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1 Abstract

Imagine that Alice colors every natural number one of two colors, either red or blue. For

example, Alice can color every even number red and every odd number blue. Using that

coloring, Bob could find an infinite subset of the natural numbers that is all one color (either

an infinite set of all even numbers or all odd numbers would work in the above example).

This is called an infinite homogenous set.

Now imagine that instead of coloring each natural number either red or blue, Alice can

color them with an infinite number of colors (each natural number is colored with another

natural number). For example, Alice could color x as
⌊
x
2

⌋
. In this case, if Bob considered

the set of even natural numbers, each would have a distinct coloring. Any set like this one,

where every natural number is colored differently, is called a rainbow set.

Consider if instead of coloring each natural number, Alice colored unordered pairs of

distinct natural numbers. For example, given (x, y) such that x < y, Alice could color the

pair as 0 if x + y is even, and 1 if x + y is odd. In this example, if Bob took only the set of

even natural numbers, the sum of any two even numbers is even as well. This means that
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every pair of even numbers would be colored as 0. This type of set can be considered as

infinite homogenous, and is analogous to how we define a homogenous set for a coloring of

natural numbers.

Similarly, given a set of natural numbers such that any two pairs are colored differently,

we can consider that set to be rainbow. An example of this given (x, y) where x < y is to

color the pair as the product of the xth and yth prime numbers. In this example, the set of

all natural numbers is rainbow, since no two pairs have the same coloring.

Whether coloring natural numbers or pairs of natural numbers, if we only use a finite

number of colors, we are always guaranteed an infinite homogenous set. The theorem that

guarantees this is called Ramsey’s Theorem.

On the other hand, rainbow sets are not guaranteed to exist. However, the Canonical

Ramsey Theorem guarantees one of four possible options, including an infinite rainbow set

and an infinite homogenous set. There are three proofs of this theorem, two of which use use

a mathematical object known as a hypergraph. The third one, Mileti’s proof, avoids using

these objects, and instead only uses ordinary graphs.

The Ramsey Theorem and the Canonical Ramsey Theorem were both initially created

for colorings of countably infinite sets. However, they can be adapted for finite sets. For

the Canonical Ramsey Theorem to guarantee a set of size k, the finitization of the two

hypergraph-based proofs have bounds of 44O(k3)
and 161616

O(k)

respectively. We present a

clear finite version of Mileti’s proof for Canonical Ramsey with a bound of k2O(k4)
.

2 Definitions

Notation 2.1

1. If n ∈ N then [n] is {1, . . . , n}
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2. If A is a set and k ∈ N then
(
A
k

)
is the set of k-elements subsets of A.

3. (Combining the above two notations) If n ∈ N then
(
[n]
k

)
is the set of all k-subsets of

{1, . . . , k}.

Notation 2.2 When we have v1, v2 it is assumed v1 < v2. Same for u1, u2.

Notation 2.3 When we have vertex v and color c, degc(v) is the number of edges of color

c that include v as one of their vertices.

Def 2.4 Let COL: N→ ω. Let H ⊆ N.

1) H is homogenous (henceforth homog) if

(∃c ∈ ω)(∀v ∈ H)[COL(v) = c].

2) H is rainbow if

(∀v1, v2 ∈ H)[COL(v1) = COL(v2)↔ v1 = v2].

Def 2.5 Let COL:
(
N
2

)
→ ω. Let H ⊆ N.

1) H is homog if

(∃c ∈ ω)(∀v1, v2 ∈ H)[COL(v1, v2) = c].

2) H is min-homog if

(∀v1, v2, u1, u2 ∈ H)[COL(v1, v2) = COL(u1, u2)↔ v1 = u1].
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3) H is max-homog if

(∀v1, v2, u1, u2 ∈ H)[COL(v1, v2) = COL(u1, u2)↔ v2 = u2].

