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Several measures of the complexity of a regular expression are defined. (Star height 
and number of alphabetical symbols are two of them.) Upper and lower estimates 
for the complexities of expressions for certain sets of paths on graphs are derived. 

1. INTRODUCTION 

Some of our colleagues have considered using a regular expression that represents 
sequences of instructions executed by a program as a tool in static analysis of the 
program. The question of how large or complex one might expect such an expression 
to be naturally arose. This paper is intended to shed some light on the issue. 

The  four measures of expression complexity considered are: 

N == size, the number  of alphabetical symbols; 

H = star height, the depth of nesting of stars; 

L = length, the length of the longest nonrepeating path through the expression; 

W = width, the maximum number  of symbols unioned (dual to L). 

TABLE I 

Alphabetical 
Measure symbol E • F E �9 F E* 

N l N(E) + N(F) N(E) + N(F) N(E) 
H 0 max(H(E), H(F)) max(H(E), H(F)) H(E) -b 1 
L 1 max(L(E), L(F)) L(E) + L(F) L(E) 
W 1 W(E) + W(L) max(W(E), W(F)) W(E) 

See Table I for inductive definitions of these measures. The complexity of a regular 
set with respect to any of these measures is taken to be the minimal measure over all 
expressions for that set. The sets examined are: 
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1. the set of all paths between two specified nodes on the complete graph on n 
nodes, where "complete" means there is a directed arc between every node pair 
(self-loops included), and each arc bears a distinct label; 

2. the set of all paths of length ~ k  arcs between two specified nodes on the 
above graph; and 

3. the set of all paths from node ! to node n on the graph that has a distinctly 
labeled, directed arc running from every node to every higher-numbered node, 
hereafter called the half-complete graph. 

All logarithms are to the base 2. We are disappointed that so many of the lower 
bounds are worse than polynomial. For the first set we find: 

(1) 2 (n-a) ~ N, and (2) N ~ 6 �9 4(n-zl; 

(3) H = n; 

(4) W <~ n(2n + l)~l~ 

(5) L ~ [(2n)l~ 

For the second set: 

(6) nlog k �9 4 (1-~) ~ N, and (7) N ~ (2n + 1) [l~ 

For the third set: 

(8) (11 - -  2 )  (2/3)(lOg(t1/3) ' lOg(n-2)}-1) ~ N, and (9) N ~ (2n + 1)rl~ 

(1o) H = O; 

(11) (n - -  2 )  (2 /3) ( l~  ~ W, and (12) W <~ n(2n + 1)rlogtn/2)l; 

(13) L - - n - -  1. 

TABLE II 

Result Section 

(1) 4 
(2) 10 
(3) 4, 10 
(4) 12 
(5) 11 
(6) 7 
(7) 8 
(8) 6 
(9) 13 

(10) - -  (trivial) 
(11) 6 
(12) 12, 13 
(13) 5 
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For convenience in finding individual items, the distribution of results over sections 
of the paper is given in Table II .  This distribution is the result of our grouping the 
results according to the methods used to derive them. 

2. NORMALITY 

Henceforth, if E is a regular expression, ] E ]  will be the set of strings that 
E represents. 

We call an expression E normal with respect to an arc-labeled graph G if there is 
a pair of functions, init and fin, from subexpressions of E to nodes of G, for which: 

1. I f  F w G is a subexpression of E, then init(F) = init(G) = init(F W G) and 
fin(F) = fin(G) = fin(F w G). 

2. I f F  �9 G is a subexpression of E, then init(F �9 G) = init(F), fin(F �9 G) = fin(G), 
and fin(F) = init(G). 

3. I f  F* is a subexpression of E, then init(F) = init(F*) = fin(F) = fin(F*). 
In this case we call this common value the base point of the star. 

4. I f  F is any subexpression of E, [ F ] C the set of all label sequences of paths 
from init(F) to fin(F). 

Note that for each of the sets defined in the preceding section, all expressions 
for the set are normal with respect to its graph, by virtue of the distinctness of the arc 
labels. 

3. INDEX 

An expression E covers a path p on a graph G if E is normal with respect to G, and 
there is a string q in [ E ] of which the label sequence of p is a contiguous substring. 
I f  there is a greatest integer n for which E covers p*, we call it Iv(E), the index ofp  in E, 
and say that E is p-finite; otherwise we define I~(E) = oo and say that E is p-infinite. 
One checks easily that index satisfies the difference equations: 

I ,  (alphabetical symbol) = 0 or 1, 

I~, (F U G) = max(I,(F),  I~(a)), (3.1) 
i~ (F. a) ~< I~(F) + ~(a) + 1, 
I ,  (F*) = sup[I~(F~): k > /0] .  

