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Abstract

Cake cutting is a playful name for the problem
of fairly dividing a heterogeneous divisible good
among a set of agents. The agent valuations for
different pieces of cake are typically assumed to
be additive. However, in certain practical settings
this assumption is invalid because agents may not
have positive value for arbitrarily small “crumbs”
of cake. In this paper, we propose a new, more
expressive model of agent valuations that captures
this feature. We present an approximately propor-
tional algorithm for any number of agents that have
such expressive valuations. The algorithm is opti-
mal in the sense that no other algorithm can guaran-
tee a greater worst-case degree of proportionality.
We also design an optimal approximately propor-
tional and fully envy-free algorithm for two agents.

1 Introduction

The problem of allocating a heterogeneous, divisible resource
is often described, in intuitive terms, as the problem of cutting
a cake. The participating agents value pieces of the cake dif-
ferently, e.g., based on their preference for different toppings.
The challenge is to divide the cake fairly among the agents.

Specifically, the cake is represented as the interval [0, 1].
A piece of cake is a finite collection of subintervals of [0, 1].
Each agent holds a valuation function that assigns values to
pieces of cake. These valuation functions are typically as-
sumed to be additive, in the sense that the sum of an agent’s
values for two disjoint intervals is equal to its value for their
union. It is also assumed that valuations are normalized, i.e.,
an agent assigns a value of one to the entire cake. A division
of the cake is proportional if each of the n agents receives
a piece of cake that is worth at least 1/n according to the
agent’s valuation function; and envy-free (EF) if each agent
assigns a value to its own piece of cake that is at least as high
as the value it assigns to the piece allocated to any other agent.
Under standard assumptions on the valuation functions, envy-
freeness implies proportionality,1 and EF allocations always
exist (see, e.g., [Brams and Taylor, 1996]).

1Because of additivity there must be a piece worth 1/n to an
agent, and then envy-freeness implies that the agent’s piece is worth
at least 1/n.

The cake cutting problem was first proposed in the 1940’s,
and since then has been the focus of work in several different
fields, including mathematics, economics, and political sci-
ence (see, e.g., the books by Robertson and Webb [1998] and
Brams and Taylor [1996]). In the last decade, computer sci-
entists have investigated various aspects of the cake cutting
setting (see, e.g., [Edmonds and Pruhs, 2006]), and indeed
the perspective of computer science is called for because the
cake cutting literature is algorithmic in nature. Very recently,
this problem has attracted the attention of members of the
AI community [Procaccia, 2009; Chen et al., 2010]. Again,
the ties with AI are natural when viewed through the lens of
multiagent systems, which give rise to fundamental resource
allocation problems [Chevaleyre et al., 2006].

Algorithmic model and restricted valuations. Most of the
literature on discrete cake cutting algorithms can be mapped
into a query model where the algorithm can query the agents
for their value for a given piece or ask the agents to cut a
piece that is worth a specific value [Robertson and Webb,
1998]. The actual agent valuations are never fully revealed,
and indeed, this is important because fully general valuation
functions cannot be succinctly represented. An example of a
procedure that operates under this query model is the well-
known Cut-and-Choose mechanism. The first agent is asked
to cut a piece that is worth exactly 1/2 (with an end point at
0). The second agent is then asked to evaluate the two pieces
and is allocated the piece that it prefers.

In this paper, we adopt a different algorithmic model that
is in the spirit of direct revelation mechanisms and follows
the approach of Chen et al. [2010]. We assume that agents
report their valuation functions and the algorithm operates on
these reports. For this to be a reasonable approach, we must
be able to tractably specify the valuation functions. This is
made possible by considering a restricted family of valuation
functions that can be succinctly represented.

The main result of Chen et al. [2010] concerns a setting
where agents have piecewise uniform valuations. Each agent
is associated with a set of desired subintervals of [0, 1], which
the agent values uniformly. The value that an agent assigns
to a piece of cake is then proportional to the total length of its
intersection with the agent’s desired intervals. In other words,
each agent simply wants to receive as much of its desired in-
tervals as possible. An agent’s valuation is fully specified by
the intervals of interest and the valuations can be tractably re-
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ported to the algorithm. Chen et al. argue that these valuation
functions are natural in realistic settings. For example, the
cake can correspond to access time to a shared backup server.
Each agent is interested in backing up its data when its com-
puter is idle, but it is indifferent between idle time slots, and
moreover can resume the backup even during very short idle
time slots.

