
Thou Shalt Covet Thy Neighbor’s Cake

Ariel D. Procaccia

Microsoft Israel R&D Center
arielpro@gmail.com

“A compromise is the art of dividing a cake in such
a way that everyone believes he has the biggest
piece.”

Ludwig Erhard (1897–1977)

Abstract

The problem of fairly dividing a cake (as a
metaphor for a heterogeneous divisible good) has
been the subject of much interest since the 1940’s,
and is of importance in multiagent resource allo-
cation. Two fairness criteria are usually consid-
ered: proportionality, in the sense that each of the
n agents receives at least 1/n of the cake; and
the stronger property of envy-freeness, namely that
each agent prefers its own piece of cake to the oth-
ers’ pieces. For proportional division, there are
algorithms that require O(n log n) steps, and re-
cent lower bounds imply that one cannot do better.
In stark contrast, known (discrete) algorithms for
envy-free division require an unbounded number of
steps, even when there are only four agents.
In this paper, we give an Ω(n2) lower bound for the
number of steps required by envy-free cake-cutting
algorithms. This result provides, for the first time, a
true separation between envy-free and proportional
division, thus giving a partial explanation for the
notorious difficulty of the former problem.

1 Introduction

Imagine a cake topped with vanilla icings, chocolate chip
cookie crumbs, toasted almonds, and strawberries. The cake
must be divided between several hungry children. Alas, one
of the children prefers the cookie crumbs, another is aller-
gic to strawberries, and a third loudly insists on receiving the
largest piece. How can the cake be divided fairly among the
children?

Cake-cutting is often used as a metaphor for the division of
a heterogeneous, divisible good among multiple agents that
have different values for parts of the cake. A common exam-
ple is dividing an inheritance among several inheritors, when
the inheritance is not limited to money (which everyone val-
ues equally), but rather includes items that are of sentimental

value to some of the inheritors. In the world of multiagent
systems, it is possible to consider the allocation of processing
time to agents, in a setting where the agents prefer specific
time slots (e.g., early time slots or daytime slots). Generally
speaking, fair cake-cutting is an important part of the field of
fair division, which has many applications in multiagent re-
source allocation (MARA; see the survey by Chevaleyre et
al. [2006]).

In mathematical terms, the cake is represented by the inter-
val [0, 1], and the agents have well-behaved valuation func-
tions on this interval. The problem is to find a partition of
[0, 1] among the agents that is fair. Naturally, different fair-
ness criteria can be, and have been, proposed. One example
is proportionality: each of the n agents must receive at least
1/n of the cake according to its valuation function. Another
example is envy-freeness: the value of an agent for its own
piece of cake must be at least as great as its value for the
piece of cake allocated to any other agent.

As is well-known to any person who grew up with one
younger sibling, a fair algorithm for dividing a cake among
two agents is the “cut-and-choose” algorithm, whereby one
agent divides the cake into two equal pieces, according to its
valuation, and the other chooses a (weakly) preferred piece.
It is easy to see that this algorithm is both proportional and
envy-free. In fact, it can be verified that, when there are ex-
actly two agents, proportionality and envy-freeness are equiv-
alent. For more agents proportionality is implied by envy-
freeness, but not vice-versa.

Steinhaus [1948] observed that the cut-and-choose algo-
rithm can be extended to a three-agent proportional cake-
cutting algorithm, which requires at most three cuts. A nat-
ural question was whether the simple cut-and-choose idea
could be further extended to n agents for n > 3. This was
answered in the affirmative by Banach and Knaster (as was
also reported by Steinhaus); the algorithm they suggested
might require Ω(n2) cuts. Some four decades later, Even
and Paz [1984] presented a divide-and-conquer approach that
yields a proportional solution with O(n log n) cuts.

