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Dedicated to the memory of Professor Paul Erdds

ABSTRACT. We investigate the induced Ramsey number rina(G, H) of
pairs of graphs (G, H). This number is defined to be the smallest pos-
sible order of a graph I" with the property that, whenever its edges are
coloured red and blue, either a red induced copy of G arises or else
a blue induced copy of H arises. We show that, for any G and H
with £ = |[V(G)| <t = |V(H)|, we have
Tind(G, H) S tCk logq’

where ¢ = x(H) is the chromatic number of H and C is some universal
constant. Furthermore, we also investigate rinq(G, H) imposing some
conditions on G. For instance, we prove a bound that is polynomial in

both k£ and ¢ in the case in which G is a tree. Our methods of proof
employ certain random graphs based on projective planes.

1. INTRODUCTION AND MAIN RESULTS

A fundamental problem in Ramsey theory is to determine or estimate
the Ramsey number for complete graphs. Write R(k) for the smallest inte-
ger n with the property that, if one colours the edges of the complete graph
on n vertices with colours red and blue, one necessarily obtains a complete
subgraph on k vertices all of whose edges are coloured red, or else all of
whose edges are coloured blue. The number R(k), the existence of which
follows from a classical theorem of Ramsey [14], is the Ramsey number of
the complete graph on k vertices.

The best bounds that are currently known for R(k) imply that

21/2 < liminf R(k)'/* < limsup R(k)/* < 4.
k—ro0

k—o0
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Thus, even the precise rate of the exponential growth of R(k) is unknown.
Indeed, deciding whether limy_,, R(k)'/* exists, and if so determining its
value, are outstanding problems in the area. For a pleasant introduction
to Ramsey theory in general, the reader is referred to Graham, Rothschild,
and Spencer [11]. Nesetiil [13] gives a relatively concise survey on this vast
subject. Numerical problems in this area are discussed by Graham and
Rodl [10].

In this paper, we are concerned with a counterpart to the theorem of Ram-
sey for non-complete graphs. Namely, we are interested in a result proved
independently by Deuber [4], Erdés, Hajnal, and Pésa [9], and Rodl [15],
which states that, for any pair of graphs G and H, there is a graph I" such
that

I — (G, H), (1)

where the arrow notation in (1) above means that whenever we colour the
edges of I' red and blue, either a red induced copy of G arises, or else a blue
induced copy of H arises. This variant of Ramsey’s theorem immediately
raises a numerical problem.

For any given graphs G and H, let ri,q(G, H) denote the smallest integer n
for which there exists a graph ' on n vertices satisfying (1). We refer
to rind(G, H) as the induced Ramsey number of the pair (G,H). FErdds
wrote [7, §5] (with a little change in the notation): “Hajnal and I observed
that if G; and G2 have at most n vertices, then

n1+5
rind(G1,Go) < 2% . (2)

We have never published the not entirely trivial proof of (2) since Hajnal
and I thought that perhaps

max rina (G1, G2) = R(n). (3)

“Conjecture (3) is perhaps a little too optimistic, but we have no coun-
terexample. Perhaps there is a better chance to prove ri,q(G1,G2) < 2.7

Writing ring(H) for rinq(H, H), this latter problem of Erdds [7], already
implicit in [6, §IIT], is then the following;:

Problem 1. Is there an absolute constant C' such that for any graph H on t
vertices we have riq(H) < 262

Techniques in Rddl [15] imply that rinq (H, H) is indeed exponential in ¢ =
|V(H)| if H is bipartite. Note that if the answer to Problem 1 is positive,
then the result is best possible up to the value of C, that is, there are
graphs H for which rinq(H) is exponential in ¢t = |V (H)|. Indeed, it suffices
to take H as the complete graph on ¢ vertices.

Our main result below, Theorem 3, comes close to establishing a positive
answer to Problem 1 in general. In particular, our result greatly strengthens
the previous doubly exponential bound (2) of Erdés and Hajnal.

Quite curiously, our result also comes close to settling the following conjec-
ture, which deals with the ‘asymmetric’ induced Ramsey number ring (G, H).



INDUCED RAMSEY NUMBERS 3

Here, we are concerned with the case in which G is some fixed graph and H
is very large.

Conjecture 2. For any graph G, there is a constant f = f(G) that depends
only on G such that, for any graph H on t vertices, we have

Tind(Ga H) < tf-
Our main result is as follows.

Theorem 3. Let G and H be graphs with |V(G)| = k and |V(H)| = t,
where k < t, and suppose ¢ = x(H) > 2. Then

rind (G, H) < Cklogq (4)
for some absolute constant C.