More expressive valuations. In some settings where agents’
valuation functions are plausibly piecewise uniform, agents
have no use for “crumbs” of cake, i.e., very small subinter-
vals. For example, thinking again of the cake as time, con-
sider the allocation of advertising time: an agent may be in-
terested in time slots when related shows are aired, but does
not derive value from slots that are shorter than, say, thirty
seconds. Similarly, one can consider priority access time to
an Internet service provider for, e.g., streaming video or gam-
ing. As a different example, consider the allocation of a strip
of beach to real estate developers; each developer is interested
in areas with specific properties, but has no use for tiny plots.

Therefore, more expressive valuations are called for. We
augment piecewise uniform valuations with an option to
specify the minimum length of a usable interval; we call
these augmented valuations piecewise uniform with minimum
length (PUML). An agent’s value for a piece of cake under
PUML valuations is proportional to the total length of its in-
tersection with the agent’s desired intervals, excluding subin-
tervals in the intersection that are shorter than the agent’s
specified minimum length.

PUML valuations depart from those used in the cake cut-
ting literature in that they can be non-additive: it may be the
case that two disjoint intervals have zero value but their union
forms a contiguous interval that is longer than the minimum.
In this respect, PUML valuations blur the line between di-
visible and indivisible goods: some divisions of a good (i.e.,
an interval) are possible, whereas other divisions are impos-
sible (as they would induce worthless subintervals). We are
aware of a single existing paper that studies cake cutting un-
der non-additive valuations [Berliant et al., 1992, Section 5],
but these valuations do not include PUML valuations, and are
studied only in the context of the existence of Pareto-efficient
allocations. Expressiveness in mechanisms has been studied,
e.g., by Benisch et al. [2008], but that work focuses on the
tradeoffs between simplicity and expressiveness. We focus
on designing algorithms for our more expressive valuations.

Our results. Consider two agents with PUML valuations,
where the minimum length for each agent is 1 (that is, any
strict subinterval of the entire cake is worthless). Clearly no
proportional allocation exists, but an EF allocation does ex-
ist: by assigning some nonempty piece of cake to each agent,
both agents have value zero for both pieces (this shows that
under PUML valuations envy-freeness does not imply pro-
portionality). Worse, one of the agents must have value zero,
so even approximate proportionality in a multiplicative sense,
as studied in [Edmonds and Pruhs, 2006], is unattainable. We
therefore consider approximate proportionality in an additive
sense, to be made formal later.

In Section 3 we propose a polynomial-time algorithm for
any number of agents with PUML valuations that provides

an additive worst-case approximate proportionality guaran-
tee. The algorithm is a generalization of a well-known fully
proportional algorithm in the traditional cake cutting setting.
We also prove that our algorithm is optimal, as no algorithm
can attain a better worst-case proportionality guarantee.

With proportionality understood, in Section 4 we consider
envy-freeness in combination with proportionality. For two
agents with PUML valuations, we find that (rather surpris-
ingly) we can obtain full envy-freeness while still satisfying
the optimal approximate proportionality guarantee, in poly-
nomial time. We do this via an algorithm that is very different
from the approximately proportional algorithm for n agents
and makes extensive use of discarding intervals in order to
attain full envy-freeness.

2 The Model

We seek to divide a heterogeneous cake, represented by [0, 1],
among a set of agents N = {1, 2, . . . , n}. A piece of cake X
is a finite union of disjoint subintervals of [0, 1]. We will treat
X as a set of inclusion maximal contiguous subintervals. For
example, the piece [0, 0.25] ∪ [0.25, 0.5] ∪ [0.75, 1] is treated
as {[0, 0.5], [0.75, 1]}. If I is a contiguous interval, then |I|
denotes the absolute length of that interval, treating open and
closed intervals equivalently. Similarly, given a piece of cake
X , |X| is defined by summing the length of each interval in
X .

