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Problem desription. In a more general and a more mathematial formulation, there isa ertain resoure C (hereinafter referred to as: the ake), and there are n players 1; : : : ; n.Without muh loss of generality and in agreement with the ake utting literature, we willassume throughout the paper that C = [0; 1℄ is the unit interval and the uts divide the akeinto its subintervals. Every player p (1 � p � n) has his own private measure �p on suÆientlymany subsets of C. These measures �p are assumed to be well-behaved; this means that theyare:� De�ned on all �nite unions of intervals.� Non-negative: For all X � C, �p(X) � 0.� Additive: For all disjoint subsets X;X 0 � C, �p(X [X 0) = �p(X) + �p(X 0)� Divisible: For every measurable X � C and 0 � � � 1, there exists X 0 � X with�p(X 0) = ��p(X).� Normalized: �p(C) = 1.All these assumptions are standard assumptions in the ake utting literature, sometimessubsumed in a onise statement that eah �p is a probability measure de�ned on Lebesguemeasurable sets and absolutely ontinuous with respet to Lebesgue measure. We stress thatthe divisibility of �p forbids onentration of the measure in one or more isolated points. Asone onsequene of this, orresponding open and losed intervals have the same measure, andthus we do not need to be overly formal about the endpoints of intervals.The ake C is to be divided among the n players aording to some �xed ake divisionprotool, whih is an interative proedure for the players that guides and ontrols the divisionproess of the ake C. Typially it onsists of ut requests like \Cut ake piee Z into twoequal piees, aording to your measure!" and evaluation queries like \Is your measure ofake piee Z1 less, greater, or equal to your measure of ake piee Z2?" or \What is yourmeasure of ake piee Z1?". Eventually, the protool assigns to the players pairwise disjointsubsets of the ake. A ake division protool is not a priori aware of the measures �p, but itwill learn something about them during its exeution, and the answers may inuene whihut requests and evaluation queries are issued in the future (i.e., the protool is adaptive). Astrategy of a player is an adaptive sequene of moves onsistent with a given protool.A ake division protool is (perfetly) fair, if every player p has a strategy that guaranteeshim a piee of size at least �p(C)=n aording to his own measure �p. So, even in ase n� 1players would all plot up against a single player and would oordinate their moves, then thissingle player will still be able to get his share of �p(C)=n. This is alled simple fair divisionin the literature.We also onsider approximately fair protools. A ake division protool is �-fair, if everyplayer p has a strategy that guarantees him a piee of size at least ��p(C) aording to hisown measure �p. Note that a protool for n players is perfetly fair if and only if it is 1=n-fair.The omplexity of a ake utting protool is generally measured by the number of utsperformed in the worst ase. We disuss the exat de�nition of this measure and the notionof a ake utting protool later.The entral open problem in this area is whether there exist perfetly fair n-player proto-ols that only use O(n) uts. This problem was expliitly formulated by Even & Paz [3℄, andessentially goes bak to Steinhaus [10℄. The general belief is that no suh protool exists.2



Previous results. In the 1940s, the Polish mathematiians Banah and Knaster designeda simple fair ake division protool that uses O(n2) uts in the worst ase; this protool wasexplained and disussed in 1948 by Steinhaus [10℄. In 1984, Even & Paz [3℄ used a divide-and-onquer approah to onstrut a better deterministi protool that only uses O(n log n)uts in the worst ase. Remarkably, Even & Paz [3℄ also design a randomized protool thatuses an expeted number of O(n) uts.Tighter results are known for small values of n: For n = 2 players, the Steinhaus protoolyields a perfetly fair protool with a single ut. For n = 3 and n = 4 players, Even & Paz [3℄present perfetly fair protools that make at most 3 and 4 uts, respetively. Webb [12℄presents a perfetly fair protool for n = 5 players with 6 uts.Approximately fair protools were studied by Robertson & Webb [7℄. For any n � 2, theydesign 1=(2n � 2)-fair protools that make only n� 1 uts, and they show that this result isbest possible for n� 1 uts. This result was redisovered independently by Krumke