Europ. J. Combinatorics (1997) 18, 1-9 @

A New Game Chromatic Number

G. CueN, R. H. ScHELP AND W. E. SHREVE

Consider the following two-person game on a graph G. Players I and II move alternatively to
color a yet uncolored vertex of G properly using a pre-specified set of colors. Furthermore,
Player II can only use the colors that have been used, unless he is forced to use a new color to
guarantee that the graph is colored properly. The game ends when some player can no longer
move. Player I wins if all vertices of G are colored. Otherwise Player II wins. What is the
minimal number Xx#(G) of colors such that Player I has a winning strategy? This problem is
motivated by the game chromatic number x,(G) introduced by Bodlaender and by the
continued work of Faigle, Kern, Kierstead and Trotter. In this paper, we show that x#(7) <3
for each tree T. We are also interested in determining the graphs G for which x(G) = x#(G),
as well as x(G) for the k-inductive graphs where k is a fixed positive integer.
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1. INTRODUCTION

Let G=(V, E) be a graph and let X be a finite set. A vertex coloring of G is a
mapping from V to X. A coloring of G is proper if u and v are assigned different colors
whenever uv is an edge in G. As usual, the chromatic number is defined to be the
smallest |X| such that the graph G can be colored properly with the colors of X.

The game chromatic number was introduced by Bodlaender [1], and developed by
Faigle, Kern, Kierstead and Trotter [5]. For the completeness of this paper, we state
the definition of game chromatic number given in [5].

The game chromatic number is based on the following modified coloring problem as
a two-person game in which the first player tries to color a graph and the second tries
to prevent this from happening. Let G = (V, FE) be a graph, let ¢ be a positive integer,
and let X be a set of colors with |X|=1t The two persons compete in a two-person
game lasting at most n =|V| moves. They alternate turns, with a move consisting of
selection of a previously uncolored vertex x and assigning it a color from X distinct
from the colors assigned previously (by either player) to neighbors of X. If, after n,
moves, the graph is colored, the first player is the winner. The second player wins if an
impasse is reached before all vertices in the graph are colored; that is, if for every
uncolored vertex x and every color « from X, x is adjacent to a vertex having color «.
The game chromatic number of a graph G, denoted by x,(G), is the last ¢ for which the
first player has a winning strategy.

The game chromatic number of a family & of graphs, denoted x (%), is then defined
to be max{x,(G):G € #}, provided that the value is finite; otherwise, x,(%) is infinite.

It was shown that the game chromatic number of the family of trees is at least 4 and
at most 5 by Bodlaender [1]. Later, Faigle, Fern, Kierstead and Trotter [5] showed that
the game chromatic number of the family of trees is 4. Recently, Kierstead and Trotter
[6] proved that the game chromatic number of the family of planar graphs is at most 33.
Inspired by their work, we present in a new coloring game with one more condition for
the second player. The additional condition is that the second player may only use one
of the colors introduced earlier by the the first player unless he is forced to use a new
color to guarantee that the graph is colored properly. Such a game is called the
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chromatic game II. Similarly, the game chromatic number II of a graph G, denoted by
X#(G), is the least ¢ for which the first player has a winning strategy in the chromatic
game number II. The game chromatic number II of a family %, is defined to be
max{x#(G):G e ¥}, provided that the value is finite. Otherwise, (%) is infinite.
Clearly,

X(G)=x#(G)=<x,(G)<AG) +1,

where A(G) is the maximum degree of G.

Let G be a graph obtained from a complete bipartite graph K, ,, by deleting a perfect
matching. Then, x(G)=2 and x7#(G)= X,(G)=n. Thus, there are infinitely many
graphs such that x#(G) — x(G) is unbounded. In the next section, we will investigate
the graphs for which x(G) = x#(G). In Section 3, we will determine xF(7) for each
tree 7. In Section 4, the game chromatic number II is investigated for k-inductive
graphs with a fixed constant k.

