Topics in Euclidean Ramsey Theory

Ronald L. Graham

1. Introduction

Many questions in Ramsey Theory can be placed in the following context.
We are given a set X, a family Fof distinguished subsets of X, and a positive
integer r. We would like to decide whether or not the following statement holds:
For any partition of X = X; U...U X, into r classes, there is an F € Fand
an index 7 such that F C X;.

Such an F is usually called homogeneous (or monochromatic, if the parti-
tion of X is thought of as an r-coloring of X; we will use both terminologies
interchangeably).

The key feature which distinguishes Euclidean Ramsey Theory from other
branches of Ramsey Theory is the use of the Euclidean metric in determining
the structure of . More precisely, X is usually taken to be Euclidean n-space
E" for some n, and F= FC) consists of all subsets F which are congruent to
a given point set C C E™,

The requirement that the homogeneous set be congruent to C is quite
stringent. For example, if C consists of three equally spaced collinear points
then it turns out (as we shall see) that for any n,IE™ can always be 4-colored
with no monochromatic congruent copy of C formed, whereas monochromatic
homothetic copies of C must always exist, as shown by van der Waerden’s
theorem, for example.

In this chapter I will survey some of the basic results in Euclidean Ramsey
Theory as well as describing some very recent theorems and numerous open
problems.

2. Preliminaries

Let us say that R(C,n,r) holds if any r-coloring of IE™ contains a monochroma-
tic set congruent to C. Thus, for example, if C' is the set of three vertices of a
unit equilateral triangle then R(C',4,2) holds (by considering the five vertices
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of a unit simplex in IE*) while R(C',2,2) does not hold (by partitioning I’
into two classes of alternating strips of width 4/3/2, each open on the top and
closed on the bottom.

Slightly more interesting is the following.

2.1 Theorem. If S is the set of four vertices of a unit square then R(S,6,2)
holds.

Proof. Consider the set X C E® defined by X = {(21,...,%¢) : ; = 1/+/2 for
exactly two values of i, and z; = 0 for all other values of 4}. Any partition of IE°
into two classes, say x : IE® — {0,1}, also partitions X into two classes. To each
point (z1,...,z¢) € X, we can associate a pair {7, j} by letting ¢ and j be the
indices of the nonzero coordinates of (z1,...,2s). Thus, x induces a 2-coloring
of the edges of K, the complete graph on six vertices. It is a standard result in
(Ramsey) graph theory that in any such 2-coloring, a monochromatic 4-cycle,
say ¢ — ¢3 — ¢3 — ¢4 — ci, must be formed. It is now straightforward to
check that this 4-cycle corresponds to the four vertices of a unit square in X,
and the theorem is proved. O

It is no accident that in the examples we have given up to this point, proofs
that R(C,n,r) holds for some C were always accomplished by selecting only a
suitable finite subset of IE™ and coloring it (rather than all of IE™). A standard
compactness argument (see Graham, Rothschild, Spencer 1980) shows that this
is always the case, although it is often far from obvious what the appropriate
finite subset should be.

Before proceeding to more general considerations, we first discuss a tanta-
lizing question which besides being among the most fundamental in the theory,
illustrates quite clearly how little we ! still know about what is going on in
this area. For this example we take C to be the set C* consisting of two points
separated by distance 1.

To begin with, it is easy to see that R(C*,2,2) holds, simply by considering
(as the suitable finite set) the set of three vertices of a unit equilateral triangle.
To show that R(C*,2,3) holds, we need only consider the graph G (known as
the Moser graph) shown in Fig. 1. Each edge {z,y} of G denotes the fact that
the distance between z and y is 1.

A simple calculation shows that the chromatic number of G is 4. Thus,
any 3-coloring of IE? induces a 3-coloring of (infinitely many copies of) G and
consequently, always produces a monochromatic pair of points at unit distance
from each other, as claimed.

In the other direction, it is not difficult to 7-color the standard tiling of
IE? by regular hexagons of side 9/10 so that no color class contains two points
separated by distance 1. Thus, R(C*,7,2) does not hold. The least value d for
which R(C*,d,2) holds is also known as the chromatic number x(IE?) of E?,
since it is the chromatic number of the (uncountable) graph formed by taking
each point of IE* as a vertex and each pair {z,y} with distance 1 between z

1 “we” meaning combinatorialists collectively, in this case.