Note that in the ‘diagonal case’, in which G = H, Theorem 3 gives the
bound

Tind(H) = rina(H, H) < t€11084,

which only fails to be a purely exponential bound in ¢ = |V (H)| by a factor
of (logt)(log x(H)) < (logt)? in the exponent. Furthermore, note that (4)
in Theorem 3 fails to be polynomial in ¢ only by a factor of log x(H) in the
exponent. Thus, Theorem 3 does indeed fall only a little short of settling
Problem 1 and Conjecture 2.

Inequality (4) is proved by showing that there is a suitably small graph R
for which R — (G, H) holds. This graph R = R(P, H) is randomly con-
structed using a projective plane P and the graph H. (The graph G plays
no role in the definition of R.) Roughly speaking, the graph R is obtained
from P and H by randomly embedding ‘blown-up copies’ of H in each line
of P. (A ‘blow-up’ of H is simply a graph obtained from H by replacing
each vertex of H by an independent set and each edge of H by a suitably
large complete bipartite graph.)

The random graphs R = R(P, H) were considered before by Brown and
Rodl [2] and Eaton and Rodl [5]. However, in [2, 5], the authors investigate
Ramsey properties of these graphs with respect to verter colourings. A
similar construction is studied by Rédl and Winkler in [17], where Ramsey
properties with respect to orientations of graphs are investigated. More
recently, Luczak and Rodl [12] confirmed a conjecture of Trotter by showing
that ring(H) = t°() if the ¢-vertex graph H has bounded maximum degree.
The graph R = R(P, H) is crucial in [12].

Since (4) fails to prove Conjecture 2 in full generality, we consider graphs G
with some special structure. To describe a class of graphs G for which we
are able to prove Conjecture 2, we need to introduce a couple of definitions.

If G1 and G2 are two graphs, we let the join G1V G2 of G1 and G2 be the
graph obtained from the disjoint union of G; and G2 by adding all the G-
G edges. Thus, for instance, K%* = E*V E° where K% is the complete
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bipartite graph with vertex classes of cardinalities a and b, and E° denotes
the a-vertex graph with no edges, and similarly for E°.

Let S denote the smallest class of finite graphs that contains the 1-vertex
complete graph and is closed under taking disjoint unions and joins. Follow-
ing Erdés and Hajnal [8], we call the graphs in S simple. Theorem 4 below
verifies Conjecture 2 in the case in which G is a simple graph.

Theorem 4. For any simple graph G, there is a constant f = f(G) that
depends only on G such that, for any graph H on t vertices, we have

Tind(G,H) S tf.

The proof of Theorem 4 will also be based on the random graph R =
R(P, H). However, quite naturally, the choice of certain parameters in the
definition of this graph for this proof will be different from the choice to be
made in the proof of Theorem 3.

A basic case that is not covered in Theorem 4 is the one in which G is a
tree. As one may expect, this case can be handled quite easily.

Theorem 5. For any tree T' and arbitrary graph H, we have

log(kt?) 2
ind(T, H) < ekt | ——————
rind (T, H) < ekt (log log log(kt?) ) ’ (5)

where k = |V(T)|, t = |V(H)|, and c is some absolute constant.

Thus, Theorem 5 tells us that ring (7, H) is polynomial in both k = |V (T)|
and t = |V(H)|. Our proof of this result is simple, and we have not put
much effort in obtaining the best exponents in (5). Let us mention that Beck
has investigated the problem of estimating the induced size-Ramsey number
of a given tree 7', which is defined to be the minimal number of edges in
a graph I' = I'(T") such that I' — (7,T"). Indeed, in [1], Beck proves that
if T is a tree with n edges and n is larger than some absolute constant, then
there is a graph I with less than

n3(logn)*

edges such that I' — (7, 7).

This paper is organised as follows. The random graph R = R(P, H) is
defined in Section 2, where auxiliary results concerning projective planes
are also given. We also give in Section 2 a couple of properties of R =
R(P, H) that are crucial later on in the proofs of Theorems 3 and 4, given
in Sections 3 and 4. The induced Ramsey number for trees versus general
graphs is studied in Section 5. Our very short final section is devoted to
some concluding remarks.

As the reader will observe, we try to isolate, whenever possible, the prob-
abilistic parts of our arguments in the proofs of Theorems 3 and 4. For
instance, Section 3.2 is entirely deterministic in nature. The only prob-
abilistic component in the proof of Theorem 3 is, in fact, an application
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of Corollary 11 of Section 2.3, made in Section 3.3. Needless to say, this
probabilistic component is crucial for our argument.

Below, we write a < b to mean that a/b — 0 as n — oo, and similarly
for >. We also write a ~ b to mean that a/b — 1 as n — co. Moreover, for
A>0,B>0andd >0, we write A ~s Bif1/(14+0) < A/B<1+4. In
the sequel, the logarithms without specified bases are to the base e.