2.1 The classic model

In the classic model of cake cutting, each agent i ∈ N
has a value density function vi : [0, 1] → [0,∞) that
is piecewise continuous. The value density function vi in-
duces the valuation function of agent i, by letting Vi(X) =∑

I∈X

∫
I
vi(x)dx. Vi(X) is non-atomic, that is Vi([x, x]) =

0. As a result, Vi takes the same value on open and closed
intervals with the same end points.

An allocation is an assignment of pieces of cake Xi to each
agent i such that the assigned pieces are disjoint (but we al-
low the pieces to overlap at the boundaries). An allocation is
proportional with respect to V1, . . . , Vn if Vi(Xi) ≥ 1/n for
all i ∈ N , and envy-free (EF) with respect to V1, . . . , Vn if
Vi(Xi) ≥ Vi(Xj) for all i, j ∈ N , i.e., each agent weakly
prefers its assigned piece. As noted above, in the classic
model envy-freeness implies proportionality, due to additivity
of the valuation functions.

A cake cutting algorithm is a function from V1, . . . , Vn to
an allocation. A cake cutting algorithm is proportional (resp.
EF) if it always returns an allocation that is proportional (resp.
EF) with respect to V1, . . . , Vn. Note that we reason only
about the agents’ reports and not the agents’ actual valuations
since those are unknown to the algorithm. Henceforth when
we refer to an agent’s value for a given piece of cake X , we
mean Vi(X), which may differ from the agent’s true value.

2.2 Piecewise Linear Valuations

We examine the special case where valuation functions are
piecewise uniform [Chen et al., 2010]. This requires the value
density function vi(x) to be either 0 or some constant ri > 0

which is chosen so that
∫ 1

0
vi(x)dx = 1.
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Under piecewise uniform valuations, we can succinctly
represent an agent’s valuation function by providing the
intervals in which it is uniformly interested. Specifi-
cally, let D(i,X) give the subintervals of X that are
also of interest to agent i. For instance, if agent 1 uni-
formly desires [0, 0.25], [0.3, 1], then D(1, [0.2, 0.4]) =
{[0.2, 0.25], [0.3, 0.4]}. Let d(i,X) = |D(i,X)|, the length
of intervals in X desired by agent i. With piecewise uniform
valuation functions, Vi now has a simpler form,

Vi(X) =
d(i,X)

d(i, [0, 1])
.

In words, it is the ratio of desired lengths received
to the total lengths desired by agent i. For exam-
ple, if D(i, [0, 1]) = {[0, 0.2], [0.5, 0.8]} and X =
{[0.1, 0.3], [0.4, 0.7]}, then D(i,X) = {[0.1, 0.2], [0.5, 0.7]},
d(i,X) = 0.3, d(i, [0, 1]) = 0.5, and Vi(X) = 0.6. Under
piecewise uniform valuations it is very simple to construct an
EF (and therefore proportional) cake cutting algorithm; we
leave this as an easy exercise for the reader. The challenge
in [Chen et al., 2010] stemmed not from the fairness criteria,
but from their pursuit of truthfulness.

2.3 PUML valuations

As discussed above, we wish to augment piecewise uniform
valuations with a minimum length parameter. Given i ∈ N ,
the minimal length parameter λi indicates that agent i has no
value for intervals of length less than λi.
Definition 1. Under valuations that are piecewise uniform
with minimum length (PUML), each agent i ∈ N uniformly
desires a piece of cake D(i, [0, 1]), and holds a minimum
length parameter λi. The valuation function of the agent is
defined by

Vi(X) =

∑
I∈D(i,X): |I|≥λi

|I|
d(i, [0, 1])

.

Note that the summation only includes intervals with
length at least λi.

Going back to the previous example, if D(i, [0, 1]) =
{[0, 0.2], [0.5, 0.8]} and X = {[0.1, 0.3], [0.4, 0.7]}, and in
addition λi = 0.2, then {I ∈ D(i,X) : |I| ≥ λi} =
{(0.5, 0.7)}, and therefore Vi(X) = 0.4.