A lower bound for proportional cake-cutting would have to
wait for another two decades. While upper bounds are usu-
ally presented in a rather informal manner, a lower bound
requires a precise definition of the operations that may be
performed by the cake-cutting algorithm. A very appealing
model was advocated by Robertson and Webb [1998]. Their

239

model allows two types of queries: an evaluation query, by
which the algorithm obtains information about the valuation
of a given agent for a given subinterval; and a cut query, that
asks a given agent to cut a piece of cake worth a given value.
Roughly speaking, this model is powerful enough to capture
all the existing discrete cake-cutting algorithms. While early
work implicitly considered cuts to be more costly than eval-
uations, this does not seem to be a reasonable assumption,
and indeed the two types of queries are given equal weight in
the Robertson-Webb model. So, the Even-Paz algorithm can
simply be seen as using O(n log n) queries.

An Ω(n log n) lower bound (in the Robertson-Web model)
for proportional cake-cutting was established by Woeginger
and Sgall [2007], by a reduction from sorting. However,
their lower bound held only against algorithms that allocate a
contiguous (that is, connected) piece to each agent. This as-
sumption imposes a serious restriction; ultimately, Edmonds
and Pruhs [2006] were recently able to prove a satisfying
Ω(n log n) lower bound without any assumptions. Hence,
proportional cake-cutting is, to all ends and purposes, com-
pletely understood.

Envy-free division, in stark contrast, is nothing if not enig-
matic. The existence of envy-free allocations, even those
that satisfy additional desiderata such as allocation of con-
tiguous pieces, has been known since the 1940’s (see, e.g.,
[Stromquist, 1980]). The first constructive solution to the
envy-free cake-cutting problem, for exactly three players, was
suggested around 1960 by Selfridge, and, independently, by
Conway; the Selfridge-Conway algorithm requires at most
five cut queries and a small number of evaluation queries, and
is described in full in Section 2.

Despite numerous moving-knife schemes for envy-free
cake-cutting that were suggested in the decades that followed
the breakthrough of Selfridge and Conway (see, e.g., the
work of Stromquist [1980]), a discrete algorithm that extends
Selfridge-Conway for any number of agents was only devised
in the 1990’s by Brams and Taylor [1995]. Unfortunately, a
curious property of the Brams-Taylor algorithm is that, even
for four agents, the number of steps can be made arbitrarily
large with a suitable choice of the agents’ valuation functions.
In fact, to this day there is no envy-free discrete cake-cutting
algorithm that requires a bounded number of queries when
n > 3.1

Our result. In light of the discussion in the preceding para-
graphs, the following question naturally arises: is it possi-
ble to prove a lower bound for envy-free cake-cutting? Since
envy-freeness implies proportionality, the Ω(n log n) lower
bound of Edmonds and Pruhs [2006] for proportional divi-
sion also holds for envy-free division. In this paper, we seek
to improve this lower bound.

The following theorem is our main result.

Theorem 3.1. The query complexity (in the Robertson-Webb
model) of achieving an envy-free allocation is Ω(n2).

1There is a moving knife solution to the four agent envy-free
cake-cutting problem with a bounded number of cuts [Brams et al.,
1997], but there is no bounded solution for n > 4 even if moving
knives are allowed.

Notice that our result does not require any restrictions on
the cake-cutting algorithm, apart from the implicit assump-
tion that it is captured by the Robertson-Webb query model.

Since the algorithm of Even and Paz [1984] gives an
O(n log n) upper bound for proportional division, our result
establishes, for the first time, a gap between the complexity of
proportional and envy-free division. This gap can be seen as
providing a partial explanation for the difficulty of the envy-
free cake-cutting problem with multiple agents. As with any
lower bound, it can also be used to direct the search for upper
bounds, that is, envy-free algorithms that require a bounded
number of steps.

Related work. A very recent result that complements ours
nicely was reported by Stromquist [2008]. Stromquist
showed that any algorithm that requires a finite number of
steps and allocates contiguous pieces of cake cannot be envy-
free, for any number of agents n ≥ 3. Stromquist’s as-
sumptions on the allowed queries essentially reduce to the
Robertson-Webb model. It is important to note that while
existing envy-free algorithms require an unbounded number
of queries, they are finite, i.e., they are guaranteed to termi-
nate after a finite number of steps. Indeed, Stromquist’s result
does not hold with respect to the existing algorithms as they
do not allocate contiguous pieces. Furthermore, for n = 3
there actually is an envy-free algorithm, namely Selfridge-
Conway, that does not allocate contiguous pieces and requires
a bounded number of steps! Hence, the restriction to contigu-
ous pieces is interesting but clearly very strong, and leaves
plenty of room for the investigation of assumption-free lower
bounds.