202 Mathematics of Ramsey. Variations and Applications

Fig. 1. The Moser graph

and y, as an edge. Thus, the best available bounds for x(IE?) are:
4<x(E*) <.

There is some evidence that x(IE*) > 5 from the result of Wormald (1979),
who showed that IE* contains a (finite) graph of chromatic number 4, with all
edges of length one and containing no 3—cycle and no 4—cycle.

For the chromatic number x(IE™) of E™, it has been recently shown by
Frankl and Wilson (1981), using a powerful result on set systems with restric-
ted intersections, that x(IE™) grows exponentially with n, verifying an earlier
conjecture of Erdés. The best current bounds on x(E™) are now:

(1 +0(1))(6/5)" < x(B") < (3 + o(1))™.

3. Ramsey Sets

A basic concept in Euclidean Ramsey Theory is that of a Ramsey set.

Definition. A configuration C is said to be Ramsey if for all r there exists an
N = N(C,r) such that R(C, N,r) holds.

An easy argument shows that no infinite set can be Ramsey. The following
result forms the basis for constructing essentially all known Ramsey sets.

3.1 Theorem (Erdés, Graham, Montgomery, Rothschild, Spencer, Straus 1973 ).
If C1 and C; are Ramsey then the cartesian product C; x C, is Ramsey.

Proof. Fix C; CE™, C, C E™ and let 7 be a positive integer. Choose u
so that R(C1,u,r) holds. By the compactness theorem mentioned earlier there
exists a finite set T C IE* such that in any r-coloring of T, a monochromatic
congruent copy of Cp is formed. Let ¢ = |T| and let T = {z1,22,...,2:}.
Choose v so that R(C3,v,r?) holds (which is possible since C, is Ramsey).
We claim that R(C; x Ca,u + v,7) holds. To prove the claim, suppose y :
E** — {1,2,...,r} is an r-coloring of E**®. Define an induced coloring
x'E” - {1,2,...,rt} by

X' () = (x(21,9), x(22,9), - - -, x(21,9))-
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By the choice of v there is a x'-monochromatic congruent copy of Cs, say Cs,
in E*. Now define an induced r-coloring x" of T by x"(z:) = x(i,y) for
some y € C,. This is well-defined since C, is x'-monochromatic. It is now
straightforward to check that T' contains a monochromatic (under the original
coloring x) copy of C1 x C. This proves the claim and consequently, the theorem
follows. |

Since any two-point set is Ramsey then arbitrary cartesian products of
two-point sets, i.e., the sets of vertices of rectangular parallelepipeds, are also
Ramsey (and, of course, any subset of these sets of vertices). An interesting
question which arises in this context is that of determining which simplexes
(i-e., (n+1)-subsets of IE™ in general position) are subsets of the vertex set of a
rectangular parallelepiped. A necessary condition is that no angle determined
by three of its vertices should exceed 90°. This condition turns out to be suffi-
cient for n = 2 and n = 3. However, it is not sufficient for n > 4. Indeed, it is
not difficult to construct a five-point simplex in IE* with all angles determined
by three points being less than 89°, and which cannot be extended to the vertex
set of any rectangular parallelepiped.

An ingenious construction recently discovered by Frankl and R&dl can be
used to show that any set of three non-collinear points is Ramsey (thus partially
resolving a conjecture in Graham (1980)). The idea behind their construction is
the following. For arbitrary fixed k¥ and r, and n = n(k,r) chosen suitably large,
consider the subset X C IE™ formed as follows. For each subset I C {1,2,...,n}
of size 2k — 1, say I = {i1,1i2,...,92k—1}, define 2 = z; = (z1,22,...,2n) by

taking
J ifj=i,foru=1,2,...,k,
zij=492k—j fj=di,foru=%k+1,...,2k—1,
0 otherwise.

