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A classical problem in combinatorial geometry is that of determining the
minimum number f(n) of different distances determined by » points in the
Euclidean plane. In 1952, L. Moser proved that f(n) > n*?/(2/9) — 1 and this has
remained for 30 years as the best lower bound known for f(n). It is shown that
f(r) > cn’" for some fixed constant c.

1. INTRODUCTION

Suppose we have n distinct points in the Euclidean plane. There are (7)
distances determined by pairs of these # points. In 1946, Erdds [2] raised the
question of finding the least number f(n) of different distances determined by
n points and proved that

Vn—1—1< f(n) <en//logn

where ¢ is a fixed constant.
In 1952, Moser [4] improved the lower bound to

Sn)>n*)(29)—1

and this has stood for 30 years as the best lower bound known for f(n).
In this paper we will prove that

f)y>en®?

for a fixed constant c.

The upper bound cn/v/logn for f(n) was obtained by considering the
points of a square lattice. Erdds conjectured that f(n) > n'~ ¢ for any positive
¢ and n sufficiently large. This conjecture remains open.
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DIFFERENT DISTANCES IN THE PLANE 343
II. PRELIMINARIES

In this section we will quote some known facts and prove several auxiliary
lemmas. First we define some useful notation.

Supose S, S’ are sets of distinct points in the plane and x is a point. Let
g(x, S) denote the number of different distances from x to points in S. Let
g(S, ") denote the number of different distances d(u, v), for u in § and v in
S’. Also let D(S) denote the maximum distance between two points in S.

LemMa 1 [2,4]. Suppose x and y are two distinct points not in S. Then

g(x. S) g(», 8) >18]/2.
LEMMA 2.

g(x, ) + g(», $) > VIS|.

Proof. 1t follows from Lemma .

LemMMa 3 [4]. Let O be any fixed point and let x,,x,,x; be points
satisfying the following (see Fig. 1):
(i) Zx;0x;<1°for 1 <i,j<3.
(ii) x, and x, are on the same side of the through O and x,.
(i) r<d(x;,0)<r+3,i=1,2,3, for some positive value r.
(V) dlx,,x,) = d(xp, xs).
Then d(x,,x;) < 1.
LEMMA 4. Let r and w be positive values and O be a fixed point. Let X;,
i=1,2,3,4, be points satisfying the following:
(i) £x;0x;<1° for 1 i, j<4.
(i) Fori=1,2,r+w<d(O0,x)<r+w+3.
For j=3,4,r<d(0,x;) <r+1.
(i) dx,,x,)> 1
(iv) d(x;,x;)=d(x,,x;),j=3,4
Then d(x,,x,) < 1. (See Fig.2.)

FiGURrE 1



344 F. R. K. CHUNG

FIGURE 2

Progf. Let x, denote the midpoint of the segment X,x,. Then x, and x,
are on a line passing through x, and orthogonal to X, X,. Furthermore the
acute angle between the line x;x,; and the line x, 0 is at most 40° since the
angle determined by X,x, and Ox, is at least arccos 3 > 55° Therefore
d(x;, x;) < 1/(2 cos 40°) < 1.

LEMMA 5. Suppose ris an integer. Let X and Y denote two sets of points
satisfying:
(i) r<dx;,0)<r+3 Yx;€X.
(i) wt+r<d(y;,0)<w+r+3vy, €Y.
(i) ¢£z;0z;<1° for z;,z;EXUY.
(iv) d(zy,z)>21Vz,2,€ XUY.
(v) (Y|=[X].

Then there are at least |X|/4 different distances between points in X and
points in Y, ie., g(X, Y) > |X|/4.

Proof. Let z denote the maximum number of different distances from a
point in X to points in Y, i.e., z=Max{g{x;, Y): x; € X}.

Suppose z < |X|/4. For a fixed point x; in X, we partition Y into sets
Yiis Yigoors Yy, 2" <z, such that d(x;, y)=d(x;, y') for y, y' in Y.
Therefore the number of equidistant pairs in Y from x; is at least

e

j=1

where (7 ) denotes the binomial coefficient function defined for all real x.

From Lemma 4 and (iv) we know that for any pair of vertices y; and y; in
Y there is at most one point in X equidistant from y; and y;. Thus the total
number of equidistant pairs in Y from some vertex in X is at least

0 (),
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Since the total number of pairs in Y is ('¥'), we have (using the fact that
z <|X|/A<[Y|/4)

(X[|Y)? XY (Y]=2) _(|Y]|
4z < 2z <<2>'

This implies z 2> | X|/4 which contradicts our assumption that z < | X|/4. This
completes the proof of Lemma 5.
LEMMA 6. Let O and O’ be two fied points. Let x, and x, be two points
satisfying the following (see Fig. 3):
(i) 7x,00'<1°and /x,0'0> 10° for i=1,2.