et al [4℄.The problem of establishing lower bounds for ake utting goes bak at least to Banah(see [10℄). Even & Paz [3℄ expliitly onjeture that there does not exist a fair deterministiprotool with O(n) uts. Robertson & Webb [8℄ support and strengthen this onjetureby saying they \would plae their money against �nding a substantial improvement on then log2 n [upper℄ bound".One basi diÆulty in proving lower bounds for ake utting is that most papers deriveupper bound results and to do that, they simply desribe a ertain proedure that performsertain steps, and then establish ertain nie properties for it, but they do not provide aformal de�nition or a framework. Even & Paz [3℄ give a proof that for n � 3, no protoolwith n�1 uts exists; sine n�1 uts are the smallest possible number, suh protools wouldneed to be rather speial (in partiular they would have to assign a single subinterval to eahplayer) and not muh formalism is needed. Webb [12℄ shows that for n = 5, no perfetly fairprotool exists that uses only 5 uts, and thus his protool with 6 uts is optimal.Only reently, Robertson & Webb [7, 8℄ give a more preise de�nition of a protool thatovers all the protools given in the literature. This de�nition avoids some pathologialprotools, but it is still quite general and no super-linear lower bounds are known.A reent paper [5℄ by Magdon-Ismail, Bush & Krishnamoorthy proves an 
(n log n) lowerbound for a ertain non-standard ake utting model: The lower bound does not hold for thenumber of performed uts or evaluation queries, but for the number of omparisons neededto administer these uts.For more information on this fair ake utting problem and on many of its variants, werefer the reader to the books by Brams & Taylor [1℄ and by Robertson & Webb [8℄.Our ontribution and organization of the paper. In Setion 2 we formally de�ne �rstthe Robertson-Webb ake utting model and then we introdue a ertain restrition of thismodel. The restrition has two requirements: (i) eah player reeives a single subinterval ofthe ake and (ii) the evaluation queries are ounted towards the omplexity of the protooltogether with uts. Our model is also general enough to over the O(n log n) ut deterministiprotool of Even & Paz [3℄, and we believe that it is fairly natural. We disuss some of theissues related to the formal de�nition of both models, and we put it into ontext with otherresults from the ake utting literature.In Setion 3 we design protools with O(n) uts that ome arbitrarily lose to being 1=n-fair. Namely, for every " > 0, there exists a (1� ")=n-fair ake division protool for n players3



suh that at most O(n) uts are made. This protool is in the Robertson-Webb model, thuswe do not ount the evaluation queries towards its omplexity (their number is O(n2)). Onthe other hand, the protool still obeys the �rst requirement in the de�nition of restritedprotools, i.e., eah player reeives a single subinterval of the ake.In Setion 4 we then show that in our restrited model, every deterministi fair akedivision protool for n players must use 
(n log n) uts and evaluation queries in the worstase. This result yields the �rst super-linear lower bound on the number of uts for simplefair division (in our restrited model), and it also provides a mathing lower bound for theresult in [3℄.Setion 5 gives the disussion and open problems.This paper overs the results of extended abstrats [13, 9℄.2 The restrited ake utting modelA general assumption in the ake utting literature is that at the beginning of an exeutiona protool has absolutely no knowledge about the measures �p, exept that they are de�nedon intervals, non-negative, additive, divisible, and normalized. The protool issues queriesto the players, the players reat, the protools observes their reations, issues more queries,observes more reations, and so on, and so on, and in the end the protool assigns the akepiees to the players.De�nition of the Robertson-Webb model and our restrited model. We reall thatthe ake C is represented by the unit interval. For a real number � with 0 � � � 1, the �-pointof a player p is the in�mum of all numbers x for whih �p([0; x℄) = � and �p([x; 1℄) = 1 � �holds.In the Robertson-Webb model, the following two types of queries are allowed.Cut(p;�): Player p uts the ake at his �-point (where 0 � � � 1). The value xof the �-point is returned to the protool.Eval(p;x): Player p evaluates the value of the ut x, where x is one