2. THE CONSTRUCTION AND PRELIMINARY LEMMAS

2.1. The construction. Let a projective plane P = (V,£) with |V| =
|£| = n and a graph H be given. We shall construct a random graph R =
R, = R, (P, H) based on P and H that will have interesting Ramsey prop-
erties with respect to ‘small’ graphs G and the graph H. Note in particular
that the definition of R will not depend on the graph G.

To describe our construction, suppose that, for each line L € £, we have
a partition L = Uvev( H) L, of L whose parts L, are indexed by the ver-
tices v € V(H) of H. Denote this partition by I, and set II = (II)Lef-
We define the graph R = R, (P, H,II) as follows. The vertex set of R is V.
To define the edge set of R, suppose a, b € V are two distinct points in P.
Then there is a unique line L € £ that contains both a and b. Consider the
partition II;, € IT of L, and suppose a € L, and b € L,. Then

ab € E(R) if and only if uv € E(H).

To define the random graph R = R, (P,H), we pick the family of par-
titions (II1)rec randomly. For each L € L, the partition II; is chosen
uniformly at random from all the partitions of L indexed by V (H). Equiv-
alently, for each z € L, we choose a vertex v € V(H) independently
and uniformly at random and let £ € L,. The choices of the II; are
made independently for all L € £. This defines a random family of par-
titions IT = (II1) ez, and we define our random graph R by letting

R=R,(P,H) = R,(P,H,II).

Note that the randomness of R = R, (P, H,II) comes solely from the random
choice of II. Once II is chosen, the graph R is determined.

2.2. Lemmas on projective planes. Naturally, the key to a good under-
standing of the random graph R = R, (P, H) is a good understanding of the
random family IT = (II1)zec. In this section, we shall review a few facts
about projective planes that will be needed in Section 2.3, where we analyse
the structure of a typical family IT = (IIz)pec.

We start with a lemma due to Eaton and Rodl [5].
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Lemma 6. Let (V, L) be a projective plane of order p and n = p? +p + 1.
Let X CV and Y C L be given, and suppose |X| = an and |Y| = Bn. Then

afin? 1+O(n_1/4)>
— [1-—— 2" )< XNL
e () < g
o’ (), 1407
Tptyptl Vepyn |’

Corollary 7. With the notation as above, if a3 > wn /2, then

dIXnL| = <1+O<%)>aﬁn3/2. O

Ley

In the corollary below, O1(a) denotes a term b that satisfies |b| < a.

Corollary 8. Suppose X C V and o = |X|/n. Then, if B = B(n) satisfies
af > 2wn~Y? for some function w = w(n) = oo, we have

IXNL|= (1+01 (l(\)i;)>)a\/ﬁ (6)

for all but fewer than Bn lines L € L, as long as n > ng(w).

Proof. Suppose (6) fails. Then there is a set of lines Y C £ with |Y| =
[Bn/2] such that either

1
|XnL|>(1+ (ﬁ_‘f)a\/ﬁ (7)
for all L € Y, or else
1
|XﬂL|<(1— (\)ﬁgj)a\/ﬁ (8)

for all L € Y. Suppose (7) happens. Summing (7) over all L € ), we have,
by Corollary 7,

(1+8 ) avwi < -z = (1+0 (5 ) Javanl

which contradicts Corollary 7 if n > ng(w), since w = w(n) — oo. The case
in which (8) holds for all L € Y is similar. O

Let us remark that, clearly, the O; term in the result above may be
chosen to be anything that is sufficiently larger than w!/2. Note also that
Corollary 8 only concerns sets X with | X| > y/n, since we need 8 < 1 and
hence a8 > n~/2 can only hold if & > n~1/2.

In view of Corollary 8, we make the following definition. Let X C V,
L € L, and 6 > 0 be given. We say that the line L is (X, §)-normal if

RY
XNL|~ .
| | o n
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(We recall that we write A ~5 Bif1/(1+§) < A/B <1+ 4.) Let us set
B(X,0) ={L € L: L is not (X,d)-normal}. (9)

Note that Corollary 8 implies that |B(X, )| < fn if X C V satisfies 8| X| >
v/n and 7 is large enough.

2.3. A few lemmas on II = (II)c.. To study the random graphs R =
R,(P,H), we need to investigate the random family of partitions II =
(TII1)Lec that is used to define those random graphs. In fact, in this section,
we assume that IT = (II1) e is a family of random partitions of the L € L,
with each II;, an independent random partition of L, uniformly chosen from
all the partitions of L indexed by [t] = {1,...,t}, for some given integer t.
We shall only be concerned with large ¢ and large n. Thus, the inequalities
below need only hold for large enough ¢ and n. Before we proceed, let us
stress that the graph H will not play any role in this section.