We will assume that every interval I in D(i, [0, 1]) satis-
fies |I| ≥ λi, that is, agents do not desire worthless intervals.
We also assume free disposal, in that we can choose not to
allocate part of the cake without penalty. Under PUML valu-
ations, this assumption is without loss of generality, because
we can “destroy” intervals by partitioning them into worth-
less tiny subintervals. Furthermore, under PUML valuations,
and generally under the free disposal assumption, proportion-
ality and envy-freeness are incomparable. In particular, envy-
freeness does not imply proportionality because an allocation
that throws away the entire cake is EF but not proportional.

In order to discuss computational complexity, as we do be-
low, we must understand how the input is represented. PUML
valuations can be concisely represented via the boundaries of
the desired intervals, and λ1, . . . , λn. The size of the input is
the number of bits used to represent these parameters. As in

[Chen et al., 2010] and discussed in Section 1, we assume that
agents report their entire valuation function to the algorithm.

3 Proportionality

Under classic assumptions on the valuations, it is well known
that proportional allocations always exist for any number of
agents. A simple algorithm that achieves this is the Dubins-
Spanier procedure (see, e.g., [Brams and Taylor, 1996]). A
referee moves a knife from the left end of the cake to the
right. An agent shouts “stop” when the piece of cake to the
left of the knife is worth 1/n according to its valuation; the
piece is then cut and given to that agent, and the procedure
resumes with the remaining cake and the rest of the agents;
the last agent receives what’s left of the cake. It is a simple
exercise to show that this results in a proportional allocation.

Under PUML valuations, proportionality (or even multi-
plicative approximate proportionality) is not always achiev-
able, as demonstrated by the example given in the introduc-
tion where both agents desire the entire cake and λ1 = λ2 =
1. Therefore, we seek to achieve an additive approximate
proportionality guarantee. This guarantee will depend on λi:
agents with larger λi are guaranteed less, as having a larger
λi restricts the allocations that can give the agent its propor-
tionality guarantee. Let �i = λi/d(i, [0, 1]) for each i ∈ N .
Definition 2. An allocation X1, . . . , Xn is β-proportional
with respect to valuations V1, . . . , Vn if for all i ∈ N ,
Vi(Xi) ≥ 1/n − β · �i. A cake cutting algorithm is β-
proportional if when given input V1, . . . , Vn, it always pro-
duces an allocation that is β-proportional with respect to
V1, . . . , Vn.

Equivalently, a β-proportional algorithm guarantees that
∑

I∈D(i,Xi): |I|≥λi

|I| ≥ d(i, [0, 1])

n
− β · λi.

3.1 Algorithmic results

To achieve approximately proportional allocations, we
present Algorithm 1. This algorithm is inspired by the
Dubins-Spanier procedure, but shifts the points where agents
metaphorically say “stop” in a way that, as we shall see, pro-
vides optimal guarantees. The output of the algorithm is the
allocation X1, . . . , Xn, which is fully assigned before the al-
gorithm returns.

Algorithm 1 (2(n− 1)/n)-proportional algorithm
Input: V1, . . . , Vn

1. SUBROUTINE(N, 0, (V1, . . . , Vn))

SUBROUTINE(S, u, (V1, . . . , Vn)):

1. If S = {i}, set Xi = [u, 1] and return.

2. For each i ∈ S:
r∗i = min{r : r ∈ [u, 1], Vi([u, r]) ≥ Vi([u,1])

|S| − 2(|S|−1)�i
|S| }.

3. r∗ = mini∈S r∗i , i
∗ = argmini∈S r∗i (break ties arbitrarily).

4. Set Xi∗ = [u, r].

5. SUBROUTINE(S \ {i∗}, r)
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This is obviously a polynomial-time algorithm. The fol-
lowing theorem quantifies its proportionality guarantees.

Theorem 3. Under PUML valuations, Algorithm 1 is (2(n−
1)/n)-proportional and polynomial-time.

In particular, the algorithm is at most 1-proportional for
n = 2. Before proving the theorem, we establish a simple
lemma.

Lemma 4. Consider a contiguous interval [u, v]. Let w ∈
[u, v]. Then Vi([w, v]) ≥ Vi([u, v])− Vi([u,w])− 2�i.

