
THE ERDŐS DISTANCE PROBLEM: LECTURE NOTES

JULIA GARIBALDI AND ALEX IOSEVICH

Abstract. In these notes we describe many of the known advances on the
Erdős distance problem in a fashion suitable for undergraduates and advanced
high school students. An expanded version of these notes will become a book
by the end of the summer. The book will be purely combinatorial and self-
contained.

Introduction

These notes were written for the summer program on the Erdős distance problem,
to be held at the University of Missouri, August 1-5, 2005. This is the second year
of this program and our plan continues to be to introduce motivated high school
students to accessible concepts of higher mathematics. Last year’s theme was the
Kakeya conjecture in finite fields. This year we concentrate on one of the most
beautiful problems of geometric combinatorics, the Erdős distance conjecture.

The notes are heavily problem oriented. Most of the learning is meant to be
done by doing the exercises interspersed throughout the lecture notes. Many of
these exercises are recently published results by mathematicians working in the
area. In a couple of places, steps are intentionally left out of proofs and the reader
is then asked to fill them in in the process of working the exercises. On a number
of occasions, solutions to exercises are used in later chapters in an essential way.
Having said that, let us add that you should not rely solely on exercises in these
notes. Create your own problems and questions! Modify the lemmas and theorems
below, and, whenever possible, improve them! Mathematics is a highly personal
experience and you will find true fulfillment only when you make the concepts in
these notes your own in some way. Good luck!

Many theorems in mathematics say, one way or another, that it is very difficult to
arrange mathematical object in such a way that they do not exhibit some interesting
structure. The Erdős distance problem asks for the minimal number of distances
determined by a set of N points in R

d, d ≥ 2. More precisely, let P be a finite
subset of R

d, d ≥ 2, such that #P = N . Let

∆(P ) = {|p − p′| : p, p′ ∈ P},(0.1)

and

|x| =
√

x2
1 + · · · + x2

d,(0.2)

the Euclidean distance.
The Erdős distance problem asks for the smallest possible size of ∆(P ). Let

us consider some simple examples. Let P = {(j, 0, . . . , 0) : j = 1, 2, . . . , N}. Then
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∆(P ) = {0, 1, 2, . . . , N−1}. This simple example shows that the best general result
we can hope for is

(0.3) #∆(P ) ≤ #P.

This turns out to be too much. Let P = Z
d ∩ [0, N

1

d ]
d
, where N is a d’th power

of an integer. Then ∆(P ) = {|p| : p ∈ P} (why?) and #∆(P ) = #{|p|2 : p ∈ P}.
Consider the set of numbers p2

1 + p2
2 + · · · + p2

d, p = (p1, . . . , pd) ∈ P . All these

numbers are positive integers no less than 0 and no more than dN
2

d . Now check
that

(0.4) #∆(P ) ≤ dN
2

d + 1

follows from this observation.
For dimension 2 the reality is even worse. It turns out (see Appendix 1) that

#∆(P ) ≈ N
2

d , if d ≥ 3, and ∆(P ) ≈ N√
log(N)

if d = 2. Here, and throughout the

notes, X . Y means that there exists a positive constant C such that X ≤ CY ,
and X ≈ Y means that X . Y and Y . X . We take this notational game a step
further and define X / Y , with respect to the large parameter N , if for every ǫ > 0
there exists Cǫ > 0 such that X ≤ CǫN

ǫY .

Erdős distance conjecture. Let P be a subset of R
d, d ≥ 2, such that #P = N .

Then

#∆(P ) ' N, if d = 2,(0.5)

and

#∆(P ) & N
2

d , if d ≥ 3.(0.6)

�

The conjecture is nowhere near resolution, but much is known and we will come
very close to the cutting edge of this beautiful problem in these notes.

Exercise 0.1. Define ∆l1(Rd)(P ) = {|p1 − p′1| + · · · + |pd − p′d| : p, p′ ∈ P}. Prove
that Erdős distance conjecture is false if ∆(P ) is replaced by ∆l1(Rd)(P ). What
should the conjecture say in this context? Can you prove this conjecture? Consider
the case d = 2 first.

Exercise 0.2. Let K be a convex, centrally symmetric subset of R
2, contained

in the disk of radius 2 centered at the origin and containing the disk of radius 1
centered at the origin. Convex means that if x and y are in K, then the line segment
connecting x and y is contained entirely inside K. Centrally symmetric means that
if x is in K, then −x is also in K.

