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ON THE DIFFERENT DISTANCES DETERMINED BY » POINTS*
LEO MOSER, University of Alberta

1. Introduction. # distinct points will always determine (Z) distances.
However, many of these may be the same. We are concerned here with the
number of different distances determined. Let f(#) be the least number of dif-
ferent distances determined by # points in a plane. The vertices of an equilateral
triangle show that f(3) =1 and from the square and the regular pentagon one
easily sees that f(4) =f(5) =2. P. Erdés** has shown recently that

(1) en/logn > f(n) > +/n — 1 — 1,

where ¢ is a fixed constant. The upper bound was obtained by considering the
points of a square lattice. Erdds conjectured that f(n) >n'"¢ for every ¢>0 and
n sufficiently large. The smallness of the lower bound is therefore rather striking.

* The author wishes to express his thanks to Professor A. Brauer for his valuable suggestions

and kind assistance in preparing the manuscript.
** P. Erdés. On Sets of Distances of # Points. this MONTHLY, pp. 248-250, Vol. 53, 1946.
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Nevertheless Erdés wrote that he had long sought to improve it without suc-
cess. In Section 2 we will prove Theorem 1:

2/3

n
(2) f(n) > 5 1.

If the » points form the vertices of a convex polygon, then the least number

Sf*(n) of different distances determined is much larger. In this case Erdés con-
jectured that

€) f*m) = [n/2],

which is strongly suggested by the vertices of the regular polygons, which show
that f*(n) < [#/2]. In Section 3 we will prove Theorem II:

4) ) 2 [(n + 2)/3].

2. Case of » arbitrary points. We first prove two lemmas.

LEMMA 1. Let r be a positive integer, € a real number, 0<e=<1. Let P be the
point (r+¢,0) and Q and R two points in the first quadrant, equidistant from P, and
whose distances from the origin lie between r and r+1. Then QR <2. Note Figure 1.

Proof. Let the circle with center at P and passing through Q and R, cut the
circles ¥2+y?=r% and x?+y*=(r+1)% in Qi(x, ¥) and Ry(x+Ax, y-+Ay), respec-
tively. Clearly Q;R, 2 AR so it will suffice to show that Q,R, <2 or Ax?+Ay?< 4.
We have

s) 2yt =

(6) (4 Ax) + (y+ Ap)? = (r + 1)*

while PQ, = PR, yields

) (F—r—e+ 3= (x+Ax—7— &2+ (y+ Ay
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Simplification of (7), using (5) and (6), yields

® A 14 1— 2
AL PO

so that
1 1

9) 1 - —<Ax<1+4—=3/2.
2r 2r

It is interesting to note that Ax is independent of PR. From (5) and (6) we
have

10) 26-Ax 4 2y-Ay + Ax? + Ay? = 2r + 1.
Further, we may assume Ax2+4Ax2> 3, for otherwise our lemma is proved. Hence
(11) Az + yAy <r-—1,

Now, using the left hand side of (9) to estimate Ax and the fact that x <7 and
x=0, we obtain from (11)

(12) A <r-—1—x‘Ax<r-—x r— x /‘/r—xSI
4 y y -2 Vorta™ "
The lemma now follows from (12) and the right hand side of (9).

S
“"

B A
F1G. 2
LeMMA 2. Given two poinis A and B and n other points Py, P, « - -, P,,
lying om, or to one side of the line AB. Of the distances APy, APy, - - -, AP,,
BP,, BP,, - - -, BP,, at least \/n are distinct.

Proof. Consider all semicircles to one side of 4 B having centers at 4 and B
passing through the points Py, Py, - - -, P, (Fig. 2). Let the number of distinct
semicircles with centers at 4 and B be ¢ and b, respectively. If max {a, b} =>/n
the lemma is clearly true. If, however, a < /% and b <+/z then the number of
intersection points is at most a-b< /% - v/n=mn, since any two of the semicircles
intersect at most once. But this yields a contradiction since each of the # distinct
points Py, Py, - -+, P, is an intersection point of two of these semicircles.
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Hence the lemma is proved.

We note that this lemma is best possible in that, in it, it is not possible in
general to replace v/% by a larger number. Further, we note that by choosing
A and B to be consecutive points on the convex cover of the set of # points the
lemma yields

(13) f(n) 2 vVn—2,

which is already a little better than the right hand side of (1). Indeed, from
(13) and the regular heptagon we may deduce that f(7) =3.

We proceed to the proof of Theorem I. Let 4 and B be two points determin-
ing the minimum distance in the set of # points. Let us denote this distance by
2. One of the half planes determined by 4 B, including the points on the line
A B, contains at least /2 points. Henceforth we will deal only with these
points. Let O be the midpoint of 4 B. With center at O we construct semicircles
of radii 1, 2, 3, - - - cutting the half plane into half-annular boxes which we
make open on the inside and closed on the outside (Fig. 1). Let s be a number,
not necessarily an integer which for the present we restrict only by 1<s=#..
We consider 2 cases.

Case 1. Some box contains at least s points.

Case 2. No box contains as many as s points.