Proof. Vi([u,w]) + Vi([w, v]) can be smaller than Vi([u, v])
because the cut point w might break an interval that was pre-
viously of length at least λi into two intervals that have length
less than λi. For instance, suppose w ∈ (b, c) where (b, c) ∈
Di([u, v]). If w−b ≥ λi, c−w ≥ λi, then no value is lost by
adding the values for [u,w], [w, v] separately compared to the
value for [u, v]. However, if w − b < λi or c− w < λi, then
we lose value by adding values over [u,w], [w, v] separately.
The most value that can be lost is 2�i (�i on either side of the
cut at w). Therefore Vi([u,w])+Vi([w, v]) ≥ Vi([u, v])−2�i,
and rearranging yields the lemma.

Proof of Theorem 3 (sketch). The proof proceeds by induc-
tion on |S| and showing that SUBROUTINE gives each i ∈ S
at least value Vi([u, 1])/|S|−2(|S|−1)�i/|S|, i.e., SUBROU-
TINE is 2(|S|−1)/|S|- proportional with respect to [u, 1] and
the agents in S. This is straightforward to show for the agent
that was allocated a piece. For the remaining agents, we use
the fact that the agents were not chosen in combination with
Lemma 4 to conclude that they have a large enough value for
the unallocated cake such that the inductive hypothesis pro-
vides their proportionality guarantee.

3.2 Impossibility results

Consider once more the case of two agents. In this case
Algorithm 1 guarantees that each agent receives value of
1/2− �i. Suppose that both agents desire the entire cake and
λ1 = �1 = λ2 = �2 = 1/2 + ε; then one agent will receive
value of zero, that is, it is impossible to guarantee a value of
more than 1/2− �i + ε for any ε > 0; hence the algorithm is
optimal for the case of n = 2. More generally, the following
theorem establishes that the algorithm is worst-case optimal
for any number of agents; the proof is omitted due to space
constraints.

Theorem 5. For every n there exist PUML valuations such
that no cake cutting algorithm is β-proportional for β <
2(n− 1)/n.

Theorem 5 does not exclude the possibility that, for a given
instance, there is an allocation with a better degree of pro-
portionality than the one computed by Algorithm 1. Indeed,
there could be an algorithm that matches Algorithm 1 in the
worst case but returns allocations that have better proportion-
ality guarantees in other cases. However, the combinatorial
richness of PUML valuations imposes limits on what can be
achieved via polynomial-time algorithms due to the following
“inapproximability result”, whose omitted proof gives a re-
duction from the NP-hard 3-dimensional matching problem.

Theorem 6. For any constant ε ∈ (0, 1/2), given n agents
with PUML valuations such that �i < 1/n, it is NP-hard to
distinguish between the following two statements: (a) there
is a (1/2 + ε)-proportional allocation and (b) no (3/2 − ε)-
proportional allocation exists.

In particular, for a given set of valuations V1, . . . , Vn,
let γ(V1, . . . , Vn) be the smallest value γ such that a γ-
proportional allocation exists. Theorem 6 says that there
is no polynomial time algorithm that always returns a
(γ(V1, . . . , Vn) + 1 − 2ε)-proportional allocation for every
set of valuations (if there were then we could solve the NP-
hard problem in the statement of Theorem 6). In other words,
there is no polynomial-time algorithm that approximates the
best proportional allocation within an additive factor of 1. Al-
gorithm 1 is close to optimal when viewed under this measure
since it provides an additive 2(n− 1)/n approximation guar-
antee.

4 Proportionality and Envy-Freeness

While Theorem 3 provides an optimal worst-case proportion-
ality guarantee, it does not address envy-freeness. In fact, it is
possible for an agent to be the first allocated yet have greater
value for pieces later allocated to other agents.

A natural question to ask is whether we can attain envy-
freeness while satisfying the proportionality guarantee of Al-
gorithm 1. In other words, is there an algorithm that is
2(n − 1)/n-proportional and fully EF? For the case of two
agents, we show that indeed there is an algorithm (that is
1-proportional and EF), and we leave open the challenging
question of a general number of agents.