We start with a definition that will be very important in the sequel.
Let L € £, X C V,and § > 0 be given. Also, let a fixed family of [¢]-indexed
partitions I = (II;) Lo be given. We then say that L is (X, 6, IT)-normal if

| X
‘X n Lz' ~d ; \/ﬁ
for all 1 < 4 < t, where L; is the ith block of the partition II;, of L. A
moment’s thought shows that if a line L is (X, d,II)-normal, then it is also
(X, d)-normal, whereas the converse holds only if the partition I, of L
splits X N L ‘judiciously.’
Let us set

B(X,0,II) ={L € L: L is not (X, d,II)-normal}. (10)

Our next simple lemma says that the probability that many (X, §/2)-normal
lines should fail to be (X, §, II)-normal is very small.

Lemma 9. Fiz § >0 and X CV. Then
1
IP{|B(X, 0,11) \ B(X, 5/2)| > tQ\/ﬁ} < exp (—05t|X| + §t2\/ﬁlogn> ,
where cg s some positive constant that depends only on 6.
Proof. Let a (X, 6/2)-normal line L € £\ B(X,§/2) be fixed (cf. (9)). Then,
by definition,
| X
| X NL| ~g/2 I
Fix 1 <4 < t. By Chernoff’s inequality, we have

IX| IX]
P|IXNLj|~sg —=7p2>1— —C5——
{' NLil~s 7o 2 Lmoxp ( —esy
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for some ¢5 > 0 that depends only §. Hence

: |X]
P(L t (X, 6, II)- )<t —cs—F— | -
(L is not (X, 4, II)-normal) < exp( i Tn

Since the partitions II;, (L € £) are chosen independently, we have

P{\B(x, 5,0) \ B(X,5/2)| > t2\/5}

< (reym) (e (o)) .

1
< exp (—05t|X| + Etz\/ﬁlog n) ,
as required. O

Corollary 8 and Lemma 9 have the following immediate consequence.

Corollary 10. Let functions @ = a(n) and 8 = B(n) such that o8 > n~1/?
be given, and suppose that a constant § > 0 is fired. Then the probability
that there is a set X C V with | X| > an such that

B(X,8,IT)| > *v/n+ fn

18 at most

3 (2) exp (—c5tr + %tQ\/ﬁlog ”) . (11)

an<r<n
U

To state the main result of this section concisely, we need to introduce
some notation. Fix § > 0. Suppose X = (X;)!_, is a family of subsets X; C
V of V, and suppose IT = (Il ) e is a fixed family of [¢]-indexed partitions

of the lines of P = (V, £). Then we let
L(X,0,II) ={L € L: Lis (X;, 9, II)-normal for all ¢ € [t]}. (12)
Thus, a line L € £ belongs to £(X,4,1II) if and only if

X

X3 1 L]~ % (13)

for all i and j € [t]. Moreover, L(X, 6,II) = L\ U;<;<; B(Xi, 6,II) (cf. (10)).

When studying the subgraphs of the graph R = R, (P, H,II), we shall need

to look at families of t sets of vertices X = (X;)!_;, and we shall be in-

terested in the lines that intersect these ¢ sets in the ‘expected way.” The

set L£(X, 6, II) of lines of P defined above is the set of such ‘interesting’ lines.

Given constants 0 < € < 1/2,§ > 0, and 0 < 7 < 1, and a family II =

(I1z)Lec of [t]-indexed partitions, we let P(g,d,n,II) denote the following
property:
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(*) For all X = (X;)t_, with X; C V such that |X;| > n'/?*¢ for alli € [t],
we have

It is probably worth at this point to unfold the definitions to give a more
direct formulation of property P(e, d, 7, II): the family II satisfies P (e, 4,7, II)
if and only if, for all X as in (*), at least (1 — n)n lines L € L are such
that (13) holds for all 7 and j € [t].

Corollary 10 has the following consequence that will be crucial in our
study of the random graph R = R, (P, H).

Corollary 11. Let constants 0 < e <1/3, § >0, and 0 < n < 1 be fized.
Suppose t = t(n) is such that logn < t € n/2. Then

IP’{P(e, d,n, 1) holds} -1

as n — oo. In particular, if n > ng(e, d,n,t), there is a family of [t]-indexed
partitions II = (II1) e for which P (e, d,n,I1) holds.

