the E-step infers the topic dis-
tribution of each training document, and the M-step updates model parameters using
the inference result. Unfortunately, this inference is intractable, so variational Bayes
is used in the E-step for approximate inference. Minka and Lafferty proposed a com-
parable algorithm [5], which uses another approximate inference method, Expectation
Propagation (EP), in the E-step.

Griffiths and Steyvers [6] proposed using Gibbs sampling, a Markov-chain Monte
Carlo method, to perform inference. By assuming a Dirichlet prior, β, on model param-
eters Φ = {φk} (a set of topics), Φ can be integrated (hence removed from the equa-
tion) using the Dirichlet-multinomial conjugacy. The posterior distribution P (Z|W )
can then be estimated using a collapsed Gibbs sampling algorithm, which, in each iter-
ation, updates each topic assignment zd,i ∈ Z by sampling the full conditional posterior
distribution:

p(zd,i = k | Z−(d,i), wd,i = v, W−(d,i)) ∝
(
Cdoc

d,k + α
) Cword

v,k + β∑
v′ Cword

v′,k + V β
, (1)

where k ∈ [1, K] is a topic, v ∈ [1, V ] is a word in the vocabulary, wd,i denotes the ith

word in document d and zd,i the topic assigned to wd,i, W−(d,i) denotes the words in
the training corpus with wd,i excluded, and Z−(d,i) the corresponding topic assignments
of W−(d,i). In addition, Cword

v,k denotes the number of times that word v is assigned to
topic k not including the current instance wd,i and zd,i, and Cdoc

d,k the number of times
that topic k has occurred in document d not including wd,i and zd,i. Whenever zd,i is
assigned to a sample drawn from (1), matrices Cword and Cdoc are updated. After enough
sampling iterations to burn in the Markov chain, Θ = {θd}D

d=1 and Φ = {φk}K
k=1 can

be estimated by

θd,k =
Cdoc

d,k + α∑K
k′=1 Cdoc

d,k′ + Kα
φv,k =

Cword
v,k + β∑V

v′=1 Cword
v′,k + V β

. (2)

Griffiths and Steyvers [6] conducted an empirical study of VEM, EP and Gibbs sam-
pling. The comparison shows that Gibbs sampling converges to a known ground-truth
model more rapidly than either VEM or EP.

2.1 LDA Performance Enhancement

The computation complexity of Gibbs sampling is K multiplied by the total number of
word occurrences in the training corpus. Prior work has explored multiple alternatives
for speeding up LDA, including both parallelizing LDA across multiple machines and
reducing the total amount of work required to build an LDA model. Relevant paral-
lelization efforts include:

– Nallapati and et al. [7] reported distributed computing of the VEM algorithm for
LDA [1].

– Newman and et al. [2] presented two synchronous methods, AD-LDA and HD-
LDA, to perform distributed Gibbs sampling. AD-LDA is similar to distributed EM
[8] from a data-flow perspective; HD-LDA is theoretically equivalent to learning a
mixture of LDA models but suffers from high computation cost.
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– Asuncion, Smyth and Welling [9] presented an asynchronous distributed Gibbs
sampling algorithm.

In addition to these parallelization techniques, the following optimizations can reduce
LDA model learning times by reducing the total computational cost:

– Gomes, Welling and Perona [10] presented an enhancement of the VEM algorithm
using a bounded amount of memory.

– Porteous and et al. [11] proposed a method to accelerate the computation of (Eq.1).
The acceleration is achieved by no approximations but using the property that the
probability vectors, θd, are sparse in most cases.

3 PLDA

We consider two well-known distributed programming models, MPI [3] and MapRe-
duce [4], to parallelize LDA learning. Before introducing PLDA, we briefly review the
AD-LDA algorithm [2], and its dependency on the collective communication operation,
AllReduce. We show how to express the AD-LDA algorithm [6] in both models of MPI
and MapReduce.

3.1 Parallel Gibbs Sampling and AllReduce

The AD-LDA algorithm [2] distributes D training documents over P processors, with
Dp = D/P documents on each processor. AD-LDA partitions document content W =
{wd}D

d=1 into {W|1, . . . , W|P } and corresponding topic assignments Z = {zd}D
d=1

into {Z|1, . . . , Z|P}, where W|p and Z|p exist only on processor p. Document-specific
counts, Cdoc, are likewise distributed; however, each processor maintains its own copy
of word-topic counts, Cword. We represent processor-specific counts as Cdoc

|p . Cword
|p is

used to temporarily store word-topic counts accumulated from local documents’ topic
assignments on each processor.

In each Gibbs sampling iteration, each processor p updates Z|p by sampling every
zd,i|p ∈ Z|p from the approximate posterior distribution:

p(zd,i|p = k | Z−(d,i), wd,i|p = v, W−(d,i)) ∝
(
Cdoc

d,k|p + α
) Cword

v,k + β∑
v′ Cword

v′,k + V β
, (3)

and updates Cdoc
|p and Cword according to the new topic assignments. After each iter-

ation, each processor recomputes word-topic counts of its local documents Cword
|p and

uses an AllReduce operation to reduce and broadcast the new Cword to all processors.

3.2 Illustrative Example

We use a two-category, nine-document example, originally presented in [12] for ex-
plaining LSA, to illustrate how PLDA works. Table 1 shows nine documents separated
into two categories, where symbol h stands for human computer interaction, and m for
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Table 1. Nine-Document Example

d p Document Title

h1 p1 Human machine interface for ABC computer applications
h2 p2 A survey of user opinion of computer system response time
h3 p1 The EPS user interface management system
h4 p2 System and human system engineering testing of EPS
h5 p1 Relation of user perceived response time to error measurement
m1 p2 The generation of random, binary, ordered trees
m2 p1 The intersection graph of paths in trees
m3 p2 Graph minors IV: Widths of trees and well-quasi-ordering
m4 p1 Graph minors: A survey

Table 2. Cdoc Matrices on machines p1 and p2

p d Cdoc
d,t1 Cdoc

d,t2 Topic Assignment

p1 h1 2 1 human=t1, interface=t1, computer=t2
h3 2 2 interface=t1, user=t2, system=t1, EPS=t2
h5 2 1 user=t1, response=t2, time=t1
m2 2 0 trees=t1, graph=t1
m4 1 2 survey=t2, graph=t1, minors=t2

p2 h2 4 2 computer=t1, user=t1, system=t2,
response=t1, time=t2, survey=t1

h4 2 2 human=t2, system=t1, system=t2, EPS=t1
m1 1 0 trees=t1
m3 2 1 trees=t1, graph=t2, minors=t1

mathematical graph theory. There are five document titles (with extracted terms itali-
cized) in the h category, labeled from h1 to h5, and four documents in the m category,
from m1 to m4.

