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Abstract The paper [10] of J. Solymosi and Cs. Téth implicitly raised the following arithmetic problem.
Consider n pairwise disjoint s element sets and form all (;)n sums of pairs of elements of the same set.
What is the minimum number of distinct sums one can get this way? This paper proves that the number of
distinct sums is at least n%, where ds = 1/ C[s/2] is defined in the paper and tends to e~ ! as s goes to infinity.
Here e is the base of the natural logarithm. As an application we improve the Solymosi-T6th bound on an
old Erdés problem: we prove that n distinct points in the plane determine Q(n&?_il_‘) distinct distances,
where € > 0 is arbitrary. Our bound also finds applications in other related results in discrete geometry. Our
bounds are proven through an involved calculation of entropies of several random variables.

Mathematics Subject Classifications (2000): 52C10, 11B75

1. Introduction

For an n by s matrix A = (a;;) we define S(A4) = {a;; +a;x|1 <i < n,1 < j <k < s} the set of pairwise
sums of entries from the same row. Let fs(n) be the minimum size |S(A)| for a real n by s matrix with all
its sn entries being pairwise distinct.

The goal of this paper is to study the asymptotic behavior of f,(n), especially for large constant values
of s.

The motivation for this problem comes from the breakthrough paper of J. Solymosi and Cs. Té6th [10].
They proved an Q(n®/7) bound for an old problem of P. Erd6s [4], the minimum number distinct distances
n points determine in the plane. This result substantially improved earlier works of L. Moser [6], F. R.
K. Chung [2], F. R. K. Chung, E. Szemerédi and W. T. Trotter [3], and L. Székely [12]. See [7] for the
background of this intriguing old Erd&s problem and for further references.

Solymosi and Téth implicitly use fz(n) = Q(n'/?) in their proof, and a closer look reveals that any
stronger bound for fs(n), with a constant s would improve their result. Section 4 has the details, Corollary
15 states the bound we get on the number of distinct distances in the plane.

We have that fa(n) = 1, fz(n) = O(n'/3) and f4(n) = O(n'/?) but for fs(n) and above the correct
order of magnitude is unknown. The best current bounds for f5 and fg are:

n*/1 < fs(n) < fe(n) = O(n®/%).

These bounds are special cases of a construction of Imre Ruzsa and Theorem 1 below. This special case
of Theorem 1 (with a worse constant factor) has a much simpler proof than the full theorem as shown in
Section 5.

The best upper bound on f,(n), i.e., the best construction is due to Imre Ruzsa [9], he proves

for even s. The lower bound of the following Theorem is stated for odd values of s. It is interesting to note
that both the known lower and upper bounds are identical for the functions for,_1(n) < faor(n) but for k > 3
we have no other indication for these functions being close to each other.

Theorem 1. For an integer k > 2 we have

where for k < 14 we have



while for k > 14 we have
k
1 k3 — 7k% 4 20k — 40
Ck = Z o (k*

— 8K + 26k2 — 46k + 40)k!”

1=
Notice, that both definitions of ¢ gives the same value for ¢14.

It is easy to see, that the limit of the values ¢ as k goes to infinity is e, the base of the natural logarithm.
Thus we have the following

Corollary 2. For every e > 0 we have a positive integer s = s(e) with
fs(n) > nl/efe‘

Note, that the limit of the exponent in the Ruzsa construction is 1/2, so the lower and upper bounds
are far apart.

In Sections 2 and 3 we give the proof of Theorem 1. In Section 4 we apply it (or rather Corollary 2) to
get an improvement over the Solymosi-Téth bound on the number of distinct distances n point determine
in the plane (see Corollary 15). We also give references to other related problems where Corollary 2 could
be used in discrete geometry. In Section 5 we give an elementary and simple proof of the first nontrivial
case of Theorem 1: we prove that f5(n) = Q(n*/'1). We close the paper with concluding remarks and open
problems in Section 6.