Under general classic valuations, finding an EF (and there-
fore also proportional) allocation is trivial when n = 2: agent
1 cuts the cake into two pieces that it values equally, and agent
2 chooses the piece that it prefers. This simple algorithm is
known as Cut-and-Choose. However, immediate variations of
this algorithm do not yield envy-freeness under PUML valu-
ations. In fact, we will see that achieving envy-freeness and
1-proportionality under PUML valuations is surprisingly dif-
ficult. Our solution makes extensive use of the free disposal
assumption, which was not required above, in order to attain
envy-freeness.

We introduce some new notation that is specific to this sec-
tion. Lengths of intervals will be denoted by Greek letters. It
will be convenient to refer to disjoint subintervals of a given
interval. We define a filtering F to be a function that takes an
interval and returns a set of disjoint subintervals of the given
interval. For instance, for the interval [0, 0.25], we might
choose to only allocate {[0, 0.1], [0.2, 0.25]}, throwing away
[0.1, 0.2]. In this case, F ([0, 0.25]) = {[0, 0.1], [0.2, 0.25]}.

4.1 An algorithmic skeleton

We first observe that if a filtering with specific properties ex-
ists, then a 1-proportional and EF allocation exists for two
agents.
Definition 7. A filtering-point pair (Fi, xi) is fair if

Vi(Fi([0, xi])) = Vi(Fi([xi, 1])) (1)

Vi(Fi([0, xi])) ≥ 1/2− �i (2)
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Assuming that we can find fair filtering-point pair, Algo-
rithm 2 is 1-proportional and EF. The high level idea is to
start with a feasible allocation is that 1-proportional based on
the fair filtering-point pair. If some agent is envious, then let
that agent choose between the pieces generated by the other
agent’s fair filtering-point pair.

Algorithm 2 1-proportional and EF algorithm for n = 2

1. Compute fair filtering-point pairs (F1, x1), (F2, x2).

2. Assume x1 ≤ x2. Otherwise, the roles can be reversed.

3. Let X1 = F1([0, x1]), X2 = F2([x2, 1]). If this is EF, return.

4. If both agents are envious, then swap the allocations and return.

5. If agent 1 is envious, let agent 1 choose between F2([0, x2])
and F2([x2, 1]), giving agent 2 the piece that was not chosen.

6. If agent 2 is envious, let agent 2 choose between F1([0, x1])
and F1([x1, 1]), giving agent 1 the piece that was not chosen.

Lemma 8. Assume that there exist fair filtering-point pairs
(F1, x1), (F2, x2). Then Algorithm 2 is 1-proportional and
EF.

Proof. If Algorithm 2 terminates at Step 3, then both agents
receive their proportionality guarantee by (2) and are not en-
vious. If Algorithm 2 terminates at Step 4, there is no envy
since both agents preferred the other’s initial allocation. The
proportionality guarantee is satisfied since each agent prefers
its final allocation to its initial, but the initial allocation sat-
isfies (2). If Algorithm 2 terminates at Step 5, agent 2 re-
ceives its proportionality guarantee, is indifferent, and so is
not envious. Agent 1 receives its proportionality guarantee
since it at worst receives F2([x2, 1]) which it preferred to
F1([0, x1]). Since agent 1 gets to choose between F2([0, x2])
and F2([x2, 1]), agent 1 cannot be envious. A similar argu-
ment applies to termination at Step 6.

If we can carry out Step 1 of Algorithm 2, that is, compute
fair filtering-point pairs (F1, x1), (F2, x2), then Lemma 8 al-
lows us to find a 1-proportional and EF allocation. We show
that such filtering-point pairs always exist (and can be com-
puted efficiently) in the next section.

4.2 Finding fair filtering-point pairs

Algorithm 2 implies that we can treat the agents indepen-
dently, as long as for any vi and λi we can find a filtering-
point pair (Fi, xi). Therefore, we drop the agent subscripts
and pretend we are dealing with a single agent.