Let t = ||x||K denote the number such that x is contained in tK, but is not
contained in (t − ǫ)K for any ǫ > 0. Define ∆K(P ) = {||p − p′||K : p, p′ ∈ P}. If
the boundary of K contains a line segment prove that one can construct a set P ,

with #P = N , such that #∆K(P ) . N
1

d .
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1. Erdős’ original argument

How does one prove that any set P of size N determines many distances? Let us
start in two dimensions. Chose a point p0 and draw circles around it that contains
at least one point of P . Suppose that we have drawn t circles. If t is big enough then
we are already doing very well. But what if t is happens to be small? Note that
at least one of the t circles must contain at least N/t points. Draw the East-West
line though the center of that circle. Then at least N/2t are contained in either the
Northern or Southern hemisphere. Without loss of generality suppose that there
are N/2t points in the Northern hemisphere. Fix the East-most point and draw
segments from that point to all the other points of P in the Northern hemisphere.
The length of these segments are all different, so at least N/2t distances are thus
determined. This proves that

(1.1) #∆(P ) ≥ max{t, N/2t}.
There are several ways to proceed here. One way is to “guess” the answer. Since

t <
√

N . Then N/2t >
√

N/2, so either way,

(1.2) #∆(P ) &
√

N.

A slightly less “sneaky” approach is to use the fact that

(1.3) max{X, Y } ≥
√

XY (why?).

This transforms (1.1) into (1.2). Summarizing, we have just proved the following.

Theorem 1.1 (Erdős [8]). Suppose that d = 2 and #P = N . Then (1.2) holds.

What about higher dimensions? Let us try the same approach. Choose a point
in P and draw all spheres that contain at least one point of P . As before, let t
denote the number of spheres. If t is large enough, we are done. If not, then one of
the spheres contains at least N/t points. Unfortunately, if d > 2, we cannot run the
simple minded argument that worked in two dimensions. Or can we? Notice that
if we are working in R

d, the surface of each sphere is (d− 1)-dimensional, whatever
that means. This suggests the following approach.

Induction Hypothesis. Let P ′ be a subset of R
k , k ≥ 2, or Sk, k ≥ 1. Suppose that

#P ′ = N ′. Then

#∆(P ′) & (N ′)
1

k .

�

In the case of R
k, the induction hypothesis holds if k = 2 as we have verified

above. Similarly, we have verified the statement for Sk for k = 1. We are now ready
to complete the higher dimensional argument. Then for the dimension d argument
we end up with t (d − 1)-spheres–one of which must have at least N/t points on it

as in the d = 2 proof. By induction, these points determine &
(

N
t

)
1

d−1 distances.
It follows that

(1.4) #∆(P ) & max

{

t,

(

N

t

)
1

d−1

}

.

We now use the fact that

(1.5) max{X, Y } ≥ (XY d−1)
1

d (why?),
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which implies that

(1.6) #∆(P ) & N
1

d .

We just proved the following result.

Theorem 1.2. Let P be a subset of R
d, d ≥ 2, such that #P = N . Then (1.6)

holds.

Exercise 1.1. Prove that the minimum of max{t, N/2t} is in fact
√

N . In other

words, show that Erdős’s method of proof cannot do better than #∆(P ) &
√

N .

Exercise 1.2. Let K be a polygon in the plane. Let #P = N . Prove that
#∆K(P ) &

√
N . What about other convex K? This problem turns out to be

surprisingly difficult. See a very nice article by Julia Garibaldi.

Exercise 1.3. We outline an alternate proof of Theorem 1.1. Let MN denote
the matrix constructed as follows. Fix t ∈ ∆(P ) and let the entry app′ = 1 if
|p − p′| = t, and 0 otherwise. Observe that for a fixed pair (p′, p′′), p′ 6= p′′,
app′ · app′′ = 1 for at most one value of p (why?). Use this along with the Cauchy-

Schwartz inequality to prove that
∑

p,p′∈P app′ . N
3

2 . Conclude that for any

t ∈ ∆(P ), #{(p, p′) : |p − p′| = t} . N
3

2 . Deduce that #∆(P ) &
√

N . Can you
make this idea run in higher dimensions?

Exercise 1.4. In the proofs of Theorems 1.1 and 1.2 we only used spheres centered
at a single point. Is there any milage to be gained from considering, say, two points?
Try it.