of the utspreviously performed by the protool. The value �p(x) is returned to the protool.The protool an also assign an interval to a player; by doing this several times, a player mayend up with a �nite union of intervals.Assign(p;xi; xj): Player p is assigned the interval [xi; xj ℄, where xi � xj are twouts previously performed by the protool or 0 or 1. All the intervals assigned tothe players are required to be pairwise disjoint.The omplexity of a protool is given by the number of uts performed in the worst ase, i.e.,evaluation queries may be issued for free.In our restrited model, the additional two restritions are:Assign(p;xi; xj) is used only one for eah p. Hene, in the restrited model everyplayer ends up with a single (ontiguous) subinterval of the ake.4



The omplexity of a protool is given by the number of uts plus evaluation queries,i.e., eah evaluation query ontributes to the omplexity the same as a ut. Notethat this also overs ounting only the number of uts in protools that do notuse evaluation queries at all.Disussion of the restrited model. The urrently best deterministi protool for exatfair division of Even & Paz [3℄ does not need evaluation queries and assigns single intervals;we provide a mathing bound within these restritions.Nevertheless, both restritions of our model are essential. Our protool from Setion 3 aswell as protools in [4, 6, 7℄, espeially those that ahieve not exatly but only approximatelyfair division, do use evaluation queries, sometimes even a quadrati number of them. Therandomized protool of Even & Paz [3℄ also uses evaluation queries in addition to expetedO(n) uts; the expeted number of evaluation queries is �(n log n).We feel that the other restrition, that every player must reeive a single, ontiguoussubinterval of the ake, is perhaps even stronger. By imposing this restrition, it seems thatwe severely ut down the set of possible protools; in partiular, for some instanes, thesolution is essentially unique (see our lower bound). Note, however, that all known disreteake utting protools from the literature produe solutions where every player ends up witha ontiguous subinterval. For instane, all the protools in [3, 4, 6, 7, 10, 12℄ as well as ourprotool from Setion 3 have this property. In partiular, the divide-and-onquer protoolsof Even & Paz [3℄, both deterministi and randomized, assign single ontiguous subintervalto eah player, as noted above.Disussion of the Robertson-Webb model. The Robertson-Webb model restrits theformat of queries to uts at � points and evaluation queries. This restrition is severe, butit is ruial and essentially unavoidable. Suh a restrition must be imposed in one form orthe other, just to prevent ertain uninteresting types of `heating' protools from showing upwith a linear number of uts. Consider the following `heating' protool:Phase 1. Every player makes a ut that enodes his i=n-points with 1 � i � n�1(just �x any bijetive enoding of n�1 real numbers from [0; 1℄ into a single numberfrom [0; 1℄).Phase 2. The protool exeutes the Banah-Knaster protool in the bakground(Banah-Knaster [10℄ is a fair protool that only needs to know the positions of thei=n-points). That is, the protool determines the relevant uts without performingthem.Phase 3. The protool tells the players to perform the relevant n�1 uts for theBanah-Knaster solution. If a player does not perform the ut that he announedduring the �rst phase, he is punished and reeives an empty piee (and his pieeis added to the piee of some other player).Clearly, every honest player will reeive a piee of size at least 1=n. Clearly, the protool alsoworks in the friendly environment where every player truthfully exeutes the orders of theprotool. And learly, the protool uses only 2n�1 uts|a linear number of uts. Moreover,there are (straightforward) implementations of this protool where every player ends up witha single subinterval of the ake. In ake utting models that allow announements of arbitrary5