From these, we find that the difference equations for 2 �9 L dominate those for 1 ~- I~ ,  
if I~ is finite, so: 

I~(E) < 2L(E) if E is p-finite, 

and as a corollary, 
I ,(E) < 2N(E) if E is p-finite. (3.2) 
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4. LOWER BOUNDS ON N AND H FOR THE COMPLETE GRAPH 

Consider the complete graph on n nodes with arcs bearing distinct labels, and nodes 
labeled 1 through n. The  desired bound is an immediate corollary of the following 
theorem. 

THEOREM 4.1. There is a loop p passing through node I for which, given any expres- 
sion E covering p, N(E) >/2 (n-l). 

Proof. We proceed by induction on n; the assertion is trivial for n = 1, t ak ingp  
to be the self-loop. Suppose we have a loop p passing through node 1 on the complete 
graph on n - -  1 nodes satisfying: 

For each E covering p, N(E) >/2 ~-2. 

In the complete graph on n nodes, make Pk from p by cyclically permuting the nodes, 
replacing node 1 with node k. Thus,  for each k, p~ is a copy o fp  passing through node k 
and missing node k - -  1 (the minus being taken modulo n to keep the indices in range). 
Now consider the loop 

g = p['~al~p~a23 ... p,manl , 

where rn = 2 ~' and aij is the arc from node i to node j .  Take any E covering g, and 
note that for each k, I~(E) > / 2  n, by definition ofg.  By Eq. (3.2), either N(E) >~ 2 n-1 
(and we are done), or E is pk-infinite for all k. 

We now deal with the latter case; in what follows, "minimal ,"  when applied to 
subexpressions, means "minimal  with respect to the relation 'subexpression of.' " 
The set of all pk-infinite subexpressions of E is a subset of the finite set of all sub- 
expressions of E and hence has minimal elements; each such minimal element is a star. 
For each k, choose a minimal pk-infinite subexpression F~* and among all these, choose 
a minimal one and call it F*. 

F* has a base point (by normality of E), say nodej .  Choose G* from among the Fe* 
covering P~+I (so that the loop that G* covers misses node j ,  and the loop that F* 
covers passes through node j).  Let  ~ be the expression representing the set whose sole 
element is the null string. Now if, in E, we replaceF* with E, G* still covers P~+I after 
the replacement, since all that has been lost is loops on a point that PJ+I misses anyway. 
Thus, 

N(G*) ~ 2 n-2 after the substitution (by inductive hypothesis), and 

N(F*) >~ 2 ~'-~ before the substitution (again by inductive hypothesis), from which 

N(E) ~ 2 ~-1 before the substitution. Q.E.D. (of result (1)). 

That  H - - n  for the complete graph was first proved by Cohen [1]. One-half  
(H ~ n) of this theorem is easy (and will follow from results in Section 10), while 
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the other half can, alternatively, be proved by the methods used above. The analog 
of Theorem 4.1 is: 

For each integer m, there is a loop p passing through node 1 on the complete graph 
on n nodes for which, given any expression E covering p, either 

N ( E )  ~ m 

or  

H(E)  ~ n and I~(E) = oo. 

The pertinent loop is built from the loop a~l in the case n = 1 by taking 

g m =  ( Pla12p2a~a "'" p~anx) 2~ 

instead of plma12 "" pn~anl . 
With this analog of Theorem 4.1 in hand, we consider any expression Ean for 

the set of all paths from node 1 to node n. (This expression is normal, by the comment 
at the end of Section 2.) For all integers m, Eln must cover gm; since Ex~ is of finite 
length, H(EI,~) ~ n. 

So far, we have proved inequality (1) and sketched a proof of equality (3). 

5. CONTRACTIONS 

For expressions containing stars, normality and index have sufficed as tools for 
isolating the desired features of subexpressions. For the star-free expressions arising 
in the remaining cases to be treated, a different tool is needed, and is introduced here. 

A contraction of a regular expression E is an expression obtained from E by applying 
the following transformations to E until the resulting expression is free of unions and 
stars. 

T1 : Replace F u G with F or with G, 

T2" Replace an F* with an n-fold concatenation of F with itself, n ~ 0. 

One observes immediately: 

LEMMA 5.1. A string w is in { E [ ~ there is a contraction C of  E for  which I C ] = {w}. 