Before proceeding to the main constructive proof, we es-
tablish a result about what lengths in desired intervals are at-
tainable by throwing away intervals in the allocation.
Lemma 9. Suppose d(X) = kλ+ ε for some positive integer
k and 0 ≤ ε < λ, i.e., the agent’s desired intervals on X total
kλ+ ε. It is possible to throw away intervals in X so that (a)
the agent receives desired lengths worth exactly kλ + ε1 for
any 0 ≤ ε1 ≤ ε and (b) the agent receives exactly (k− 1)λ in
desired lengths.
Proof. (a) Let 0 ≤ ε1 ≤ ε. If there is some desired interval
that has length greater than 2λ, then we can remove ε− ε1 in

lengths from one side of the interval. If no interval has length
greater than 2λ, then each interval has length in [λ, 2λ). The
sum of the excess above λ must be at least ε, so we can re-
move lengths of ε− ε1 without decreasing any interval to less
than λ in length. (b) By (a), we can attain desired lengths
of exactly kλ. If any remaining interval has length exactly
λ, then we can remove that interval. Otherwise, there is at
least λ in excess that can be removed without decreasing any
interval to length less than λ.

We now proceed to the main proof that a fair filtering-point
pair (F, x) always exists. Let c be the center of the cake from
the point of view of the agent, i.e. d([0, c]) = d([c, 1]) =
d([0, 1])/2. Note that there may be an infinite number of such
points, so we take the right-most one.

Let y and z denote the left and right end points of the de-
sired interval that contains c, as seen in Figure 1.

cy z0 1

Figure 1: Desired intervals are shaded. The points y and z
are the left and right boundaries of the interval containing c.

Although the agent may not receive value 1/2 from [0, c]
and [c, 1] because c−y and z−c may be smaller than λ, [0, c]
and [c, 1] always satisfy the proportionality guarantee for both
agents. This is formalized in the following Lemma.

Lemma 10. V ([0, c]) ≥ 1/2− �, V ([c, 1]) ≥ 1/2− �.

In the case where V ([0, c]) = V ([c, 1]), the identity filter-
ing along with c is a fair filtering-point pair.

We therefore assume V ([0, c]) < V ([c, 1]). To construct
a fair filtering, point pair (F, x), we choose an x ∈ {y, c, z}
based on certain conditions. We then apply Lemma 9 to throw
away intervals in [0, x], [x, 1] until the agent is indifferent be-
tween the two intervals. Symmetric arguments can be applied
to handle the case v([0, c]) > v([c, 1]).

We consider two separate cases, based on whether z− c <
λ or z − c ≥ λ. Since V ([0, c]) < V ([c, 1]) ≤ 1/2, we also
have c− y < λ.

Case I: z − c < λ.

Let δ = c− y, γ = z − c, as depicted in Figure 2.

c zy

δ γ

Figure 2: The case where z − c < λ.

V ([0, c]) ≥ V ([0, y]) = 1/2 − δ/d([0, 1]) and (since γ <
λ) V ([c, 1]) = 1/2−γ/d([0, 1]). Since V ([0, c]) < V ([c, 1]),
we obtain that γ < δ.

Suppose that the desired lengths in [z, 1] and [0, z] are
uniquely expressed as kλ + ρ and k2λ + ρ2, respectively,
where k, k2 are positive integers and 0 ≤ ρ, ρ2 < λ. Since
V ([0, c]) < V ([c, 1]), k2λ + ρ2 < kλ + ρ. There are two
cases:
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Case I.1: k2 = k, therefore ρ > ρ2. Set x = c and, using
Lemma 9a, we throw away intervals in [z, 1] so that the agent
receives desired lengths k2λ+ ρ2 in both [0, x] and [x, 1].
Case I.2: k2 = k−1. First observe that γ+δ ≥ λ (otherwise,
the agent would not have desired this interval). Set x = z and
throw away [y + λ, z]. The agent receives desired lengths
kλ + ρ2 and kλ + ρ in [0, x] and [x, 1], respectively. If ρ ≥
ρ2, by Lemma 9a, we throw away intervals in [x, 1] so that
the agent receives desired lengths exactly kλ + ρ2 in both
[0, x] and [x, 1]. If ρ < ρ2, by Lemma 9a, we throw away
intervals in [0, x] so that the agent receives desired lengths
exactly kλ+ ρ in both [0, x] and [x, 1].

Case II: z − c ≥ λ.

c z − λ zy

δ γ λ

Figure 3: The case where z − c ≥ λ.

