INTERSECTION THEOREMS
WITH GEOMETRIC CONSEQUENCES

P. FRANKL
C. N. R. S., 54 Bd. Raspail
Paris 75 006, France

and

R. M. WILSON
California Inst. Technology
Pasadena, Calif. 91125, U.S.A.

Received 26 August 1980

In this paper we prove that if \(\mathcal{F} \) is a family of \(k \)-subsets of an \(n \)-set, \(\mu_0, \mu_1, \ldots, \mu_s \) are distinct residues mod \(p \) (\(p \) is a prime) such that \(k \equiv \mu_0 \pmod{p} \) and for \(F \neq F' \in \mathcal{F} \) we have \(|F \cap F'| \equiv \mu_i \pmod{p} \) for some \(i, \ 1 \leq i \leq s \), then \(|\mathcal{F}| \equiv \binom{n}{s} \).

As a consequence we show that if \(R^n \) is covered by \(m \) sets with \(m \leq (1+o(1))(1.2)^n \) then there is one set within which all the distances are realised.

It is left open whether the same conclusion holds for composite \(p \).

1. Introduction

Let \(\mathcal{F} \) be a family of \(k \)-element subsets of \(\{1, 2, \ldots, n\} \), and suppose that \(L=\{l_1, l_2, \ldots, l_s\} \) is a subset of \(\{0, 1, \ldots, k-1\} \).

Let us further suppose that for \(F, F' \in \mathcal{F} \) we have

\[
|F \cap F'| \in L.
\]

Ray-Chaudhuri and Wilson [18] proved that (1) implies

\[
|\mathcal{F}| \equiv \binom{n}{s}.
\]

Deza, Erdős and Frankl [2] proved that for \(n \geq n_0(k) \), (2) can be improved to

\[
|\mathcal{F}| \equiv \prod_{i=1}^{s} \frac{n-l_i}{k-l_i}.
\]

In this paper we prove

Theorem 1. Suppose \(\mu_0, \mu_1, \ldots, \mu_s \) are distinct residues modulo a prime \(p \), such that

\[
|F| = k \equiv \mu_0 \pmod{p},
\]

\[\text{AMS subject classification (1980): 05 C 65; 05 C 35, 05 C 15}\]
and for any two distinct \(F, F' \in \mathcal{F} \)

\[
|F \cap F'| \equiv \mu_i \pmod{p} \quad \text{for some } i, \quad 1 \leq i \leq s.
\]

Then

\[
|\mathcal{F}| \leq \binom{n}{s}.
\]

Clearly Theorem 1 generalizes (2). It would be interesting to know whether it holds for composite \(p \) as well. In this direction, we prove only

Theorem 2. Let \(q \) be a prime power. Suppose that for \(F, F' \in \mathcal{F} \) we have

\[
|F \cap F'| \equiv k \pmod{q}.
\]

Then

\[
|\mathcal{F}| \leq \binom{n}{q-1}.
\]

Let \(\mathbb{R}^n \) denote \(n \)-dimensional Euclidean space. Let us construct a graph on \(\mathbb{R} \) by connecting two points if and only if their distance is 1. Let \(c(\mathbb{R}^n) \) denote the chromatic number of this graph. The exact value of \(c(\mathbb{R}^n) \) seems to be hard to determine. It is known that \(4 \leq c(\mathbb{R}^2) \leq 7 \). Erdős conjectured that \(c(\mathbb{R}^n) \) is exponential in \(n \). We prove this conjecture in

Theorem 3.

\[
c(\mathbb{R}^n) \geq (1 + o(1))(1.2)^n.
\]

Let \(m(n) \) be the minimum integer \(m \) such that \(\mathbb{R}^n \) can be partitioned into \(m \) sets \(X_1, \ldots, X_m \) such that for \(1 \leq i \leq m \), there is a real number \(r_i \) with the property that \(d(x, y) = r_i \) for all \(x, y \in X_i \) (\(d(x, y) \) denotes the Euclidean distance, i.e., the length of \(x-y \)).