Busch et al. [2005] proved lower bounds of Ω(n2) for the
number of cuts needed to achieve two stronger variations
of envy-freeness: strong envy-freeness, namely each agent
strictly prefers its own pieces to any other piece; and super
envy-freeness, that is, each agent believes that every piece ex-
cept its own is worth at most 1/n of the cake. These two
stronger versions of envy-freeness are fundamentally differ-
ent from regular envy-freeness, mainly since there does not
necessarily exist an allocation that satisfies them for given
valuation functions, and even when there is one, it might
not be possible to allocate contiguous pieces. This facilitates
quite straightforward proofs by constructing valuations that
require allocating multiple disjoint intervals to each player
in order to achieve strong or super envy-freeness. Our re-
sult implies, and is a significant improvement of, these lower
bounds.

Short discussion. Our proof is based on defining a difficult
problem that must be solved independently for many of the
agents. This separation between the different agents allows
for a mathematically clean Ω(n2) lower bound, but seems to
hinder any attempts to raise the bound above n2. Neverthe-
less, we believe it likely that the actual bound is higher, and
that it might be possible to establish this by considering al-
locations to several agents simultaneously. Indeed, given an
allocation of a piece to one agent, it is possible to set the val-
uation function of a different agent in a way that the latter

240

envies the former. If one is careful not to over-constrain the
valuations of the agents, this proof stub can possibly be built
upon to yield an improved lower bound.

2 Preliminaries

We deal with a set of agents N = {1, . . . , n}. Each agent i ∈
N has a valuation function vi, that maps subintervals of [0, 1]
to the value agent i assigns them. We simplify the notation by
writing vi(x1, x2) instead of vi([x1, x2]) to denote the value
of agent i for the interval [x1, x2]. We assume that for all
i ∈ N , vi satisfies the following properties:

1. vi(0, 1) = 1.
2. Additivity: for every two disjoint subintervals I1 and I2,

vi(I1 ∪ I2) = vi(I1) + vi(I2) .

3. Divisibility: For every subinterval I ⊆ [0, 1] and 0 ≤
λ ≤ 1 there is I ′ ⊆ I such that vi(I ′) = λvi(I).

4. For every subinterval I ⊆ [0, 1], vi(I) ≥ 0.
It follows from the divisibility property that the func-

tions v1, . . . , vn are nonatomic, i.e., for every x ∈ [0, 1],
vi(x, x) = 0. Therefore, open and closed intervals have the
same value, which allows us to disregard the boundaries of
intervals. In particular, when we say “disjoint intervals” or
write I1 ∩ I2 = ∅, this should be taken to mean that the inte-
riors of the intervals do not intersect.

A piece of cake X is a finite union of disjoint intervals,
X =

⋃
k∈K Ik. By the additivity property, the value agent

i ∈ N assigns to X is simply the sum of values of the subin-
tervals, that is,

vi(X) =
∑

k∈K

vi(Ik) .

We deal with algorithms that assign a piece of cake Xi to
each agent i ∈ N , such that X1, . . . , Xn is a partition of
[0, 1]. In this paper, the goal of the algorithm is to find an
envy-free allocation: for all i, j ∈ N , vi(Xi) ≥ vi(Xj). Ini-
tially, the algorithm has no information about the valuations
of the agents; it obtains this information using queries.

Before describing the query model that we deal with, it
will prove instructive to first discuss a possibility result: the
envy-free cake-cutting algorithm for n = 3 of Selfridge
and Conway, circa 1960 (see the paper by Brams and Tay-
lor [1995] for an excellent, full exposition of this algorithm
and other prominent cake-cutting algorithms).

Stage 0.

0.1. Agent 1 divides the cake into three equal pieces accord-
ing to v1.

0.2. Agent 2 trims the largest piece (that is, cuts off a slice)
such that there is a tie between the two largest pieces
according to v2. We call the original cake without the
trimmings Cake 1, and we call the trimmings Cake 2.