Let G = (V, E) be a graph and let v be a vertex of G. We will use N(v) to denote the
open neighborhood of v and N[v] to denote the closed neighborhood of v; that is,
N[v] = N(v) U{v}. In general, for a positive integer m, we define

N,,[v] ={w e V :the distance between v and w is at most m}.

Clearly, N,[v] = N[v].

2. Grapus FOR WHICH X(G) = x#(G)

In this section, we investigate graphs for which the chromatic number and the game
chromatic number II are same. First, we characterize all bipartite graphs satisfying the
above condition.

THeEOREM 1. Let G =(V, E) be a connected bipartite graph with parts V; and V..
Then, x¥(G)=2 iff there is a vertex v € V such that N,[v] =V that is, N(v) =V, for
some v € V,, where {i, j} ={1, 2}.

Proor. To prove the sufficiency, without loss of generality, assume that there is a
vertex v; € V; such that N(v,) = V,. Clearly, it is sufficient to show that x#(G)<2. Let
X ={1, 2} be a color set. Initially, the first player colors the vertex v, with the color 1.
Since N(v,) = V,, by using the color 1, the two players can only color the vertices in V.
Thus, the first player has a winning strategy if he does not introduce color 2 until all
vertices in V; are colored.

To prove the necessity, suppose that N(v,) # V,,, if for every v, e V, and i=1, 2,
where the index is taken modulo 2. Let X ={1, 2} be a color set. Without loss of
generality, assume that the first player first colors color a vertex v; € V;. Then, the
second player has a winning strategy if he colors a vertex v, € V, — N(v;) with color 1
for his first step. Therefore, xF(G) = 3.

In Bodlaender’s original game, the coloring number of a graph may depend on
whether the cooperative or the obstructive player makes the first move. In the present
model, the coloring number of a graph may also depend on whether the cooperative or
the obstructive player makes the first move. For instance, let G be a graph obtained
from Ps=v,v,v3v4vs by adding a vertex v, and an edge vyvs. Clearly, N,[vs] = V(G)
holds. By Theorem 1, x#(G) =2 if the cooperative player makes the first move. On the
other hand, it is not difficult to see that the coloring number is 3 if the obstructive
player makes the first move. In fact, the strategy for the obstructive player is that of
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coloring the vertex v, at the first step and then coloring either v, or vs with the same
color as used for v,. (This move depends on which vertex of v; or vs is available after
the cooperative player has made his/her first move.)

It is not difficult to see that the ‘if’ part of the above result can be generalized as
follows.

THEOREM 2. Let G be a m-multipartite graph with parts V, V,, ..., V,,. If there is a
vertex v; € V; such that N(v;)=V(G)—V, for each i=1,2,...,m, then X}(G)=
X:(G)=m.

Let K, ,, ,, be a complete m-multipartite graph with the vertex set partition
Viuw,U---UV,, such that |V|=1. Then, x#(K,,. ,)=m. If [;=2 for every
i=1,2,...,m, X,(K; 1,..,) =2m — 1. Also, the following result is of interest.

THEOREM 3. Let P denote the Petersen graph. Then, X(P)=x#(P)=3 and
X:(P)=4.

Proor. To prove the theorem, we refer to the outer cycle of the Petersen graph by
U1U,V3V4VUsV,, to the inner cycle by vev,vguov gvs, and to the matching between two
cycles as v vg, V,V9, U3V, V4V o and vsvg. The first player initially colors v; and only
uses color 1 until a maximum independent set has been assigned color 1. Without loss
of generality, we assume that the second player will color one of vs, v; and vy:

(i) If the second player colors vs, the first player colors v,o,. Then, the second player
has to color vg with color 1.
(ii) If the second player colors vy, the first player colors v,. Then, the second player
has to color v, with color 1.
(iii) If the second player colors v,, the first player colors vy. Then, the second player
has to color v, with color 1.