real numbers, the uts in (Phase 1) an be replaed by diret announements of the i=n-pointpositions; this yields fair protools with only n� 1 uts.These `heating' protools are arti�ial, unnatural and uninteresting, and it is hard toaept them as valid protools. In the Robertson-Webb model they annot our, sine theyviolate the form of queries. (One ould try to argue that the players might disobey the queriesand announe any real number. However, this fails, sine the de�nition of a protool enforesthat a player that honestly answers allowed queries should get a fair share.)Seond important issue is that in the Robertson-Webb model it is suÆient to assumethat all players are honest, i.e., exeute the ommands \Cut at an �-point" and evaluationqueries truthfully. Under this assumption all of them get a fair share. Often in the literature,a protool has no means of enforing a truthful implementation of these uts by the players,sine the players may heat, and lie, and try to manipulate the protool; the requirement isthan that any honest player gets a fair share, regardless of the ations of the other players.In the Robertson-Webb model, any protool that works for honest players an be easilymodi�ed to the general ase as follows. As long as the answers of a player are onsistent withsome measure, the protool works with no hange, as it assigns a fair share aording to thismeasure (and if the player has a di�erent measure, he lied and has no right to omplain). If aninonsisteny is revealed (e.g., a violation of non-negativity), the protool has to be modi�edto ignore the answers from this player (or rather replae them by some trivial onsistenthoies).Of ourse, in general, the honesty of players is not a restrition on the protool, buta restrition on the environment. Thus it is of no onern for our lower bound argumentwhih uses only honest players. On the other hand, it simpli�es the presentation of protools;ompare, for example, the presentation of the same approximately fair protool in Setion 3and in the onferene paper [13℄.In some details our desription of the model is di�erent than that of Robertson & Webb.Their formulation in plae of evaluation queries is that after performing the ut, its value inall the players' measures beomes known. This overs all the possible evaluation queries, soit is learly equivalent if we do not ount the number of these queries. However, the numberof evaluations is an interesting parameter, whih is why we hose this formulation.Robertson & Webb also allow ut requests of the form \ut this piee into two pieeswith a given ratio of their measures". This is very useful for an easy formulation of reursivedivide-and-onquer protools. Again, one free evaluation queries are allowed, this is no moregeneral, as we know all the measures of all the existing piees. Even if we ount evaluationqueries, we an �rst evaluate the uts that reated the piee, so suh a non-standard ut isreplaed by two evaluations and a standard ut at some �-point.Finally, instead utting at the �-point, Robertson &Webb allow an honest player to returnany x with �p([0; x℄) = �, i.e., we require the answer whih is the minimum of the honestanswers aording to Robertson & Webb. This is a restrition if the instane ontains non-trivial intervals of measure zero for some players, otherwise the answer is unique. However,any suh instane an be replaed by a sequene of instanes with measures that are very loseto the original ones and have non-zero density everywhere. If done arefully, all the �-pointsin the sequene of modi�ed instanes onverge to the �-points in the original instane. Thusthe restrition to a partiularly hosen honest answer is not essential as well; on the otherhand, it keeps the desription of our lower bound muh simpler.6



3 The approximately fair protoolIn this setion we present the ake division protool that uses only a linear number of utsand ahieves an approximately fair solution.Theorem 1 For every " > 0, there exists a onstant " > 0 and a (1�")=n-fair ake divisionprotool for n players suh that at most "n uts are made. The number of evaluation queriesis O(n2).We de�ne a reursive protool P (t) that is based on an integer parameter t � 1; later weset t to be about 1=". The steps (S0){(S5) of protool P (t) are desribed in Figure 1.(S0) If there are n � 2t� 1 players, the ake is divided using the deterministi protoolof Even & Paz. STOP.(S1) Eah of the �rst 2t players p (p = 1; : : : ; 2t) makes a ut p = Cut(p; 1=2).(S2) Let � be the median of the numbers 1; : : : ; 2t, i.e., the t-th smallest numberamong them. The ut � divides the ake C = [0; 1℄ into a left piee CL = [0; �℄and a right piee CR = [�; 1℄.(S3) Every player p = 1; : : : ; n answers an evaluation query xp = Eval(p; �).(S4) Sort the numbers xp; let � be a permutation suh that x�(1) � x�(2) � � � � � x�(n).Let i be the smallest index suh that x�(i) � i�1n�1 . (This is de�ned, as x�(n) � 1.)Let L = f�(1); �(2); : : : ; �(i� 1)g and R = f�(i); : : : ; �(n)g.