2. The proof—Reduction to a linear program

Let us fix the positive integers s, n and an n by s real matrix A. Our proof does not use in full generality
the assumption that all entries of A are distinct. It is enough to make the slightly weaker assumption that
no two rows of A have two common entries. Our goal is to prove a lower bound on |S(A4)].

Let I = {1,2,3,...,s} be the set of column indices. For subsets U,V C I and for an s-tuple R =
(@1,...,as) we define the UV pattern py,v(R) of R to be a sequence of real numbers consisting of the
differences a; — a; for 4,5 € U and for 4,j € V and the sums a; +a; for i € U and j € V. We define

H(U,V) = H(puv(R)),

where H denotes the entropy and R is a uniformly distributed random row of A. All entropies and all
logarithms in this paper are binary.
The next lemma stating linear constraints on the entropies H (U, V) is crucial for the proof.

Lemma 3. Let U,U’',V,V' C I. We have

(a) H(U,V) = H(V,U);

(b) HU,V) < HU', V') if U CU" and V C V';

(¢c) HU,V)=0ifU=0 and |V| = 1;

(d) HU,V) <log|S(A)| if U #V and |U| = |V| = 1;
(e) HU,V)=logn ifUNV #Qand [UUV|>1;

() HUUU,VOUV') + HUNU,VNOV') < HU,V) + HU', V') if UA U UV AV £ 0.

Proof: We use the well known properties of the entropy to prove this lemma.

A. Range. For a random variable F' that has k possible values H(F) < logk with equality if F' is
distributed uniformly.

Part (c) follows since py,v (R) is constant in that case.

Part (d) also follows since py,v (R) consists of a single value from S(A) in that case.

Part (e) of the lemma also follows from the above property. The pattern py,y(R) contains 2a; for the
index ¢ € U NV and thus it determines a; and with it all other values a; with j € U UV. As two entries
uniquely determine the row of the matrix A we have that py,yv (R) is different for all the n rows of A, thus
it is uniformly distributed among n possible values.

B. Monotonicity. If the value of a random variable F' uniquely determines the value of another random
variable G then we have H(F') > H(G).

Part (b) of the lemma follows as the pattern pyr v+ (R) contains all entries of the pattern py v (R).
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Part (a) of the lemma also follows as the patterns py,v(R) and py,uy(R) contain the same entries, so
they mutually determine each other.

C. Submodularity. Suppose that the value of either one of the random variables F; and F, determines
the value of the random variable G; and the values of the random variables F; and F, together determine
the value of the random variable G». In this case we have H(G1) + H(G2) < H(Fy) + H(F3).

For part (f) of the lemma we use the submodularity of entropy as stated above. Clearly the pattern
punur,vav' (R) is determined by either one of py,y (R) and pyr v/ (R). We need to show an entry a; + a; in
puuwr,vuv (R) is determined by the two patterns py,y (R) and pyr v+ (R). Indeed, the term a; & a; in the
former pattern can be expressed as a sum or difference of the terms a; +a;, and a; +ay, in the latter patterns
ifke(UnUHYUVNV). 1

Lemma 3 contains linear constraints on the entropies H(U,V) and log|S(A)|, thus solving them as a
linear program provides a bound on |S(A)|. This is indeed the route we will take. The rest of the proof of
the lower bound of |S(A)| uses solely Lemma 3. We remark here that the linear program defined by Lemma
3 has a unique optimal solution for all values of s except for s = 27 or s = 28 where the optimal solutions
are the convex combinations of two extremal optimal solutions.

Our first step is to use averaging to decrease the exponential number of variables to less than s? of them.

For integers i,7 > 0,1 < i+ j < s we define

where the summation extends over all (%) (n;’) pairs of disjoint subsets U and V of I with |U| = i and

|[V] = j. (We consider the values H; ; to form a matrix H with some entries of this matrix missing. We will
only use the values H; ; satisfying 0 <i,j <kand 1 <i+j <2k—1 where k = [s/2].)