Suppose we use two machines p1 and p2 and target for finding two latent topics t1
and t2. Nine documents are assigned to p1 or p2 as depicted in the second column of the
table. PLDA first initializes each word’s topic from a uniform distribution U(1, K = 2).
Table 2 depicts the document-topic matrices on machines p1 and p2, or Cdoc

|p1 Cdoc
|p2 , re-

spectively. The first row shows that document h1 on machine p1 receives topic assign-
ment t1 on words human and interface, and topic assignment t2 on word computer.
Therefore, the h1 row of topic counts are 2 for topic t1 and 1 for t2. PLDA performs
this counting process on all documents on machines p1 and p2, respectively. Notice
that Cdoc

|p1 and Cdoc
|p2 reside on local machines, and no inter-machine communication is

involved.
The other important data structure is the word-topic matrices depicted in Table 3. For

instance, the first column under machine p1, Cword
w,t1|p1, records how many times topic t1

is assigned to each word on machine p1. The second column under machinep2, Cword
w,t2|p2,

records topic t2 assignment on machine p2. Each machine also replicates a global topic
assignment matrix Cword, which is updated at the end of each iteration through the AllRe-
duce operation. This is where inter-machine communication takes place.

Next, PLDA performs a number of Gibbs sampling iterations. Rather than perform-
ing topic assignment randomly in the initialization step, Gibbs sampling performs topic
assignment according to Equation (3). After each iteration, both Tables 2 and 3 are up-
dated. At the end, the master machine outputs Cword, on which one can look up for the
topic distribution of a word.
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Table 3. Cword Matrices

Machine p1 Machine p2
w Cword

w,t1|p1 Cword
w,t2|p1 Cword

w,t1 Cword
w,t2 Cword

w,t1|p2 Cword
w,t2|p2 Cword

w,t1 Cword
w,t2

EPS 0 1 1 1 1 0 1 1
computer 0 1 1 1 1 0 1 1
graph 2 0 2 1 0 1 2 1
human 1 0 1 1 0 1 1 1
interface 2 0 2 0 0 0 2 0
minors 0 1 1 1 1 0 1 1
response 0 1 1 1 1 0 1 1
survey 0 1 1 1 1 0 1 1
system 1 0 2 2 1 2 2 2
time 1 0 1 1 0 1 1 1
trees 1 0 3 0 2 0 3 0
user 1 1 2 1 1 0 2 1

3.3 Parallel LDA Using MPI

The MPI model supports AllReduce via an API function:

int MPI_Allreduce(void *sendbuf, void *recvbuf, int count,
MPI_Datatype datatype, MPI_Op op);

When a worker, meaning a thread or a process that executes part of the parallel com-
puting job, finishes sampling, it shares topic assignments and waits for AllReduce by
invoking MPI Allreduce, where sendbuf points to word-topic counts of its lo-
cal documents: a vector of count elements with type datatype. The worker sleeps
until the MPI implementation finishes AllReduce and the results are in each worker’s
buffer recvbuf. During the reduction process, word-topic counts vectors are aggre-
gated element-wise by the addition operation op explained in Section 3.1.

Figure 1 presents the details of Procedure MPI-PLDA. The algorithm first attempts
to load checkpoints Z|p if a machine failure took place and the computation is in the re-
covery mode. The procedure then performs initialization (lines 5 to 10), where for each
word, its topic is sampled from a uniform distribution. Next, Cdoc

|p and Cword
|p can be com-

puted from the histogram of Z|p (line 12). To obtain Cword, Procedure MPI-PLDA in-
vokes MPI Allreduce (line 13). In the Gibbs sampling iterations, each word’s topic
is sampled from the approximate posterior distribution (Eq.3) and Cdoc

|p is updated ac-
cordingly (lines 15 to 19). At the end of each iteration, the procedure checkpoints Z|p
(line 20) and recomputes Cword

|p and Cword (lines 21 to 22). After a sufficient number of
iterations, the converged LDA model is outputted by the master(line 25).

Performance and Fault Recovery. Various MPI implementation systems use different
AllReduce algorithms; the state-of-the-art is the recursive doubling and halving (RDH)
algorithm presented in [3], which was used by many MPI implementations including
the well known MPICH2. RDH includes two phases: Reduce-scatter and All-gather.
Each phase runs a recursive algorithm, and in each recursion level, workers are grouped
into pairs and exchange data in both directions. This algorithm is particularly efficient
when the number of workers is a power of 2, because no worker would be idle during
communication.
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Procedure MPI-PLDA(iteration-num)

if there is a checkpoint then1

t ← The number of iterations already done;2

Load Z|p from the checkpoint;3

else4

t ← 0;5

Load documents on current worker p into W|p;6

for each word wd,i|p ∈ W|p do7

Draw a sample k from uniform distribution U(1, K);8

zd,i|p ← k,9

end10

end11

Compute Cdoc
|p and Cword

|p ;12

MPI Allreduce(Cword
|p , Cword, V × K, ‘‘float-number’’, ‘‘sum’’);13

for ; t < iteration-num; t ← t + 1 do14

for each word wd,i|p ∈ W|p do15

Cdoc
d,zd,i

← Cdoc
d,zd,i

− 1, Cword
wd,i,zd,i

← Cword
wd,i,zd,i

− 1;16

zd,i ← draw new sample from (3), given Cword and Cdoc
d|p;17

Cdoc
d,zd,i

← Cdoc
d,zd,i

+ 1, Cword
wd,i,zd,i

← Cword
wd,i,zd,i

+ 1;18

end19

Checkpoint Z|p;20

Recompute Cword
|p ;21

MPI Allreduce(Cword
|p , Cword, V × K, ‘‘float-number’’,22

‘‘sum’’);
end23

if this is the master worker then24

Output Cword;25

end26

Fig. 1. The MPI Procedure of PLDA

RDH provides no facilities for fault recovery. In order to provide fault-recovery ca-
pability in MPI-PLDA, we checkpoint the worker state before AllReduce. This ensures
that when one or more processors fail in an iteration, we can roll back all workers to the
end of the most recent succeeded iteration, and restart the failed iteration. The check-
pointing code is executed immediately before the invocation of MPI Allreduce in
MPI-PLDA. In practice, we checkpoint only Z|p, because W|p can be reloaded from
training data, Cdoc

|p and Cword can also be recovered from the histogram of Z|p. The re-
covery code is at the beginning of MPI-PLDA: if there is a checkpoint on the disk, load
it; otherwise perform the random initialization.

3.4 Parallel LDA Using MapReduce

MapReduce processes input and output in the form of key-value pairs known as tuples.
A set of tuples is normally distributed across multiple processors, so each processor can
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efficiently load and process the local tuple subset, known as a shard. The operation of
dividing and distributing tuples is known as sharding.

A MapReduce job consists of three successive phases: mapping, shuffling and re-
ducing. The mapping and reducing phases are programmable. To program the map-
ping phase for LDA, we define three procedures: MapperStart, Map and Mapper
Flush. To program the reducing phase, we define ReducerStart, Reduce and
ReducerFlush.