2. Moser’s approach and the Erdős integer distance principle

Erdős’ ingenious argument, described in the previous chapter, relies on spheres
centered at a single point, and it stands to reason that one might gain something
out of considering spheres centered at two points. This point of view was introduced
by Moser in the early 1950s. Before presenting Moser’s argument, we will present
the Erdős integer distance principle where an idea similar to Moser’s is already
present, albeit in a different form and context.

Erdős integer distance principle (EIDP), [9]. Let A be an infinite subset of R
d, d ≥

2. Suppose that ∆(A) ⊂ Z. Then A is contained in a line. �

To prove EIDP suppose that A is not contained in a line. Suppose that d = 2.
Let a, a′, a′′ denote three points of A not lying on the same line. Let b be any
other point of A. By assumption, |a − b| and |a′ − b| are both integers, which
means that |a − b| − |a′ − b| is also an integer. This means that every point of A
is contained on hyperbolas with focal points at a and a′. (See Appendix 2 for a
thorough description of basic theory of hyperbolas in the plane). How many such
hyperbolas are there? Well, suppose that |a − a′| = k, which, by assumption is an
integer. By the triangle inequality, ||a− b| − |a′ − b|| ≤ |a− a′| = k. It follows that
there are only k + 1 different hyperbolas with focal points at a and a′. Similarly,
all the points of A are contained in l + 1 hyperbolas with focal points at a′ and a′′.
Any hyperbola with focal points at a and a′ and a hyperbola with focal points at
a′ and a′′ intersect at at most 4 points (see Appendix 2 once again). It follows that
the number of points in A cannot exceed 16(k + 1)(l + 1), which is a contradiction
since A is assumed to be infinite. This proves the two-dimensional case of the Erdős
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integer distance principle. The higher dimensional argument is outlined in Exercise
2.1 below.

The following beautiful extension of the Erdős integer distance principle was
proved by Jozsef Solymosi [23].

Theorem 2.1. Suppose that P is a subset of R
2, such that ∆(P ) ⊂ Z and #P = N .

Suppose that P is contained in a disk of radius R. Then R & N .

The proof of Solymosi’s theorem is outlined in Exercise 2.5, and in Exercise 2.6
we ask you to verify that Theorem 2.1 would follow immediately from the Erdős
distance conjecture.

We are now ready to introduce Moser’s idea. Choose points X and Y in P such
that

(2.1) |X − Y | ≤ min{|p − p′| : p, p′ ∈ P}.
Let O be the midpoint of the segment XY . Half the points of P are either above

or below the line connecting X and Y . Call this set of points P ′. Assume without
loss of generality that at least half the points are above the line. Draw half annuli
centered at O of thickness |X −Y | until all the points of P ′ are covered. Keep only
one third of the annuli in such a way that at least one third of the points of P ′

are there and such that if a particular annulus is kept, the next two consecutive
annuli are discarded. (Prove that this can be done and explain why we are doing
this as you read the rest of the argument!). Call the resulting set of points P ′′.
Let nj denote the number of points of P ′′ in the jth annulus. Let Aj denote the
intersection of P ′′ with the jth annulus. Suppose that

(2.2) {|p − X | : p ∈ Aj} ∪ {|p − Y | : p ∈ Aj} = {d1, d2, . . . , dk}.
Let

Aj = {p ∈ Aj : |p − X | = dj},(2.3)

and

Bi = {p ∈ Ai : |p − Y | = di}.(2.4)

By construction,

(2.5) Aj = ∪i (Aj ∩ Bi) ,

since points of distance dj from X are of some distance or another from Y . It
follows that

(2.6) ∪jAj = ∪i,j (Aj ∩ Bi) .

Now,

(2.7) # ∪j Aj = nj ,

while

(2.8) # ∪i,j (Aj ∩ Bi) ≤ k2 max
i,j

#(Aj ∩ Bi) .

Now, Aj and Bi are contained on circles of approximately the same radius cen-
tered at different points, so maxi,j #(Aj ∩ Bi) ≤ 1. Plugging this into (2.8) we see
that

(2.9) k ≥ √
nj ,
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from which we deduce that

(2.10) #∆(P ) ≥ #∆(P ′′) ≥
∑

j

√
nj .