The virtue of this seemingly unnatural redefinition of elementhood for regular 
sets is that the resulting C's can be written as trees and used in counting arguments, 
as will be done in the next section. We make a simple preliminary application here. 

TrmORFM 5.1. I f  E is an expression for  the set of  all paths from node 1 to node n in 
the half-complete graph on n nodes, then L(E) ~ n --  1. 
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Proof. First, observe that any starred subexpression of E can be replaced with e, 
since [ E]  is finite; thus only T1 is involved in contracting E. Since T1 does not 
increase L, L(E) ~ L(C) for any contraction C of E, and if [ C ] ~ the longest path 
from 1 to n, then L(C) ~ n - -  1. Q.E.D. 

Since writing out E as a union of concatenations gives L(E) ~ n - -  1, we have 
proved result (13). 

6. LOWER BOUNDS ON N AND W FOR THE HALF-COMPLETE GRAPH 

We need the following preliminary facts. 

LEMMA 6.1. 

~ N ( E ) -  1. 

Proof. 

The number M of (binary) concatenations in an 

M (alphabetical symbol) ~- 0, 

M (E • F) = M(E) + M(F), 

M (E .F) = M(E) -b M(F) q- 1, 

M (E*) : M(E). 

expression E is 

Comparing these equations with those for N, we find that 1 + M is dominated 
by N. Q.E.D. 

LEMMA 6.2. I f  E is normal with respect to a graph G, so is any contraction of E. 

Proof. There is little to prove. We need only extend the functions init and fin 
to the new subexpressions created when replacing a star by an n-fold concatenation; 
their values are taken to be the base point of the star, and all the conditions 
for normality survive. Q.E.D. 

Let p be any path from node 1 to node n on the half-complete graph for which 
the number of nodes that p passes through (excluding node 1 and node n) is k. I f  E 
is any expression for the set of all paths through the half-complete graph, then by 
Lemma 5. l there is a contraction of E that describes the path p, and this contraction 
can be written as a binary tree whose nodes are concatenations, and whose tips are 
the branch labels ofp.  Since, by the remark at the end of Section 2, E is normal, we can 
associate with each of these concatenations a node of the half-complete graph, namely 
fin (F) where F is the left factor in the concatenation (see Section 2). 

The situation now is that we have the path p of length k + 1 arcs represented by 
a binary tree having k nontip (tree) nodes and k + 1 tips, each of whose nontip 
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(tree) nodes is labeled with one of the n --  2 (graph) node numbers. We next derive 
an upper estimate for the number of these trees by first counting unlabeled trees, and 
then multiplying by the number of labelings. The  number of unlabeled trees is at most 
4 e, since each child of each nontip (tree) node is either a tip or not, and this set of k 
quaternary choices fixes the unlabeled tree. The number of labelings of nontip (tree) 
nodes is, of course, ~< (n - -  2) e, but  we need an estimate that involves the number N 
of alphabetical symbols in the expression E. To get such an estimate, consider the 
longest path through the tree; at its tip lies one of the N symbols of the expression E, 
and once this symbol is chosen, the labeling of that path through the tree is fixed (see 
Section 2 and Lemma 6.2). This tree path passes through at least log(k + 1) nontip 
(tree) nodes so there are at most (n --  2) (1~-1~ ways of labeling the remaining 
nodes of the tree. Putting this all together, we find that the number of possible trees 
is at most 

4 l~ " N "  (u - -  2) {k-10g(k+l)). 

On the other hand, the number of paths p of length k + 1 through the half-complete 
graph is the binomial coefficient (~'~u), since choosing the path's interior nodes fixes 
the path. We will underestimate this number as (n  - -  2 )~ /k  k to get the inequality 

(n  - -  2 ) k / k  k ~ 4 k �9 N "  (n  - -  2)lk-log (k+l)). 

By canceling the common factor of (n - -  2) ~ and rearranging, we find: 

N ~ (n - -  2)log(~+l)/(4k)k ~> (n - -  2)logT~/(4k)~ 

or  

N ~ exp2[(log(n - -  2) - -  k) log k - -  2k]. 

Choosing k = ~ log n, we find, after a little algebra: 

N ~ (n  - -  2)(213)[1~176 (result (8)). 

A lower bound on W is found by observing that L • W ~ N, and since every 
expression for the half-complete graph has L ~ n --  1, then 

W ~ (n - -  2) (2/a)[l~176 (result (l 1)). 