Thus, a typical point z looks like:
z = (0,...,0,1,0,...,0,2,0,...,0,k,0,...,k — 1,...,0,1,0,0)

X is taken to be {z; : I C {1,...,n} with |I| = 2k — 1}. Consider now an
arbitrary r-coloring of X. This induces an r-coloring of the set of all (2k — 1)-
subsets of {1,2,...,n}. Hence, if n is large enough then by Ramsey’s Theorem
there is a (2k + 1)-subset Y C {1,2,...,n} having all its (2k — 1)-subsets in
a single color. Suppose we write Y as {i1,%3,...,42%41}. Consider the three
points zy,,2;, and z, where

Il = {7:1’7:2,-"77:210—1}’
I, :{iZai%"',i?k}?
I3 = {is,i4,...,i2k+1}.

A straightforward calculation shows that distance(zy,,z,) =distance(z,,21,)
= V'2k, distance(zr,,25,) = v8k — 2. Thus, z1,,zs, and z;, form an (arbitra-
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rily) obtuse monochromatic isoceles triangle. Various obtuse triangles can now
be formed from the sets of vertices of prisms created by taking the product
of X with two-point sets. To form arbitrary obtuse triangles a similar tech-
nique is used, but with greater “shifts” of the (1,2,...,k,...,2,1) positions.
Presumably, every non-degenerate simplex is Ramsey?. It would also be inter-
esting to know whether such simple sets such as the five vertices of a regular
pentagon are Ramsey but at present this is unknown3.

As mentioned earlier the collinear set C = {x,y,z} with distance (x,y) =
distance(y,z) = 1 is not Ramsey. (Indeed, no set with three collinear points
can be Ramsey, as we will see later). The proof of this is not difficult and goes
as follows. For each point u € E™ assign the color

x(u) = [u-u] (mod 4)

where for u = (u1,...,u,),u - u denotes the inner product 37, «? and [z]
denotes the greatest integer not exceeding z. Suppose the set C = {x,y,z}
occurs monochromatically in this 4-coloring of IE™, say C' C x~!(i). From Fig.

2, since

a?=02+1—2bcos®
A= +1+2bcos®

then
a®+ct=202+2
Fig. 2. The collinear set C = {x,y,z}
Since
x(x) =x(y) =x(z) =i
then

2This has now been proved by Frankl and Rédl (to appear).

3 The vertices of a regular pentagon do form a Ramsey set. This has been proved very
recently by Igor Kfiz (to appear).
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a® =4k, +i+e, 0<e, <1,
b?=4ky +itey 0< e <1,
c? =4k.+i+e, 0<e <1
for suitable integers k,, ks, k.. Thus, we have
(ke — 2kp+ ke) — 2= —e, + 2¢; — e,

which is easily seen to be (just barely) impossible. This proves that C is not
Ramsey.

The preceding argument actually contains the kernel of an idea which when
more fully developed leads to the following result.

Let us call a set X C IE™ spherical if it is a subset of a sphere.

3.2 Theorem (Erdés, Graham, Montogomery, Rothschild, Spencer, Straus
1973). If C is Ramsey then C is spherical.

The proof, which we sketch for completeness, rests on several lemmas.

3.3 Lemma. There exists a (2n)-coloring x of R such that the equation

n
D i-g)=1
i=1
has no solution with x(y;) = x(y!), 1 <i < n.

Proof. Define x by setting x(y) = j if y € [2m +j/n,2m +(j +1)/n] for some
integer m. Then x(y;) = x(y}) implies

Yi —yi = 2m; +6;
for some 6; with |6;| < 1/n. Therefore

1 =Z(y,~——y£)=22m;+zﬂ:0i =2M+46
i=1 i=1 i=1

where § = Y7, 6;. However, this is impossible since 0 < || < 1. O

3.4 Lemma (Strauss 1975). Suppose c1,...,¢, and b # 0 are arbitrary real
numbers. Then there exists a (2n)"-coloring x* of R such that the equation

n

(1) 2 ci(zi—2z})=1b

i=1
has no solution with x*(z;) = x*(z!), 1 <i < n.
Proof. Note that (1) holds if and only if

n

(2) > ei(zmi—z) =1

=1
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where ¢! = ¢;b7!. Define x* on R by setting x*(a) = x*(8) if and only
if x(efa) = x(ctB) for all i, where x is the 2n-coloring defined in Lemma
3.3. Thus, x* is a (2n)™-coloring. Now suppose (2) holds with x*(z;) =
x*(z;), 1 <1 < n. Then x(cjz;) = x(cjz}), 1 < 4,j < n. In particular,
x(cfz:i) = x(ciz:), 1 <i < n. Therefore,

n

n
D ci(mi—2l) =) (e — izl
=1

=1

= (2m; + 8; — 2m} — 6})

=1
=2M +> (8: - 6)) #1
=1

since 0 < 30, 16; — i) < 1. .