We have

N

6
≤

∑

j

nj =
∑

j

√
nj ·

√
nj ≤ √

nmax ·
∑

j

√
nj ,(2.11)

where

nmax = max
j

nj .(2.12)

Observe that by the proof of Theorem 1.1,

(2.13) #∆(P ) ≥ #∆(P ′′) ≥ nmax.

By (2.10),

(2.14) #∆(P ) ≥ N

6
√

nmax
.

It follows that

(2.15) (#∆(P ))
2 · #∆(P ) ≥ nmax · N2

36nmax
=

N2

36
.

Which implies that

(2.16) #∆(P ) ≥ N
2

3

(36)
1

3

,

and we have just proved the following theorem.

Theorem 2.2 (Moser [19]). Let d = 2 and suppose that #P = N . Then #∆(P ) &
N

2

3 .

Exercise 2.1. Why did we eliminate 2/3 of the annuli in the proof above? Where
did we use this in the proof?

Exercise 2.2. What does Moser’s method yield in higher dimensions? Can you
use the two-dimensional result along with the induction argument used to prove
Theorem 1.2 instead? Which approach yields better exponents?

Exercise 2.3. Let A be an infinite subset of R
d, d ≥ 2, with the following property.

We assume that |a − a′| ≥ 1
100 for all a 6= a′ ∈ A. We also assume that for every

m ∈ Z
d, [0, 1]

d
+ m contains exactly one point of A. Let Aq = [0, q]

d ∩ A. What
kind of a bound can you obtain for ∆(Aq) using Moser’s idea? Why is this bound
better than the one we obtain above?

Take this a step further. Instead of using two points as in Moser’s argument,
use d points. How should these points be arranged? What effect are we trying to
achieve? Can you obtain a better exponent this way?

Exercise 2.4. Outline of proof of EIDP in higher dimensions.

Exercise 2.5. Deduce Solymosi’ s Theorem from the following observation by using
ideas from the proof of the EIDP.
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Observation 1. For every set of n points in the plane with diameter ∆ and with
at most n/2 collinear points, there exists two pairs of points A,B and C,D such
that each of the distances AB and CD are less than 6∆/n1/2.

Now prove the Observation 1. Hint: Show that there are fewer than n/2 points
that are not within 6∆/n1/2 of other points.

Exercise 2.6. Deduce Solymosi’s theorem from the Erdős distance conjecture.

3. Incidence theorems and graph theory

If you are familiar with basic theory of graphs, keep reading. If not, read Appen-
dix 4 first where basic notions of graph theory are introduced and proved. We will
also make use of some basic concepts from probability theory. Those are described
in Appendix 5 below.

Let P be a finite set of n points in R
2, and let L be a finite set of m lines. Define

an incidence of P and L to be a pair (p, l) ∈ P × L : p ∈ l. Let IP,L denote the
total number of incidences between P and L. More precisely,

(3.1) IP,L = #{(p, l) ∈ P × L : p ∈ l}.
We already proved something about IP,L in Exercise 1.3, did we not? Let us

think about it for a moment. Let δlp = 1 if p ∈ l, and 0 otherwise. Then, by the
Cauchy-Schwartz inequality,

IP,L =
∑

l

∑

p

δlp ≤
√

m





∑

l

∣

∣

∣

∣

∣

∑

p

δlp

∣

∣

∣

∣

∣

2




1

2

=
√

m





∑

l

∑

p

δ2
lp +

∑

l

∑

p6=p′

δlpδlp′





1

2

≤
√

m



mn +
∑

l

∑

p6=p′

δlpδlp′





1

2

.

(3.2)

Now, for each (p, p′) ∈ P ×P , p 6= p′, there is at most one l such that δlpδlp′ 6= 0.
This is because δlp = 1 means that p ∈ l, and δlp′ = 1 means that p′ ∈ l. Since two
points uniquely determine a line, the expression δlpδlp′ cannot equal to one for any
other l. It follows that

(3.3)
∑

l

∑

p6=p′

δlpδlp′ ≤ #{(p, p′) ∈ P × P : p 6= p′} = n(n − 1).

Now it can be shown that the following theorem holds. Check the details.

Theorem 3.1. Let P be a set of n points in the plane, and let L be a set of m
lines. Then IP,L . m

√
n + n

√
m.

As pretty as this result is, it turns out that we can do better. The following
improvement on Theorem 3.1 is due to Szemeredi and Trotter [26].