Notice that the graph formed from P by deleting the colored vertices in each
case described above is the union of the three independent edges. Therefore,
Xg(P)=3. O

One of the main reasons for introducing x#(G) is that it is likely that x#(G) = x(G)
for many graphs G. This likelihood is intriguing in that such graphs G can be properly
colored with x colors by two persons (each coloring essentially one-half of the vertices)
with only one of these persons coloring in an intelligent way. We shall determine a
class of graphs G where x#(G)=x(G). It is likely that when G is such that
X(G) < 8(G), then X(G) < X,(G). Thus one would not expect to find many graphs G
for which Xx,(G) = x(G). It is of interest to determine graphs for which the chromatic
number and the game chromatic number II are the same. We think that the graphs
with bounded degrees and a very large girth may have this property. It also is of
interest to determine the graphs for which the two different chromatic numbers are
same.

The clique number w(G) of a graph G is the maximum order among the complete
subgraphs of G. In general, X(G) = w(G) for every graph G. Seinsche [7] proved that
the above equality holds if the graph G is P, free, where P, denotes the path with four
vertices. We have obtained the following result.

THEOREM 4. If a graph G is P, free, then w(G) = X(G) = x#(G).

The proof depends on the following known lemma.
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Lemma 1. If a graph G is P, free, then each maximal independent set in G contains a
vertex of each maximal clique.

Proor. Suppose that the lemma is false: let H be a maximal independent set and let
L be a maximal clique in G such that H N L =¢. Foreach ve L, let H,= NgNH, i.e.
H, is the non-neighbors of v in H. We show that there are v, v, € V(G) such that
H,cH, and H,,c H,,. Since L is a maximal clique, there is a vertex v € L such that
H, # ¢. Also, since H is a maximal independent set, H, is a proper subset of H for any
v € L. Finally, each w € H is contained in H, for some v e L, again since L is a
maximal clique. Thus, there are at least two vertices v, # v, such that H, < H,, and
H,cH,. Thus pick w, e H, — H,,, w, € H,,— H, , giving w;v,u;w, as an induced P,
in G, a contradiction. O

Proor oF THEOREM 4. Let the first player and the second player alternately color a
maximal independent set /; with the color 1. Thus, when color 2 is introduced (by
either of the two players) each uncolored vertex is adjacent to some vertex of color 1.
Continue to color with color 2, forming a maximal independent set , in V(G) — .
Thus each vertex of G —(I[;UL) is adjacent to a vertex of I, and a vertex of L.
Continue this process, coloring a maximal independent set s in G — (I, U L) with color
3. We eventually color all vertices with, say, ¢ colors. The claim is proved by showing
that G contains a clique of order ¢ It will be done by induction on ¢, being clear for
t<2. Consider the induced subgraph G — I; which contains a maximal clique M on
t — 1 vertices (one vertex from each of L, L, . . ., I,). By the lemma, M is not a maximal
clique in G. Thus, it can be enlarged to a maximal clique in G and, as such, contains a
vertex of the maximal independent set /; in G. Hence G contains a clique of order
t O

3. TREES

The following theorem completely determines xF(7') for all trees.

THEOREM 5. Let T be a tree with order |V (T)| =2. Then,

2 if Ny[v]=V(T) for some vertex v e V(T),
3 otherwise.

x|

Proor. Theorem 1 shows that

V(T){: 2 if Ny[v] = V(T) for some vertex v e V(T),
Xe =3 otherwise.

The remainder of the proof will show that x#(7) <3. To do so, let X ={1,2,3} be a
color set. First, we root the tree 7 and denote the root by r. We will describe an
algorithmic way of first coloring all but an independent set of vertices of 7 with the
colors 1 and 2. To begin, the first player colors the root r with color 1.

Since T is a tree, there is an unique path, denoted by P(u, v), from u to v for any
pair vertices u and v in 7. If u =r, for simplicity let P(u, v) = P(v). Sometimes, we
slightly vary the notation by using P(u, v) for V(P (u, v)).

At any intermediate point in the game, we let C denote the set of colored vertices, U
be the set of uncolored vertices, and U* < U be the set of vertices every one of which
can be assigned to color 1 or 2 such that the resulting coloring is proper.
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Suppose that the second player has just colored a vertex v. Let w € P(v) such that
there is a vertex x e C with v ¢ P(x) and P(x)NP(v)=P(w) and d(v,w) is a
minimum. Clearly, w is well defined, since r € C N P(v). Then, the first player will
choose a vertex u € U* and color it with a feasible color of either 1 or 2 as follows:

(i) Set u=w if w e U*. Otherwise, go to step (ii).