This problem was first considered by Hadwiger [13, 14] in 1944 and 1945. Raiskii [17] proved \(m(n) \geq n + 2 \). This bound was improved by Larman, Rogers [16], then by Larman [15], and again later by Frankl [8]. However none of the lower bounds is exponential. Larman, Rogers [16] proved that

\[
m(n) \geq (3 + o(1))^n,
\]

and they conjectured that \(m(n) \) is exponential in \(n \). Here we prove this conjecture.

Theorem 4.

\[
m(n) \geq (1 + o(1))(1.2)^n.
\]

The statement of Theorem 4 will follow from the proof of Theorem 3 using Theorem 2 of Larman, Rogers [16] which states the following:

If \(s \) is a set of \(M \) points in \(\mathbb{R}^n \) with critical distance 1 and critical number \(D \) (i.e., every subset of \(s \) of cardinality exceeding \(D \) contains 2 points at distance 1), then

\[
m(n) \geq M/D.
\]

We prove as well a modification (Conjecture 2 of Larman, Rogers [16]):
Theorem 5. Let T be a set of m vectors in \mathbb{R}^n

$$y^{(i)} = (y_1^{(i)}, y_2^{(i)}, \ldots, y_n^{(i)}); \quad i = 1, \ldots, m,$$

with

$$y_j^{(i)} = \pm 1, \quad i = 1, \ldots, m;$$

$y_j^{(i)} = \pm 1$ for $\frac{n}{2}$ values of $1 \leq j \leq n$, such that none of the scalar products $\langle y^{(i)}, y^{(j)} \rangle$ is zero. Then for $n = 4p^x$ (p prime, $x \geq 1$) we have

$$m \equiv 2 \left(\frac{n-1}{n-1} \right) \equiv (1 + o(1))2^n/(1.13)^n. \quad (13)$$

Let B denote the boundary of the unit sphere in \mathbb{R}^n centered at the origin. Let E be a measurable subset of B. H. S. Witsenhausen asked for the value of the supremum of the ratio of the measures of E and B, assuming that E does not contain two points A_1, A_2 which subtend an angle of 90° with the center of the sphere. Let $s(n)$ denote this supremum. Choosing $E_0 = \{ y \in B : y_i > 0, \ i = 1, \ldots, n \} \cup \cup \{ y \in B : y_i < 0, \ i = 1, \ldots, n \}$ we see that

$$s(n) \equiv 2^{-n+1}. \quad (14)$$

We prove

Theorem 6.

$$s(n) \leq (1 + o(1))(1.13)^{-n}. \quad (15)$$

For $n > k > l \geq 0$, let $m(n, k, l)$ denote the maximum number of k-subsets of an n-set such that no two of them intersect in l-elements. Erdős [5] conjectured that for $n \geq n_0(k), k \geq 4$, we have

$$m(n, k, l) \leq \max \left\{ \binom{n-l-1}{k-l-1}, \binom{n}{l}/\binom{k}{l} \right\}. \quad (16)$$

Here $\binom{n-l-1}{k-l-1}$ corresponds to all the k-subsets containing a fixed $(l+1)$-set while $\binom{n}{l}/\binom{k}{l}$ would correspond to a (n, k, l)-Steiner system. In the first case all the intersections have cardinality greater than l, in the second smaller than l. Frankl [8] proved that for $k \geq 3l+2$

$$m(n, k, l) \leq (1 + o(1))\binom{n-l-1}{k-l-1}. \quad (17)$$

Here we prove

Theorem 7. If $k-l$ is a power of a prime and

(a) $k \geq 2l+1$, then

$$m(n, k, l) = (1 + o(1))\binom{n-l-1}{k-l-1}; \quad (18)$$
(b) $k \leq 2l + 1$, setting $d = 2l - k + 1$ we have

$$m(n, k, l) \geq \binom{n}{d} \binom{n-d}{k-d} = O\left(\binom{n}{l}\right).$$

Let $r(k)$ denote the minimum n such that every graph on n vertices contains either a complete or an empty subgraph on k vertices. Erdős [6] proved

$$r(k) \geq 2^{k/2}.$$

His proof is probabilistic and in [7] he asked for a constructive bound yielding $r(k) \geq k^t$ for every t for $k \geq k_0(t)$. Such a construction was given in [9].