Proof. Let a = a(n) = n~'/?*¢ and B = B(n) = n~¢/2. Simple calculations
show that

t2y/n + Bn <K n/ft,

and that the quantity in (11) tends to 0 as n — oo. Thus, Corollary 10 says
that, with probability tending to 0 as n — oo, every X C V with |X| >
n'/2%€ is such that

|B(X,6,11)| < t*v/n + fn < n/t.
In particular, given any X = (X;)!_, as in (*), we have
1<i<t

with probability approaching 1 as n — co. Thus Corollary 11 follows. [

2.4. The pseudorandomness of R = R, (P, H,II). Fix a graph H and
let P be a projective plane. Consider the graph R = R, (P, H,II) defined in
Section 2.1, where II = (II;,) ¢ is some family of V (H)-indexed partitions
of the lines of P.

Let 7 denote the edge-density e(H) (;)71 of H, where as customary e(H)
stands for the number of edges in H. Later we shall see that, in the proofs
of Theorems 3 and 4, we may assume that 7 is close to 1/2. Thus, in this

section, we assume that
37 <~ <47. (14)

Our aim is to show that if P(e, 6,7, II) holds for suitably small parameters ¢,
0, and 7, any two disjoint and reasonably large sets A and B C V of vertices
of the graph R = R, (P, H,II) are connected by about y|A||B| edges. In
other words, the graph R is ‘pseudorandom.’
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Lemma 12. Let 0 <e <1/2 and 0 < ¢ < 1 be fized. Suppose 11 = (IIy)rer
is a family of V(H)-indexed partitions of the lines of P. Furthermore, sup-
pose that the property P(e,0/5,36/40,11) holds and that t > 40/36. Then the
graph R = R, (P, H,II) is such that, for every A, B C V(R) with ANB = ()
and |A|, |B| > n/?*¢ the number of edges e(A, B) between A and B satisfies

e(4, B) ~5 7|A||B|. (15)

Proof. Let Lap be the set of lines L € L that are both (A4,4/5,II)- and
(B,d/5,1I)-normal. Since property P(e,d/5,36/40,11) holds, we know that

|Lag| > (1 —36/40)n. (16)
By the definition of £L4p, for any line L € L4p5 we have

4] | B|
L'u n A ~ — d LU n B ~ e
| | ~5/5 v | | ~s/5 i
for every v € V(H), where L = U,cy(g) Lo is the partition II; of L. In
particular, if uv € E(H), we have

|A||B|
t2n

~3§/5 (17)

edges joining the sets L, N A and L, N B, and similary for L, N A and L, N

B. Furthermore, if uv ¢ E(H), the number of non-edges between L, N A

and L, N B, and similarly between L, N A and L, N B, is also given by (17).
Therefore

e(4,B)> > > {|lL.NA|L,NB|+|L,N Al|L, N B}
LeLap wweE(H)

|A||B| [t 1
36/5 |LaB| Y ~ 1+ 33/4 v|AllB|,

t2n 2

where in the last inequality we used (16) and the fact that ¢ > 40/36 and § <
1. Similarly, we infer that the number of non-edges between A and B is at
least

1_77| Al|B|

1+34/4 )

Using that v > 3/7 (cf. (14)), we may now deduce from straightforward
computations that (15) follows. O

We observe that the proof above only made use of a weak form of prop-
erty P(e,6/5,36/40,1I). Indeed, this property concerns families X of ¢ el-
ements, but in the proof above we were only concerned about the pair of
sets {4, B}.



INDUCED RAMSEY NUMBERS 11

2.5. Blow-ups of H in R = R, (P, H,II). In Section 2.4 above, we ob-
served that the graph R = R, (P, H,II) tends to have all its edges uniformly
spread over V(R). The usual binomial random graphs Gy, , also have this
property, and hence the random graphs R = R, (P, H) and G, ;, (withp = )
may be expected to behave similarly. However, one sees right away a crucial
difference between these graphs: R = R, (P, H) is extremely rich in copies
of H. Indeed, each line of P is very likely to induce a ‘very fat’ blown-up
copy of H. This feature will be crucial in our considerations.

In what follows, if s > 1 is an integer, we shall write Hg for the s-fold
blow-up of H, namely, the graph on s|V (H)| vertices that we obtain from H
by replacing each vertex of H by an independent set of cardinality s and
each edge of H by a complete bipartite graph K*®?°. The following simple
lemma will be needed in the sequel.

Lemma 13. Every red-blue edge colouring of Hs that contains no blue copy
of H must contain at least s> red edges.

Proof. Let us say that a copy H' of H in Hy is transversal if |V (H')NV,| =1
for all z € V(H), where V;, is the independent set of vertices of H, that is
naturally associated to z € V(H). Clearly H, has s’ transversal copies of H.
On the other hand, each edge is contained in s*~2 transversal copies of H.
Thus, at least s'/s""2 = s? red edges are needed to prevent a transversal
blue copy of H. This proves Lemma, 13. O

3. THE GENERAL ESTIMATE

Our aim in this section is to give a proof of Theorem 3. Since our proof is
fairly long and is based on a few separate ideas, we shall sketch the general
approach before we start the proof proper.