(i) Set u to be the predecessor of w in P(v) if w ¢ U* and the predecessor is in U*.
Otherwise, go to step (iii).

(iii) Set u to be a neighbor of w such that w € P(#) and u € U*. In this step, if the
successor of w in P(x) is in U*, then set u to be the successor; if the successor of w in
P(x) is not in U* and the successor of w in P(x’) (for some x' such that
P(x")N P(v) = P(w)) is in U*, set u to be the successor. Otherwise, go to step (iv).
(iv) Let u € U* such that P(u) N U* ={u}.

In the following, we will prove that if U* = ¢ at some step during either player’s
turn, then U is an independent vertex set.

Suppose, to the contrary, that there are a pair vertices x and y in U and xy € E(G).
Without loss of generality, assume that y € P(x). For convenience, in the following, let
C; be the set of vertices which are colored with color 1, and let C, be the set of vertices
which are colored with color 2. Since U*=U, X, =Nx)NC;# and X, =N(x)N
C,#. For every s e X;UX,, let s* be the vertex which was colored first in
{t e C:s € P(t)}. Let x; € X; be such that x;* is the vertex which was first colored among
all {s*:s € X;} for i =1, 2. Also, note that Y, =N(y)NC,#Fand Y,=N(y)NC,# .
Define y;, y,, y¥, and y¥ in a manner similar to that done above.

Note that x§ and x§ have been colored by the second player, since we assume that
the first player uses the selection rule described above. Without loss of generality,
assume that x§ was colored before x3. From the first player’s selection rule described
above, x¥ was colored before any vertex s* for any s € X; —{x;}. Also, x,=x%¥;
otherwise x would have been colored by the first player, a contradiction. Since y is not
yet colored and y is the predecessor of x, y§ and y¥ must have been colored before x%
was colored.

If both y§ and y5 were colored before x§ was colored, then the predecessor of y was
either colored or it was impossible for it to be colored properly by using color 1 or
color 2. Then, x would have been colored by the first player after the second player
colored the vertex x§, which leads to a contradiction.

If one of {y¥, y§} was colored before x§ was colored and the other one is colored
after x¥ is colored, then y would have been colored by the first player after the second
player had colored x¥, a contradiction. Thus, both y§ and yF were colored between x§
and x3. Without loss of generality, assume that y§ was colored before y3.

If y e P(y¥), then yf was colored by the second player and y would have been
colored by the first player, again a contradiction. Thus, y; = yf is the predecessor of y in
P(y) and y € P(y,).

Now, we consider which vertex the first player would color after the second player
colored y,. Notice that y; is the predecessor of y. Since it is impossible to color y with
either color 1 or color 2 and P(y,, y) = y,y, by the selection rule, the first player would
pick a vertex u € N(y) N U* such that y € P(u). Clearly, x is a qualified candidate for
the first player to choose at this step. We will show that x is the only candidate for the
first player at this step. To the contrary, suppose that there is another candidate s # x.
Let s* be a vertex which was first to be colored in the set {t:s € P(¢)}. Also, let s* be
the one colored first among all such s*. Clearly, s* was colored by the second player,
since the first player uses the selection rules. If the coloring of s* occurs after that of y,,
then the first player would color x when y, is colored. Hence s* is colored before y, and
after y;, and the first player’s response to this is to color y, again a contradiction. Thus,
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we have proved that x is the vertex the first player would color after the second player
colored vertex y,, a contradiction.

Thus we have shown that U is an independent vertex set whenever U* =J and
therefore xF(7T) <3. ]

4. k-INDUCTIVE GRAPHS

Let G =(V, E) be a graph and let L be a linear order on the vertex set V. For each
vertex x € V, we define the back degree of x relative to L as {y e V:xy € E and x >y in
L}|. The back degree of L is then defined as the maximum back degree of the vertices
relative to L. The graph G = (V, E) is said to be k-inductive if there is a linear order L
on V which has back degree at most k. If G is k-inductive, then x(G)<k + 1.