For every input shard, the MapReduce implementation system creates a thread,
known as a map worker, on the processor where the shard resides. Each map worker
invokes Map to process each tuple in the shard. A map worker invokes MapperStart
before the first invocation of Map, and invokes MapperFlush after the last invoca-
tion. These user-defined functions invoke an API function MapperOutput to output
tuples known as map-outputs. Map-output tuples are collected and processed by the
shuffling phase; values of map outputs that share the same key are aggregated into a
new tuple known as reduce-input. The value of a reduce-input is a set of values of
map-outputs. Reduce-inputs are grouped into reduce-input shards. For each reduce-
input shard, the MapReduce implementation system creates a thread, reduce worker,
which invokes ReducerStart, Reduce and ReducerFlush in turn to process
each reduce-input in the local reduce-input shard. All map workers run in parallel, as
do all reduce workers. Workers communicate only in the shuffling phase.

data
channel

IdentityReducer

VectorSummingReducer

GibbsSamplingMapper

reducer side−input

model channel

W ��� Z

C����

W ��� ������� Z

������� C����

Fig. 2. The MapReduce job corresponding to one Gibbs sampling iteration of PLDA

We model each Gibbs sampling iteration of PLDA as a MapReduce job, as illus-
trated in Figure 2, where the map phase does Gibbs sampling and the reduce phase
updates the model and topic assignments. Related procedures are depicted in Figure 3.
We organize each fraction of Dp = D/P documents, denoted by W|p in Section 3.1,
in an input shard, which is then assigned to a map worker by the MapReduce imple-
mentation system. Each map worker loads a local copy of the model, Cword, when ex-
ecuting PLDA-MapperStart. Then it invokes PLDA-Map for each document wd ∈
W|p to updates the corresponding topic assignments, zd, and outputs zd to the chan-
nel data. After Gibbs sampling on all documents in a shard are finished, the map
worker invokes PLDA-MapperFlush to output the model update opinion matrix,
ΔCword, to the channel model with each row of ΔCword as a map-output tuple. The
concept channel comes from an extension to the standard MapReduce model that al-
lows us to use two reducers to output both the updated topic assignments, Z , and the
model, Cword. This extension adds an additional parameter to MapperOutput, in-
dicating a mapper output channel, where each channel connects to a reducer. Not all
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Procedure PLDA-MapperStart

Load Cword updated by previous iteration from GFS;1

Initialize ΔCword as a zero matrix with the same size as Cword;2

Seed the random number generator in a shard-dependent way;3

Procedure PLDA-Map(key, value)

d ← parse key;1

{wd, zd} ← parse value;2

Cdoc
d ← histogram unique topics in zd;3

for each wd,i ∈ wd do4

Cdoc
d,zd,i

← Cdoc
d,zd,i

− 1, ΔCword
d,zd,i

← ΔCword
d,zd,i

− 1, Cword
wd,i,zd,i

← Cword
wd,i,zd,i

− 1;5

zd,i ← draw new sample from (1), given Cword and Cdoc
d ;6

Cdoc
d,zd,i

← Cdoc
d,zd,i

+ 1, ΔCword
d,zd,i

← ΔCword
d,zd,i

+ 1, Cword
wd,i,zd,i

← Cword
wd,i,zd,i

+ 1;7

end8

Output(channel=data, key=d, value={wd, zd});9

Procedure PLDA-MapperFlush

for each unique word v in the vocabulary do1

Output(channel=model, key=v, value=ΔCword
v );2

end3

Fig. 3. Three MapReduce Procedures for PLDA

MapReduce implementations support this extension. However, we can implement the
extension using the standard MapReduce model by appending the channel indicator
to each map-output key, then defining Reduce to decompose the indicator by pars-
ing from the reduce-input key and invoking different reduce algorithms according the
indicator.

In the reduce phase, we use two standard reducers in Figure 2. For each zd, output by
GibbsSamplingMapper, IdentityReducer copies it to GFS; for each word v in the vocab-
ulary, VectorSummingReducer aggregates and outputs Cword

v ← Cword
v +

∑P
p=1 ΔCword

v|p .
Here we use another extension for VectorSummingReducer, the side-input of reducers,
which can also be implemented using the standard MapReduce model by appending
tuples in side-input, Cword, after the standard map-input, {W, Z}, and defining Map
identically to output tuples in the side input.

From Figure 2 we see that the input and output of the PLDA MapReduce job are
identical—both consist of document accompanied by topics assignments, W|p and Z|p,
as well the model, Cword. This allows us to chain up a series of PLDA MapReduce jobs
to model the Gibbs sampling iterations.

Performance and Fault Recovery. MapReduce performs AllReduce in the shuffling and
reducing phases after the mapping phase. In these phases map outputs are buffered on
the local disk, creating a temporary checkpoint, and then aggregated and re-distributed
by the shuffling phase. This implementation helps fault recovery. In order to guarantee
correct fault recovery, the map workers must execute a deterministic map algorithm,
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Table 4. Comparing MPI and MapReduce in supporting PLDA

Communication Efficiency Inter-iteration Intra-iteration
fault-recovery fault-recovery

MPI AllReduce through By customized Not yet
memory/network checkpointing supported

MapReduce Shuffling via GFS/Disk IO Not necessary Built in

which ensures that repeating a map input shard gives the same result. This is necessary
because when a map worker fails, the corresponding map input shard is repeated, and
the previous map-output may already have been consumed by some reducers. We do not
want these map-outputs be generated and reduced again when we repeat processing this
input shard. For PLDA, over-reduction will over-accumulate some elements in Cword.
MapReduce performs consistency checking by comparing the output checksums from a
map shard. The checksum itself is commutative: if you generate the same set of outputs
in a different ordering, the checksum remains the same. This checksum duplication de-
tection avoids over-reduction. But it also requires that the duplication is detectable—the
MapReduce program must generate the same map-outputs for an input shard in different
runs. However, the Gibbs sampling algorithm of PLDA is stochastic instead of deter-
ministic: the outputs of recovered map workers are different from and will be reduced
together with those old outputs. To avoid over-reduction in PLDA-MapperStart, we
seed the random number generator in a shard-dependent way to ensure that whenever
a failed map worker is recovered, it generates the same map-output as in its previous
run.

Table 4 compares the MPI and MapReduce implementations of PLDA. In the ab-
sence of machine failures, MPI-PLDA is more efficient because no disk IO is required
between computational iterations. When the number of machine is large, and the mean-
time to machine failures becomes a legitimate concern, the target application should
either use MapReduce-PLDA or force checkpoints with MPI-PLDA.

4 Large-Scale Applications

LDA has been shown effective in many tasks (e.g.,[13,14,15]). In this section, we use
two large-scale applications, community recommendation and document summariza-
tion, to demonstrate the scalability of PLDA.

4.1 Mining Social-Network User Latent Behavior

Users of social networking services (e.g., Orkut, Facebook, and MySpace) can con-
nect to each other explicitly by adding friends, or implicitly by joining communities.
When the number of communities grows over time, finding an interesting community
to join can be time consuming. We use PLDA to model users’ community member-
ship [16]. On a matrix formed by users as rows and communities as columns, all values
in user-community cells are initially unknown. When a user joins a community, the cor-
responding user-community cell is set to one. We apply PLDA on the matrix to assign
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Table 5. Speedup Performance of MPI-PLDA

# Machines Computation Communication Synch Total Time Speedup

1 28911s 0s 0s 28911s 1
2 14543s 417s 1s 14961s 1.93
4 7755s 686s 1s 8442s 3.42
8 4560s 949s 2s 5511s 5.25
16 2840s 1040s 1s 3881s 7.45
32 1553s 1158s 2s 2713s 10.66
64 1558s 1209s 2s 2769s 10.44

a probability value between zero and one to the unknown cells. When PLDA assigns
a high probability to a cell, this can be interpreted as a prediction that that cell’s user
would be very interested in joining that cell’s community.