Stage 1 (Division of Cake 1).

1.1 Agent 3 chooses one of the three pieces of Cake 1 (the
largest according to v3).

1.2 If agent 3 did not choose the trimmed piece, Agent 2
is allocated the trimmed piece. Otherwise, Agent 2
chooses one of the two remaining pieces. Denote the
agent i ∈ {2, 3} that received the trimmed piece by T ,
and the other agent by T̄ .

1.3 Agent 1 is allocated the remaining (untrimmed) piece.
Note. The division of Cake 1 is envy-free: agent 3 received
his preferred piece; agent 2 received one of the two pieces
tied for largest according to v2; and agent 1 received an
untrimmed piece worth 1/3 according to v1.
Stage 2 (Division of Cake 2).

2.1 T̄ divides Cake 2 to three equal pieces according to vT̄ .
2.2 Agents T , 1, and T̄ choose the pieces of Cake 2, in that

order.
Note. The division of Cake 2 is envy-free with respect
to agents T and T̄ , since T chooses first, and the three
pieces are equal according to T̄ . Further, agent 1 chooses a
piece of Cake 2 before T̄ , hence agent 1 does not envy T̄ .
Finally, agent 1 might prefer the piece of Cake 2 allocated
to T ; nevertheless, agent 1 cannot envy T overall, since the
trimmed piece of Cake 1, combined with the entire Cake 2,
is worth only 1/3 to agent 1.

There are seemingly many types of operations that are car-
ried out in the execution of the Selfridge-Conway algorithm:
dividing a cake into equal pieces, trimming pieces, and choos-
ing a piece according to different criteria. Nevertheless, all
these operations are captured by the two types of queries de-
fined in the Robertson-Webb model [Robertson and Webb,
1998]:

1. evali(x1, x2): returns vi(x1, x2).
2. cuti(x1, α): returns x2 ∈ [0, 1] such that vi(x1, x2) =

α, or announces that such an x2 does not exist.
For example, in order to simulate the trimming operation

in step 0.2, the algorithm can first ask agent 2 to evaluate the
three pieces. Say that v2(X1) ≥ v2(X2) ≥ v2(X3), and that
X1 = [x1, x2]; the algorithm then submits a cut2(x1, v2(X2))
query. In general, as noted in the introduction, the Robertson-
Webb model captures the existing discrete cake-cutting algo-
rithms (that is, algorithms that do not require continuously
moving knives or similar constructs), and was the model of
choice in the previous papers about lower bounds for propor-
tional division [Edmonds and Pruhs, 2006; Woeginger and
Sgall, 2007].

Observe that the queries only provide the algorithm with
information regarding the valuations of the agents, and do
not produce an actual allocation. Once the algorithm has
sufficient information to determine an envy-free allocation,
it may output one “for free”, that is, we are only interested
in the number of queries, not the calculations required on the
part of the algorithm to produce an envy-free allocation given
sufficient information. The algorithm may be adaptive, in the
sense that each query may depend on the the answers of the
agents to the previous queries. Finally, the query complexity
of the algorithm (in the Robertson-Webb model) is the worst-
case number of cut and eval queries that the algorithm re-
quires in order to produce an envy-free allocation. The query

241

complexity of the problem of envy-free cake-cutting is the
query complexity of the best algorithm. The Robertson-Webb
model is a model of concrete complexity, much like, e.g., the
complexity of sorting in the comparison model [Cormen et
al., 2001, Section 8.1].

Woeginger and Sgall [2007] raise some very interesting is-
sues with the Robertson-Webb model. For example, there
exists a one-to-one mapping from all possible valuation func-
tions to [0, 1]. In response to, say, a cuti(0, 1/2) query, agent
i can return a point x2 that encodes vi (disregarding the fact
that x2 is supposed to satisfy vi(0, x2) = 1/2. Hence, after n
queries, one to each agent, the algorithm has full information
about the valuations of the agents, and can compute an envy-
free allocation offline. In order to circumvent this difficulty, it
is assumed that the agents must answer the queries truthfully.

3 A Lower Bound for Envy-Free cake-cutting

This section is devoted to proving our main result.