(S5) The players in L reursively share the left piee CL.The players in R reursively share the right piee CR.Figure 1: The protool P (t) for n players.As presented, it is assumed that the ake and the measures of the players are renormalizedafter eah reursive all. Sine the ake is divided at a point � suh that we know all thevalues Eval(p; �), it is easy to implement this.Note that the sets L and R in step (S5) give a partition of all the players. The nextlemma guarantees that both sets in the partition are suÆiently large, and that eah playeronsiders the piee of the ake to whih it is assigned in step (S6) suÆiently large, given howmany people will split it.Lemma 2 The sets L and R hosen in step (S4) satisfy:(i) jLj � t and jRj � t.(ii) For every player p 2 L, xp � jLj � 1n� 1 .(iii) For every player p 2 R, 1� xp � jRj � 1n� 1 .Proof. By the hoie of � in step (S2), there are t players p suh that xp � 1=2 (evenamong the �rst 2t players). Consequently, for j � t, we have x�(j) � 1=2 > (j � 1)=(n � 1),7



as n � 2t � 2j; we onlude that i in step (S4) is at least t + 1 and thus jLj � t. Similarly,there are t players p suh that xp � 1=2. Thus x�(n�t+1) � 1=2 < (n� t)=(n� 1), as n � 2t;we onlude that i in step (S4) is at most n� t+ 1 and thus jRj � t.For p 2 L, using the de�nition of i in step (S4), we have xp � x�(jLj) > (jLj � 1)=(n � 1)For p 2 R, using the de�nition of i in step (S4), we have xp � x�(jLj+1) � jLj=(n � 1).Thus 1� xp � 1� jLj=(n� 1) = (jRj � 1)=(n� 1)Next we analyze the fairness of the protool.Lemma 3 Let n � t. Then every player p is assigned at least a fration (t� 1)=(t(n� 1)) ofthe ake C. Consequently, the protool P (t) is (1� 1=t)=n-fair.Proof. The proof of the �rst laim is by indution on n. For n � 2t � 1, step (S0) appliesand p gets a fration of at least 1=n � (t� 1)=(t(n� 1)), using t � n to obtain the inequality.For n � 2t, by Lemma 2(i), jLj � t and jRj � t in step (S4), thus we an use theindution assumption for the reursive invoations of the protool. Note also that by de�nitionxp = �p(CL) and 1� xp = �p(CR). We distinguish two ases.If in step (S4) the protool assigns player p to L, then, using the indutive assumptionand Lemma 2(ii), player p reeives at leastt� 1t(jLj � 1) � xp � t� 1t(jLj � 1) � jLj � 1n� 1 = t� 1t(n� 1) :If in step (S4) the protool assigns player p to R, then, using the indutive assumptionand Lemma 2(iii), player p reeives at leastt� 1t(jRj � 1) � (1� xp) � t� 1t(jRj � 1) � jRj � 1n� 1 = t� 1t(n� 1) :This ompletes the indutive proof of the �rst laim.To onlude that the protool is (1�1=t)=n-fair, note that (t�1)=(t(n�1)) � (1�1=t)=nfor n � t. In n < t, step (S0) applies and thus the protool is 1=n-fair.It remains to examine the omplexity of the protool.Lemma 4 If the ake is divided among n players aording to protool P (t), then the playersaltogether make at most 2t(n� 1) uts. The number of evaluation queries is at most n2=t.Proof. By indution on the number n of players. If n � 2t� 1, protool P (t) beomes theEven & Paz protool. Hene, there are at most n log2 n � 2t(n � 1) uts and no evaluationqueries. For n � 2t, there are 2t uts made in step (S1). Moreover, by the indutiveassumption there are at most 2t(jLj � 1) and at most 2t(jRj � 1) uts made in the reursionin step (S6). Altogether, this yields at most 2t(jLj + jRj � 1) = 2t(n � 1) uts. Thereare n evaluation queries in step (S3), so by indution, the number of evaluation queries isn+ (jLj2 + jRj2)=t � n2=t, using jLj; jRj � t and jLj+ jRj = n.Finally, let us prove Theorem 1. We use the protool P (t) with t = d1="e. By Lemma 3,the protool is (1� ")=n-fair. By Lemma 4, the total number of uts is at most 2d1="e(n� 1)and hene grows linearly in the number n of players; in addition the number of evaluationqueries is quadrati in n. 8



4 The proof of the lower boundIn this setion, we will prove the following theorem by means of an adversary argument in adeision tree.Theorem 5 In the restrited ake utting model of Setion 2 (where eah player is assigneda single interval), every deterministi fair ake division protool for n players uses at least