Here we use Theorem 2 to give a more accurate construction, though still far from the bound (20) (see Theorem 8).

Let $f(n, k, 2)$ denote the maximum cardinality of a collection of $\binom{k}{2}$-subsets of an $\binom{n}{2}$-set such that all the pairwise intersections have for cardinality $\binom{i}{2}$ for $i = 1, 2, \ldots, k-1$.

For $F \subseteq \{1, 2, \ldots, n\}$ set $F(2) = \{\{x, y\}: x \neq y, x, y \in F\}$,

$$\mathcal{G} = \{F(2): F \subseteq \{1, 2, \ldots, n\}, |F| = k\}.$$

Then \mathcal{G} shows that

$$f(n, k, 2) \geq \binom{n}{k}.$$

Frankl [10] conjectured that for $n \geq n_0(k), k \geq 10$ we have equality in (21). Here we prove

Theorem 9. If p is an odd prime then we have

$$f(n, p, 2) \geq \binom{n}{2} \cdot \binom{n}{p} \cdot \binom{p-1}{2}.$$

In [11] it is conjectured that if \mathcal{F} is a collection of 7-element subsets of an n-set such that all the pairwise intersections have cardinality 0, 2, 3, 5 or 6 then $|\mathcal{F}| = O(n^2)$. We prove

Theorem 10. Let \mathcal{F} be a collection of 7-subsets of an n-set, such that for $F, F' \in \mathcal{F}$ we have

$|F \cap F'| \in \{0, 2, 3, 5, 6\}$.

Then

$$|\mathcal{F}| < \binom{n}{2}.$$
In the last paragraph we mention some possible extensions of Theorem 1. In particular we prove:

Theorem 11. Suppose \(0 \leq l_1 < l_2 < \ldots < l_s < n \) are integers and \(\mathcal{F} \) is a collection of subsets of \(\{1, 2, \ldots, n\} \) such that for \(F \neq F' \in \mathcal{F} \) we have

\[
|F \cap F'| \in \{l_1, \ldots, l_s\}.
\]

Then

\[
|\mathcal{F}| \leq \sum_{i=0}^{s} \binom{n}{i}.
\]

Note that we do not assume anything about \(|F|\).

2. The proof of Theorem 1

Let \(A_1, A_2, \ldots, A_{\binom{n}{i}} \) be all the \(j \)-subsets and \(B_1, B_2, \ldots, B_{\binom{n}{j}} \) be all the \(i \)-subsets of \(\{1, 2, \ldots, n\} \) with \(j > i \).

Let us define the \(\binom{n}{i} \) by \(\binom{n}{j} \) matrix \(N(i, j) \) in the following way: the

\((u, v)\)-entry is 1 if \(B_u \subseteq A_v \) and 0 if \(B_u \notin A_v \) for \(1 \equiv u \equiv \binom{n}{i}, \ 1 \equiv v \equiv \binom{n}{j} \).

For \(i = s, j = k \) let the row-vectors be \(v_1, v_2, \ldots, v_{\binom{n}{s}} \). They are all vectors in \(\mathbb{R}^{\binom{n}{k}} \). Let \(V \) denote the vector space generated by the \(v_i \)'s, \(1 \equiv i \equiv \binom{n}{s} \). Obviously we have

\[
\text{dim } V \equiv \binom{n}{s}.
\]

The following identity can be checked easily \((0 \equiv i < s) \)

\[
N(i, s)N(s, k) = \binom{k-i}{s-i} N(i, k).
\]

Consequently, for \(0 \equiv i < s \), the row vectors of \(N(i, k) \) are contained in \(V \). Let us count the product \(N(i, k)^TN(i, k) = M(i, k) \), where \(N^T \) denotes the transpose of \(N \). Of course \(M(i, k) \) is an \(\binom{n}{k} \) by \(\binom{n}{k} \) matrix in which the \((u, v)\),

\[
\text{entry is } \binom{|A_u \cap A_v|}{i} \text{ for } 1 \equiv u, v \equiv \binom{n}{k}. \text{ Moreover the row-vectors of } M(i, k) \text{ are linear combinations of the rows of } N(i, k), \text{ and consequently they are contained in } V.
\]