(a)

(b)

FIGURE 3
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(ii) x, and x, are on the same side of the line through O and O'.
(iii) [d(x,, 0)—d(x,, 0) < 1/10.
(iv) |d(x;,0")—d(x,,0") < 1/10.

Then d(x,, x,) < 1.

Proof. Let u denote the point on the same side of OO’ as x, and x,
satisfying d(x,, 0)=d(u, 0) and d(x,,0')=d(u, O'). It is not hard to
check that {(see Figs. 3(a)—(d))

d(x;, u) <dlxy, z,)

d(x,,z,)sec /0'x,z,

<
< d(x; ,2z,)sec(89° —4,)

{c)

(d)

FIGURE 3 (continued)
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where 6, denotes the angle /x,0'0 and ,0'x,z, >90°—§, — 1° Since
/2,252, > (180° —8,)/2 and

d(z,,z,)=d(z,,z,)cot Lz,z,z,

2
we have

1
W> d(x,,z3) =d(x,,2,) —d(z,,23)

180° — 6
>d(x,,u) (cos(89° —6,) — cos(89° — §,) cot <——2——1) )

> d(x, u) cos 79°(1 — cot 85°)
>d(x,u)/2.

This implies d(x,, u) < 1/5.
Similarly it can be shown that

d(x,,u) < 1/5.

Thus
d(x,;,x;) < L

LEMMA 7. For positive a;, with a; < b, we have
Y \/;i > <2 ai)/\/z'
i

Proof. This follows from the fact that \/a, = a,-/\/a_,- > a,-/\/l; .

III. ON THE LoweER BOUND OF f(n)
We will prove the following:

THEOREM.
f(n) > en®”
Jfor a fixed constant c.
Proof. Let X denote a set of n distinct points. Let ¢ and ¢; denote some

constants to be specified later. Suppose there are fewer than cn®’ different

582a/36/3-7
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FIGURE 4

distances determined by points in X. Choose two points p and ¢ in X such
that d(p, g) is the minimum distance determined by pairs of points in X. We
may assume, without loss of generality that d(p,q)=1. Let O denote the
midpoint of the segment pg. There exist at least #/360 points of X in some
sector of 1° (see Fig. 4), i.e., there exists a set X’ of ¢,n points from X, where
¢, > 1/400 for n > 20, such that for x; and x; in X the angle /x;0x; is less
than 1°. Omit points not in X'. Now with center at O we construct circles of
radii i/10, i=1, 2,..., cutting the sector into arc-shaped stripes. Now we
partition the stripes into 11 classes, putting a stripe in class i if its inner
radius is j/10 where j=i (mod 11), 0 i < 11. At least one of the classes
will contain at least c,n, ¢, =c,/11, points. We will only deal with these
points, called the set X”, and ignore the rest. Let 4; denote the set of points
in the stripe with inner radius i/10, ie, 4,={x€X": i/10<d(0, x) <
(i + 1)/10}, and set a;=|4,|. For i # j, the distances from a point u in 4; to
p and g are different from the distances from a point v in 4; to p and ¢ since
for x& {p,q}, y € A4;, we have

L gt y)<d(e 0) +d(0, ) <+ !
“1"0’—_2‘< (x, )< (xs )+ ( ,y\2+ 10
Sl 1

T )

Let X" denote the set of all points in X” in stripes that contain more than
n*" points. Suppose there are more than ¢,7/2 points in X” — X", Then we
consider the numbers of different distances from p and g to points in
X" —X". Thus,

d(p. X" —X")+ g@ X" —X") > X (&(p4)+ 8@ 4)

AdjcX"—X""

>y Va,  (ByLemma2).
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Since Y, cys_yn @; > ¢,n/2 and a; < n*'7, we have from Lemma 7 that
g(p, w —-X’") + g(q, X’ _Xm) > C2n5/7/2.