Theorem 3.2. Let P be a set of n points in the plane, and let L be a set of m

lines. Then IP,L . n + m + (nm)
2

3 .

We shall deduce this theorem from the following graph theoretic result.
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Theorem 3.3. Let G be a graph with n vertices and e edges. Suppose that e ≥ 4n.
Then

cr(G) &
e3

n2

.

We now prove Theorem 3.2 using Theorem 3.3. In order to use Theorem 3.3 we
construct the following graph. Let the points of P be the vertices of G and let the
line segments connecting points of P on the lines L be the edges. You will prove in
Exercise 3.2 below (not very difficult) that

(3.4) e = I − m.

There are two possibilities. If e < 4n, then

(3.5) I < m + 4n,

which is certainly alright with us.
If e ≥ 4n, then Theorem 3.3 kicks in and we have

(3.6) cr(G) &
e3

n2
=

(I − m)
3

n2
.

On the other hand, a crossing arises when two edges intersect not at a vertex.
Since edges come from lines and there are m lines,

(3.7) cr(G) ≤ m2.

Combining (3.5) and (3.6), we obtain the conclusion of Theorem 3.2.
It remains for us to prove Theorem 3.3. By Appendix 4,

(3.8) cr(G) ≥ e − 3n.

Choose a random subgraph H of G by keeping each vertex with probability p, a
number to be chosen later. It follows that

E(vertices in H) = np,

E(edges in H) = ep2,

and

(3.9) E(cr(H)) ≤ cr(G)p4,

where E denotes the expected value.
By (3.9) and linearity of expectation,

(3.10) cr(G)p4 ≥ ep2 − 3np.

Choosing p = 4n
e , as we may, since e ≥ 4n, we obtain the conclusion of Theorem

3.3.
One of the most misused words in mathematics is “sharp”. Nevertheless, we are

about to use it ourselves. We will show that Theorem 3.2 is sharp in the sense that
for any positive integer n and m, we can construct a set P of n points, and a set L
of m lines, such that

(3.11) IP,L ≈ n + m + (nm)
2

3 .

We shall construct an example in the case n = m, but we absolutely insist that
you work out the general case in one of the exercises below. Let

(3.12) P = {(i, j) : 0 ≤ i ≤ k − 1; 0 ≤ j ≤ 4k2 − 1}.
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Let L be the set consisting of lines given by equations y = ax+b, 0 ≤ a ≤ 2k−1,
0 ≤ b ≤ 2k2 − 1. Thus we have n lines and n points. Moreover, for x ∈ [0, k),

(3.13) ax + b < ak + b < 4k2,

and it follows that for each i = 0, 1, . . . , k, each line of L contains a point of P
with x-coordinate equal to i. It follows that

(3.14) IP,L ≥ k · #L =
1

4
n

4

3 .

Exercise 3.1. Complete the details of the proof of Theorem 3.1.

Exercise 3.2. Prove (3.4) and write out the details.

Exercise 3.3. For each n and m, construct a set P of n points and a set L of m
lines, such that (3.11) holds. Use the argument in the case n = m above as the
basis of your construction.

Exercise 3.4. Let P be a set of n points in the plane. Let L be a set of m curves.
Let αpp′ denote the number of curves in L that pass through p and p′. Let βll′

denote the number of points of P that are contained in both l and l′, Use the proof
of Theorem 3.1 to show that

(3.15) IP,L ≤ n
√

m





∑

p6=p′

αpp′





1

2

+ m
√

n





∑

l 6=l′

βll′





1

2

.

Exercise 3.5. Prove a modified version of Theorem 3.3 which says that if α is the
maximum number of edges connecting a pair of vertices in G, then

(3.16) cr(G) &
e3

αn2
.

Hint: This can be proven by repeatedly using probabilistic arguments similar to
those used in the proof of Theorem 3.3. First, delete edges independently with
probability 1− 1

k and then delete all the remaining multiple edges–call this resulting
graph G′. Calculate the probability pe that a fixed edge e remains in G′. Now
compare the expected number of edges and crossings in G′ to the number in the
original graph and use Theorem 3.3. Finally, use Jensen’s inequality which says
that E[xa] ≥ (E[x])a for a ≥ 1.

Exercise 3.6. Let P be a set of n points in the plane. Let L be a set of m curves.
Suppose that no more than α curves in L pass through a pair of points of P , and
no more than β points of P are contained in the intersection of any two curves in
L. What should Theorem 3.2 say under these hypotheses? Do it now because we
will use this result in the next chapter. Hint: Use the result from Exercise 3.5.