(n log n) uts and evaluation queries in the worst ase.The adversary ontinuously observes the ations of the deterministi protool, and hereats by �xing the measures of the players appropriately.Let us start by desribing the spei� ake measures �p that the we uses in the inputinstanes. Let " < 1=n4 be some small positive real number. For i = 1; : : : ; n we denote byXi � [0; 1℄ the set onsisting of the n points i=(n+ 1) + k" with 1 � k � n. Moreover, we letX = S0�i�nXi. For p = 1; : : : ; n, by de�nition the player p has his 0-point at position 0. Thepositions of the i=n-points with 1 � i � n are �xed by the adversary during the exeutionof the protool: The i=n-points of all players are taken from Xi, and distint players reeivedistint i=n-points. As one onsequene, all the i=n-points of all players will lie stritly tothe left of all the (i+ 1)=n-points of all players.All the ake value for player p is onentrated in tiny intervals Ip;i of length " that areentered around his i=n-points: For i = 0; : : : ; n, the measure of player p has a sharp peakwith value i=(n2 + n) immediately to the left of his i=n-point and a sharp peak with value(n � i)=(n2 + n) immediately to the right of his i=n-point. Note that the measure betweenthe i=n-point and the (i+ 1)=n-point indeed adds up to 1=n. Moreover, the measures of thetwo peaks around every i=n-point add up to 1=(n + 1), and the intervals that support thesepeaks for di�erent players are always disjoint, with the exeption of the intervals Ip;0 that arethe same for all the players. We do not expliitly desribe the shape of the peaks; it an bearbitrary, but determined in advane and the same for eah player.For every player p, the portions of the ake between interval Ip;i and interval Ip;i+1 havemeasure 0 and hene are worthless to p. By our de�nition of �-points, every �-point ofplayer p will fall into one of his intervals Ip;i with 0 � i � n. If a player p uts the ake atsome point x 2 Ip;i, then we denote by p(x) the orresponding i=n-point of player p.Lemma 6 Let x be a ut that was done by player s, and let y � x be another ut that wasdone by player t. Let J = [x; y℄ and J 0 = [s(x); t(y)℄. If �p(J ) � 1=n holds for someplayer p, then also �p(J 0) � 1=n.Proof. (Case 1) If s = p and t = p, then let Ip;j and Ip;k be the intervals that ontain thepoints p(x) and p(y), respetively. Then �p(J ) � 1=n implies k � j + 1. The measure�p(J 0) is at least the measure (n � j)=(n2 + n) of the peak immediately to the right of thej=n-point plus the measure k=(n2 + n) immediately to the left of the k=n-point, and thesetwo values add up to at least 1=n.(Case 2) If s = p and t 6= p, then let Ip;j be the interval that ontains p(x). Then�p(J ) � 1=n implies that J and J 0 both ontain Ip;j+1, and again �p(J 0) is at least 1=n.Note that the argument works also if j = 0.(Case 3) The ase s 6= p and t = p is symmetri to the seond ase above.(Case 4) If s 6= p and t 6= p, then the interval between x and s(x) and the interval betweeny and t(y) both have measure 0 for player p. By moving these two uts, we do not hangethe value of J for p. 9



We all a protool primitive, if in all of its ut operations Cut(p;�) the value � is of theform i=n with 0 � i � n.Lemma 7 For every protool P in the restrited model, there exists a primitive protool P 0in the restrited model, suh that for every ake utting instane I of the restrited formdesribed above,� P and P 0 make the same number of uts on I,� if P applied to instane I assigns to player p a piee J of measure �p(J ) � 1=n, thenalso P 0 applied to instane I assigns to player p a piee J 0 of measure �p(J 0) � 1=n.Proof. Protool P 0 imitates protool P. Whenever P requests player p to ut at his �-pointx with 0 < � < 1, then P 0 omputes the unique integer k withkn+ 1 < � � k + 1n+ 1Then P 0 requests player p to ut the ake at his k=n-point. Note that by the hoie of k, thisk=n-point equals p(x). The value of the uts at x and p(x) is the same for all the playersother than p, thus any following answer to an evaluation query is the same in P 0 and P.Furthermore, sine the shape of the peaks is predetermined and the same for all the players,from the ut of P 0 at p(x) we an determine the original ut of P at x. Consequently P 0 ansimulate all the deisions of P. When assigning piees, eah original ut x of P is replaedby the orresponding ut p(x) of P 0. Clearly, both protools make the same number of uts,and Lemma 6 yields that if P is fair, then also P 0 is fair.Hene, from now on we may onentrate on some �xed primitive protool P�, and onthe situation where all uts are from the set X. The strategy of the adversary is based on apermutation � of the integers 1; : : : ; n; this permutation � is kept seret and not known tothe protool P�.Now assume that at some point in time protool P� asks player p to perform a ut at hisi=n-point. Then the adversary �xes the measures as follows:� If �(p) < i, then the adversary assigns the i=n-point of player p to the smallest point inthe set Xi that has not been used before.