Theorem 3.1. The query complexity (in the Robertson-Webb
model) of achieving an envy-free allocation is Ω(n2).

We first lay the notational and conceptual foundations for
our proof. For an interval I = [x1, x2], we denote left(I) =
x1, right(I) = x2, and |I| = x2 − x1. Similarly to Edmonds
and Pruhs [2006], we say that a piece of cake (a union of
disjoint intervals) X =

⋃
k∈K Ik is light if its width is at

most 2/n, that is,
∑

k∈K

|Ik| ≤ 2/n .

A piece of cake is said to be heavy if it is not light.
Since we are dealing with a lower bound, we shall take the

point of view of an adversary that is trying to answer the al-
gorithm’s queries in a confusing, albeit consistent, way. Cu-
riously, it will prove useful to give the algorithm more in-
formation than it asks for. This only makes the algorithm’s
task, namely finding an envy-free allocation, easier. In other
words, providing the algorithm with more information only
makes the adversary’s task harder, which is fine in the context
of lower bounds. Specifically, given the query evali(x1, x2),
we will provide the algorithm with the following values:
vi(0, x1), vi(x1, x2), vi(x2, 1). Given the query cuti(x1, α),
we will choose a point x2 such that vi(x1, x2) = α, and then
provide the algorithm with the same values as above.

We will be interested in the information available to the al-
gorithm in different stages of its execution, based on the ad-
versary’s answers (in their extended version, as given above).
We refer to the point in time when t queries have been sub-
mitted by the algorithm as stage t. In order to analyze the
information available to the algorithm after a given number
of queries, we will associate with each agent i ∈ N and each
stage t a set of disjoint intervals Πt

i that is a partition of [0, 1],
i.e.,

⋃
I∈Πt

i
I = [0, 1]. We say that an interval I ∈ Πt

i is
active with respect to i at stage t.

The partition Πt
i is constructed inductively. We set Π0

i =
{[0, 1]} for all i ∈ N , that is, the only active interval with
respect to i at stage 0 is [0, 1]. Now, assume that at stage t
we have the partitions Πt

i for all i ∈ N . Further, suppose that

query t+1 is submitted to agent i. For all j 	= i, Πt+1
j = Πt

j .
We consider two cases, based on the type of query t + 1.

Case 1: the query is an evali(x1, x2) query. Let I1 ∈ Πt
i

such that x1 ∈ I1, and I2 ∈ Πt
i such that x2 ∈ I2 (see Fig-

ure 1(a) for an illustration).
The first subcase is I1 	= I2; we let:

Πt+1
i =

(
Πt

i \ {I1, I2}
) ∪ {[left(I1), x1], [x1, right(I1)],

[left(I2), x2], [x2, right(I2)]} .

Less formally, I1 is partitioned into [left(I1), x1] and
[x1, right(I1)], and I2 is partitioned into [left(I2), x2] and
[x2, right(I2)], all of which are active with respect to i at stage
t+1 (see Figure 1(b)). If one of these intervals is a singleton,
it is not added to the partition.

The second subcase is when I1 = I2, and then:

Πt+1
i =

(
Πt

i \ {I1}
) ∪ {[left(I1), x1], [x1, x2],

[x2, right(I1)]} .

Once again, a singleton interval is disregarded.
Case 2: The query is a cuti(x1, α) query. Let x2 ∈ [0, 1]

such that vi(x1, x2) = α. We proceed exactly as in Case 1.
For example, assume that the first submitted query is

evali(0, 1/2). This is the second subcase of the first case, with
[left(I1), x1] a singleton. Then (regardless of the answer)

Π1
i = {[0, 1/2], [1/2, 1]} .

Taking the example one step further, assume the second query
submitted by the algorithm is cuti(1/3, 1/2), and that the
(partial) answer is 3/4, that is, vi(1/3, 3/4) = 1/2. Then

Π2
i = {[0, 1/3], [1/3, 1/2], [1/2, 3/4], [3/4, 1]} .

The following lemma, whose proof follows directly from
the construction of Πt+1

i , will prove crucial in the sequel.