Again, let L be a linear order on the vertex set V of a graph G = (V, E). We define
the arrangeability of x relative to L as {y € V:y <x in L and there is some z € V with
yzeE xze Eandx<zin L}|.

The arrangeability of L is then the maximum value of the arrangeability of the
vertices relative to L. A graph G is p-arrangeable if there is a linear order L on the
vertices having arrangeability at most P. It is readily seen that a p-arrangeable graph G
is p-inductive.

In [5], Faigle, Kern, Kierstead and Trotter showed that the family of bipartite graphs
has infinite game chromatic number by proving the following result for a family of
2-inductive graphs.

THEOREM 6. There is an infinite class of 2-inductive graphs G of order n such that
X<(G)=13log, n.

In fact, from the examples that they used in their proof, it is not very difficult to see
that there is a constant c such that x,(S(K,)) = c log, n, where S(K,,) is the subdivision
of the complete graph K, of order n. Later, Kierstead and Trotter [6] proved the
following very interesting result.

TueoreMm 7. Let G =(V, E) be a p-arrangeable graph and let xX(G)=r. Then
X(G)<2rp +1.

Considering the game chromatic number II, the following result holds.

THEOREM 8. Let k be a positive integer and let G be a k-inductive graph of order n.
Then, x#(G)<clogn + 1, where ¢ = 3k/log 3.

Proor. Let the first and second players alternately color the graph G with 3k colors
until a new color must be introduced. Let U; denote the set of all uncolored vertices
and let G; denote the subgraph of G induced by U,. Clearly, d(v) = 3k for each v € U,.
Since G is a k-inductive graph,

> ds(v) <2kn.

veV(G)

From above inequality, we see that |{v | d;(v) =3k}| < 3n. Thus, |U)| < 3n.
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The first and second players color the vertices of U; with 3k new colors until a new
color must be introduced. Let U, denote the set of all uncolored vertices and let G,
denote the subgraph of G induced by U,. Using the same argument as above, we can
show that |U,| <5 |U;| < (3)’n. Continue this process; generally, let U, denote the set of
all uncolored vertices after 3kt colors have been used and a new color must be
introduced in order to keep the graph colored properly. Also, let G, be the subgraph
induced by the vertex set U, By induction, we can prove that |U|< (3)'n. Since
(3)'e"oel5y <1, all vertices will have been colored when no more than
log n/log 1.5+ 1 colors are used. ]

On the other hand, we have the following result.

THEOREM 9. Let p be a positive integer. There is a 2-inductive graph G, of order
IV(G,)|<3""*Y such that x*(G,) = p.

Proor. The graphs G;, G,,..., G, will be constructed inductively as follows.
Initially, let G, =K,, two independent vertices, and denote the vertex set of G; by
Vi(G).

To construct the graph G,, let V45(G,) be a vertex set of 3* =9 vertices. For each pair
of vertices u, v e V5,(G,), let Gi(u, v) be a copy of G; and join both vertices u and v to
all vertices in V,(G(u, v)). It is readily seen that G, is the subdivision of a complete
multiple edge graph K,, where every pair of vertices of K, has two edges between
them.

Suppose that G,, G,, ..., G, have been constructed. Let V,(G,) be a set of new
vertices with |V,(G,))|=3?. For each pair of vertices u,v € V,(G,) and each i=
1,...,p—1, let G(u, v) be a copy of G; and join both vertices u and v to every vertex
in Vi(Gi(u, v)). Then, we will show that the following claim holds.

CrLamv 1. Suppose that two players play the game on the vertices of G, with the
condition that if the color i has been used, then both players can use any color from 1 to
i. The second player has a strategy to color the vertices such that at any step either there
is a vertex in V,(G,) that has been colored with the color p or he has a chance to color a
vertex in V,(G,) with the color p.