3.5 Lemma. A set K = {vg,v1,...,Vi} is not spherical if and only if there exist
¢;, not all 0, such that:

(i) Y ci(vi—vo) =0,
(ﬁ) Ef=1 Ci("i Vi — Vg Vo) =b#0.

Proof. Assume K is a subset of a sphere with center w and radius r, and
suppose K satisfies (i). By the law of cosines,

r? = (v; —w) - (v; —w)
= (vo—w)-(vo—w)+ (vi—vp)-(vi —vg) —2(v; —vq) - (W — vp)

which implies

(vi —vg) - (vi—vg) =2(v; —vp) - (W — Vo)
since (vo — w) - (vg — w) = r2. Thus,

k k

Zci(vi —vp)-(vi—vp) =2(w—vp)- Zc,-(vi —vg)=0

i=1

which contradicts (ii).

On the other hand, suppose K is not spherical. We may assume without
loss of generality that K is minimally non-spherical, i.e., all proper subsets of
K are spherical. Thus, the k + 1 points of K cannot form a simplex since a
simplex is spherical. Therefore, the vectors v; — vq are linearly dependent, i.e.,
there exist ¢;, 1 <7 <k, not all 0, such that

k

(3) Z ci(vi —vg) =0.

=1
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By the minimality assumption on K, we may assume that ¢, # 0 and that
Vo,...,Vk_1 lie on some sphere, say with center w and radius r. Since

Vi-vi—vg-vg=(vi—wW)-(v; —w)—(vg—w)-(vg —w)+2(v; —vp) - W

then
k k
Zci(vi Vi —Vy-vp) = Zci((vi —w)-(v; —w) —(vg —w) - (vg —w))
i=1 i=1

k
+2ZC,;(V,; —Vo) ‘W
i=1

= ck((ve —w) - (vi —w) —r?) # 0

by (3) since vi is not on the sphere of radius r centered at w. Thus (ii) holds
and the lemma is proved. O

We are now ready to complete the proof of Theorem 3.2. Assume C =
{vo,...,va} is not spherical. By Lemma 3.5, there exist ¢, cz,...,c, and b # 0
such that

(4) Zc,-(v,-—vo)=0, Zci(vi-vi—vo 'V0)=b750.
i=1 i=1

Let us color each point u of EV with x by defining x(u) = X*(u - u) where x*
is the (2n)"-coloring used in Lemma 3.4 with these values of ¢; and b. Thus, if
X assigns a single color to all the v; then x* must assign a single color to all
the v;-v;. However, this is impossible since (4) cannot hold monochromatmally
using the coloring x*. Thus, with the (2rn)"-coloring x of EV given above, the
set C' cannot occur monochromatically. Since N was arbitrary, this shows that
C is not Ramsey, and the theorem is proved. O

Before concluding this section we point out that a number of analogues
to the preceding results are known when instead of requiring a monochromatic
set congruent to the given set C, we only require that the congruent set have
at most k colors for some fixed value of k. Specifically, call a configuration
k- Ramsey if for any r there is an N = N(k,C,r) such that in any r-coloring
of EV, some set congurent to C' must occur which has at most k colors. Thus,
1-Ramsey sets are just Ramsey sets. The following analogue to Theorem 3.2
appears in Erdos et al. (1973).

3.6 Theorem. If C is k-Ramsey then C is contained in the union of k spheres.
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4. Sphere-Ramsey Sets

Rather than take all of IE™ as our underlying space, it is possible to consider
various subsets of IE™ instead and ask the analogous questions. A very natural
choice for such subsets are unit spheres. Specifically, we denote by S™ the unit
sphere in E"*? centered at the origin, i.e.,

5" ={(z0,-..,2n) EE™' 1 Y 22 =1}
1=0

A configuration C' will then be called sphere-Ramsey if for any r, there is an
N = N(C,r) such that in any r-coloring of SV there is always a monochromatic
subset of SV which is congruent to C. In this section we will describe several
results concerning sphere-Ramsey sets which bear some similarity to those for
ordinary Ramsey sets, although in general far less is known about sphere-
Ramsey sets.