Lemma 4. For ¢, j nonnegative integers with 1 < i+ j < s we have:
(a) (Symmetry) Hz',j = Hj,i,‘
(b) (monotonicity) H;; > Hiyq,; ifi+j <s—1;
(c) Hop =1;
(d) Hiy >1—1log|S(A)|/logn;
(e) (COHVerty) H,'_l,j + Hi-i-l,]' > 2Hz"j ifi>land2<i+j<s-—1;
(f) H,',j > HH-LJ' + Hi,j-i-l ifi+j<s-—1.
We could also state the non-negativity of these variables, but we will not use it.
Proof: Parts (a), (b), (c), and (d) of this lemma follows from the corresponding parts of Lemma 3 by
simple averaging.
Part (e) follows from part (f) of Lemma 3, here the averaging is over the four-tuples of sets U, V,U', V' C
I satistying |U| = |U'| =4, |[UNU'|=i—-1, V=V, |V|=jand TUU )NV = 0.
Finally for part (f) of this lemma consider two disjoint subsets U and V' of T (not both the empty set)
and an index k € I\ (U UV"). Applying Lemma 3(f) for U, U' = U U {k}, V = V' U {k}, and V' one gets

HUVY+HU',V)<HWU,V)+HU,V".
Here Lemma 3(e) applies and yields H(U', V) = logn, thus we have
HU, V') +logn < HU,V)+ HU',V").

Part (f) of the lemma follows from averaging over all pairs of disjoint subsets U, V' C I with |U| = ¢ and
|V'| = j and for all possible indices k. B

We remark that the linear program defined by Lemma 4 is already tractable by standard linear pro-
gramming methods for small values of s but as we will see, considering the cases s < 28 only can be
misleading.

3. Solving the linear program



In this rather technical section we combine the inequalities in Lemma 4 to prove an upper bound on
H; 1 and thus a lower bound on the size of S(A).

The optimal solution of the linear program in Lemma 4 is the same for an odd number s and for the
next even number (and is unique unless s is either 27 or 28). Since our goal is simply to prove a lower bound
on |S(A)| we assume s = 2k — 1 for some integer k& > 3.

3
Lemma 5. Hk:—2,k—1 S mHO,k—l

Proof: By Lemma 4(e) the columns of the matrix H are convex, therefore we have

Hyp—1—Hp_2p1

Hy o1 —Hppa
k—2 )

2

>Hp 3p-1—Hpo2p-1>

Using parts (f), (b) and (a) of Lemma 4 we get
Hy 3p1—Hpop1>Hp 33> Hy1p = Hpp—1.
Combining the last two displayed inequalities we get

Hop1—Hp 211 S Hy o p1—Hpp S Hy 951 — (Hi—3k-1 — He—2,k-1)
k—2 - 2 - 2

Hok-1—Hi—2.k—1
F—2
- )
2

Hy_ 31—

yielding the claimed statement by rearrangement. B

Lemma 6. Suppose we have H; 1 ; < aHy ; for some 3 < j < k and a > 0. If (j — 3)a < 2 then we also
have H;j 5 ;1 < BHp ;1 for = (24 a)/(j + ) >0 and (j — 4)8 < 2 is also satisfied.

Proof: We consider the following four inequalities:
Hoj+ Hyj 1 < Hyj1,
by Lemma 4(f);

Hj 251 —Hjj1  Hojr—Hj2j1
2 = j—2 ’

by the convexity of column j — 1 (Lemma 4(e));

Hj2j1—Hjj1 Hij1—Hj2j1
2 = j—3 ’

for 7 > 3 by the convexity of the same column; finally
Hjj1 < aHo,,

by assumption and symmetry (Lemma 4(a)). We sum these inequalities with the non-negative coefficients a,
2—(j—3)a, (j —3)a, and 1, respectively, and rearrange to get the inequality H;_ ;_1 < SH j_1 as claimed
in the lemma. Notice that for j = 3 the third inequality is not valid but we use it with zero coefficient.
Simple calculation yields the claimed bound on 5. B

