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We show that an old but not well-known lower bound for the crossing number of a

graph yields short proofs for a number of bounds in discrete plane geometry, which

were considered hard before: the number of incidences among points and lines, the

maximum number of unit distances among n points, the minimum number of distinct

distances among n points.

\A statement about curves is not interesting unless it is already interesting in the case

of a circle." (H. Steinhaus)

The main aim of this paper is to derive short proofs for a number of theorems in

discrete geometry from Theorem 1.

Theorem 1. (Leighton [16], Ajtai, Chv�atal, Newborn, and Szemer�edi [1]) For

any simple graph G with n vertices and e � 4n edges, the crossing number of G on the

plane is at least e3=(100n2).

For many graphs, Theorem 1 is tight within a constant multiplicative factor. This

result was conjectured by Erd}os and Guy [10, 12], and �rst proved by Leighton [16],

who was unaware of the conjecture, and independently by Ajtai, Chv�atal, Newborn, and

Szemer�edi [1]. The theorem is still hardly known, some distinguished mathematicians

even recently thought of the Erd}os{Guy conjecture as an open problem. Shahrokhi,

S�ykora, Sz�ekely, and Vr�to generalized Theorem 1 for compact 2-dimensional manifolds

with a transparent proof (Theorem 5, [21, 22]).

The original proofs of the applications of Theorem 1 shown here (Theorems 2, 3, 4, 6)

used sophisticated tools like the covering lemma [25]. Although some of those theorems

were given simpler proofs and generalizations which used methods from the theory of VC

dimension and extremal graph theory, (see Clarkson, Edelsbrunner, Guibas, Sharir and

Welzl[6], F�uredi and Pach [11], Pach and Agarwal [18], Pach and Sharir [19]), the simpler

proofs still lacked the simplicity and generality shown here. I believe that the notion of

crossing number is a central one for discrete geometry, and that the right branch of

graph theory to be applied to discrete geometry is \extremal topological graph theory"
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rather than classical extremal graph theory. Other lower bounds for the crossing number

(see [22]) may have other striking applications in discrete geometry.

A drawing of a graph over a surface represents edges by curves such that edges do not

pass through vertices and no three edges meet in a common internal point. The crossing

number of a graph over a surface is de�ned as the minimum number of crossings of edges

over all drawings of the graph. It is not di�cult to see that if we allow the intersection

of many edges in an internal point but count crossings of pairs of edges, then we do not

change the de�nition of the crossing number. We denote by cr(G) the planar crossing

number of a graph G. We shall always use #i to denote the number of incidences between

the given sets of points and lines (or curves) in a particular situation under discussion.

We shall write c for a constant; as usual, di�erent occurences of c may denote di�erent

constants.

Theorem 2. (Szemer�edi and Trotter [24]) For n points and l lines in the Euclidean

plane, the number of incidences among the points and lines is at most c[(nl)2=3 + n+ l].

Proof. We may assume without loss of generality that all lines are incident to at least

one point. De�ne a graph G drawn in the plane such that the vertex set of G is the set of

our n given points, and join two points with an edge drawn as a straight line segment, if

the points are consecutive points on one of the lines. This drawing shows that cr(G) � l2.

The number of points on any of the lines is one greater than the number of edges drawn

along that line. Therefore the number of incidences among the points and the lines is

at most ` greater than the number of edges in G. Theorem 1 �nishes the proof: either

4n � #i� l or cr(G) � c(#i� l)3=n2.

For n = l the statement of Theorem 2 was conjectured by Erd}os [9]. Although Theo-

rem 3 below is known to be a simple corollary of Theorem 2, we prove it, since we use it

in the proof of Theorem 4.

Theorem 3. (Szemer�edi and Trotter [24]) Let 2 � k � p
n. For n points in the

Euclidean plane, the number l of lines containing at least k of them is at most cn2=k3.

Proof. Initiate the construction of the graph G from the proof of Theorem 1, taking

only lines passing through at least k points. Note that G has at least l(k � 1) edges.

Hence, we have either l2 > ce3=n2 > c[l(k� 1)]3=n2 or l(k� 1) < 4n. In the �rst case we

are at home, and so are we in the second, as l < 4n=(k � 1) < cn2=k3.