� If �(p) > i, then the adversary assigns the i=n-point of player p to the largest point inthe set Xi that has not been used before.� If �(p) = i, then the adversary assigns the i=n-point of player p to the ith smallest pointin the set Xi.Consequently, any possible assignment of i=n-points to points in Xi has the following form:The player q with �(q) = i sits at the ith smallest point. The i� 1 players with �(p) � i� 1are at the �rst (smallest) i� 1 points, and the n� i players with �(p) � i+ 1 are at the last(largest) n � i points. The preise ordering within the �rst i � 1 and within the last n � iplayers depends on the behavior of the protool P�. When protool P� terminates, then theadversary �xes the ordering of the remaining i=n-points arbitrarily (but in agreement withthe above rules). 10



Lemma 8 If �(p) � i � �(q) and p 6= q, then in the ordering �xed by the adversary thei=n-point of player p stritly preedes the i=n-point of player q.Proof. Immediately follows from the adversary strategy above.If the protool P� asks a player p an evaluation query on an existing ut at i=n-pointof player p0, the urrent assignment of i=n-points to points in Xi and the permutation �determine if the i=n-point of player p is smaller or larger than that of p0 (for all the possibleresulting assignment obeying the rules above). This is all that is neessary to determine thevalue of the ut, and thus the adversary an generate an honest answer to the query.At the end, the primitive protool P� must assign intervals to players: P� selets n � 1of the performed uts, say the uts at positions 0 � y1 � y2 � � � � � yn�1 � 1; moreover, wede�ne y0 = 0 and yn = 1. Then for i = 1; : : : ; n, the interval [yi�1; yi℄ goes to player �(i),where � is a permutation of 1; : : : ; n.Lemma 9 If the primitive protool P� is fair, then(a) yi 2 Xi holds for 1 � i � n� 1.(b) The interval [yi�1; yi℄ ontains the (i� 1)=n-point and the i=n-point of player �(i), forevery 1 � i � n.Proof. (a) If y1 is at an 0=n-point of some player, then y1 = 0 and piee [y0; y1℄ has measure0 for player �(1). If yn�1 2 Xn, then piee [yn�1; yn℄ has measure at most 1=(n+1) for player�(n). If yi�1 2 Xj and yi 2 Xj for some 2 � i � n � 1 and 1 � j � n� 1, then player �(i)reeives the piee [yi�1; yi℄ of measure at most 1=(n+1). This leaves the laimed situation asthe only possibility.(b) Player �(i) reeives the ake interval [yi�1; yi℄. By the statement in (a), this intervalan not over player �(i)'s measure-peaks around j=n-points with j < i � 1 or with j > i.The two peaks around the (i � 1)=n-point of player �(i) yield only a measure of 1=(n + 1);thus the interval annot avoid the i=n-point. A symmetri argument shows that the intervalannot avoid the (i� 1)=n-point of player �(i).Lemma 10 For any permutation � 6= id of the numbers 1 : : : n, there exists some 1 � i � nwith �(i + 1) � i � �(i).Proof. Take the minimum i with �(i+ 1) � i.Finally, we laim that � = ��1. Suppose otherwise. Then � Æ � 6= id and by Lemma 10there exists an i suh that �(�(i + 1)) � i � �(�(i)):Let p := �(i + 1) and q := �(i), let zp denote the i=n-point of player p, and let zq denotethe i=n-point of player q. Lemma 8 yields zp < zq. Aording to Lemma 9(b), point zpmust be ontained in [yi; yi+1℄ and point zq must be ontained in [yi�1; yi℄. But this implieszp � yi � zq and blatantly ontradits zp < zq.11



This ontradition shows that the assignment permutation � of protool P� must be equalto the inverse permutation of �. Hene, for eah permutation � the primitive protool mustreah a di�erent leaf in the underlying deision tree. After an evaluation query Eval(p;x),where x is a result of Cut(p0; i=n), for p 6= p0 and 1 � i < n, the protool is returned oneof only two possible answers, namely i=(n + 1) or (i + 1)=(n + 1), indiating if Cut(p; i=n)is before or after x in Xi (if p = p0 or i 2 f0; ng, the answer is unique and trivial). Afterevery query Cut(p; i=n), the primitive protool is returned one point of Xi: namely the �rstunused point if �(p) < i, the last unused point if �(p) > i, or the ith point if �(p) = i. Sinethe values in Xi are known in advane, the whole protool an be represented by a tree witha binary node for eah possible evaluation query and a ternary node for eah possible ut.The depth of a leaf in the tree is the number of uts and evaluation queries performed for aninstane orresponding to a given permutation. Sine there are n! permutations, the maximaldepth of a leaf orresponding to some permutation must be at least log3(n!) = 