Clearly, claim 1 is true for the graph G; Suppose that Claim 1 is true for the graphs
Gy, Gy, ..., G,_;. We will prove that the following claim is true for G,.

CramM 2. The second player has a strategy to force the condition that at least three
vertices in V,(G) are uncolored if only the colors 1,2,...,p — 1 are used.

Notice that V,(G,) is an independent vertex set of G, and every vertex in V(G,) is
adjacent to at most two vertices in V,(G,). Hence Claim 1 is true if Claim 2 holds. The
strategy for the second player used is described as follows:

(1) If the first player colors a vertex of G;(u,v) for some u,veV,(4,v) and
i=1,2,...,p—1, then, by the inductive hypothesis, the second player has a strategy
to color a vertex in G;(u, v) such that either there is a vertex in V;(G;) which has been
colored with the color i or there is a vertex in V;(G;) that can be colored with the color i
by the second player.

(ii) If the first player colors a vertex x € V,(G,), then the second player chooses, if
possible, a pair of vertices u and v € V,(G,) such that neither of them are adjacent to a
vertex with the color 1, and colors a vertex in V;(G;(u, v)) with the color 1. Such a
vertex is available from our inductive hypothesis. If there is no such a pair of vertices u
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and v, then any vertex z € V,(G,) is either colored by the first player or the vertex z is
uncolored and is adjacent to some vertex with the color 1.

Let V,(G,) be a subset of V,(G,) which is uncolored and adjacent to a vertex with
the color 1. Notice that every vertex y € V,(G;(u, v)) is adjacent to only two vertices in
V,(Gp); thus |V (G,)| = 5 |V,(G,))|. Then:

(iti) Following step (ii) above, if the first player colors a vertex in V,(G)), then the
second player chooses, if possible, a pair of vertices u and v € V(G,) such that neither
of them are adjacent to a vertex with the color 2. If there is no such pair of vertices u
and v, let V,(G,) be a subset of V ,(G,) which is uncolored and adjacent to vertex with
the color 2. As above, we have |V3(G,)| =3[V ,(G,)| = (3)*|V,(G,)| . Notice that N(z)
contains a vertex with the color 1 and a vertex with the color 2.

(iv) Repeat the above process, then V,(G,), V,(G,), ..., V2~(G,) are obtained such
that, for each z € Vi(G,), the neighborhood N(z) contains a vertex with the color j for
each j=1,2,...,i Furthermore, |Vi(G,)|=3|V, '(G,)|. Hence, |V5'(G,) =

(Y V(G =3,

It is readily seen from the above that Claim 2 is proven.

Notice that
3r
VGI= (5 JIVGH+ V(G 4+ + V(G I+, forp=2
Then, [V(G,)| =32 [V(G,)| + 1 for p=2. Thus,
317 2,
V(G,)|= 5 QIV(G,-)I— 1)+ <3*|V(G,)|, for p =3.

It is readily seen that the above inequality is also true for g =2. Therefore,
[V(G,)|<3r@b. |

Let n =|V(G,)|. From the above inequality, we can deduce that p > cVlogn. Thus,
there are an infinite number of integers n such that there is a 2-inductive graph G,, of
order n such that x#(G) <cVlogn for some constant c.

Note that all subdivision graphs are 2-inductive. We will show that x#(G)<3if G is
the subdivision of some graph. In fact, we prove a more general result.

THeEOREM 10. Let k be a positive integer and let G be a graph such that the vertex
subset {v € V :d(v) > k} forms an independent set of G, then x(G)<k + 1.

Proor. Let X ={1,2,...,k, k+ 1} be a color set. Initially, the two players color G
using only colors 1,2,...,k This is continued for as long as possible. Then, it is
sufficient to show that all uncolored vertices form an independent set. Suppose, to the
contrary, there are a pair of uncolored vertices x and y such that xy € E. Then, one of
them, say x, must have degree no more than k. Since y is not yet colored, x can be
colored properly by one of the colors 1,2,...,k, a contradiction.

CoroLLARY 1. For any graph G, let S(G) denote the subdivision of G. Then,
X (8(G))=3.
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