Let graphs G and H as in Theorem 3 be given. A simple argument

shows that we may assume that the edge-density e(H) (;)_1 of H is, say,
between 3/7 and 4/7. As mentioned in the introduction, the main idea is to
make use of the random graphs R = R,,(P, H), defined in Section 2.1.

The two key properties of R for the arguments in this section are the
following: (i) R is a pseudorandom graph, in the sense that its edges are
uniformly distributed (with density similar to the density of H), and (4i) any
collection of ¢ pairwise disjoint sets X7, ..., X; of vertices of R induce many
‘fat’ blow-ups of H, as long as the X; are all sufficiently large.

Suppose now that the edges of our graph R have been coloured with red
and blue. Property (i) may be used to show that any appropriately large
set S of vertices of R that is ‘uniformly rich’ in red edges must induce a
red copy of G. Roughly speaking, we shall consider a set S uniformly rich
in red edges if S, as well as all large subsets of S, induce sufficiently many
red edges. (To be precise, we shall define the term hereditarily e-red-rich in
Section 3.2.1 to formalise this notion of uniform richness.)

On the other hand, property (77) may be used to show that any collection
of ¢ suitably large sets of vertices of R is forced to induce a blue copy of H,
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as long as the density of the red edges across these sets is small. The proof
of the fact that R — (G, H) is then reduced to showing that either R has a
set of vertices that is ‘uniformly rich’ in red edges, or else R has t suitably
large sets of vertices that induce, across them, very few red edges.

Let us now start the proof of Theorem 3.

3.1. The main lemma. For technical reasons, it will be convenient to
prove first the following restricted version of Theorem 3.

Lemma 14. There exist absolute constants ty and C' for which the follow-
ing holds. Let G and H be graphs with |V(G)| =k > 2 and |V(H)| =1t > to,
where t > k%. Write v = e(H) (5)71 for the edge-density of H, and sup-
pose 3/7 < v < 4/7. Suppose furthermore that H has a proper colour-
ing V(H) = Ui<icg Vi with all the V; of cardinality w = t/q, where ¢ =
X(H) > 2. Then

Tind(G,H) S tCklqu.

We now sketch an argument that shows that Lemma 14 implies Theo-
rem 3. Thus, let graphs G and H as in Theorem 3 be given. In particular,
we have t > k.

Let us first observe that ¢t may be assumed to be larger than any fixed con-
stant. Indeed, recalling the existence of graphs I' = I'(G, H) for which ' —
(G, H) for any given G and H (see [4, 9, 15]), we may exclude from our con-
sideration any bounded number of pairs (G, H), since we may choose the
constant C in (4) sufficiently large to cover this bounded number of cases.
Moreover, by adding fewer than g = x(H) isolated vertices to H, we may
assume that g divides ¢.

Now fix a proper vertex colouring V(H) = V1U---UV, of H. Add t?/q—|Vj|
isolated vertices to V; for all i to obtain a graph H'. Note that now we
have t? vertices. Now, a little thought shows that we may add edges to H’,
each of them incident to at least one vertex in V(H') \ V(H) and all of
them respecting the g-colouring we started with, and, furthermore, in such

a way that the graph H" that we obtain is such that y = e(H”)(t;) " lies
between 3/7 and 4/7 (here we also use that ¢ > ¢y for some large enough
constant ).

Let us outline an easy argument to show that we may indeed obtain the
graph H" as required. Note that the only thing to check is whether we can
accommodate the condition on the density of H”. If we add to H' all the
edges allowed by the other two conditions, we get at least about

00

new edges. Thus, even if ¢ = 2, we have at least about %(2) edges if ¢ is
large. On the other hand, if we do not add any edge to H', we have at
most (;) edges out of (t; ), which gives a density far smaller than 1/2 if ¢ is
large. Thus the graph H” as required does exist.



INDUCED RAMSEY NUMBERS 13

It now suffices to apply Lemma 14 to H” to deduce that there is a graph T
such that T' — (G, H") and such that |T| < (t + ¢ — 1)2¢%1°849_ where C is
the constant in Lemma 14. Theorem 3 follows, since clearly I' — (G, H).

In the rest of Section 3, we investigate R = R, (P, H) with the aim of
showing that R — (G, H) with positive probability, even if n is not too
large with respect to k and ¢. More precisely, we shall prove the following
statement.

(f) There exists an absolute constant ty such that, for any graphs G and H
as in Lemma 14, there is an integer n = n(k,t,q) with

n < 4t1000k logq’

where g = x(H), such that
R=R,(P,H) — (G,H)

holds with positive probability.