Let us choose \(0 \equiv a_i \leq p \) for \(0 \equiv i \leq s_0 \) in such a way that for every integer \(x \) we have

\[
\prod_{i=1}^{s_0} (x - \mu_i) \equiv \sum_{i=1}^{s_0} a_i \binom{x}{i} \pmod{p}.
\]
Let us set \(M = \sum_{i=1}^{s} a_i M(i, k) \), where the addition is to be done componentwise, i.e., in position \((u, v)\) of \(M \) we have

\[
M(u, v) = \sum_{i=1}^{s} a_i \left(|A_u \cap A_v| \right).
\]

By the definition of \(M \) the row-vectors of \(M \) are in \(V \), and consequently (23) gives:

\[
\text{rank } M \equiv \text{dim } V \equiv \binom{n}{s}.
\]

Now let \(M(\mathcal{F}) \) be the minor spanned by the elements \(m(u, v) \) for which \(A_u, A_v \in \mathcal{F} \).

The assumptions of the theorem and (25) and (26) yield that for \(A_u, A_v \in \mathcal{F}, u \neq v \), we have

\[
m(u, v) \equiv 0 \pmod{p}
\]

and

\[
m(u, u) \not\equiv 0 \pmod{p}.
\]

Consequently the determinant of \(M(\mathcal{F}) \) is not congruent to 0 modulo \(p \), whence \(\det M(\mathcal{F}) \neq 0 \). Thus using (27) we infer

\[
|\mathcal{F}| = \text{rank } M(\mathcal{F}) \equiv \text{rank } M \equiv \binom{n}{s}.
\]

Now we prove Theorem 2. We need an easy lemma.

Lemma. Let \(q = p^x \), \(p \) is a prime, \(x \geq 1 \). Then for \(a \equiv p \left(\frac{a}{q-1} \right) \) if and only if \(a \equiv -1 \pmod{q} \).

The proof of the lemma is elementary and we leave it to the reader.

Let us choose real numbers \(a_i, 0 \leq i < q \), such that

\[
\sum_{i=0}^{q-1} a_i \binom{x}{i} = \binom{x-k-1}{q-1}.
\]

Then by the lemma all the off-diagonal entries are zero mod \(p \) in the minor corresponding to \(\mathcal{F} \) of the matrix \(M = \sum_{i=0}^{q-1} a_i M(i, k) \), but the diagonal entries are non-zero mod \(p \) consequently the minor is again of full rank, yielding

\[
|\mathcal{F}| \equiv \text{rank } M \equiv \binom{n}{q-1}.
\]

Remark. The critical distance \(\alpha \) of the method yields is expected to be

\[
\left(\begin{array}{c}
\text{any} \\
\text{most}
\end{array} \right)
\]

(a) Since which

(b) For a

Hence

\[
(28)
\]
3. The proof of Theorems 3 and 4

Let us consider the set S of vectors $x=(x_1, \ldots, x_n)$ in \mathbb{R}^n for which $x_i=0$ \((n-2q+1)\)-times and $x_i=1/\sqrt{2q}$ the remaining \((2q-1)\) times. Then

$$|S| = \binom{n}{2q-1}.$$

Let us associate with $v \in S$ the \((2q-1)\)-set $F(v)=\{i : x_i \neq 0\}$. Then obviously $d(x, y)=1$ is equivalent to $|F(x) \cap F(y)|=q-1$. Thus by Theorem 2 among any $\binom{n}{q-1}+1$ vectors in S there are two at distance 1, i.e., every color contains at most $\binom{n}{q-1}$ of them, yielding

$$c(\mathbb{R}^n) = \max_{q \text{ is a prime power}} \frac{\binom{n}{2q-1}}{\binom{n}{q-1}}.$$

Now choosing q to be $(1+o(1))\frac{2-\sqrt{2}}{2}n$ we obtain

$$c(\mathbb{R}^n) \approx (1+o(1))(1.2)^n.$$

Remark. Since for $q=2^{2l+1}$ the expression $1/\sqrt{2q}=2^{-l-1}$ is rational, the same method yields that the chromatic number of the set of vectors with rational coordinates is exponential as well.