The strongest constraint currently known for sphere-Ramsey sets is given
by the following result.

4.1 Theorem (Graham 1983). If X = {x1,...,xm} C IE" is sphere-Ramsey then

for any linear dependence 2 ier @iX; = 0 there must exist a nonempty subset
J C I such that ) ;. ;a; = 0.

Proof. Suppose the contrary, i.e., suppose

(i) for some nonempty I C {1,2,...,m}, there exist nonzero a;, i € I, such
that
Z aiX; = 0;
i€l
(ii) for all nonempty J C I,
Z 471 # 0.
j€J

We will show that there exists an r = 7(X) such that for any N, SN can
be r-colored with no monochromatic subset congruent to X.
To begin with, consider the homogeneous linear equation

(5) Z a;z; = 0.
i€l

By assumption (ii), Rado’s results for the partition regularity of this equation -
over R (see Graham, Rothschild, Spencer 1980 or Rado 1933) implies that
(5) is not regular, i.e., for some r there is an r-coloring x : Rt — {1,2,...,7}
such that (5) has no monochromatic solution. Color the points of

Sf={(zo,...,ZN)ESN::Eo >0}

with x* by defining
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x"(x) = x(u-x)
where u denotes the unit vector (1,0,...,0). Thus, the color of x € S¥ depends
only on the distance of x to the “north pole” of SV.
For each nonempty subset J C I, consider the equation

(6) Zajzj =0.

JjeJ

Of course, by (ii) this equation also fails to satisfy the necessary and sufficient
condition of Rado for partition regularity. Therefore, there is an rj-coloring x s
of R so that (6) has no xs-monochromatic solution. As before, we can color
S¥ by giving x € S¥ the color

x3(x) = x(u - x).
Now, we form the product coloring % of S¥ by defining for x € sy

X(x) = (- xa(x),.-.)

where the index J ranges over all 2!/l — 1 nonempty subsets of I. The number
of colors required by the coloring % is at most

R = H rJ.

¢#JCI
An important property of x is this. Suppose we extend ¥ to
S = {(20s-..,2n) € SN : 29 > 0}

by assigning all R colors to any point in SéV\Sf, i.e., with 25 = 0. Then the
only monochromatic solution to (5) in Rt U {0} is 2; = 0 for all 4 € I.

Next, we construct a similar coloring x on S¥ = {—x : x € SV}, but
using R different colors. This assures that any set X which intersects both
hemispheres S¥ and $V cannot be monochromatic.

Finally, we have left to color the equator

SN = {xe 8§V : 2y = 0}.

By the construction, any monochromatic set congruent to X must be contained
entirely in SV~!. Hence, it suffices to color S¥~! avoiding monochromatic
copies of X, where we may use any of 2R colors previously used in the coloring of
SN USYN. By induction, this can be done provided we can so color S. However,
if m > 1 then S? can in fact always be 3-colored without a monochromatic copy
of X. This completes the proof of the theorem. ad

4.2 Corollary. If X C S™ and 0 € conv(X) then X is not sphere-Ramsey
(where conv(X) denotes the convex hull of X).



Euclidean Ramsey 211

consists of the (211:) N-element subsets of {1,...,2N}. If F,F' €¢ F, F # F',
then

|FNF'| =N (modq)
if and only if

IFNF'|=N —q=eq.

If the elements of Fare r-colored then some color class must contain at least

Aa=2(%)> ()

elements of F However, by the preceding result of Frankl and Wilson, if
y g
|F N F'| = eq never occurs, then the number of elements of F can be at most
2), which is a contradiction.

Therefore, Fmust contain a monochromatic pair F(s), F(s') with
IF(s) N F(s')| = eq.