The work of [16] conducted experiments on a large community data set of 492, 104
users and 118, 002 communities in a privacy-preserved way. The experimental results
show that MPI-PLDA achieves effective performance for personalized community rec-
ommendation. Table 5 shows the speedup performance and overhead analysis. When
we increased the number of machines, we could always reduce computation time in a
near-linear fashion. Unfortunately, the communication time increased as number of ma-
chines increased. When 32 machines were used, the communication time approached
the computation on a single machine. When 64 machines were used, the speedup was
worse than using 32 machines. The result was expected due to Amdahl’s law: the
speedup of a parallel algorithm is limited by the time needed for the overhead or
sequential fraction of the algorithm. When accounting for communication and syn-
chronization overheads (see the total time column), the speedup deteriorates as the
number of machines increases. Between the two overheads, the synchronization over-
head has very little impact on the speedup compared to the communication overhead
(which increases with the number of machines). The good news is that when the data
size increases (the results of two larger datasets are reported in the next section), we
can add more machines to achieve better speedup, because the deterioration point is
deferred.

4.2 Category-Sensitive Document Summarization

In recent years there is a surge of studies on keyword extraction and document sum-
marization that use graph-based ranking algorithms like PageRank and HITS to rank
text entities such as words and sentences. However, in many cases, documents have
category labels, a factor ignored in most previous work. Consider e-business websites
like amazon.com, which categorize products and support reviews by users. It is use-
ful to summarize reviews for each product by extracting that product’s most relevant
properties. For example, properties such as size, weight, and stand-by time are rele-
vant for mobile phones, whereas properties such as safety, exterior/interior design, and
equipment packages are for automobiles.

amazon.com
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We can realize this category-sensitive summarization using PLDA. By creating a
training document from all sentences in product reviews. By taking each sentence
from product reviews as a training document, we run the PLDA learning algorithm
to cluster words into topics. This step estimates the conditional probability distribu-
tion of words given topics, P (w|z). By normalizing each column of Cword, we can
also obtain P (z|w). Note that during the Gibbs sampling iterations, every word in the
training corpus is assigned a most likely topic. Given the category labels of each sen-
tence, we can estimate the conditional probability distributions of topics given cate-
gories (P (z|c)) and vice versa (P (c|z)) by counting the co-occurrences of topics and
categories.

Using the learning result, we can rank all review sentences of a product, given the
category of that product. Denote the input reviews by I = {w1, . . . , wD}, where wd

represents a sentence. By running the Gibbs sampling inference algorithm, we esti-
mate the topic assignment of every word in I. By counting the co-occurrence of topic
assignments and sentences, we can estimate P (z|wd) and P (wd|z). The inference re-
sult is useful to compute a category-sensitive characteristic measure char(wd; c) =
P (wd|c)P (c|wd), where c denotes the product category of reviews I. char(wd; c)
is a natural extension of the topic-sensitive characteristic measure, char(wd; z) =
P (wd|z)P (z|wd), proposed by [13]. Expanding char(wd; c), we obtain:

char(wd; c) = P (wd|c)P (c|wd)

=

[∑
z

P (wd|z)P (z|c)
][∑

z

P (z|wd)P (c|z)

]
(4)

where P (z|c) and P (c|z) come from the learning result and P (wd|z) and P (z|wd)
come from the inference result.

We performed experiments on two datasets: a Wikipedia dataset and a forum
dataset. The Wikipedia set consists of 2, 122, 618 articles after removing those with less
than 100 words. The forum set consists of 2, 450, 379 entries extracted from
http://www.tianya.cn. While the effectiveness of PLDA on document summarization
on the Wikipedia dataset is reported in [17], we report here our experimental results on
scalability conducted upon both datasets.

We measured and compared the speedup of MPI-PLDA and MapReduce-PLDA
using these two datasets. The dataset size and training parameters are shown in Figure 4.
The experiments were conducted on up to 1, 024 machines at Google’s distributed data
centers. Not all machines are identically configured; however, each machine is config-
ured with a CPU faster than 2GHz and memory larger than 4GBytes. We ran Wikipedia
dataset on 16/32/64/128/256 distributed machines. Because the data set is too large to
be fit into a single machine’s memory, we used 16 machines as the baseline to measure
the speedup of using more than 16 machines. To quantify speedup, we made an assump-
tion that the speedup of using 16 machines is 16 compared to using one machine. This
assumption is reasonable for our experiments, since PLDA does enjoy approximately
linear speedup when the number of machines is up to 32. Similarly we ran the forum
dataset on 64/128/256/512/1, 024 distributed machines and used 64 machines as the
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Fig. 4. The speedup of (a) Wikipedia: K = 500, V = 20000, D = 2, 122, 618,
TotalWordOccurrences = 447, 004, 756, iterations = 20, α = 0.1, β = 0.1. (b) Forum
Dataset: K = 500, V = 50000, D = 2, 450, 379, TotalWordOccurrences = 3, 223, 704, 976,
iterations = 10, α = 0.1, β = 0.1.

Table 6. Speedup Performance of MPI-PLDA and MapReduce-PLDA

(a) Widipedia dataset (Runtime of 20 iterations)

# Machines
MPI-PLDA MapReduce-PLDA

Running Time Speedup Running Time Speedup

16 11940s 16 12022s 16
32 6468s 30 7288s 26
64 3546s 54 4165s 46
128 2030s 94 3395s 57
256 1130s 169 2680s 72

(b) Forum dataset (Runtime of 10 iterations)

# Machines
MPI-PLDA MapReduce-PLDA

Running Time Speedup Running Time Speedup

64 9012s 64 10612s 64
128 4792s 120 5817s 117
256 2811s 205 4132s 164
512 1735s 332 3390s 200
1024 1323s 436 3349s 203

baseline. Since our aim was to measure speedup, not convergence, we ran 20 iterations
on Wikipedia and 10 on the forum dataset1.

1 Since the time of running N Gibbs sampling iterations is the same as N times the time of
running one iteration, we do not need to run PLDA to convergence in order to measure and
compare speedup.
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Figure 4 shows that PLDA can achieve linear speedup when the number of machines
is below about 100. It can no longer achieve linear speedup when the number of ma-
chines continues to increase beyond a data-size dependent threshold. This is expected
due to both the increase in the absolute time spending in communication between ma-
chines, and the increase in the fraction of the communication time in the entire execu-
tion time. When the fraction of the computation part dwindles, adding more machines
(CPUs) cannot improve much speedup. Worse yet, when the communication time con-
tinues to increase, the computation time reduced by parallelization cannot compensate
for the increase in the communication time, and speedup actually decreases. On the one
hand, as we previously stated and also observed in [18], when the dataset size increases,
and hence the computation time increases, we can add more machines to productively
improve speedup. On the other hand, a job will eventually be dominated by the commu-
nication overhead, and adding more machines may be counter-productive. Therefore,
the next logical step in performance enhancement is to consider communication time
reduction [19] (discussed further in concluding remarks).