(n log n).This ompletes the proof of Theorem 5.5 DisussionOne ontribution of this paper is a disussion of various models and assumptions for akeutting (that appeared in the literature in some onise and impliit form) and a de�nitionof a restrited model that overs the best protools known. This disussion as well as bothour results show that evaluation queries play an important role, perhaps underestimated inprevious literature.The positive result seems to be the strongest possible result one an prove for approx-imately fair protools as far as the number of uts is onerned. However, the number ofevaluation queries is large, whih suggests the following problem.Problem 1 Design a deterministi (1� ")=n-fair ake division protool that uses O(n) utsand as few evaluation queries as possible. In partiular, is it possible to use O(n log n) eval-uation queries?The lower bound of 
(n log n) on the number of uts and evaluation queries needed forsimple fair division with n players is proved in a restrited model. The model learly has itsweak points (see, again, the disussion in Setion 2), and it would be interesting to providesimilar bounds in less restrited models. In partiular, we suggest the two open problems,related to the two restritions in our model.Problem 2 How many uts are needed if no evaluation queries are allowed (but any playeran be assigned several intervals)?Our lower bound argument seems to break down even for `slight' relaxations of the assumptionabout a single interval: On the instanes from our lower bound, one an easily in O(n) utsassign to eah player two of the intervals of size " that support his measure and this is learlysuÆient. And we do not even know how to make the lower bound work for the ase wherethe ake is a irle, that is, for the ake that results from identifying the points 0 and 1 inthe unit interval or equivalently when a single player an reeive a share of two intervals, oneontaining 0 and one ontaining 1. (Anyway, the irle is onsidered a non-standard ake andis not treated anywhere in the lassial ake utting literature [1, 8℄.) Thus the restrition to12



a single subinterval share for eah player seems very signi�ant in our lower bound tehnique.On the other hand, all the protools known to us obey this restrition.Problem 3 How many uts are needed if any player is required to reeive a single subinterval(but evaluation queries are allowed and free)?With evaluation queries, our lower bound breaks, sine the deision tree is no longer ternary.After performing a ut, we may learn that �(p) < i or �(p) > i, in whih ase we gain noadditional information. However, one we �nd i suh that �(p) = i, the protool �nds out allvalues of p0 satisfying �(p0) < i and we an reurse on the two subinstanes. We an use thisto give a protool that uses only O(n log log n) uts (and free evaluation queries) and workson the instanes from our lower bound.It would be very desirable to prove a lower bound for a model inluding free evaluationqueries, or perhaps �nd some trade-o� between uts and evaluation queries. The perfetlyfair protools typially use only limited evaluations like \Is your measure of ake piee Z less,greater, or equal to the threshold �?" or \Is your measure of ake piee Z1 less, greater, orequal to your measure of ake piee Z2?". Perhaps handling these at �rst would be moreaessible. We hope that this problem ould be attaked by a similar lower bound tehniqueusing the deision trees in onnetion with a ombinatorially riher set of instanes.Another interesting question onerns the randomized protools. The randomized protoolof Even & Paz [3℄ uses an expeted number of O(n) uts and �(n log n) evaluation queries.Can the number of evaluation queries be dereased? Or an our lower bound be extended torandomized protools?Finally, let us remark that our model seems to be inomparable with that of Magdon-Ismail, Bush & Krishnamoorthy [5℄. The set of instanes for whih they prove a lowerbound of 
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