We need a closed form for the continued fraction in the next lemma. Note that as a consequence of the
lemma, the corresponding infinite continued fraction evaluates to e, the base of the natural logarithm.
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Lemma 7. For an integer k > 1 and real z < k?/(k — 1) we have

1 1 k—=x
R p— _,X;EJ“(k?—(k—l)x)k!'
6—... =

b+l k—1

F+2—=

For k =1,2,3,... the left hand side of the equation in the lemma is understood to be

3—ux,

1
3_4—.7:’

1
3 - 5
4-35

etc.

Proof: The proof is by induction on k. The k = 1 case is trivial. For £k > 1 we use the inductive
hypothesis for ¥ =k—1and 2’ = (k—1)/(k+2—2) < (k—1)?/(k —2), and a simple calculation yields the
lemma. B

Instead of Theorem 1 we prove the somewhat stronger statements of Theorems 8 and 10.

Theorem 8. Let 2 < k <14, n > 1, and let A be an n by (2k — 1) real matrix with no two distinct rows
sharing more than a single entry. Then we have

|S(A4)] > nt/ex,

. k
withey =Y ;o 5 + m

Proof: Previously in this section we assumed & > 3 so the k = 2 (s = 3) case must be dealt with
separately. One can either solve the linear program of Lemma 4 (there are only four distinct relevant
variables in this case) or use direct reasoning as in the beginning of Section 5. This s = 3 case was already
discussed in [10].

For k¥ > 3 we prove a bound H;_;; < o;Hp; by reverse induction on j = k —1,...,2. We use
Lemma 5 to get ax—1 = 3/(k + 1) as the bases of our induction. We use Lemma 6 for the inductive
step to get aj_1 = (2 + «a5)/(j + a;). Notice that the (j — 3)a; < 2 condition is satisfied at j = k — 1
because of the & < 14 assumption and this condition is preserved by Lemma 6. Rewriting the recursion to
-1 =G —-2)/((F+1)— (1 —a;)) and writing 1 — ag—1 = (k—2)/(k+1) we get the following continued
fraction expansion for as:

1 — Qg =

We further have
2Hy3 — Hoy < Hyy = Hip < asHy < as(Ho — Hi ),

by Lemma 4(e), Lemma 4(a), the statement above, and Lemma 4(f), respectively. By rearrangement, and
using Hy; =1 (Lemma 4(c)) we get the bound Hy; < (14 a2)/(2 + az). By Lemma 4(d) we get

1 1
logn/log|S| < ——— <24+ ay; =3 — .
g/ g' |_1—H1,1_ 2 4:_‘5_6 23
T k—2

k= %FT

Lemma 7 provides a closed form for the continued fraction of the above statement and thus proves the
theorem. W

In order to use Lemma 6 recursively as in the proof of Theorem 8 we need a base case. Lemma, 5 cannot
be used for this if k¥ > 14 as the inequality required for Lemma 6 to apply ((j — 3)a < 2) does not hold for
j=k—1and a =3/(k+1). The next lemma provides the base j = k — 2 case for large k.
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Lemma 9. Ifk > 14 we have Hy_3 ) 2<k2 k+4H0k 5.