Lemma 3.2. For all i ∈ N and stages t, |Πt+1
i | − |Πt

i| ≤ 2.
At this point, we wish to claim that, essentially, Πt

i is a
partition of [0, 1] into (inclusion-) minimal intervals whose
values are known.
Lemma 3.3. For every i ∈ N and stage t, Πt

i has the follow-
ing properties:

1. For every I ∈ Πt
i, vi(I) is known to the algorithm at

stage t.
2. For every I ∈ Πt

i, I ′ � I , and 0 ≤ λ ≤ 1, it might
be the case (based on the information available to the
algorithm at stage t) that vi(I ′) = λvi(I).

Proof sketch. Fix an agent i ∈ N . We prove the lemma by in-
duction on t. For t = 0, Π0

i = {[0, 1]}, and the two properties
hold trivially.

Assume the two properties hold at stage t; we prove that
they hold at stage t+1. This is straightforward if Πt+1

i = Πt
i,

so assume this is not the case, i.e., query t + 1 is submitted to
i. Let x1, x2 ∈ [0, 1], I1, I2 ⊆ [0, 1] as in the construction of
Πt+1

i . Assume that I1 	= I2 (the case I1 = I2 is very similar).
Concerning the first property, the value of all intervals in

Πt+1
i ∩ Πt

i was known at stage t by the induction assump-
tion, so we only need to verify that the property holds with

242

0 1

x1 x2

evali(x1, x2)

I1 I2

(a) The thick vertical lines are the boundaries of the intervals
in Πt

i . Query t + 1 is evali(x1, x2). We have that x1 ∈ I1

and x2 ∈ I2.

0 1

x1 x2

(b) The thick vertical lines are the boundaries of the inter-
vals in Πt+1

i .

Figure 1: The construction of the partition to active intervals: as a result of an evali(x1, x2) query, the partition changes from
Πt

i, as shown in (a), to Πt+1
i , as shown in (b).

respect to the intervals in Πt+1
i \Πt

i. Indeed, by the induction
assumption vi(0, left(I1)) was known at stage t, since this in-
terval can be partitioned into intervals in Πt

i. Since vi(0, x1)
is revealed to the algorithm, the algorithm can calculate

vi(left(I1), x1) = vi(0, x1) − vi(0, left(I1)) ,

and then

vi(x1, right(I1)) = vi(I1) − vi(left(I1), x1) .

A symmetric argument for [left(I2), x2] and [x2, right(I2)]
verifies the first property.

For the second property, by the induction assumption the
algorithm had no information at stage t regarding the distri-
bution of value inside the intervals in Πt+1

i ∩ Πt
i, and the

answer to query t+1 clearly does not provide any such infor-
mation. It can also be verified that the second property holds
with respect to Πt+1

i \ Πt
i by the induction assumption with

respect to I1 and I2.

From an evil adversary’s point of view, the second prop-
erty of active intervals is extremely useful. In particular, if
I is active, vi(I) can be concentrated in any arbitrarily small
subinterval, and any strict subinterval can have value zero.

For a piece of cake X , let

vt
i(X) =

∑

I∈Πt
i: I⊆X

vi(I) .

Clearly vi(X) ≥ vt
i(X). vt

i(X) is, in a sense, the minimum
value of X based on the information available to the algo-
rithm at stage t. This notion will become more precise in the
proof of Lemma 3.4.

The core of the proof is the notion of critical pieces. We
say that a piece of cake X is critical with respect to i ∈ N at
stage t if for every interval I ∈ Πt

i, vt
i(X) ≥ vi(I). In words,

the minimum value of X is at least the value of any active
interval. We shall demonstrate below that every agent i must
be allocated a critical piece of cake, otherwise envy-freeness
would be violated.
Lemma 3.4. Consider some algorithm for the envy-free allo-
cation problem. Assume the algorithm outputs at stage t an
allocation X1, . . . , Xn. Then every Xi must be critical with
respect to i at stage t.

Proof. Assume for contradiction that there exists i ∈ N such
that Xi is not critical with respect to i at stage t. We will

show that there is a valuation vi that is consistent with the
information available to the algorithm at stage t such that i is
envious.