Theorem 3, which was conjectured by Erd}os and Purdy [9], is known to be tight for

2 � k � p
n for the points of the

p
n � p

n grid [2]. In 1946 Erd}os [8] conjectured

that the number of unit distances among n points is at most n1+o(1) and proved that

this number is at most cn3=2. In 1973 J�ozsa and Szemer�edi [13] improved this bound to

o(n3=2). In 1984 Beck and Spencer [4] further improved the bound to n1:44:::. Finally,

Spencer, Szemer�edi, and Trotter [23] achieved the best known bound, cn4=3.

Theorem 4. (Spencer, Szemer�edi, and Trotter [23]) The number of unit distances

among n points in the plane is at most cn4=3.
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Proof. Draw a graph G in the plane in the following way. The vertex set is the set of

given points. Draw a unit circle around each point, in this way consecutive points on the

unit circles are connected by circular arcs: these are the edges of a multigraph drawn in

the plane. Discard the circles that contain at most two points, and for any two points

joined by some circular arcs, keep precisely one of these arcs. Let G be the resulting

graph. The number of edges of this graph is at most O(n) less than the number of unit

distances. The number of crossings of G in this drawing is at most 2n2, since any two

circles intersect in at most 2 points. An application of Theorem 1 �nishes the proof.

Based on earlier work of Kainen [14] and Kainen and White [15], Shahrokhi, S�ykora,

Sz�ekely, and Vr�to [21, 22] found the following generalization of Theorem 1.

Theorem 5. (Shahrokhi, S�ykora, Sz�ekely, and Vr�to [21, 22]) Let G b a simple

graph G drawn on an orientable or non-orientable compact 2-manifold of genus g. Assume

that G has n vertices, e edges, and e � 8n. Then the number of crossings in the drawing

of G is at least ce3=n2, if n2=e � g, and is at least ce2=(g + 1), if n2=e � g � e=64.

Theorem 5 is known to be tight within a factor of O(log2(g+2)) for some graphs [21].

We obtain the following generalization of Theorem 2 by combining Theorems 5 and 1.

Theorem 6. Suppose that we are given l simple curves and p points on an orientable

or non-orientable compact 2-manifold of genus g. Assume that any two curves intersect

in at most one point. Assume furthermore that every curve is incident to at least one

point. Then #i = O
�
(pl)2=3 + p + l

�
if p2=(#i � l) � g and #i = O

�
l
p
g + 1 + p

�
if

p2=(#i� l) � g � (#i� l)=64.

Theorem 7. Suppose G is a multigraph with n nodes, e edges and maximum edge

multiplicity m. Then either e < 5nm or cr(G) � ce3=(n2m).

Take any simple graph H for which Theorem 1 is tight with a drawing which shows it,

and substitute each edge with m closely drawn parallel edges. For the new graph m �H
Theorem 7 is tight. For the proof of Theorem 7 we need the following simple fact:

Proposition 1. cr(k �H) = k2cr(H).

Proof. Take any drawing of H with cr(H) crossings. Substitute the edges of H with

k parallel edges closely drawn to the original edge. In this way we obtain a drawing of

k � H with k2cr(H) edges. On the other hand, take any drawing of k � H . Picking one

representative of parallel edges in kjE(H)j ways, we obtain a drawing of H , which exhibits

at least cr(H) crossings. Any pair of crossing edges in k �H that arose above is counted

kjE(H)j�2 times.

Proof of Theorem 6. For 0 � i � log2m, let Gi denote the subgraph of G in which

two vertices a; b are joined with t > 0 edges if and only if in G they are joined by exactly
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t edges and 2i � t < 2i+1. Set

A = fi 2 [0; log2m] : jE(Gi)j � 2i+3ng and B = [0; log2m] nA:
We may assume e � 5nm. Therefore, since

P
i2A jE(Gi)j � 4nm, we haveX

i2B

jE(Gi)j � jE(G)j �
X
i2A

jE(Gi)j � jE(G)j � 4mn � jE(G)j=5:

Let G�i denote the simple graph obtained from Gi by identifying parallel edges. We have

cr(G) �
log

2
mX

i=0

cr(Gi) �
log

2
mX

i=0

22icr(G�i ) �
X
i2B

c
jE(G�i )j3

n2
22i

�
X
i2B

c
jE(Gi)j3
n22i

=
c

n2

X
i2B

� jE(Gi)j
2i=3

�3

;

with the second inequality following from Proposition 1. Hence, by applying H�older's

inequality with p = 3 and q = 3=2, we �nd that

cr(G) � c

n2

�X
i2B

jE(Gi)j
2i=3

2i=3
�3��X

i2B

(2i=3)3=2
�2

� c

n2m

�X
i2B

jE(Gi)j
�3

� ce3

n2m
:

Theorem 7 has the following immediate consequence concerning incidences between

points and curves.