This implies that s and s' must (up to a permutation of coordinates) look like:
€q q q €q

s=(a, ﬁa"'nga ﬁ)“‘aﬂ, _IB,"'7—IB’ _ﬂv"’*/B)a
5'=(a, .37"',,87 —ﬂv")"ﬂ, ﬂ"",ﬂ’ —,B,-'W_ﬁ)'

It now follows that
distance(s,s') = 1/8¢B% = 2

and
distance(s, 0) = distance(s’,0) = a® + 2(1 + €)¢8® = 1.

Thus, s and s' € $*V and the theorem is proved. ]

5. Concluding Remarks

Space limitations have prevented us from describing more than just a few of the
many interesting results and problems in Euclidean Ramsey Theory. Several
topics we might have discussed are the following.

Let us call a collection C of line segments in E™ line-Ramsey if for any
7, in any partition of all the line segments in IE™ into r classes, some class
contains a set of line segments congruent to C. It is known (Erdés et al. 1973),
for example, that if C is line-Ramsey then all line segments must have the same
length. Another negative result is the following.

5.1 Theorem (Graham 1983). Suppose C is a configuration of unit line segments
L; such that:

(i) The set of endpoints of the L; is not spherical;
(ii) The graph having the L; as its edges is not bipartite.
Then C is not line-Ramsey.
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Proof. If0 € conv(X) then there exist a, >0, x € X' C X, such that
E azx=0.
xe X'’

Since no subset of the oy can sum to 0, the result follows. ]

In the other direction, it is known that the vertex set of any rectangular
parallelepiped is sphere-Ramsey, provided the length of its main diagonal is at
most v/2. The proof has the same basic structure as the usual proofs of the
Hales-Jewett theorem and can be found in Graham (1983). It seems likely that
this should hold in fact for any rectangular parallelepiped with main diagonal
length less than 2%. Here, we show this for the case of two points. Specifically,
we have

4.3 Theorem. For any A with 0 < X < 1, the set {—\, A} is sphere-Ramsey.

Proof. It is enough to show that the graph G()) with vertex set S™ and edge
set {{x,y}: distance (x,y) = A} has chromatic number tending to infinity
with n. To prove this we use the following result of Frankl and Wilson:

4.4 Theorem (Frankl, Wilson 1981). Let F be a family of k-sets of {1,2,...,n}
such that for some prime power gq,

|[FNF'| £ k(modq)

Iﬂs(qfl).

For a fixed r, choose a prime power ¢ so that

(Crom) > (*G29)

where § = A\/1/2¢, and « and e > 0 are chosen so that

for all F # F' in F. Then

o’ +2(1+e)gf =1

and N = (1 + e)q is an integer. Consider the set

2N
S ={(s0,--.,82N): 80 =@, 8; = :i:ﬁ,z.s,' = 0}.
i=1

To each s € S associate the subset

F(s)={ie{1,...,2N}: s, = 8}.
Thus, the family
F={F(s):s€ S}

4 This has now been proved by Frankl and Rodl (to appear).



212 Mathematics of Ramsey. Variations and Applications

It is not known whether four line segments forming a unit square is line-
Ramsey.

Even if we restrict ourselves to IE%, there are many unsolved problems. For
example, is it true that if T is any three-point set in IE* which does not form
an equilateral triangle, then R(T,2,2) holds? The strongest conjecture would
be that in any 2-coloring of IE?, a congruent copy of every three point set must
occur monochromatically, with the exception of the set of vertices of a single
equilateral triangle. On the other hand, it may be true that R(T,2,3) never
holds for any three-point set T.

Since we have seen that IE? can be 7-colored so that no set congruent to a
given two-point occurs monochromatically, one might wonder if there were any
interesting Euclidean Ramsey properties which hold when IE? is partitioned
into an arbitrarily large (finite) number of colors. The following result shows
that there are.

5.2 Theorem (Graham 1980). For every partition of IE? into finitely many cl-
asses, some class has the property that for all & > 0, it contains three points
which span a triangle of area a.

The proof, which can be extended to the analogous result for IE™, is sur-
prisingly tricky.

For other Euclidean Ramsey Theory results, the reader can consult Erdés
et al. (1973), Erdds, Rothschild, Straus (1983), Graham (1980), Graham (1983),
Shader (1974, 1976), Straus (1975).
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