next up previous
Next: About this document ... Up: erdos_dist Previous: erdos_dist

Bibliography

1
B. Aronov, J. Pach, M. Sharir, and G. Tardos.
Distinct distances in three and higher dimensions.
Combinatorics, Probability and Computing, 13:283-293, 2004.
http://www.renyi.hu/~tardos/ or http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html.

2
F. Chung.
The number of different distances determined by $n$ points in the plane.
Journal of Combinatorial Theory, Series A, 36:342-354, 1984.
http://math.ucsd.edu/~fan/ or http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html.

3
F. Chung, E. Szemerédi, and W. Trotter.
The number of different distances determined by a set of points in the Euclidean plane.
Discrete & Computational Geometry, 7:1-11, 1992.
http://math.ucsd.edu/~fan/ or http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html.

4
P. Erdös.
On sets of distances of $n$ points.
The American Mathematical Monthly, 53:248-250, 1946.
http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html or http://www.jstor.org/.

5
J.Solymosi and C.D.Toth.
Distinct distances in the plane.
Discrete & Computational Geometry, 25:629-634, 2001.
http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html or http://citeseer.ist.psu.edu/.

6
N. Katz and G. Tardos.
A new entropy inequality for the Erdös distance problem.
In Towards a theory of Geometric Graphs, volume 342 of Contemporary Mathematics. American Mathematical Society, 2004.
http://www.renyi.hu/~tardos/ or http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html.

7
L. Moser.
On the different distances determined by $n$ points.
The American Mathematical Monthly, 59:85-91, 1952.
http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html or http://www.jstor.org/.

8
J. Pach and M. Sharir.
Combinatorial geometry and its algorithmic applications.
American Mathematical Society, 2009.
book 152 in a series called Mathematical surveys and Monographs.

9
J. Solymosi and V. Vu.
Distinct distances in high dimensions.
In Towards a theory of Geometric Graphs, volume 342 of Contemporary Mathematics. American Mathematical Society, 2004.

10
J. Solymosi and V. Vu.
Near optimal bounds for the Erdos distinct distances problem in high dimensions.
Combinatorica, 28:113-125, 2008.

11
L. Székely.
Crossing numbers and hard Erdös problems in discrete geometry.
Combinatorics, Probability and Computing, 11:1-10, 1993.
http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html.

12
G. Tardos.
On distinct distances and distinct distances.
Advances in Mathematics, 180:275-289, 2003.
http://www.renyi.hu/~tardos/ or http://www.cs.umd.edu/~gasarch/erdos_dist/erdos_dist.html.



William Gasarch 2010-11-22