First, we claim that we can set vi(Xi) = vt
i(Xi). Indeed,

for every I ∈ Πt
i such that I � Xi, set vi(Xi ∩ I) = 0.

If Xi ∩ I = ∅, this is trivially possible; otherwise, this is
consistent with the information available at stage t since I is
active, namely by Property 2 of Lemma 3.3. Moreover, since
Πt

i is a partition of [0, 1], it holds that

Xi =
⋃

I∈Πt
i

Xi ∩ I .

Hence,

vi(Xi) =
∑

I∈Πt
i: I⊆Xi

vi(Xi ∩ I) +
∑

I∈Πt
i: I�Xi

vi(Xi ∩ I)

=
∑

I∈Πt
i: I⊆Xi

vi(I) + 0 = vt
i(Xi) .

Now, by the assumption that Xi is not critical there exists
some active interval I ∈ V t

i such that vi(I) > vt
i(Xi) =

vi(Xi); then it must be the case that I � Xi. Hence, there is
some I ′ ⊆ I such that I ′ ∩ Xi = ∅.

Next, we notice that a subinterval I ′′ of I ′ must be allo-
cated to some agent, and the value of I might be concentrated
in I ′′. Formally, there exists j ∈ N such that Xj ∩ I ′ 	= ∅.
We let I ′′ = Xj ∩ I ′. Since I is active, we can set

vi(I ′′) = vi(I) > vi(Xi) ;

this is consistent with the information available to the algo-
rithm at stage t. Hence,

vi(Xj) ≥ vi(I ′′) > vi(Xi) .

We conclude that agent i envies agent j, in contradiction to
the correctness of the algorithm.

At this point, we employ an idea used in the proof of Ed-
monds and Pruhs [2006] for proportional cake-cutting. Sim-
ilarly to these authors, we wish to define a problem that is
hard to solve with respect to one agent, and show that it must
be solved with respect to many of the agents independently if
an envy-free allocation is to be achieved. However, the prob-
lem that we deal with is harder than the one considered by
Edmonds and Pruhs. We say that a piece is criticalight with
respect to i at stage t if it is both light and critical with respect
to i at stage t.

243

Lemma 3.5. If there is an adversary strategy such that at
least T (n) queries are required to find a criticalight piece
with respect to a given agent i ∈ N , then the query complex-
ity of of envy-free cake-cutting is Ω(nT (n)).

Proof. We first observe that the answers to the queries sub-
mitted by the protocol to one agent i ∈ N cannot help the
protocol find a criticalight piece with respect to another agent
j 	= i. Indeed, the property of being light is known in ad-
vance (i.e., does not depend on the valuations of the agents),
and the property of being critical with respect to i only de-
pends on the information available to the algorithm regarding
vi. Therefore, in the context of finding criticalight pieces, we
can separate the interaction of the algorithm with each agent.
After the algorithm interacts with the agents, it must decide
on an envy-free allocation. Now, it follows from our assump-
tion that if an agent i receives less than T (n) queries, then
it is possible to design vi (in a way that is consistent with
the information available to the algorithm) such that the piece
allocated to agent i is not criticalight with respect to i.

Let X1, . . . , Xn be the allocation returned by the algo-
rithm. By Lemma 3.4, for all i ∈ N we have that Xi is criti-
cal with respect to i. Now, assume for contradiction that more
than n/2 pieces are heavy, that is, there exists a set N ′ ⊆ N ,
|N ′| > n/2, such that for all i ∈ N ′, |Xi| > 2/n. Since
X1, . . . , Xn are disjoint, it follows that

∣∣∣∣∣
⋃

i∈N ′
Xi

∣∣∣∣∣ =
∑

i∈N ′
|Xi| >

n

2
· 2
n

= 1 ,

which cannot be true.
We conclude that at least n/2 of the Xi are light, and there-

fore (since X1, . . . , Xn are all critical) at least n/2 of the
pieces are criticalight. This means that the algorithm solved
the problem of finding a criticalight piece with respect to at
least n/2 agents, independently. Hence, the query complexity
of the algorithm is at least

n

2
· T (n) = Ω(nT (n)) ,

as required.