Exercise 3.7. Is the weighted theorem given by Exercise 3.6 always stronger than
the one given by Exercise 3.4? Give explicit examples to support your belief.

4. Bisectors enter the game: n
4

5 plateau is reached

In this section we shall use graph theory that already bore fruit in the previous
chapter to improve the Erdős exponent from 2/3 to 4/5.

Suppose that a set P of n points determined t distinct distances. Draw a circle
centered at each point of P containing at least one other point of P . By assumption,
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we have at most t circles around each point and thus the total number of circles is
nt. By construction, these circles have n(n − 1) incidences with the points of P .
The idea now is to estimate the number of incidences from above in terms of n and
t and then derive the lower bound for t.

Delete all circles with at most two points on them. This eliminates at most
2nt incidences, and since we may safely assume that t is much smaller than n, the
number of incidences of the remaining circles and the points of P is still & n2.
Form a graph whose vertices are points of P and edges are circular arcs between
the points. This graph G has ≈ n vertices, ≈ n2 edges, and the number of crossings

is . (nt)
2
.

Suppose for a moment that we can use Theorem 3.3. Then

(4.1)
e3

n2
. cr(G) . (nt)2,

and since e ≈ n2, it would follow that

(4.2) n4 . n2t2,

which would imply the Erdős Distance Conjecture. Unfortunately, life is harder
than that since Theorem 3.3 only applies if there is at most one edge connecting a
pair of vertices. In our case we may assume that there is at most 2t edges connecting
a pair of vertices (why? see Exercise 4.1 below). Applying Exercise 3.5 we see that

(4.3)
e3

tn2
. cr(G) . n2t2,

which implies that

(4.4) t & n
2

3 ,

the Moser’s bound from Chapter 2. All this for n
2

3 ?! We must be able to do better
than that! How can we possibly hope to do that? One way is to study edges of
high multiplicity separately.

We try to take advantage of the following phenomenon. Let p, p′ ∈ P . The
centers of all the circles that pass through p and p′ are located on the bisector, lpp′ ,
of the points p and p′ in P 1. Let us consider all the bisectors with at least k points
on them. How many such bisectors are there? Recall that the Szemeredi-Trotter
incidence bound (Theorem 3.2) says that the number of incidences between n points

and m lines is . (n+m+(nm)
2

3 ). Let mk denote the number of lines with at least
k points. Then the number of incidences is at least kmk. It follows that

(4.5) kmk . n + mk + (nmk)
2

3 ,

and we conclude that

(4.6) mk .
n

k
+

n2

k3
.

This implies that bisectors with at least k points on them have

(4.7) . n +
n2

k2

incidences with the points of P (see Exercise 4.3).

1The bisector of p and p′ is the set of points that are equidistant to p and p′. Formally,
lpp′ = {z ∈ R

2 : |z − p| = |z − p′|}. In the Euclidean metric this turns out to be the line

perpendicular to pp′ through their midpoint. For more general metrics see Exercise 4.2.
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Let Pk denote the set of pairs (p, p′) of P connected by at least k edges. Let Ek

denote the set of edges connecting those pairs. Each edge in Ek connecting a pair
(p, p′) corresponds to exactly one incidence of lpp′ with a point p′′ in P . However,
an incidence of such a p′′ with some lpp′ corresponds to at most 2t edges in Ek since
there at at most t circles centered at p′′. It follows that

(4.8) #Ek . tn +
tn2

k2
.

Note that we are almost certainly over counting Ek here since we are removing all
possible edges corresponding to incidences–not just those that contribute to high
multiplicity.

Now, if we choose k = c
√

t, for an appropriate constant c, then

(4.9) #Ek ≤ n2

2
.

If we now erase all the edges of Ek, there are still more than n2

2 edges remaining.
Applying Exercise 3.5 once again, we see that

(4.10)
e3

kn2
≤ cr(G) ≤ n2t2.

Since k ≈
√

t and e ≈ n2, it follows that

(4.11) t & n
4

5 .

We have just proved the following theorem of Szekely [25].

Theorem 4.1. Let P be a set of n points in the plane. Then

(4.12) #∆(P ) & n
4

5 .