Theorem 8. Given p points and l simple curves in the plane, such that any two curves

intersect in at most t points and any two points belong to at most m curves, the number

of incidences is at most

c(lp)2=3(tm)1=3 + l + 5mp:

Although Theorem 2 has been given several generalizations in the vein of Theorem 8,

they seem to admit algebraic curves only [19, 6, 11].

In 1946 Erd}os [8] conjectured that n points in the plane determine at least cn=
p
logn

distinct distances and showed that the minimum is at least
p
n. Over the years, this

lower bound has been improved several times. In 1952 Moser [17] proved n2=3, then

in 1984 Chung [5] improved n2=3 to n5=7 and in an unpublished manuscript Beck [3]

proved n58=81�". The best lower bound to date has been proved by Chung, Szemer�edi

and Trotter [7].

Theorem 9. (Chung, Szemer�edi and Trotter [7]) At least n4=5=(logn)c distinct

distances are determined by n points in the plane.

They proved this for a large c and claimed that a much smaller c, perhaps even c = 0,

can be obtained with their method. However, as they remarked, they did not prove

the existence of a single point from which determined many distances. Given points

x1; : : : ; xn, we say that xi determines at least t distances from the others if there are t

points xj1 ; : : : ; xjt such that the distances d(xi; xj1); d(xi; xj2); : : : ; d(xi; xjt ) are distinct

and positive. Here is the best published result for this modi�ed problem.
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Theorem 10. (Clarkson, Edelsbrunner, Guibas, Sharir and Welzl [6]) Given

n points in the plane, one of them determines at least cn3=4 distinct distances from the

others.

Theorem 11. Given n points in the plane, one of them determines at least cn4=5

distinct distances from the others.

Proof. Let t be the maximum number of distinct distances measured from any point.

We may assume t = o(n= logn), otherwise there is nothing to prove. Draw circles around

every point with every distance as radius, which can be measured from that point. We

have drawn at most t concentric circles around each point. De�ne a multigraph whose

vertices are the points, and whose edges are arcs connecting consecutive points on the

circles we have drawn. Delete edges lying in circles containing at most two points. Since

t = o(n), the resulting multigraph G still has cn2 edges. Theorem 7 cannot be applied

immediately, since very high edge multiplicities may occur.

Proposition 2. The number of pairs (f; a), where f is a line with at least k points,

a is an arc representing an edge of G, and f is the symmetry axis of a, is at most

ctn2=k2 + ctn logn.

Proof. By Theorem C, the number of lines with at least 2i points is at most cn2=23i, as

far as 2i � p
n. For each such line, the number of bisected edges is at most 2t times the

number of points on the line. Therefore, the number of pairs (f; a) with k � jf j � 4
p
n

is at most X
i:k�2i�

p
n

ct
n2

23i
2i � ctn2

k2
:

A simple and well-known inclusion-exclusion argument (see [20]) shows that the number

of lines with number of points between a and 2a (4
p
n � a) is at most cn=a. Hence the

contribution of such big lines to the number of pairs is at mostX
i:
p
n<2i<n

ct
n

2i
2i < ctn logn:

Proof of Theorem 11. Now the number of pairs in Proposition 2 is just the number of

edges joining pairs of points which are joined by at least k edges. Thus, deleting all such

edges with k = K
p
t for a suitable constant K, we arrive at a multigraph G1 still having

cn2 edges. The crossing number of G1 is at most 2n2t2. Thus using Theorem 7 we have

2n2t2 � cr(G1) �
cjE(G1)j3
n2K

p
t

� cn6

n2K
p
t

and the theorem follows.

I am indebted to the anonymous referee, whose suggestions substantially improved the

presentation of the paper.
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