This implies that g({p, g}, X" —X") > c,n*"/4 > cn®"

We only have to consider the case that X" contains at least ¢;n, ¢; = c,/2,
points. If a stripe 4; contains n*’ points, then by Lemma 3 there are n*’
different distances determined by the points in 4;. We may assume
|A4;| < n*7. Furthermore we will delete all points not in X”. Now we
partition the set of all stripes into “boxes” B,, B, ..., B, as follows:

(i) For each 7 find the 4; with the least inner radius r(4;) in
Xm o Uk<in'

(ii) Find the 4 i with the least inner radius such that
Ui rd,)) <) <rd)) | > .
(iii) Set
B;={) {4;:r4 ST < "(Aj;)}-

The width of B;, denote by w(B,), is r(4; ) r(4;,) and the inner radius r(B;)
of By is r(4;,).

It is easy to see that, for each i, n®7 < |B;| < 2n®". Since each 4; has at
most #*7 points and at least n*7 points, we have that the number s of boxes
satisfies c¢;n'7/2 < s < 2n*7. We also need the following useful facts which
will be proved later.

Claim 1. Suppose U is the union of Bj ..., Bj where B] is a subset of B;,
with |B]|>n*7/10. Then there exists a subset R= R(B Bi)c U
satisfying the following:

;2; *s

(i) R is a sector, i.e., there exists a point O’ such that for any point v
in R the acute angle determined by vQ’ and OO’ is no more than 10°.

(i) For each B}, J<t, we have
IBéjﬁRI > |Bil/2.
Claim 2. For every B; we can find a part S, of a stripe 4; in B,
satisfying the following:

@) [S:>n*7/10.
(i) Let B, denote the set of n*7/5 points with the largest distances
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from O in B,. Then for any point v in S; and any point « in R(B,) the acute
angle between the line uv and vO is at most 11°,

(iii) Let B, denote the set of n® ’/5 points with the smallest radii in B,.
Then for any point v in §; and any point # in R(B,) the acute angle between
the line wv and the line vO is at most 11°

(iv) D(S,) is less than half of the width of B;.

Let B, denote the B; with minimum width. From Lemma 5 we have
g(S,. S)>n*"/40  foreach i.

We need the following fact which will also be proved later.

Claim 3. Suppose d = d(u,v), where u € S; and v € §,. Then there are
at most 40 S;’s such that d is a distance between a point in S, and a point in
S;. From Claim 3 we have

s

1
88, X) > —= N g(S,, 5}

40 o
> 1 n4/7 c3n1/7
7740 40 2
> (,’4}15/7
> cn5/7

which again contradicts the assumption that g(X) < en®’ (by choosing ¢
approximately 10~7).

It remains to prove the claims. First we will prove Claim 1:

Proof of Claim 1. Let ¢ and d denote the two points in U determining
the smallest distance in U. Let O’ denote the mid point of the segment cd
(see Fig. 5). Let R denote the set of all points x in U with /x0'0 < 10°. Let
K denote the B — R. Suppose |K| > n*7/20. We may assume half of the
points in K are above the line OO0’. Now we construct semi-circles of radius

FIGURE 5
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(i/10)d(c, d), i =1, 2,..., centered at O’, which cut B, into stripes which we
call *-stripes. Now we partition the *-stripes into 11 classes, putting a *-
stripe in class i if its inner radius is (j/10)d(c, d), where j=i (mod 11),
0 < i< 11. At least one of the classes will contain at least 7%7/440 points.
We will only deal with these #%7/440 points. Since we have |4;| > n*" and
|B;| < 2n%7, each *-stripe can contain at most | B;|/n*" < 2n*" points in K,
based on Lemma 6 and the fact that d(c, d)> 1.

Let A} denote a *-stripe with inner radius (i/10) d(c, d). From Lemma 2
we have

gle, AF) + g(d, A7) > VIAF].

Furthermore, for /+ j, the distances from a point in A* to ¢ and d are
different from the distances from a point in 4 ¥ to ¢ and 4 since

(%_%) d(c, d) < d(x, ) < (i 4;011 —%) d(c, d)

for x€ {c,d}, y€ AF. Thus we have

gle, B)) + g(d. B)) >N \/]4F|

i

n6/7

>—_—_
~ 440 - /2077
’15/7 /7
>____ 5
2760 = "

since there are n®7/440 points in K and each A contains at most 2n%’
points. Thus we have g(X,X)>cn*’ which contradicts our assumption.
Therefore we conclude [R M B; | >|B, |/2 for each j. This completes the proof
of Claim 1.