Proof: We combine six inequalities to get the desired bound. We use

Hy op1 < ——Hyp1

3
—k+1
and

3
Hi 21 < EHl,kfl-

The former inequality is provided by Lemma 5, while the latter inequality can be proven the same way. We
also use
Hop—1 + Hyp—2 < Hop—2

and
Hyp 1+ Hop o< Hip o

provided by Lemma 4(f). Finally we also use

Hy 3p2—Hp_ap1 < Hypo—Hp 352
2 - k—4

and
Hy spo—Hyop-1  Hopo—Hp_352

2 - k-5 ’
both coming from symmetry (Lemma 4(a)) and the convexity of column k — 2 (Lemma 4(e)). We sum the
above six inequalities with coefficients (k + 1)(2k + 3), k(k — 14), 3(2k + 3), 3(k — 14), 3(k — 4)(k + 17),
and 3(k — 5)(k — 14), in this order, and rearrange to obtain the bound of the Lemma. Note, that all these
coefficients are non-negative if ¥ > 14. B

Theorem 10. Let k > 14, n > 1, and let A be an n by (2k — 1) real matrix with no two distinct rows
sharing more than a single entry. Then we have

|S(A)| > nt/ex,

. o~k 1 k3 —7k24+20k—40
withep =3 o7 + (k% —8k3+26k2—46k+40)K! -

Proof: We copy the proof Theorem 8. We prove a bound H;_1; < a;Hp; by reverse induction on
j=k—2,...,2. We use Lemma 9 for the base case j = k — 2 and aj_» = (2k + 3)/(k* — k + 4). Lemma 6
gives aj_1 = (2+¢;)/(j+«;)) since (j —3)a; < 2for j = k—2 and so it is true for all values of j considered.
As in the proof of Theorem 8 we get a continued fraction expansion of ay, in this case it is:

1—a2: 3

Just as in the proof of Theorem 8 we get
logn/log|S| <2+ as.

Thus we have 1
logn/log|5|§3—4 5

3
e k—4
k—Z——E—
o1 k2—3k+1
k2 —k+4

Lemma 7 provides a closed form for the continued fraction of the above statement and thus proves the
Theorem. B

4. Distinct distances in the plane

As mentioned in the introduction, the problem considered in this paper is a byproduct of the paper [10]
by J. Solymosi and Cs. Téth. One of their lemmas can be stated in our notation as follows.
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Lemma 11. [10, Lemma 5] Let A = (a;;) be an n by 3 real matrix with all its entries pairwise distinct.
Assume that ai1 < a2 < a3 for i = 1,...,n, and assume also that a;3 < a;t1,1 for all but at most t — 1
indicesi=1,...,n— 1. Then

IS(4)] = QN/E1).

We generalize this lemma as follows. We include the simple proof along the same lines.

Lemma 12. Let s, and t < n be positive integers and let A = (a;;) be an n by s real matrix with all the ns
entries pairwise distinct. Assume that max; a;; < min; a;41,; holds for all but at most t — 1 of the indices
t=1,...,n—1. Then

IS > | 52| - £

Proof: We find | 3;] pairwise disjoint real intervals, each containing all entries of ¢ rows of A. This can
be done from left to right on the real line using a greedy strategy. Let A; be the submatrix of A consisting
of the t rows fully contained in the interval I. Clearly |S(A;)| > fs(t) and S(A;) C S(A). Furthermore
S(Ar) and S(Ay) are disjoint if I and I’ are disjoint, yielding the lemma. B

With the help of this lemma we get:

Theorem 13. Let us be given n points in the plane such that from any one of the points there are at most
t distinct distances to the other points. Then

t5
L0 >

where ¢ = ¢(s) is a positive constant depending on s.

ent,

Proof sketch: Solymosi and Téth in [10] prove that n points in the plane determine Q(n8/7) distinct
distances. Their proof can be considered the s = 3 special case of our proof. The beautiful proof is based
on the method of L. Székely, uses the crossing number theorem of M. Ajtai, V. Chvatal, M. Newborn, and
E. Szemerédi [1] and F. T. Leighton [5], and the point-line incidence theorem of E. Szemerédi and W. T.
Trotter [13]. As most of the proof goes through without a change we only sketch the differences and refer
the reader to the original proof for details.