In order to complete the proof of Theorem 3.1, it only re-
mains to prove that, given an agent, finding a criticalight piece
is not a mundane task.

Proof of Theorem 3.1. By Lemma 3.5, it is sufficient to prove
that there is an adversary strategy such that Ω(n) queries are
required to find a criticalight piece with respect to a given
agent i ∈ N .

Fix an agent i. We design a very simple adversary that an-
swers the algorithm’s queries with respect to agent i. The
answer to the query eval(x1, x2) is that vi(0, x1) = x1,
vi(x1, x2) = x2 − x1, and vi(x2, 1) = 1 − x2. The answer
to the query cut(x1, α) is setting x2 = x1 + α and answering
as above. In other words, the adversary always answers as if
vi is uniformly distributed on [0, 1].

Let t∗ = n/4 − 1. It follows from Lemma 3.2 that for all
t ≤ t∗,

|Πt
i| ≤ |Π0

i | + 2t∗ = 1 + n/2 − 2 < n/2 .

It follows that there must be some active interval I∗ at stage t
with |I∗| > 2/n. The value of each active interval I is known
to be |I|, thus vi(I∗) = |I∗| > 2/n. Similarly, for any light
piece of cake X , vt

i(X) ≤ |X| ≤ 2/n < vi(I∗). Therefore,
no light piece of cake is critical with respect to i at any stage
t ≤ t∗, hence no piece of cake is criticalight with respect to
i. We conclude that the number of queries required to find a
criticalight piece is at least n/4 = Ω(n).

Acknowledgments

The author deeply thanks Felix Fischer for proofreading a
draft of the paper. The author also thanks Ulle Endriss, Van-
gelis Markakis, Jörg Rothe, Michael Schapira, Moshe Ten-
nenholtz, and Aviv Zohar for helpful discussions. Finally, the
author thanks his brother Eviatar for introducing him to the
cut-and-choose algorithm so early in life.

References
[Brams and Taylor, 1995] S. J. Brams and A. D. Taylor. An

envy-free cake division protocol. The American Mathe-
matical Monthly, 102(1):9–18, 1995.

[Brams et al., 1997] S. J. Brams, A. D. Taylor, and W. S.
Zwicker. A moving-knife solution to the four-person envy
free cake division problem. Proceedings of the American
Mathematical Society, 125(2):547–554, 1997.

[Busch et al., 2005] C. Busch, M. S. Krishnamoorthy, and
M. Magdon-Ismail. Hardness results for cake cutting. Bul-
letin of the EATCS, 86:85–106, 2005.

[Chevaleyre et al., 2006] Y. Chevaleyre, P. E. Dunne, U. En-
driss, J. Lang, M. Lemaı̂tre, N. Maudet, J. Padget,
S. Phelps, J. A. Rodrı́guez-Aguilar, and P. Sousa. Issues
in multiagent resource allocation. Informatica, 30:3–31,
2006.

[Cormen et al., 2001] T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, 2nd edition, 2001.

[Edmonds and Pruhs, 2006] J. Edmonds and K. Pruhs. Cake
cutting really is not a piece of cake. In Proceedings of
the 17th Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 271–278, 2006.

[Even and Paz, 1984] S. Even and A. Paz. A note on cake-
cutting. Discrete Applied Mathematics, 7:285–296, 1984.

[Robertson and Webb, 1998] J. M. Robertson and W. A.
Webb. Cake Cutting Algorithms: Be Fair If You Can. A.
K. Peters, 1998.

[Steinhaus, 1948] H. Steinhaus. The problem of fair divi-
sion. Econometrica, 16:101–104, 1948.

[Stromquist, 1980] W. Stromquist. How to cut a cake fairly.
American Mathematical Monthly, 87(8):640–644, 1980.

[Stromquist, 2008] W. Stromquist. Envy-free cake divisions
cannot be found by finite protocols. The Electronic Jour-
nal of Combinatorics, 15:#R11, 2008.

[Woeginger and Sgall, 2007] G. J. Woeginger and J. Sgall.
On the complexity of cake cutting. Discrete Optimization,
4:213–220, 2007.

244