Comparing MPI-PLDA with MapReduce-PLDA, MPI-PLDA enjoys better
speedup than MapReduce-PLDA. This is because MPI-PLDA uses highly efficient
in-memory communication, whereas MapReduce-PLDA involves machine schedul-
ing and disk IO between iterations. Indeed, Table 6 shows that when more machines
are added, MPI-PLDA enjoys better scalability. For instance, the running time that
MPI-PLDA takes on the Wikipedia dataset, using 256 machines, is 1, 130 seconds,
which is less than a half of the running time that MapReduce-PLDA takes. While
training the Wikipedia set on one machine for 20 iterations can take two days (if we
configure that machine with sufficient memory), it takes just 20 minutes to complete on
256 machines.

When the data size becomes much larger and hence more machines (say, tens of thou-
sands) are used, the chance that some machines may fail during a computation iteration
becomes non-negligible. In such situation, we can either employ MapReduce-PLDA
because of its support of intra-iteration fault recovery, or we can support intra-
interaction recovery in MPI-PLDA2.

5 Conclusion

In this paper, we presented two parallel implementations of PLDA, one based on MPI
and the other on MapReduce. We have released the MPI version to open source at
http://code.google.com/p/plda under the Apache License.

We plan to further our work in several directions. First, we plan to experiment with
different probabilistic distributions or processes such as Pitman Yor and Chinese Restau-
rant Process. Second, we are investigating algorithms for further speeding up Gibbs
sampling. Third, communication time increases as the number of machines increases,
and this further reduces the computation fraction of an algorithm. As pointed by J. Dem-
mel [19], since the improvement of CPU performance outpaces the improvement of

2 When machine can fail frequently during one iteration, hardware redundancy may be necessary
to ensure reliability.
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IO/communication performance, communication cost increasingly dominates a paral-
lel algorithm. We will look into strategies to reduce communication time.
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Abstract. This paper studies the problem of online job scheduling in a
model with preemption penalty introduced by Zheng et al. [11]. In such
a model with preemption penalty parameter ρ, the scheduler has to pay a
penalty of ρ times the weight of each aborted job. We consider two cases
according to the scheduler’s knowledge of Δ (ratio of length between
longest and shortest jobs). In the first case where the exact value of Δ is
known at the beginning, we re-investigate the WAL algorithm of Zheng
et al. and prove that it is ((1 + ρ)Δ + o(Δ))-competitive for sufficiently
large Δ. In particular, when ρ = 1, the previous competitive ratio of
3Δ + o(Δ) proved in [11] is improved to 2Δ + o(Δ). In the second case
where the online strategy only knows beforehand that Δ ≥ k3(ρ + 1)3

for some parameter k > 1, a ( k(1+ρ)
k−1

Δ+ o(Δ))-competitive deterministic
strategy is presented. For large Δ, the competitive ratio approaches that
of WAL as k increases.

1 Introduction

Due to its many applications, online job scheduling is an important area in recent
decades, see for example [7,8]. In a typical scenario in manufacturing, there is a
manufacturer who may accept or decline jobs that arrive one by one over time.
After arrival, each job will stay in the system waiting to be served until it expires,
i.e., when its deadline can no longer be met even if it is started at once. The
manufacturer will gain a profit for each completed job and his objective is to
maximize the total profit. In the standard preemption-restart model, preemption
is allowed but the aborted job has to be started again from the beginning in
order to obtain its profit.

In some applications, starting a job represents a commitment to serve a client.
Aborting the job will then likely cause certain degree of discontent in the affected
client. Therefore, we are motivated to study the scheduling when there is penalty
for preemption. Zheng et al. [11] were the first to study the scheduling with
preemption penalties for the above online job scheduling problem (i.e., with the
objective of maximizing the total profit). They introduced a model in which the
� The work is partially supported by NSF grants of China no. 70525004, 70702030 and

60736027, and Doctoral Fund of Ministry of Education of China (no. 20070698053).
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net profit is equal to the total profit of completed jobs minus ρ times the profit
of each aborted job, where ρ is called the preemption penalty parameter. They
presented the WAL strategy which makes use of the knowledge of the ratio, Δ,
of length between the longest and shortest jobs and proved it to be (3Δ+o(Δ))-
competitive for Δ > 9 and ρ = 1. They also gave a (1.366Δ + 0.366) lower
bound.

Fung [2] considered the general case for ρ > 0, and proved a lower bound
of ((1 + 1/ρ)1/�Δ� − 1)−1 + 1. When ρ = 1, the lower bound is approximately
Δ/ ln 2 ≈ 1.443Δ for large Δ, improving the previous bound of (1.366Δ+0.366).
Fung [2] also pointed out that WAL has in fact a competitive ratio of (2+ρ)Δ+
o(Δ) for constant ρ and sufficiently large Δ. When ρ = 1, the ratio is the same
as that in Zheng et al. [11].

In this paper, we consider the problem for general ρ > 0 and give a tighter
analysis of the WAL strategy. We also discuss another case as well where the
online strategy only knows of a lower bound on Δ initially. The case is motivated
by the scenario where the manufacturer may foresee the information of some
future jobs at the beginning via certain business technic and hence a lower
bound on Δ.

The problem is formally described as follows. There is a manufacturer who
processes jobs arriving over time. Each job J has four attributes, a(J), p(J),
w(J) and d(J), representing its arrival time, processing time (i.e., job length),
profit and deadline respectively. The existence of a job and its attributes are only
known on its arrival, i.e., at time a(J). The manufacturer gains a profit of w(J)
if he completes job J by its deadline d(J). On the other hand, there is a penalty
of ρw(J) if he starts J but aborts it before its completion. Here the preemption
penalty parameter ρ is a real number ≥ 0. We assume that 1 ≤ p(J) ≤ Δ where
Δ is a natural number. We will investigate the case where the scheduler knows
Δ a priori and the case where the scheduler only knows of a lower bound for Δ.
The goal is to maximize the total profit of the completed jobs minus the total
penalties caused by abortions. When preemptions cause no penalties, the model
reduces to the one that maximizes the total profit of the completed jobs.

To measure the performance of an on-line strategy A, competitive ratio anal-
ysis (refer to Borodin and El-yaniv, 1998 [1]) is often used. Denote by ΓA(I)
and Γ ∗(I) the schedules produced by A and by an optimal offline strategy OPT
on a job input set I respectively, and by |ΓA(I)| and |Γ ∗(I)| the total profit of
completed jobs in ΓA(I) and Γ ∗(I) respectively. Denote by |PΓA (I)| the total
preemption penalty received by A in ΓA(I). For OPT, it is an offline optimal
strategy and never aborts jobs, implying that there is no preemption penalties.
Therefore, the competitive ratio of A is defined as rA = supI

|Γ∗(I)|
|ΓA(I)|−|PΓ (I)| .

1.1 Related Work

A closely related body of research is the online scheduling without preemption
penalties. Fung et al. [3] studied an online broadcast problem. Translated into our
terminology, they proved a (Δ + 2

√
Δ + 2)-competitive strategy ACE (Another

Completes Earlier). Zheng et al. [10] presented a lower bound of Ω(Δ/ ln Δ).
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Ting [9] proved a matching upper bound of O(Δ/ log Δ). In all these works,
the online strategies make use of knowledge of Δ. Kim et al. [5] presented a
5-competitive greedy strategy GD for the case of unit length of job, i.e., Δ = 1.
GD makes an abortion if a newly arrived job has profit α times that of the
job being processed. Otherwise GD continues the current service. With simple
reasoning, GD is (4Δ + 1)-competitive with α = 2 for Δ ≥ 1. We may treat GD
as an online strategy that acts without the knowledge of Δ and thus performs
poorly for the case where Δ > 1.