The statement of Theorem 4 follows now from the fact that the set S has critical distance 1 and critical number $\binom{n}{q-1}$ (cf. the introduction).

4. The proof of Theorem 7

(a) Since $k \equiv 2l+1$ then $k-l \geq l$. Thus l is the only integer between 0 and $k-1$ which is congruent to $k \pmod{q} = k \pmod{(k-l)}$. We can apply Theorem 2, and obtain

$$m(n, k, l) \equiv \binom{n}{k-l-1} = (1+o(1))\binom{n-l-1}{k-l-1},$$

proving (18).

(b) For a d-subset D of \(\{1, 2, \ldots, n\}\) let $\mathcal{G}(D)$ be the collection of those members of the family which contain D. Of course

$$\sum_D |\mathcal{G}(D)| = m\left(\begin{array}{c} k \\ d \end{array}\right).$$

Hence we can choose D_0 such that

$$|\mathcal{G}(D_0)| \geq m\left(\begin{array}{c} k \\ d \end{array}\right)/\left(\begin{array}{c} n \\ d \end{array}\right).$$
Set $\mathcal{F} = \{G - D_0 : G \in \mathcal{G}(D_0)\}$. Then \mathcal{F} is a family of $(k - d)$-subsets of the $(n-d)$-set $\{1, 2, \ldots, n\} - D$, no two of which intersect in $l - d$ elements. Since $k - l > l - d$ we can apply Theorem 2, which gives

$$|\mathcal{F}| \equiv \binom{n-d}{k-l-1} = \binom{n-d}{l-d}.$$

From (28) and (29) we obtain

$$m(n, k, l) \equiv \binom{n}{d} / \binom{k}{d} \binom{n-d}{l-d} = O\left(\binom{n}{l}\right).$$

5. The proof of Theorem 5 and Theorem 6

Let us define $F_i = \{j : y_j^{(0)} = +1\}$. Then $|F_i| = 2p^x$, and the condition implies $|F_i \cap F_{i'}| \neq p^x$.

Now apply Theorem 7 with $k = 2p^x$, $l = p^x$, $d = 1$, and deduce

$$m \equiv 2\left(\frac{4p^x-1}{p^x-1}\right) \equiv (1 + o(1))2^x/(1.13)^n.$$

To prove Theorem 6 we choose q to be the smallest prime power which is at least $n/4$. Let α, β be two real numbers and let $S(\alpha, \beta)$ be the set of vectors $y = (y_1, y_2, \ldots, y_n)$ for which

$$y_i = \alpha \quad (2q - 1) \text{ times, and } y_i = \beta \quad (n - 2q + 1) \text{ times.}$$

For $y \in S(\alpha, \beta)$ set $F(y) = \{i : y_i = \alpha\}$. Now the length of y is $\sqrt{(2q-1)\alpha^2 + (n-2q+1)\beta^2}$, i.e., y is on B iff

$$\text{(30)} \quad (2q-1)\alpha^2 + (n-2q+1)\beta^2 = 1.$$

If $|F(y) \cap F(y')| = q-1$ then

$$\langle y, y' \rangle = (q-1)\alpha^2 + (n-3q+1)\beta^2 + 2q\alpha\beta.$$

To make this scalar product vanish we need

$$\text{(31)} \quad (q-1)\alpha^2 + (n-3q+1)\beta^2 + 2q\alpha\beta = 0.$$

Since $q \equiv \frac{n}{4}$ the system (30), (31) is solvable in real α, β. Let S be the image of $S(\alpha, \beta)$ under any orthogonal transformation of B. Then $|S| = |S(\alpha, \beta)| = \binom{n}{2q-1}$, and applying Theorem 2 with $k = 2q - 1$, the special choice above of α, β gives:

$$\text{(32)} \quad \frac{|E \cap S|}{|B \cap S|} = \frac{|E \cap S|}{|S|} \equiv \frac{n}{q-1} \equiv (1 + o(1))(1.13)^{-n}.$$
Now averaging over the orthogonal group yields
\[
\frac{\mu(E)}{\mu(B)} \leq \max_S \frac{|E \cap S|}{|S|} \leq (1 + o(1))(1.13)^{-n},
\]
yielding (15).