Proof of Claim2. Let K' denote the set of all points u in B, — B, — B,
with the property that for any point v in R(B;) the (acute) angle between the
line uv and 4O is more than 11°. Suppose |K'|>n*7/10. We consider
R(K'UR(B)). From Claim1 we have R(K'UR(B))NK'#@ and
R(K' "R(B)))NR(B)) # @ since R(B,)>|B,|/2 >n%"/10. Now we choose
u' in R(K'URBY)NK' and v’ in R(K' NR(B))NR(B)). The angle
between the line v'u’ and #’0O is less than 11° since u’ and v’ are both in
R(K' ﬁR(Ei)) and the angle #'Ox is less than 1° for any point x in K’. This
co;ltradicts the assumption of #” being in K’. Thus we may assume |K'| <
n%7/10. _

Let K" denote the set of all points u in B, — B, — B, with the property that
for any point v in R(B;) the angle between the line uv in O is more than
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11°. Similarly we can prove |K”| < n*"/10. Thus B,—~ B, —B,— K' — K"
contains at least 2#%7 points. From Claim 1, R(B,—B;—B,—K' —K")
contains at least 177 points. Since B; contains at most 2n%” stripes, there is
a subset S; of a stripe contained in R(B; — B, — B, — K' — K") having -5 n*"
points. Furthermore, D(S;) < 2 tan 10°w(B,) < w(B,)/2.

Proof of Claim 3. Claim 3 will be proved by repeatedly using Claims 1
and 2. Suppose there exist 4; and v;, 1 <j<40,4,€ S; and v, € S, and

d(w;,v)=d(u;,v,)=d.
Obviously u;, 1 i< 40, satisfies

d- 2 <dw,v)<d+5  where w=w(B,)

There are at least 20S ’s on the same side of v, 0. Among these there ar
10 §;’s with radii all larger than that of S, or all smaller than that of S,.
Name these S; ..., S . We consider two cases.

Case 1. There are 5 j’s, say 1 < j< 5, such that the acute angle deter-
mined by v,u; and u;0 is less than 45° (see Fig. 6(a)). We may assume
r(u) <r(uy) < -+ <r(us). Let Y denote the union of all stripes with radii
between r(u,) and r(u;). From Claim 1 we know that R(Y) ﬁR(I?,-I) #* @ and

R(Y)ﬂR(E,-S) # @. The (acute) angle between u, O and u,u, is at least 45°
since the angle v,u, 0 is at most 45° and r(us) — r(u,) > 3w. By Claim 2, the
angle between u;0 and u,v, for v, in R(Y)ﬁR@ ) is at most 11°. The
angle between v20 and v,v, for v, in R(Y)ﬂR(B ) is no more than 20°
since v, and v, are in R(Y). The angle between v, 0 and v,Us is at most 11°.
Thus the acute angle between u, O and u, u, is at most 45° since Zu;Ou; is at
most 1°, This yields a contradiction.

Case 2. The are 5 s with /v,u;0 > 45° (see Fig. 7). We may assume
F(u,) < r(uy) .- <r(us). Let Z denote the union of all stripes with radii
between r(v,) and r(u;). Now we consider R(Z). From Claim 1 we have
R(Z)NR(B,) + @ and R(Z) N R(B,,) # . The angle between u;0 and uju;
for v} in R(Z)ﬁR(B ;) is at most 11°. The angle between 150 and vjv} for
v} in R(Z)NR(B,) is at most 11°. The angle between v;O0 and vjv, is at
most 20°. Thus the angle between u,O0 and v, is at most 44° since Lu,;Ou;
is at most 1°. This contradicts our assumption that 2u,u;0 is greater than
or equal to 45° Thus Claim 3 is proved. The proof of our main theorem is
now complete.
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(b)

FIGURE 6

FIGURE 7
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IV. SoME RELATED OPEN PROBLEMS

Recently progress was made on another problem proposed by Erdés [2],
of finding the maximum number g(n) of pairs of n points determining the
same distance. The value of g(n) is related to the minimum number f(n) of
different distances on # points as follows:

s> ()

Using the upper bound for f(n), Erdos proved g(r) > cn+/log n. However,
the above relation does not given very good estimates. In [2] Erdds proved

g(n) >n 1+c/toglog n

On the upper bound, Szemerédi [6] proved g(n) = o(n**) and recently, Beck
and Spencer [1] showed that

glm) <n'™”.

There are also many variations of enumerating the different distances
determined by n points that satisfy certain conditions such as (1) all lie on a
convex polygon, (2) no k of the points lie on a line; (3) every subset of /
points determines at least m different distances. For a complete survey the
reader is referred to [5].

Note added in proof. Recently, I. Beck proved f (1) > n°®*! which can be improved by
the author to f(#) » n*'!. Szemerédi could further tighten the bound to f(n) > n*.
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