7. A LOWER BOUND ON N FOR SET OF ALL PATHS o r  LENGTH ~<l BETWEEN GIVEN 

NODES IN THE COMPLETE GRAPH ON n NODES 

The method of the preceding section works in this case as well, with minor modifica- 
tions. Since in this case, a path of length l = k + 1 may touch up to k nodes, excluding 
end points, and may touch a node more than once, ("~.e) is replaced with n ~ on the left 
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side of the main inequality. Furthermore, we do not get to choose k, so we are left 
with: 

SO 

This gives result (6). 

n ~ ~ 4 ~ �9 N �9 n (Iz-l~ 

N ~ 41x-~Jn l~ 

8. AN UPPER BOUND ON N FOR THE SET OF ALL PATHS OF LENGTH ~ k  

Consider a finite, directed graph on n nodes with at most one (labeled) branch 
between any pair of nodes. Let  T be the matrix of one-step transitions, i.e., the i, 
j-element of T ~ the label on the branch that goes from node i to node j ,  if there is 
such a branch, and, equals 0 otherwise. 

Let I be the identity matrix, and "lift" the algebra of regular expressions to matrices 
of regular expressions in the obvious way (union acts like addition, concatenation like 
multiplication, and e like unity). 

Let Fk( T) - I  u T u T ~ u "" U T ~. As is well known, Fk( T) is a matrix whose 
i, j-element is a regular expression for the set of all paths of length ~ k  from node i 
to node j. 

Let g(k) be the number of symbols in the largest entry of matrix Tk; using T k 
[T(k+l)/~] �9 [T (k-e)/2] for k odd and T ~ = Tkf ~ �9 TS<l ~ for k even, we find g(k) 
n{[g(k-k 1 ) / 2 ] - 1 - [ g ( k -  I)f2]} for k odd and g ( k ) ~  2rig(k/2 ) for k even, and 
g ( 1 )  = 1. 

CLAIM. g(k) ~ (2n)Flogkl. 

Proof goes by induction and rests on the fact that if k is odd, 

[log(k + 1)] = [log k]. 

Let f ( k )  be the number of symbols in the largest entry of matrix 

since 

and 

Fk( T) = I - / T +  T 2 + ' ' '  + T~; 

Fk(T ) = T(*+l)/2F(~_l)/2(T) + F(k_I)/~(T ) for k odd, 

Fk(T)  -~ T~/2(F~/2(T) - -  I )  -b F,/2(T) for k even, 
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, ,  [g (<-7 i )  -. s ('<-7-')] + ,o. 
and 

f (k )  ~ n[g(ki2 ) + f(k/2)] + f(k/2) for k even. 

CLAIM. f(k) ~-~ (2n 4- 1) rl~ (result (7)). 

Again, the proof goes by induction, using the fact that if k is odd, 

[log(k -t- 1)] = [log k]. 

We note in passing that the resulting expressions preserve ambiguity. 

k odd 

9. PATH DECOMPOSITION 

At several points in what follows, we shall need the fact that each path on a graph 
of n nodes can be written as: 

(path on ~ n/2 nodes) (loop) (path on ~ hi2 nodes), 

where integer division by 2 is intended, e.g., ~ : 1. For, by choosing the shortest 
prefix of the path that hits n/2 + 1 distinct nodes, and the shortest suffix that hits 
n/2 a, 1 distinct nodes, we force some node to be hit by both. 

10. UPPER BOUNDS ON N AND H FOR THE COMPLETE GRAPH ON n NODES 

A standard [2] method for deriving a regular expression for the set of all paths 
between two nodes of a graph proceeds as follows. 

1. Number  the nodes so that the node pair for which the paths are being 
represented is (1, n). Let  the expression labeling the arc from node i to n o d e j  Le ais.  

2. Choose k so that 1 < k < n, and for each i ~ k, j v~ k, replace ais with 
a~s ~ aika~.kak~. (This explicity represents all paths passing through node k elsewhere 
in the graph, thus eliminating the need for node k.) 

3. Continue eliminating nodes until only 1 and n are left. Then  use the fact 
that all paths from 1 to n on 

~ 

%1 
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are represented by 

(an + aa,a*nana)* alna*,~. 

When this method is used on the complete graph on n nodes, symmetry guarantees 
that at each step of the way, all arc expressions will have the same length. Since each 
node elimination quadruples the size of each remaining arc expression, and since 
the last step sextuples the size, we have 

N ~ 6 ' 4 ("-2) (result (2)). 