Exercise 4.1. Explain why there can be at most 2t edges connecting two vertices
in the graph G from the above proof.

Exercise 4.2. Consider the l1 metric defined in Exercise 0.1. Try to figure out
what bisectors look like for this metric.

Exercise 4.3. Verify Equation 4.7. Hint: Define Mj to be the set of lines with
between 2j and 2j+1 points and observe that mk can be written as a sum of such
sets.

5. Arithmetic joins bisectors in the Erdős crusade!

In this chapter we present the Solymosi-Toth beautiful argument that will get us
up to n

6

7 which opens the door to further important developments that we sketch
in the next chapter. We start out with the following beautiful observation due to
Jozsef Beck [3]. The proof we give is from [24].

Lemma 5.1. Let P be a collection of n points in the plane. Then one of the
following holds:

(1) There exists a line containing ≈ n points of P .
(2) There exist ≈ n2 different lines each containing at least two points of P .
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Proof. Let Lu,v be the number of pairs of points of P which determine a line that
goes through at least u but at most v points of P . Equation 4.6 and basic counting

arguments tells us that Lu,v . n2v2

u3 + nv2

u (see exercise 5.3). Fix a constant C and
consider LC,N/C . Then

LC,N/C ≤
⌊log(N)⌋

∑

i=0

NC2i,C2i−1

=

⌊log(N)⌋
∑

i=0

O

(

4N2

C2i
+ 4CN2i

)

= O





N2

C

⌊log(N)⌋
∑

i=0

2−i + NC

⌊log(N)⌋
∑

i=0

2i





= O

(

N2

C

)

.

(5.1)

In other words, for some Co > 0 we have LC,N/C ≤ Co

(

N2/C
)

. Thus for the
appropriate choice of C at least half of the pairs of points determine a line through
fewer than C or at least C/N points. And consequently at least a fourth of the
pairs go through fewer than C points or a fourth go through at least C/N points.
In either case we are done.

�

Consider a set P of n points and let L denote the set of lines passing through at
least two points of P . An averaging argument (see exercise 5.1) applied to Lemma
5.1 implies that there exists an absolute constant co such that at least con points
of P are incident to at least con lines of L. Then let B be the set of such points,
and take some arbitrary point a ∈ B.

Draw in the lines through a that go through points of P . There must be at least
con such lines. Choose one point other than a on each of these lines and draw in the
circles around a that hit those chosen points (deleting those capturing fewer than
3 points). On each of these circles break the points in triples, possibly deleting as
many as 2 from each. We still have & n points left by our hypotheses (check!).

We call a triple “bad” if all three bisectors formed from its points go through at
least k points. And we call the initial point a from B “bad” if at least half of its
triples are bad. We would like to choose k such that at least half the points of B
are bad. Clearly, the smaller k is the “easier” it is to get k-rich lines and thus more
bad points. However, it will become clear that we would like k as large as possible.

You will show in Exercise 5.2 that we may take k = c2n2

t2 .
Then if we can get the following upper and lower bounds on the number of

incidences I(Lk, P ) of k-rich lines and bad points we will be done:

(5.2) n2/t2/3 . I(Lk, P ) . t4/n2.

Finding an upper bound on I(Lk, P ) is straight forward. We simply apply Equa-
tion 4.6 to find a bound on the number of k-rich lines and then use Theorem 3.1
to get that I(Lk, P ) . n2/k2. Getting a lower bound on the quantity I(Lk, p) in
terms of n and t is somewhat harder. The following lemma is the key to the whole
proof.
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Lemma 5.2. Let T be a set of N triples (ai, bi, ci) of distinct real numbers such
that ai < bi < ci for i = 1, . . . , N and ci < ai+1 for all but at most t − 1 of the i.
Let W = {ai+bi

2 , ai+ci

2 , bi+ci

2 : i = 1, . . . , N}. Then |W | & N
t2/3

.

Proof. Let the range of a triple (a, b, c) ∈ T be defined as the interval [a, c]. By
assumption, the sequence (a1, b1, c1, a2, b2, c2, . . . , aN , bN , cN ) be partitioned into at
most t contiguous monotone increasing subsequences. Partition the real axis into
N/(2t) open intervals so that each interval fully contains the ranges of t triples.
These intervals are constructed from left to right. Let x denote the right endpoint
of the rightmost interval constructed so far. Discard the at most t triples whose
ranges contain x, and move to the right until you reach a point y that lies to the
right of exactly t new ranges. We add (x, y) as a new open interval and continue
in this manner until all triples are processed.