4) H is rainbow if

(∀v1, v2, u1, u2 ∈ H)[COL(v1, v2) = COL(u1, u2)↔ (v1 = u1) ∧ (v2 = u2)].

(So every edge is a different color.)

3 1-ary Finite Can Ramsey

Theorem 3.1 Let k ∈ N. Let f(k) = (k − 1)2 + 1. For any coloring COL : [f(k)]→ ω one

of the following occurs:

1. There exists a homog set of size ≥ k.

2. There exists a rainbow set of size ≥ k.

Proof: For c ∈ ω let

Ac = {v ∈ A : COL(v) = c}.

There are two cases:

Case 1 (∃c ∈ ω)[|Ac| ≥ k]. Then Ac is a homog set of size ≥ k.

Case 2 (∀c ∈ ω)[|Ac| ≤ k − 1]. Assume that L colors were used on [f(k)]. By renumbering

we take those colors to be 1, . . . , L. Then

[f(k)] = A1 ∪ · · · ∪ AL.
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Hence

f(k) = |A1|+ · · ·+ |AL| ≤ L(k − 1).

Hence

L ≥
⌈

f(k)

(k − 1

⌉
=

⌈
(k − 1)2 + 1

k − 1

⌉
= k

Therefore at least k colors are used. Let H be a set that uses one of each color. Then

|H| ≥ k and H is rainbow.

The following corollary will be useful.

Corollary 3.2 Let n ∈ N. For any coloring COL: [n]→ ω one of the following occurs.

1. There exists a homog set of size ≥
√
n.

2. There exists a rainbow set of size ≥
√
n.

Proof: Let k be the largest number such that n ≥ (k − 1)2 + 1. Restrict COL to

[(k − 1)2 + 1. By Theorem 3.1 there exists either a homog or rainbow set of size k. Hence

we need a lower bound on k.

We show that k ≥
√
n:

(
√
n− 1)2 = n− 2

√
n + 1 < n

4 2-ary Finite Can Ramsey

Lemma 4.1 Let k ∈ N , let f(k) = 2k3. For COL:
(
[f(k]
2

)
→ ω such that ∀v ∈ [f(k)],

degc(v) ≤ 2, there exists a rainbow set of size ≥ k.
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Proof: Let V = [f(k)], let R ⊆ V be the maximal rainbow set, let U = V − R, let

C = {COL(r1, r2) : r1, r2 ∈ R}. Assume |R| ≤ k − 1. This means that |C| ≤
(
k−1
2

)
.

For each u ∈ U , map it to (r, c) such that r ∈ R, c ∈ C, and COL(r, u) = c. There are

|R| ∗ |C| ≤ (k − 1)
(
k−1
2

)
distinct combinations for (r, c).

It can be shown that

2k3 > (k − 1) + 2(k − 1)

(
k − 1

2

)
.

This means that

|U | > 2(k − 1)

(
k − 1

2

)
≥ 2|R||C|.

Since we know that there are more than double the vertices in U than there are combi-

nations of (r, c), we know that there is at least one (r, c) such that three vertices in U map

to it.

However, this is impossible, as degc(v) ≤ 2, so this is a contradiction. Thus, our assump-

tion that |R| ≤ k − 1 cannot be true, and we know that |R| > k − 1, or |R| ≥ k. As such,

we are guaranteed a rainbow set of at least size k.

Lemma 4.2 Let a ≥ 1 and b ≥ 1 such that n = ab. For all COL : [n]→ ω, at least one of

the following occurs.

1. There exists a rainbow set of size ≥ a.

2. There exists a homog set of size ≥ b.

Proof: Let V = [n]. Let C = {COL(v) : v ∈ V }.

There are two cases:
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Case 1 |C| ≥ a. Then there is at least one vertex with each color c ∈ C, so there are ≥ a

vertices all of different colors.

Case 2 |C| ≤ a. Then we have at most a colors, so by 1-dimensional Ramsey Theory, there

is a homog set of size ≥ n
|C| ≥

n
a

= b.