6. Constructive Ramsey-bound

Theorem 8. Let us set \(V(\mathcal{G}) = \{F \subseteq \{1, 2, \ldots, n\}: |F| = q^2 - 1\} \), \(q \) is a prime power, and \(E(\mathcal{G}) = \{\langle F, F' \rangle: |F \cap F'| \not\equiv -1 (\text{mod } q)\} \).

Then \(\mathcal{G} \) contains no complete or empty subgraph on more than \(\binom{n}{q-1} \) vertices.

Proof. If \(F_1, \ldots, F_m \) is a complete subgraph then \(|F_i \cap F_j| \equiv -1 (\text{mod } q) \) for every \(1 \leq i < j \leq m \). Thus Theorem 2 gives the assertion.

If \(F_1, \ldots, F_m \) is an empty subgraph then \(|F_i \cap F_j| \in \{q - 1, 2q - 1, \ldots, q^2 - q - 1\} \) for \(1 \leq i < j \leq m \), thus (2) gives the statement.

Setting \(n = p^2 \), \(q = p \), we obtain
\[
r(k) \geq \exp\left((1 + o(1)) \log^2 k / 4 \log \log k\right).
\]

7. The proof of Theorems 9 and 10

Let \(x \) be a point of maximal degree and set
\[
\mathcal{F}_0 = \{F \in \mathcal{F}: x \in F\}.
\]

Then
\[
|\mathcal{F}_0| \geq |\mathcal{F}| \left(\begin{array}{c} p \\ 2 \end{array}\right) / \left(\begin{array}{c} n \\ 2 \end{array}\right),
\]
and for \(F, F' \in \mathcal{F}_0 \) we have
\[
|F \cap F'| \in \left\{\left(\begin{array}{c} 2 \\ 2 \end{array}\right), \left(\begin{array}{c} 3 \\ 2 \end{array}\right), \ldots, \left(\begin{array}{c} p - 1 \\ 2 \end{array}\right)\right\}.
\]

Since \(\left(\begin{array}{c} i \\ 2 \end{array}\right) - \left(\begin{array}{c} p - i + 1 \\ 2 \end{array}\right) = \frac{(2i - 1)p - p^2}{2} \equiv 0 (\text{mod } p) \), and \(p \left(\begin{array}{c} i \\ 2 \end{array}\right) \) for \(i = 2, \ldots, p - 1 \), the intersections lie in \(\frac{p - 1}{2} \) different non-zero congruence classes modulo \(p \). On the other hand \(p \left(\begin{array}{c} p \\ 2 \end{array}\right) = |F| \), and therefore Theorem 1 yields
\[
|\mathcal{F}_0| \leq \left\{\left(\begin{array}{c} n \\ 2 \end{array}\right), \left(\begin{array}{c} p - 1 \\ 2 \end{array}\right)\right\}.
\]

Now (33) and (34) imply (22).

Theorem 10 is an immediate consequence of Theorem 1: Simply set \(k = 7, \mu_0 = 1, \mu_1 = 0, \mu_2 = 2, p = 3 \).
8. On possible extensions

First we prove Theorem 11.

Let F_1, F_2, \ldots, F_m be the sets in our family arranged so that $|F_1| \equiv |F_2| \equiv \ldots \equiv |F_m|$. For $0 \leq i \leq s$, let $A_1, \ldots, A^{(n)}$ be the different i-subsets of $\{1, 2, \ldots, n\}$.

Let $N(i)$ be the m by $\binom{n}{i}$ matrix which has 1 or 0 in the position (u, v) according to whether $A_u \subseteq F_v$ or not, $1 \leq u \leq m$, $1 \leq v \leq \binom{n}{i}$. Of course $r(N(i)) \leq \binom{n}{i}$.