Another related line of research considers the scenario of non-preemptive
scheduling (i.e., infinite preemption penalties) and the length of job can only
be selected from a finite set of real numbers instead of an arbitrary number
within [1, Δ]. Lipton and Tomkins [6] studied the scenario to maximize resource
utilization. One of their results is a 2-competitive non-preemptive algorithm in
the case where p(J) is either 1 or Δ, deadline is tight (i.e., d(J) = a(J) + p(J))
and the profit is proportional to the job length (i.e., w(J) = p(J)). Goldwasser
[4] extended Lipton and Tomkins’s work and investigated the case where each job
has slack time equal to k ≥ 0 times of job length, i.e., d(J)−a(J) = (k+1)p(J).
They proved a matching upper and lower bound of (2+ �Δ�−1

Δ ) when 1
Δ ≤ k < 1,

and a matching bound of (1 + �Δ�
Δ ) when 1 ≤ k < Δ.

1.2 Our Results

In this work, we study the preemption-restart model with preemption penalties,
aiming at maximizing the net profit. Following the study of Fung [2], we consider
the general case for ρ > 0. Two cases on the knowledge of Δ will be investigated.
In the first case where the exact value of Δ is known beforehand, we will re-
investigate the WAL strategy in [11] and prove that it is ((1 + ρ)Δ + o(Δ))-
competitive for large enough Δ. In particular, WAL is (2Δ + o(Δ))-competitive
when ρ = 1, improving the previous bound of (3Δ + o(Δ)). In the second case,
we assume that the online strategy has only certain partial knowledge on Δ.
Specifically, it only knows of the minimum job length (assumed to be normalized
to 1) and a lower bound on Δ, i.e., Δ ≥ k3(1 + ρ)3 for some real number k > 1.
We will prove a (k(1+ρ)

k−1 Δ + o(Δ))-competitive strategy for large enough Δ. As
k increases, the ratio approaches ((1 + ρ)Δ + o(Δ)) from below.

The rest of the work is organized as follows. Section 2 discusses the case where
the value of Δ is known beforehand. We reinvestigate the WAL strategy for the
case and prove an improved result. In Section 3 we investigates the case where
only a lower bound of Δ is known beforehand, and propose a deterministic online
strategy. Section 4 concludes the work.

2 Online Scheduling with Knowledge of Δ

In this section, we will give a tighter analysis of the algorithm WAL (Weight-
and-Length) proposed in [11]. We first state the WAL Algorithm below.
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The WAL Strategy. The strategy is triggered when either a job is completed
or a new one arrives. When WAL completes a job, it will start to process the
job with the largest profit among those that have arrived but not yet satisfied.
If a job R arrives while WAL is processing J , WAL will abort J to start R if
and only if one of the following two conditions is satisfied:

C1: w(R) ≥ βw(J)
C2: αw(J) ≤ w(R) < βw(J) and p(R) < p(J)/

√
Δ

where α is some constant (to be determined later) such that 1 < α < β and
β = Δ1/3. (Note that we could have chosen β = Δγ for any positive γ < 1/2.
We fix β at Δ1/3 to avoid introducing more symbols in our analysis.)

To analyze the competitive ratio of WAL, we define the notion of preempting
chain (called subschedule in [11]) as follows. A preempting chain in the schedule
produced by WAL is a sequence of jobs σ = (J1, . . . , Jm) such that J1 is preceded
by an idle period or a completed job, Ji is preempted by Ji+1 for all 1 ≤ i ≤ m−1
and Jm is a completed job.

Since OPT is an optimal offline algorithm, we can assume without loss of gen-
erality that it never aborts a job that it starts. By construction of WAL, every
job scheduled by OPT must start between the start and completion of some pre-
empting chain unless it is already finished by WAL earlier. (Otherwise, if there
is some job J started by OPT at time t outside any preempting chain and J has
not been finished by WAL earlier, then J is available at time t while WAL is idle,
a contradiction.) Thus, to prove an upper bound on the competitive ratio, it suf-
fices to compute the maximum ratio, r, of the profit of OPT to that of WAL on
an arbitrary preempting chain. Then the competitive ratio is at most r + 1.

The main idea of [11] is to continually modify a preempting chain until it
possesses certain desirable properties. Moreover, the ratio of the optimal profit
to that obtained by WAL can only increase by the sequence of changes. More
precisely, suppose Ji+1 preempts Ji by condition C2 in σ. Then we change the
weight and processing time of Ji and Ji+1 so that Ji preempts Ji−1 by condition
C2 and Ji+1 preempts Ji by condition C1. We achieve this by decreasing w(Ji)
to w(Ji+1)/β and swapping p(Ji) and p(Ji+1). We repeat this change until no
more such change is possible. Using this approach, Zheng et al. proved that the
competitive ratio is at most 3Δ + o(Δ).

Here, we use a different approach. To simplify our notations, denote by ai, wi

and pi the arrival time, profit and length of job Ji (1 ≤ i ≤ m) respectively
in a preempting chain σ = (J1, . . . , Jm). Let |σ| be the net profit of WAL in
processing σ. Thus |σ| = wm − ρ(w1 + · · · + wm−1). Let |σ∗| denote the total
weight of jobs started by OPT while WAL is processing σ. Let Oi be the set
of jobs that are started by OPT while WAL is processing Ji, and |Oi| be the
total profit of the jobs in Oi. Note that Oi may contain multiple jobs. Thus,
|σ∗| =

∑m
i=1 |Oi|.

We first give some intuition. Observe that wi and |Oi| grow exponentially
in i. Thus, the profits of both WAL and OPT in σ are almost determined by the
last several jobs in σ. We will prove that no two consecutive abortions are due to
condition C2. This will allow us to derive tighter bounds on the profit of WAL
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and OPT. For the remaining jobs, we can afford to be slightly more generous in
upper bounding the profit of OPT and lower bounding that of WAL.

Below, we state two fundamental lemmas (proved in [11]).

Lemma 1. Consider an arbitrary preempting chain σ = (J1, . . . , Jm) produced
by WAL. If Ji+1 preempts Ji by condition C2, then pi+1 <

√
Δ < pi.

Proof. This follows easily from pi+1 < pi/
√

Δ ≤ √
Δ and pi >

√
Δpi+1 ≥ √

Δ.
�


Combining Lemma 1 and the second inequality in condition C2, no two consec-
utive abortions can be caused by condition C2.

Lemma 2. Consider an arbitrary preempting chain σ = (J1, . . . , Jm) produced
by WAL.