We shall not try to optimise our constants. In particular, the con-
stant 1000 in (f) is clearly not optimal. We also remark that our proof
will in fact show a stronger Ramsey property of R = R, (P, H). Write G*
for the family of all graphs on k vertices. Our proof of (1) will in fact give
that

R= Rn(PaH) — (gkaH)a

where the arrow notation above means that, when we colour the edges of R
with colours red and blue, either we obtain a blue induced copy of H, or
else we obtain a red induced copy of every graph on k vertices.

3.2. Monochromatic subgraphs in R = R, (P, H,II). Throughout this
section, we assume that graphs G and H as in the statement of Lemma 14
are given.

Let us fix a projective plane P = (V, £) with |V| = |£| = n. Let us also fix
a family IT = (II1) e of V(H)-indexed partitions of the lines of P. We may
thus consider the graph R = R(P, H,II) defined in Section 2.1. Suppose the
edges of R = R(P, H,II) are coloured with colours red and blue.

In Section 3.2.1 below, we describe a situation in which our red-blue
coloured graph R may be guaranteed to contain an induced red copy of G.
In Section 3.2.2, we study a condition that forces blue induced copies of H
in R.

In both sections that follow, we shall assume that II is fixed. In particular,
our results will be deterministic and not probabilistic. For our arguments
to work, we shall impose certain hypotheses on II. Later on in the proof
of (1), we shall invoke Corollary 11 to verify that these conditions imposed
on II are met with positive probability if II is chosen randomly as specified
in the definition of the random graph R = R, (P, H).
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3.2.1. Red induced copies of G. Fix 0 < ¢ < 1/2. A set S C V(R) is
hereditarily e-red-rich, or e-HRR for short, if |S| > n!/?t¢t10% and if, for
every disjoint pair of sets A, B C S with |A|, |B| > |S|/kt'%, we have

1
(4, B) > o5 A|[B. (18)

Here and below, eeq(A, B) denotes the number of red edges between A
and B. We shall also write Eyeq(A, B) for the set of red edges between A
and B. Moreover, N(z) = Ng(z) denotes the neighbourhood of the vertex z
in R and Nq(z) denotes the set of neighbours of z in R that are joined
to = by red edges.

In the beginning of Section 3, we mentioned that a notion of ‘uniform
richness’ in red edges would appear in our arguments. The property of e-
red-richness is the precise formulation of this notion. As inequality (18) may
suggest, roughly speaking, t~2 will be the ‘cut-off’ density in our argument:
if we find a (large) set S of vertices in our red-blue edge-coloured graph that
has red-edge density €2(¢~2) (in fact, not only S but if all its large subsets has
this red-edge density), then we search for a red induced copy of G within S.
On the other hand, if no such set exists, we shall seek a blue induced copy
of H.

Our next lemma, Lemma 15, states that e-HRR sets S do indeed con-
tain red induced copies of G, as long as some technical conditions are met.
These technical conditions are basically to guarantee that our graph R =
R, (P, H,II) satisfies a suitable pseudorandomness property (cf. Lemma 12).
The underlying idea in the proof of Lemma 15 below is a well known one,
and the reader is referred to Chvital, Rodl, Szemerédi, and Trotter [3] and
Radl [16] for former applications of this idea.

Finally, we observe that in later applications of Lemma 15 below, we shall
have £ = 1/10.

Lemma 15. Let 0 < € < 1/2 be fized, and assume Il = (II1) e is a family
of V(H)-indezed partitions of the lines of P for which P(e,1/30,1/80,1I)
holds. Moreover, suppose t > 80. Then the graph R = R, (P, H,II) is such
that every e-HRR set S C V(R) contains an induced red copy of G.

Proof. Observe first that, since P(e,1/30,1/80,1I) holds, Lemma 12 implies
that

e(4,B) ~1/6 7|Al| B| (19)

holds any pair of disjoint sets A, B C V(R) with |A|, |B| > n!/?%e.

Let S; € S (1 <1 < k) be k pairwise disjoint subsets of S, each with
cardinality |S;| = [|S|/k]|. Suppose V(G) = {v1,...,vr}. We shall find s; €
S; (1 <4 < k) so that {s;,s;} € E(R) if and only if {v;,v;} € E(G) and,
moreover, so that all such edges {s;, s;} are coloured red.