V ([c, 1]) = 1/2 since the agent does not lose desired
lengths in [c, 1]. Let δ = c − y, γ = z − λ − c, as seen
in Figure 3. It is easy to handle the case where γ ≥ δ by
throwing away interval [c, c + δ] and by setting x = c. The
crucial observation is that since γ ≥ δ, no desired lengths
are lost in [c+ δ, 1] and, hence, the agent has desired lengths
of d([0, 1])/2 − δ in both [0, x] and [x, 1]. In the following,
assume γ < δ < λ.

Let [0, y] and [z − λ, 1] provide k2λ + ρ2 and kλ + ρ in
desired lengths for positive integers k, k2 and 0 ≤ ρ, ρ2 < λ.
We distinguish between two cases:

Case II.1: k2 = k. Since γ < δ and V ([0, c]) < V ([c, 1]),
ρ ≥ ρ2. Set x = c, throw away interval [c, z − λ] and use
Lemma 9a to throw away intervals in [z − λ, 1] so that the
agent gets exactly kλ+ ρ2 in both [0, x] and [x, 1].

Case II.2: k2 = k − 1. Then, the interval [z, 1] gives desired
lengths of (k − 1)λ+ ρ. First, use Lemma 9b to throw away
lengths in [z, 1] so that the desired lengths in [z, 1] are exactly
(k − 2)λ. Set x = y. If ρ2 ≤ γ + δ, throw away interval
[y, z−λ−ρ2] in order to obtain desired lengths of (k−1)λ+ρ2
in both [0, x] and [x, 1]. If ρ2 > γ+δ, use Lemma 9a to throw
away lengths in [0, x] so that the desired lengths in [0, x] and
[x, 1] are exactly (k − 1)λ + γ + δ. This is the only case
in which the desired lengths in [0, x] and [x, 1] are less than
V ([0, c]). So, we still need to prove that (k − 1)λ + γ + δ
satisfies the proportionality requirement (2). By the definition
of point c, we have (k − 1)λ + ρ2 + δ = γ + kλ + ρ =
d([0, 1])/2, i.e., ρ2 = λ+ ρ+ γ− δ which implies δ > ρ+ γ
since ρ2 < λ. Hence, (k−1)λ+γ+δ > (k−1)λ+ρ+2γ ≥
d([0, 1])/2− λ.

4.3 Tying things together

Now that we have proven the existence of fair (F, x) for any
agent valuations, we can apply Lemma 8. In addition, note
that Section 4.2 implicitly provides a computationally effi-
cient implementation of Step 1 of Algorithm 2, so the algo-

rithm is clearly polynomial-time. We therefore have the fol-
lowing result.
Theorem 11. Assume that n = 2 and the agents have PUML
valuations. Then Algorithm 2 is 1-proportional, envy-free,
and polynomial-time.

5 Discussion

Game-theoretic considerations. A positive side effect of
our algorithmic framework is that it encourages agents not
to be “greedy”: the smaller an agent’s λi is, the larger the
degree of proportionality the agent is guaranteed. We wish
to emphasize though that this is not a formal game-theoretic
statement. Indeed, under the algorithms presented in this pa-
per, agents can certainly gain by lying about their valuation
function or even about their minimum length. In contrast,
Chen et al. [2010] design a (fully) proportional, EF algo-
rithm that is also truthful under piecewise uniform valuations
(without minimum length). We reiterate that there is a large
gap, both conceptual and technical, between piecewise uni-
form and PUML valuations. It would be interesting to know
whether there is a (2(n− 1)/n)-proportional and truthful al-
gorithm under PUML valuations.
Extending Algorithm 2 to a general number of agents. Al-
gorithm 1, which works for any number of agents, is inspired
by a proportional algorithm that works for all valuations func-
tions under classic assumptions. Similarly, in a sense Al-
gorithm 2 extends the Cut-and-Choose algorithm. Unfortu-
nately, in general envy-freeness is hard to obtain for more
than two agents and nearly impossible for more than three
agents (see, e.g, the introduction of [Procaccia, 2009]), and
in particular the techniques of Algorithm 2 do not appear to
generalize to any number of agents. Progress on this front
would require fundamentally new techniques.
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