(a) For 1 ≤ i < m, if pi ≤
√

Δ, then

|Oi| < β(
√

Δ + 1)wi

and if pi >
√

Δ, then

|Oi| < αΔwi

(b) If pm ≤ √
Δ, then

|Om| < β(
√

Δ + 1)wm

and if pm >
√

Δ, then

|Om| < (α(Δ − 1) + β)wm

Proof. The first part of (a) and (b) are easy. If pi ≤
√

Δ, OPT can start at most√
Δ + 1 jobs of unit length, each of profit less than βwi.
To prove the second part of (a), suppose OPT starts x jobs of length larger

than pi/
√

Δ. (So, 0 ≤ x ≤ √
Δ.) Each of these jobs must have profit less than

βwi. Otherwise, WAL would have aborted Ji by condition C1. Since the total
length of these jobs is at least xpi/

√
Δ, OPT can start at most �pi − xpi/

√
Δ�

jobs of length < pi/
√

Δ and each of these jobs must have profit at most αwi.
Otherwise, WAL would have aborted Ji by condition C2. Hence we have

|Oi| ≤ xβwi + �pi − xpi/
√

Δ�αwi

≤ (pi + 1)αwi + (β − piα/
√

Δ)xwi.

If β − αpi/
√

Δ > 0, then the right hand side of the previous line is maximized
when x =

√
Δ. Hence |Oi| ≤ (α + β

√
Δ)wi ≤ αΔwi for large enough Δ.

If β − αpi/
√

Δ ≤ 0, then the right hand side is maximized when x = 0.
Therefore, |Oi| ≤ �pi�αwi ≤ αΔwi.

The proof for the second part of (b) is similar. The only difference is that
OPT can start, as the last one in Om, a job of length larger than pm/

√
Δ and

profit less than βwm. Hence |Om| < (α(Δ − 1) + β)wm. �

Note: On simplifying the second part of (b), we have |Om| ≤ (αΔ + o(Δ))wm.
Also, the upper bound of |Om| does not apply to |Oi| (1 ≤ i < m). Based on the
above two lemmas, we have the following theorem.
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Theorem 1. Suppose the preemption penalty is ρ times the profit of each pre-
empted job (where ρ is a constant > 0). Then WAL is ((1 + ρ)Δ + o(Δ))-
competitive for large enough Δ.

Proof. As discussed before, it suffices to bound the ratio |σ∗|/|σ| for an arbitrary
preempting chain σ = (J1, . . . , Jm).

We first consider the case when m ≥ 4. The total weight of the jobs Ji

(1 ≤ i ≤ m − 3) is

w1 + · · · + wm−3

≤
( 1

αm−4 + · · · + 1
α0

)
wm−3

<
α

α − 1
wm−3

and by Lemma 2,

|O1| + · · · + |Om−3| <
α2Δ

α − 1
wm−3.

We now bound the ratio |σ∗|/|σ| by the following case analysis.

Case 1: Jm preempts Jm−1 by condition C2. Then pm <
√

Δ by Lemma 1. Also,
by construction of WAL, wm−1 < wm/α. Since no two consecutive abortions
are due to condition C2, Jm−1 must abort Jm−2 due to condition C1. Hence
wm−2 ≤ wm/(αβ) and wm−3 ≤ wm/(α2β).

Using Lemma 2, |Om| < β(
√

Δ + 1)wm = o(Δ)wm and |Om−1| < (αΔ)wm−1
≤ Δwm. Also, |Om−2| < αΔwm−2 for large enough Δ. Therefore, |Om−2| <
αΔwm/(αβ) = o(Δ)wm.

Combining all the parts, we have

|O1| + · · · + |Om|
<

α2Δ

α − 1
wm

α2β
+ o(Δ)wm + Δwm + o(Δ)wm

≤ (Δ + o(Δ))wm.

On the other hand, the net profit gained by WAL is at least

wm − ρ
( α

α − 1
wm−3 + wm−2 + wm−1

)
≥ wm − ρ

( α

α − 1
1

α2β
+

1
αβ

+
1
α

)
wm

≥
(
1 − ρ

α
(1 + o(1))

)
wm.

Hence the competitive ratio is at most αΔ/(α − ρ).
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Case 2: Jm preempts Jm−1 by condition C1. Then pm ≤ Δ and wm−1 ≤ wm/β.
Since at least one of Jm−3 and Jm−2 is aborted by condition C1, wm−2 ≤
wm/(αβ) and wm−3 ≤ wm/(αβ2).

Similar to case 1, we have |Om| < (αΔ + o(Δ))wm, |Om−1| < αΔwm/β
= o(Δ)wm and |Om−2| < αΔwm/(αβ) = o(Δ)wm.

Combining all the parts, we have

|O1| + · · · + |Om|
<

α2Δ

α − 1
wm

αβ2 + o(Δ)wm + o(Δ)wm + (αΔ + o(Δ))wm

≤ (αΔ + o(Δ))wm.

while the net gain by WAL is

|σ| ≥ wm − ρ
( α

α − 1
wm−3 + wm−2 + wm−1

)
≥ wm − ρ

( α

α − 1
1

αβ2 +
1

αβ
+

1
β

)
wm

≥ (1 − o(1))wm.

Hence the competitive ratio is at most αΔ.
Setting α = ρ + 1, the competitive ratio is at most αΔ + o(Δ) in both cases.
Now, consider the case when m ≤ 3. When m = 1, Lemma 2 directly gives

the bound αΔ. When m = 2 or 3, the bounds obtained above for the two cases
still hold. This completes the proof of the theorem. �


3 Online Scheduling with Partial Knowledge of Δ

In this section we consider the case when the online algorithm has only partial
knowledge of Δ. Specifically, it knows the minimum processing time and a lower
bound, Δ̃, on Δ, i.e., Δ ≥ Δ̃.

Without loss of generality, we assume that the minimum processing time is
1. Thus, the maximum job length ratio Δ is numerically equal to the maximum
job length. We define Δt as the maximum between Δ̃ and the maximum job
length ratio among all the jobs arrived by time t. We now present our Dynamic-
Preemption-Condition (abbr. DPC) strategy.

DPC Strategy. The strategy is triggered either when a job is completed or
when a new one arrives. In the former case, DPC will start a job with the largest
profit among those that have arrived but not yet satisfied. When a new job R
arrives at time t, DPC will first update the current Δt if necessary. Then if
another job J is being served, DPC will abort J to start R if and only if either
conditions below is satisfied:

C1: w(R) ≥ βtw(J)
C2: αw(J) ≤ w(R) < βtw(J) and p(R) < p(J)/

√
Δt and J did not preempt its

predecessor by condition C2
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where α = ρ + 1 as in previous section and βt = Δ
1/3
t . (Again, we could have

chosen β = Δγ
t for any positive γ < 1/2.)

Consider an arbitrary preempting chain σ = (J1, . . . , Jm). The symbols ai, wi

and pi denote respectively the arrival time, weight and processing time of job Ji

as usual. Furthermore, we let Δi and βi be respectively the value of Δt and βt

when t = ai.

Lemma 3. Consider an arbitrary preempting chain σ = (J1, . . . , Jm) produced
by DPC. If Ji+1 preempts Ji by condition C2, then pi+1 <

√
Δi+1 < pi.

Proof. By condition C2, pi+1 < pi/
√

Δi+1. Since pi ≤ Δi < Δi+1, we have
pi+1 <

√
Δi+1. Since pi+1 ≥ 1, we have pi >

√
Δi+1. �


Lemma 4. Consider an arbitrary preempting chain σ = (J1, . . . , Jm) produced
by WAL.