Let s be one of the open intervals defined in the previous paragraph. Each triple
in T whose range is fully contained in s contributes three elements to W ∩s, and no

two triples of T contribute the same triple to W ∩ s. It follows that |W ∩ S| ≥ t
1

3 ,
since otherwise the number of distinct triples of its elements would be smaller than
t. Since the number of intervals s is N/(2t), the conclusion of the lemma follows
by the multiplication principle. This completes the proof of the lemma. �

For each point p 6= a in a bad triple, map p to the orientation of the ray −→ap. By
construction this map is an injection, and W corresponds to k-rich lines. Therefore
the number of k-rich lines incident to a is & n/t2/3. And since a was an arbitrary
element of B, we get that I(Lk, P ) & n2/t2/3.

The only thing that remains is to show that if we take k = c2n2

t2 then half of the
points of P are “bad”. Construct a multigraph G out of the points that are part
of the triples as in the proof of Theorem 4.1. Next apply the result of Exercise 3.5.

Doing this we find that we can take k = c2n2

t2 and at least con/2 points of B will
be bad. We leave the details as an exercise to the reader. See [22] for the details.

Exercise 5.1. Write up the details of the averaging argument which tells us that
“many” points go through “many” lines of L. Hint: recall that we may assume
that t = o(n).

Exercise 5.2. Work out the details showing that we may take k = c2n2

t2 and at
least con/2 points of B will still be bad.

Exercise 5.3. Check that Equation 4.6 and basic counting arguments gives us that

Lu,v . n2v2

u3 + nv2

u .

Exercise 5.4. Find the constants C and Co in the proof of Theorem 5.1 and write
up the details of why we are done in the case where at least a fourth of the pairs
go through at least N/C points of P .

Appendix A. Sums of Squares

Appendix B. Hyperbolas in the Plane

The standard equation for a hyperbola in the plane that is centered at the origin
and whose foci are (−c, 0) and (c, 0) is x2/a2−y2/b2 = 1, where a2+b2 = cc. Fixing
two points F1 and F2 in the plane a hyperbola can also be described as the set of
points P such that ||PF1| − |PF2|| = 2a for some fixed number a. We will tend to
use the latter definition. Check and see how these two definitions are related!
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Appendix C. The Cauchy-Schwartz Inequality

Let {aj}n
j=1 and {bj}n

j=1 be sequences of real numbers. Our goal is to prove that

(C.1)
n

∑

j=1

ajbj ≤





n
∑

j=1

a2
j





1

2

·





n
∑

j=1

b2
j





1

2

.

Let

(C.2) A =





n
∑

j=1

a2
j





1

2

and B =





n
∑

j=1

b2
j





1

2

,

so it suffices to prove that

(C.3)
n

∑

j=1

aj

A

bj

B
≤ 1.

Since

(C.4)

(

aj

A
− bj

B

)2

≥ 0,

we conclude that

(C.5)
aj

A
· bj

B
≤ 1

2

a2
j

A2
+

1

2

b2
j

B2
.

It follows that

(C.6)

n
∑

j=1

aj

A

bj

B
≤ 1

2

n
∑

j=1

a2
j

A2
+

1

2

n
∑

j=1

b2
j

B2
=

1

2
+

1

2
= 1.

Thus we have proved the Cauchy Schwartz inequality:

Theorem C.1. Let aj, bj be as above. Then (6.3.1) holds.

Appendix D. Basic graph theory

To appear soon!

Appendix E. Basic probability theory

Also to appear soon. We promise.

References

[1] P. K. Agarwal, E. Nevo, J. Pach, R. Pinchasi, M. Sharir, and S. Smorodinsky, Lenses in

arrangements of pseudo-circles and their applications, J. ACM, to appear.
[2] M. Ajtai, V. Chvatal, M. Newborn, and E. Szemeredi, Crossing-free subgraphs, Ann. Discrete

Mathematics 12 (1982) 9–12.

Cutting circles into pseudo-segments and improved bounds for incidences, Discrete Comput.
Geom. 28 (2002), no. 4, 475–490.
Falconer conjecture, spherical averages and discrete analogs, Towards a theory of geometric
graphs, 15–24, Contemp. Math., 342, Amer. Math. Soc., Providence, RI, 2004.
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