Notation 4.3 Let k ∈ N . We define the following sequence.

a0 = (4k4)2
4k4−2

ai+1 =
⌈√

ai−1
i+1

⌉

Lemma 4.4 Let k ∈ N . For all ai such that 0 ≤ i ≤ 4k4 − 2, ai ≥ 1.

Proof: Define sequence bi such that

b0 = (4k4)2
4k4−2

bi+1 =
√
bi

4k4

It can be seen that b0 = a0 and bi = (4k4)2
4k4−i−2. Thus, b4k4−1 = 1.

We want to show that

∀(0 ≤ i ≤ 4k4 − 1)[ai ≥ 1]

As both ai and bi are decreasing, it is sufficient to show that ai ≥ bi > b4k4−1 = 1.

Assume ai ≥ bi and bi+1 > ai+1. It can be seen that

ai+1 ≥
√
ai − 1

i + 1
≥
√
ai − 1

4k4 − 1
>

√
ai − 1

4k4
.

This means that ai < (4k4ai+1)
2 + 1, so ai ≤ (4k4ai+1)

2 since ai, ai+1 ∈ N .

At the same time, we can see that

7



bi = (4k4bi+1)
2 > (4k4ai+1)

2 ≥ ai.

This means that bi > ai, which contradicts ai ≥ bi. As such,

ai ≥ bi → ai+1 ≥ bi+1.

Since a0 = b0, we then know that ∀(0 ≤ i ≤ 4k4 − 2)[ai ≥ bi]. Because bi is a decreasing

sequence and b4k4−1 = 1, this is sufficient to conclude that

∀(0 ≤ i ≤ 4k4 − 2)[ai ≥ 1].

Theorem 4.5 Let k ∈ N. Let f(k) = (4k4)2
4k4−2. Note that f(k) = k2O(k4)

. For all

COL:
(
[f(k)]

2

)
→ ω one of the following occurs.

1. There exists a homog set of size ≥ k.

2. There exists a min-homog set of size ≥ k.

3. There exists a max-homog set of size ≥ k.

4. There exists a rainbow set of size ≥ k.

Proof:

We construct a sequence of vertices x1, . . . , x4k4−1, a sequence of sets V0, . . . , V4k4−1, and

a coloring COL∗ of {x1, . . . , x4k4−1}.

CONSTRUCTION

Stage 0

V0 = [f(k)]. Note that |V0| = a0.

8



x1 is the least element of V0.

Stage i

Assume that Vi−1 is defined and |Vi−1| ≥ ai−1, and let xi be the least element of Vi−1. By

Lemma 4.4, we know that |Vi−1| ≥ ai−1 ≥ 1, so there is always some least element xi ∈ Vi−1.

Y = Vi−1 − {xi}. (We will remove many elements from Y and what is left will be Vi.)

We will define COL∗(xi) and define Vi.

COL′ : Y → ω via COL′(y) = COL(xi, y).

Apply Corollary 3.2 to COL′. One of the following occurs.

Case 1 If we get a homog set of color c, then COL∗(xi) = (H, c). We call the homog set Yc.

Note that

|Yc| ≥
√
|Y | =

√
|Vi−1| − 1 ≥

√
ai−1 − 1 ≥

⌈√
ai−1 − 1

i

⌉
= ai.

Let Vi = Yc.

Case 2 If we get a rainbow set then we call that set Yω. Note that

|Yω| ≥
√
|Y | =

√
|Vi−1| − 1 ≥

√
ai−1 − 1.

For now let Vi = Yω, though we will do a lot more thining out of Vi to get to our final Vi.

We define a coloring COL′′ : Vi → [i] as follows:

1. Input y ∈ Vi.

2. We now iterate through xj’s from x1 to xi−1.

(a) If COL∗(xj) = (H, c) then goto the next j.

(b) Let COL∗(xj) = (RB, kj). If COL(xj, y) = COL(xi, y) then COL′′(y) = (RB, kj).