(a) For 1 ≤ i < m, if pi ≤
√

Δi, then

|Oi| < βi+1(
√

Δi + 1)wi

and if pi >
√

Δi, then

|Oi| < (αΔi + o(Δi+1))wi

(b) If pm ≤ √
Δm, then

|Om| < βm+1(
√

Δm + 1)wm

and if pm >
√

Δm, then

|Om| < (α(Δm − 1) + βm+1 + o(Δ))wm

where βm+1 = Δ1/3.

Proof. The proof is similar to that in Lemma 2, except that Δ and β are replaced
by the appropriate Δj ’s and βj ’s.

For the first part of (a) and (b), note that OPT can start at most pi + 1 ≤√
Δi + 1 unit-length jobs, each of weight less than βi+1wi (where 1 ≤ i ≤ m).
For the second part of (a), if OPT starts �pi� (≤ Δi) jobs of unit length, each of

weight less than αwi, it gains at most |Oi| < αΔiwi. Alternatively, OPT can start
as many long jobs as possible and fill the rest with unit-length jobs. Each long
job has length at least pi/

√
Δi+1 and weight less than βi+1wi. Hence there are at

most
√

Δi+1 long jobs and |Oi| < (βi+1
√

Δi+1 +α)wi = o(Δi+1)wi. Combining
the two alternatives, |Om| < max{αΔi, o(Δi+1)}wi ≤ (αΔi + o(Δi+1))wi.

The proof for the second part of (b) is similar. More precisely, OPT can start
at most Δm − 1 jobs of unit length and profit less than αwm and then one long
job (so that condition C2 will not hold) and profit less than βm+1wm. Then
|Om| < (α(Δm − 1)+ βm+1)wm. Alternatively, it can start as many long jobs as
possible and fill the rest with unit-length jobs. Then |Om| < (βm+1

√
Δ + α)wm

= o(Δ)wm. Hence |Om| ≤ (α(Δm − 1) + βm+1 + o(Δ))wm. �
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Theorem 2. Suppose the preemption penalty is ρ times the profit of each pre-
empted job (where ρ is a constant > 0) and it is known that Δ > Δ̃ = k3(ρ+1)3

for some k > 1. Then DPC is (k(ρ+1)
k−1 Δ+ o(Δ))-competitive for large enough Δ.

Proof. The proof idea is the same as that in Theorem 1. By construction of
DPC, no two consecutive abortions are caused by condition C2 in an arbitrary
preempting chain σ = (J1, . . . , Jm).

Consider the jobs Ji (1 ≤ i ≤ m − 3). We have that w1 + · · · + wm−3 ≤
α

α−1wm−3. By Lemma 4(a), |O1| + · · · + |Om−3| < α2Δm−3+αo(Δm−2)
α−1 wm−3.

We now bound the ratio |σ∗|/|σ| by a case analysis.

Case 1: Jm preempts Jm−1 by condition C2. Then pm <
√

Δm by Lemma
3. Also, by construction of WAL, wm−1 ≤ wm/α. Since no two consecutive
abortions are due to condition C2, Jm−1 must abort Jm−2 due to condition C1.
Hence wm−2 ≤ wm/(αβm−1) and wm−3 ≤ wm/(α2βm−1).

Using Lemma 4, |Om| < (
√

Δm + 1)βm+1wm = o(Δ)wm and |Om−1| <
(αΔm−1 + o(Δm))wm−1 ≤ Δwm.

Regarding, |Om−2|, if Jm−2 preempts Jm−3 by condition C2, then pm−2 ≤√
Δm−2 and |Om−2| < βm−1(

√
Δm−2 + 1)wm−2 ≤ o(Δ)wm. If Jm−2 preempts

Jm−3 by condition C1, then |Om−2| < (αΔm−2 + o(Δm−1))wm−2 ≤ (Δm−2
βm−1

+
o(Δm−1)
αβm−1

)wm = o(Δ)wm. Thus, |Om−2| < o(Δ)wm in both cases.
By a similar argument, we can show that |O1| + · · · + |Om−3| < o(Δ)wm.
Combining all the parts, we have

|O1| + · · · + |Om|
< (Δ + o(Δ))wm.

On the other hand, the net profit gained by WAL is at least

wm − ρ
( α

α − 1
wm−3 + wm−2 + wm−1

)
≥ wm − ρ

( α

α − 1
1

α2βm−1
+

1
αβm−1

+
1
α

)
wm

≥
(
1 − ρ

α
(

1
ρkα

+
1

kα
+ 1)
)
wm

≥ k − 1
kα

wm.

Hence the competitive ratio is at most k(1+ρ)Δ
k−1 + o(Δ).

Case 2: Jm preempts Jm−1 by condition C1. Then pm ≤ Δ and wm−1 ≤ wm/βm.
Since at least one of Jm−3 and Jm−2 is aborted by condition C1, wm−2 ≤
wm/(αβm) and wm−3 ≤ wm/(αβmβm−2).
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Similar to case 1, we have |Om| < (αΔ + o(Δ))wm and |Om−1| < (αΔm−1 +
o(Δm))wm/βm = o(Δ)wm.

If Jm−2 preempts Jm−3 by condition C2, then pm−2 ≤√Δm−2 and |Om−2| <
o(Δ)wm. If Jm−2 preempts Jm−3 by condition C1, then |Om−2| < (αΔm−2 +
o(Δm−1))wm/(αβm) = o(Δ)wm.

Combining all the parts, we have

|O1| + · · · + |Om|
<

α2Δm−3 + αo(Δm−2)
α − 1

wm

αβmβm−2
+ o(Δ)wm + o(Δ)wm + (αΔ + o(Δ))wm

≤ (αΔ + o(Δ))wm.

while the net gain by WAL is

|σ| ≥ wm − ρ
( α

α − 1
wm−3 + wm−2 + wm−1

)
≥ wm − ρ

( α

α − 1
1

αβmβm−2
+

1
αβm

+
1

βm

)
wm

≥
(
1 − α

α3k2 − ρ

α2k
− ρ

kα

)
wm

≥ (k − 1)(kα2 + 1)
k2α2 wm

≥ k − 1
k

wm.

Hence the competitive ratio is at most k(1+ρ)
k−1 Δ + o(Δ). �


By Theorem 2, as k increases, the competitive ratio of DPC approaches ((1 +
ρ)Δ+o(Δ)), the competitive ratio of WAL in the case with the knowledge of Δ.

4 Conclusion

The paper discussed two scenarios of online job scheduling with preemption
penalties. For the first scenario with the knowledge of Δ beforehand, we proved
that WAL strategy is ((1+ρ)Δ+ o(Δ))-competitive for large enough Δ. For the
second scenario where the online strategy has only the knowledge of the lower
bound, k3(ρ+1)3, of Δ, we put forward a (k(ρ+1)

k−1 Δ+o(Δ))-competitive strategy
for large enough Δ. The ratio approaches ((1 + ρ)Δ + o(Δ)) as k increases.

For the first case, there is still a gap around 0.557Δ between upper and lower
bounds for the special case where ρ = 1. An obvious open question is where
the true competitive ratio lies within the range [1.443Δ, 2Δ]. Moreover, it is
interesting to find out whether randomization helps to break the lower bound of
1.443Δ for ρ = 1.
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