That H ~ n follows immediately from the same construction (half of result (3)). 

l l .  AN UPPER BOUND ON L FOR THE COMPLETE GRAPH ON 7/ NODES 

Let Pij(n) be the set of all paths from node i to node j on the complete graph on n 
nodes, and let P~)  (n) be the set of all paths in Pit(n) that do not pass through node k. 
We shall abbreviate L(Pij(n)) as Ld(n) when i :/: j (d stands for "different"), and 
abbreviate L(Pis(n)) asLs(n) when i = j (s stands for "same").  The  same abbreviations 
will be used for W as well as L. 

Since 

we have 

By representing each path as 

we get 

Ls(n) ~ 2 -}-La(n -- 1). 

(path on ~< n/2 nodes) (loop) (path on ~ n/2 nodes), 

U 
Pij(n) = all pairs R, S of 

[subsets  containing 
Lat most n/2 nodes 

where each term T(R, S) is of the form 

Q) P,k(n/2) Pkk(n) Pkj(n/2), 
k 

from which 
Ld(n) ~ 2La(n/2) + Ls(n). 

T(R, S)], 
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Substituting the former equation in the latter, we get 

La(n) <~ 2Lo(n/2) + La(n -- 1) + 2. 

We substitute this equation n]2 times into itself in the Ld(n -- 1) position to get 

La(n) < n(La(n/2) + 1) ~< 2n(Lo(n/2)), 

SO 

La(n) <~ [(2n)X~ 1/2 (result (5)). 

12. AN UPPER BOUND ON WIDTH FOR THE COMPLETE GRAPH ON rt NODES 

In the preceding section we made L small by using a very "wide" (large union of 
terms) formula. Here we shall go the other way and make W small by using a very 
"long" (large L) formula. We first consider paths from a node to itself: 

P . ( , )  = I 1" 0 
all pairs R, S of T(R, S) , 

|subsets containing 
[_at most n/2 nodes 

where each term T(R, S) is of the form 

(i) n (J Pi~(n/2) P~k(n) P~i( /2). 

Next, convert this large (starred) union to a large product by the identity 

so that the width of the entire formula is at most the width of the widest term of 
the form Pik(n/2) P~(e) P~i(n]2). Since Pie(n~2) and Pk~(n/2) are of width Wa(n/2), 

z ) l i ) ( n  while ~ ) is of width Ws(n -- 1) we have 

Ws(n) 4 max(Ws(n -- 1), Wd(n/2)). 

To get a second inequality involving Ws and Wd, use 

Pij(n) = U Qi~(n) e~k(n) Qk~(n), 
k 
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where the Q's, although possibly involving paths through any node, contain only paths 
of length at most n/2, and hence have expressions of size ~ (2n  + l) Fl~ by 
result (7), so 

Wd ~ n max[(2n -t- l) rl~ Ws(n)]. 

By repeatedly replacing Ws(n) with max[Ws(n - -  1), Wd(n/2)] we get 

Wd ~< n max[(2n + 1)nogr Wa(n/2)]. 

Now if the first argument of the max ever dominates the second, it will continue 
to do so for all larger n, since 

(n/2)(2(n/2) @ 1)n~ 4)q ~ (2n + 1)n~ 

Since the first argument already dominates for n = 2, we have 

I{2"d ~. n(2n + 1) Fl~ (result (4)). 

13. UPPER BOUNDS ON N AND W FOR THE HALF-COMPLETE GRAPH ON n NODES 

Each of these bounds follows easily from facts derived earlier. By substituting 
k = n in the formula for all paths of length ~ k  we find N ~ (2n + 1) rl~ We 
have not improved on the bound W ~ n(2n + 1)n~ derived for the complete 
graph. 

(Since the half-complete graph can be made from the complete graph by annulling 
edges, the same bound applies in this case. Alternatively, the same bound can be 
derived directly, via a matrix calculation like the one used in Section 8.) 

14. COMMENTS AND CONCLUSIONS 

I t  is unfortunate that most of these measures are worse than polynomial in n. 
Incidentally, if difference of sets is allowed as an operation, everything becomes 
polynomial; for example, UiJ Pit(n), the set of all paths on the n-node complete 
graph, can be written in terms of the set A of all arcs, as A* -- U A*abA*, where 
the union is taken over all pairs (a, b) of edges for which b does not follow a. A similar 
construction works for intersection of sets. 

We would be pleased if some other researchers were inspired to narrow some 
of the gaps between upper and lower bounds. 
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