We consider the same incidences between points and circles as in [10]. We partition the points incident
to a circle into s-tuples (rather than triplets as in [10]). We construct a topological graph by connecting at
most a single pair of points along the circle from every s-tuple, a pair with a bisector not rich, i.e., not going
through more than en?/t? points. If no such pair exists we call the s-tuple bad. We deduce (as in [10]) from
the crossing number theorem that most of the s-tuples are bad. Now we contrast the upper bound of the
Szemerédi-Trotter theorem on incidences between points and rich lines, to the lower bound obtained from
Lemma 12 (in place of Lemma 11 in [10]). All calculations of the paper go through with this modification
and they yield Theorem 13. B

The next corollary is straightforward consequence of Theorem 13, while Corollary 15 below is a conse-
quence of Corollaries 2 and 14.

Corollary 14. If for some positive integer s and positive real a we have fs(n) = Q(n®) then the following
holds. Any set P of n points in the plane has an element from which the number of distinct distances to the
other points of P is

Q(n7==).

Corollary 15. For any € > 0 we have that any set P of n points in the plane has an element from which
the number of distinct distances to the other points of P is

Q(nF=179).

Subsequent to the paper [10], it turned out that the same proof technique can be used to prove gener-
alizations of the result in [10]. The bound on the number of appearances of the k most frequent distances
among n points in the plane in [11] and the bound on the number of equilateral triangles n points in the
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plane determine in [8] both imply Corollary 15, and both heavily rely on Corollary 2, the main result of this
paper.

5. An elementary proof

In this section we consider fs for small values of s. Trivially fi(n) =0, f2(n) =1.
We claim that f3(n) ~ (6n)'/3, more precisely,

fatw) = min | (7) >}

Indeed, each row of an n by 3 matrix A of all distinct entries determines three distinct sums in S(A) and
these three sums in turn determine the entries and thus the row. Thus (fsén)) > n must hold. To see the

claimed equality we construct for an arbitrary integer m > 3 a matrix Ag of n = (’g) rows and three columns
from a rationally independent set S of m reals. Each row of Ag is of the form

r+y—2z r—y+z —r+y+z

( 2 ’ 2 ’ 2

)7

where {z,y, 2z} is a different three element subset of S for each row. Notice that all entries of Ag are different
and S(4g) = S.

It is easy to see, that f3(n) < fi(n) < 2f3(n), thus f4 has the same order of magnitude as f3 (namely
n'/3). Indeed add an extra column to the matrix Ag constructed above making each row add up to zero.
Notice that the modified matrix A’ has still all different entries and furthermore S(4%) = SU (-S). More

precisely, we claim that
min {m‘ (?) > 4n} < fa(n) < 2min {m‘Z(Tg) > n} .

Indeed, each three element subset of a row of an n by 4 matrix A of all different entries determine three
different sums in S(A) and a moment notice verifies that all 4n triplets obtained this way are distinct proving
the lower bound on f4(n). For the upper bound consider an m element rationally independent set S and
the (') by 4 matrix A% constructed above. Notice that by using all rows of A and —AY; we get a 2(7}) by
4 matrix A" (S) of all different entries with S(AY) = S(A%) = SU (—S5). Notice that the lower and upper
bounds differ by at most 3 (and this can be further reduced by simple observations).

The observations above on f3 appeared already in the paper of Solymosi and Té6th [10] and were used to
prove a lower bound on the number of distinct distances n points determine in the plane. It was clear from
their proof, that an improved lower bound for fs even if for a higher constant value of s would improve their
bound on the number of distances. It was independently found by Gyula Karolyi and Tibor Szabd that f4
has the same order of magnitude as f3 and thus it cannot be used in this manner.

Next we consider f5(n) for which the actual order of magnitude is not known, but Theorem 1 gives
fs(n) > n*/". Here we give an elementary proof of this result (with a constant multiplicative factor in the
bound). This proof can serve as a motivation for the general result, the techniques of the proof of Theorem
1 were introduced to generalize this elementary proof below. Note also that the lower bound for fs(n) in
Theorem 1 is very close to the lower bound presented here: for arbitrary s > 7 the improvement in the
exponent of n is only in the third digit after the decimal point.