In Case 1, we take a box containing at least s points. This we cut into two
equal parts by a line through O, and retain only one half which contain in the
interior or on its boundary at least s/2 points. Let P be a point in this region
(Fig. 1) making the angle AOP as small as possible. Suppose there are two
other points Q and R in the region equidistant from P. By Lemma 1 we have
QR <2, which contradicts the fact that 2 is the minimum distance determined.
Hence, no two points in the region are equidistant from P. We obtain therefore
at least s/2—1 different distances determined from P so that, in Case 1, we
have

(14) fn) = % ~ 1.

In Case 2, we divide the half-annular boxes into 3 classes, putting a box in
class ¢ if its outer radius r=1¢ (mod 3), 1=1, 2, 3. Now if 4 and B are excluded,
at least one of the classes will contain at least the following number of points:

-1 _n—-2

2 3 6

We retain now only 4 and B and the points of such a class of boxes. If d is any
distance determined between 4 or B and any of the points of our class in a box
outer radius 7, then,

r—2<d=sr+1,
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while for a distance d’ determined between 4 or B and a point of a neighboring
box of the class, say the one of outer radius 743,

r+1<d 2r+4.

Hence, there will be no overlap of distances determined between 4 and B and
the points of the retained sth and jth boxes, respectively, for i. e. 2#j. Suppose
now that there remain 4 and B and ¢ non-empty boxes containing #,, #s, « « -,
n points. Then by our Lemma 2, and the above remarks, we have

(15) ) Z Vi + Va4 -+ Vg,
-2
(16) z St nt -+ n,
moreover
(17) s > ni 7:=1’2131"'!t1

since no box contains as many as s points.
Now, by a well known inequality,

ni + n;

(18) Vi + /ni £ 2V ;

)

so that the right hand side of (15) is not increased by replacing #; and #; by
their arithmetic mean. Hence, in seeking a lower bound for f(#), we may take

n— 2
6!

(19) n1=n2="’=nt=

By (15) and (19), we have

-2 2).
(20) f(n)g%/”m =,‘/(”+6)‘.

But now (17) and (19) give

n—2
21 = ’
(21) T 6s
so that, by (20) and (21), we have
n—2 n
22 == > = — 1.
(22) f(n) PR

If we now combine (14) and (22), we obtain, in any case,

(23) f(n)gmin{%—l,g%——l}, 1=5s=a.
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To obtain the best value for s we let s/2=n/6+/s and find s=n%3/+/9. This
value of s in (23) yields (2). Thus, we have completed the proof of Theorem I:

n2l3
295 !
This is better than the right hand side of (1) for »>5184.

3. Convex Case. We now turn to the case where the # points form the

vertices of a convex polygon, our object being to prove (4). First we consider
the following

LeEMMA 3. Let A and B be two points at the vertices of a sector of a circle less
than or equal to a semicircle. Let P1, Py, - - -, P, be m other points inside or on
the sector. If all the points considered form the vertices of a convex polygon, then from
A (and from B) exactly m—+1 distances are determined.

Proof. If AP;=AP; then clearly, AP;- BP; cannot be part of a convex
polygon. Note Figure 3.

f(n) 2

B

C A
F1G. 3

Now consider the smallest circle containing our # points. If only two points
lie on this circle, then they must be diametrically epposite. In this case, one of
the semicircles will contain at least (#+1)/2 points in or on it, and Lemma 3
will yield

f*(n)>%g["“;2:|, nz3).
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Suppose then, that at least 3 points lie on the circle. We can then find three
points 4, B, C, on it which form a triangle having no angle greater than /2,
for otherwise the circle could be further contracted by shifting it in the direc-
tion of the angle greater than 7/2 (since the center of the circumscribed circle
is in the exterior of the triangle). Since our points are the vertices of a convex
polygon, there are no points inside the triangle 4 BC, and hence at least one of
the sectors determined by 4B, AC, BC, will contain at least [(z+5)/3] points
in or on it, so that by Lemma 3 we obtain Theorem II:

f%@gF;?q.

NOTE ON A SECOND FUNCTIONAL EQUATION, CONNECTED
WITH THE FUNCTION ¢(2)

HARI DAS BAGCHI, anp PHATIK CHAND CHATTERJEE, Calcutta University

It is known* that the Weierstrass function g(z) satisfies the functional
equation:

e
{7(2) — f(»)}?

We propose to determine all the analytict solutions, having at most poles in
the finite plane. If f(x) satisfies (1), so does f(x)+c¢ where ¢ is an arbitrary con-
stant. To within this additive constant we shall show that the only solution is
().

It is clear that f(x) must have a pole at x =0, since otherwise as x—y, the L.S.
of (1) would remain finite for general y, whereas the R.S. would become infinite.
Hence

(1) flx+y) — f(x‘— y) =

g(%)

)
xn

2 f(=) =

where n is a positive integer and g(x) is regular and not zero at x =0.
Divide (1) by 2y and let y—0. We obtain

1 ()
7 = == xim [ 22 ],
2 o Ly{/(®) — /(»)}*
and on using (2) (for the variable y) it is easily calculated that, in order that
the limit on the right may exist and have the right value, we must have n=2

* See Whittaker & Watson, Modern Analysis, (1915), Ex 1, p. 449.
1 On clearing (1) of fractions, the new functional equation has the solution f(x) =const.; but
this trivial case is ruled out.
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