Let us set $M(i) = N(i)N(i)^T$. Then $M(i)$ is m by m with $|F_u \cap F_v|$ in position (u, v), and we still have

$$r(M(i)) \leq \binom{n}{i}.$$

Let $u_1^{(i)}, \ldots, u_m^{(i)}$ be the row-vectors of $M(i)$, and let V be the vector space spanned by the $u_j^{(i)}$ for $1 \leq i \leq s$, $1 \leq j \leq m$. Then we have

$$\dim V = \sum_{i=0}^{s} r(M(i)) \leq \sum_{i=0}^{s} \binom{n}{i}. \tag{35}$$

Let us choose $a_v^{(i)}$ for fixed i, $1 \leq i \leq s$, and $v = 0, 1, \ldots, i$ that

$$\sum_{v=0}^{i} a_v^{(i)} \binom{x}{v} = \prod_{i=1}^{s} (x - l_i). \tag{36}$$

Now we define an m by m matrix M. If $1 \leq u \leq m$ and i is the greatest integer for which $|F_u| > l_i$, then let the uth row of M be

$$\sum_{v=0}^{i} a_v^{(i)} u_v^{(v)}. \tag{37}$$

If $u = m$, and $|F_u| = l_s$, then the last row of M is $v_m^{(i)}$. Since all the row-vectors are in V we have by (35)

$$r(M) \leq \sum_{i=0}^{s} \binom{n}{i}. \tag{38}$$

By (36) and (37) the u'th diagonal entry of M is

$$\prod_{i=1}^{s} (|F_u| - l_i) \neq 0, \text{ since } |F_u| > l_i.$$

Since $|F_u| \equiv |F_v|$ for $u \neq v$, in this case $|F_u \cap F_v| \in \{l_1, l_2, \ldots, l_s\}$, and consequently by (26) and (37) the (u, v)-entry of M is 0. This means that M is lower-triangular with non-zero diagonal consequently of full rank; thus (38) yields

$$|\mathcal{F}| = m = \text{rank } M \leq \prod_{i=0}^{s} \binom{n}{i}. \tag{39}$$

Proof. Choo

Then t to the membe

[7] P. Erdős, Pr theory (F.
The most important extension is to decide whether Theorem 1 or at least Theorem 2 holds for congruences modulo arbitrary positive integers.

Frankl, Rosenberg [12] proved that for \(s = 1 \) Theorem 1 extends to arbitrary integer moduli (which generalizes results by Ryser [19], Deza, Erdős, Singhi [3], Babai, Frankl [1], and Deza, Rosenberg [4]).

The first open case modulo a prime power is for 8: \(\mu_0 = 0, \mu_1 = 1, \mu_2 = 2, \mu_3 = 4 \) and \(\mu_4 = 6 \).

By the proof of Theorem 1 we can prove

Theorem 12. Suppose \(q \) is a power of the prime \(p \). Let \(\mu_0, \mu_1, \ldots, \mu_s \) be distinct residues modulo \(q \). Let \(\mathcal{F} \) be a collection of \(k \)-subsets of \(\{1, 2, \ldots, n\} \), such that for \(F \neq F' \in \mathcal{F} \) we have

\[
|F| \equiv \mu_i \pmod{q},
\]

\[
|F \cap F'| \equiv \mu_i \pmod{q} \quad \text{for some} \quad 1 \leq i \leq s.
\]

If there exists a rational polynomial \(g(x) \) of degree \(d \) such that \(p \mid g(k) \) (\(g(k) \) is an integer) but \(p \nmid g(x) \) for \(x \equiv \mu_i \pmod{q} \), \(i = 1, \ldots, s \), then

\[
|\mathcal{F}| \leq \binom{n}{d}.
\]

Proof. Choose the rational numbers \(a_0, a_1, \ldots, a_d \) in such a way that

\[
\sum_{y=0}^{d} a_y \binom{x}{y} = p(x).
\]

Then the matrix \(M = \sum_{y=0}^{d} a_y M(v, k) \) contains a full-rank minor corresponding to the members of \(\mathcal{F} \), yielding

\[
|\mathcal{F}| \leq \text{rank } M \leq \text{rank } M(d, k) \leq \binom{n}{d}.
\]

References