Theorem 16. f5(n) = Q(n?/11).

Proof: Let A be an n by 5 real matrix of all distinct entries with S = S(A) having minimal size
|S| = m = fs(n). We call a real value = heavy if it can be expressed as z = u — v with u,v € S in at least
ml/* different ways and z is light otherwise. We call a row of A heavy it has two distinct entries b and ¢
with b — ¢ being heavy, otherwise the row is called light.

Our goal is to bound the number n of rows of A in terms of m and we do this separately for heavy and
light rows.



Clearly there are only m? ways to form a difference z = u — v from values u,v € S, so there are at
most m?/ m}/* = m7/* heavy numbers. Given any value z it can be expressed as the difference between two
distinct entries of the same row of A in only m different ways, as the sum of these two entries is a value
in S and the sum and the difference together determines the entries (we use here that all entries of A are
distinct). The last two statements together bound the number of heavy rows in A by m™/* .m = m'/4.

Now consider a light row (a1, a2, a3, as,as) of A. We identify this row with revealing limited information,
and use this to bound the number of light rows. We first reveal u = a; +a» and v’ = a; +as. Both numbers are
from the m-element set S so we have m? choices for these values. With this we also identified u —u' = a3 —as
which must be a light number. Thus writing u — u' = (as + a4) — (a3 + a4) = (a2 + as) — (a3 + as) are two
of the less than m'/* ways u — u' can be expressed as the difference of two values in S. So we have less
than (m'/4)? = m'/2? choices when revealing the values v = as + a4, v' = as + as. Just as above, the value
v—v' = a4 — a5 is now revealed, and it must be light number, thus v —v' = (a1 +a4) — (a1 + as) is one of the
less than m!/4 ways v — v’ can be expressed as a difference of values in S. So for revealing w = a; + a4 we
have less than m!/4 choices. At this point a; = (u 4+ w — v)/2 is also revealed, so the row itself is identified
(as all entries of A are distinct). This limits the number of light rows by m? - m'/2 . m1/4 = m11/4,

Thus n < 2m''/* and so f5(n) = m > (n/2)*/11. 1

6. Concluding remarks and open problems

As we have already mentioned the orders of magnitude of the functions fs(n) are unknown for s > 5.
Improving either the lower or the upper bounds is a challenge.

One could hope to improve the lower bounds by the methods of this paper, i.e., considering a uniformly
distributed random row of a matrix with all distinct entries, several linear functions on this row, and using
inequalities on the (joint) entropies of these functions. There is room for improvement. In this paper we
restricted our attention to specific collections of pairwise sums and differences only. One can try use different
collections, like H(a + b, ¢+ d) or even linear combinations of a different type, like H(a + b+ ¢+ d). Here a,
b, ¢, and d represent distinct entries of the random row. Submodularity gives a lot of inequalities, like

H(a+bb+c,c+d)+H(a+b+c+d) <H(a+b,c+d) +H(b+c,d+ a),

but the author was unable to use these additional inequalities to obtain better bounds on f;. One could
also try to use information inequalities that are not consequences of the basic inequalities of Shannon type
(monotonicity and submodularity). Such inequalities were published by Zhen Zhang and Raymond W. Yeung
[14] but they seem to be too complicated to easily lend themselves to applications.

The original motivation for the problem considered in this paper is its applicability to the Erdds problem
of finding the minimum number of distinct distances n points determine in the plane as formulated in
Corollary 15. The Ruzsa construction shows that one cannot use this theorem directly to prove an Q(n8/?)
bound on the number of distinct distances. One may try to modify the lower bound proof on the number of
distinct distances by letting the parameter s grow with n. Unfortunately a simple modification of the Ruzsa
construction is still in the way of proving Q(n®/°t¢) in this way. Indeed, one can show that for every e > 0
there exists § > 0 with

fns () = O(n'/+).
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