(Technically the color is not in [i] but the number of colors is still i so we ignore
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this point.)

It can be shown that if there exists some 1 ≤ a ≤ i − 1 such that a 6= j and

COL∗(xa) = (RB, ka), then either ka = kj or COL(xa, y) 6= COL(xj, y) and so

COL(xa, y) 6= COL(xi, y). This means that iterating further through the xj’s will

not change COL′′(y) = (RB, kj), so we can stop iterating.

3. If you got here then @1 ≤ j ≤ i− 1 such that COL(xj, y) = COL(xi, y).

This means that (∀1 ≤ j ≤ i− 1)[COL(xj, y) 6= COL(xi, y)].

In this case COL′′(y) = (RB, k) where k is the least number that is not any of the kj’s.

Note that there are only i colors since, in the worst case, for 1 ≤ j ≤ i− 1 each xi has a

different rainbow color, and you may also have to use the case where none of them agree.

Hence we apply the 1-dimensional homog Ramsey Theorey (not 1-dimensional Can Ram-

sey) on Vi using the COL′′ coloring. Since |Vi| = iai, and we use i colors, there is a homog

set of size ≥
⌈√

ai−1−1
i

⌉
= ai. Let this homog set be Vi. Let COL∗(xi) be the color of the

homog set using COL′′. Note that it will be of the form (RB, j).

END OF CONSTRUCTION

We now have a sequence

x1, x2, . . . , x4k4−1.

There are cases depending on COL∗.

Case 1 There exists 2k4 vertices with color of the form (H,−). By Corollary 3.2 one of the

following must occur.

Case 1.1 There exists c such that ≥
√

2k2 of these vertices are colored (H, c). Those vertices

form a homog set of size ≥ k where every pair has color c.
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Case 1.2 There exists ≥
√

2k2 vertices with all different c’s. Those vertices form a min-homog

set of size ≥ k. We leave the proof to the reader.

Case 2 There exists 2k4 vertices with color of the form (RB,−). By Lemma 4.2 one of the

following must occur.

Case 2.1 There exists c such that ≥ k of these vertices are colored (RB, c). Those vertices

form a max-homog set of size ≥ k. We leave the proof to the reader.

Case 2.2 There exists ≥ 2k3 vertices with all different c’s. We show that those vertices form

a psuedo-rainbow set of size ≥ k. Let v1 < v2 and u1 < u2 be four of the vertices. We look

at all possibilities of equalities and inequalities among the v1, v2, u1, u2.

If v1 < u1 or u1 < v1 and v2 = u2 then COL(v1, v2) 6= COL(u1, u2) since COL∗(v1) and

COL∗(u1) are different rainbow colors. We shorten this to say

((v1 6= u1) ∧ (v2 = u2)) =⇒ COL(v1, v2) 6= COL(u1, u2).

In addition, because each vertex is colored (RB,−), given v1 = u1 and v2 < u2 or

u2 < v2, then COL(v1, v2) 6= COL(u1, u2) because only vertices with edges with v1 that

form a rainbow set are selected after it. We shorten this to say

((v1 = u1) ∧ (v2 6= u2)) =⇒ COL(v1, v2) 6= COL(u1, u2).

These two statements together mean that there can be at most two edges from a given

vertex of any color, so for any vertex v, degc(v) ≤ 2. This means that we can apply

Lemma 4.1 to construct a rainbow set of size ≥ k.
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5 Future Research

This paper creates a finite version of Mileti’s proof of the 2-ary Canonical Ramsey Theorem,

which states that any infinite graph has either an infinite rainbow, homog, min-homog or

max-homog set of vertices. This can be generalized as the a-ary Canonical Ramsey Theorem,

which states that for COL :
(
N
a

)
→ ω, there exists an infinite I-homog set for I ⊆ [a]. Further

research could include the creation of a finite proof in the style of the 2-ary Mileti proof for

the a-ary Canonical Ramsey Theorem.
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