Applying (19) to the pairs of sets (S1,S5;), where 2 < j < k, we may
deduce that there are fewer than (k — 1)n!/2*¢ many vertices s € S; such
that [N (s) N S;| > (2/3)|S;| for some j = 2,...,k. Furthermore, there are
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fewer than (k — 1)|S|/kt'% vertices s € S with |Nyeda(s) N S;| < |S;|/10t2

for some j = 2,...,k. This follows since S is e-HRR. Thus, since

(k—1)|S]|
kt10k

there exist a vertex s; € S; and sets Sél) (1 < £ < k) with |S§1)\ =
[1S¢|/10£2] so that, for s € S$, if {v1,v¢} € E(G) then {s1,5} € Frea(R)
and if {v1,v,} € E(G) then {s1,s} & E(R). We repeat this procedure k — 1
times. _

On the jth step (2 < j < k) we construct sets Sz@ (j < £ < k), each of

cardinality [|Sg|/(10¢2)7], and select a vertex s; € SJ(-j_l) such that for s €

Séj) (4 < £ < k) we have that if {vj,v,} € E(G) then {s;,s} € Eq(R) and
if {vj,v;} ¢ E(G) then {s;,s} ¢ E(R). The existence of such a vertex s;
follows similarly as before since

- S; k—75)|S , .
|SJ(J l)l = |7(10‘t2])|j1-‘ > ( ktlj())k| | + (k_])n1/2+ .

The inductive procedure above constructs a red induced copy of G in R, as
required. O

|S1| > + (k — 1)nl/?+e,

Note that the proof above in fact shows that, under the conditions given
in the lemma, an e-HRR set of vertices in R is red k-universal, by which we
mean that it induces a red copy of any graph on k vertices.

3.2.2. Blue induced copies of H. We may now turn to the lemma that gives
a sufficient condition for the existence of a blue induced copy of H in R.
Let us recall that ¢ = x(H) and that w = t/q. In the sequel, if s is a
positive integer, we shall write Perm(s) for the set of permutations of the
set [s] ={1,...,s}.

Perhaps it is worth observing that, in Lemma 16 below, the hypothesis on
the number of edges ‘across’ the sets A; guarantees that the ‘density of red
edges’ across these sets is at most 1/5¢2. It is this small density of red edges
that will allow us to find induced blue copies of H through an application
of Lemma 13.

A comparison between Lemmas 15 and 16 suggests that, roughly speaking,
t~2 should be a good ‘cut-off’ density for our arguments (cf. the remark
following inequality (18) concerning this ‘cut-off” density.)

In the proof of Theorem 3, we shall be concerned with property P (e, 6,7, IT)
with e =1/10, 6 = 1/30, and n = 1/80. However, Lemma 16 below is stated
with a weaker (larger § and 1) and more general (arbitrary ¢) hypothesis
on II.

Lemma 16. Let 0 < e < 1/3 be fized and suppose I1 = (111, ) e is a family
of V(H)-indezed partitions of the lines of P. If P(e,1/3,1/2,1I) holds,
then R = R(P, H,II) has the following property. Let Ai,..., A, be pairwise
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disjoint subsets of vertices of R with |Aj| = -+ = |A4| = m, where m >
w(n/?t +1). Assume moreover that

1 L (q
> emaltid) g 3 Al = (Dt @0
1<i<j<q 1<i<j<q
Then there exist v; € U1<j<q A; (1 <1< t) that induce a blue copy of H
in R. -

Proof. Recall we have a fixed proper vertex colouring V(H) = U;<;<, Vi
of H with [Vi| = --- = |V| = w = t/q. We write V; = {v;;: 1 < j < w}
(1 <4 < gq). Let L be a line of our projective plane. The labelling v;;
of the vertices of H gives a natural labelling of the members L, of the
partition L = |J, L, of L in II. Namely, we let the partition classes of L
be denoted by L;; (1 <i < g, 1 <j < w) in the natural way. Finally, for
each 1 < ¢ < ¢, choose w pairwise disjoint subsets A;; C 4; (1 < j < w)
with |A;;| = [m/w] > n'/?*¢ for each j.

Note that a line L is (A;j, d,II)-normal if we have
|4i| _ [m/w]
tvn — quyn
forall1 <i <gq,1<j <w. Let § =1/3. In this proof, we shall make use

of the lines L that are (A;;, 6, II)-normal for all the ¢ sets A;; (1 < i <g,
1 < j <w). Write L; for the set of all such lines. Then, clearly, we have

E(S = ‘C(Aa 67 H)a

|Lirj 0 Aij| ~s (21)

where A = (A;j)1<i<q,1<j<w (cf. (12)). Since we are assuming that prop-
erty P(e,1/3,1/2,1I) holds, we know that

L5 = n/2. (22)

We now consider (g + 1)-tuples of permutations ¢ = (09;01,...,04),
where oy € Perm(q) and o; € Perm(w) (1 <% < g). In the sequel, if (4,75) €
[q] x [w], we write &(i,7) for the pair (a,b) € [¢] X [w] where a = 0¢(i),
and b = 04(j) = 00 ().

Now suppose L € Ls. Define f(L,5) to be the number of red edges across
the sets A;jNLs(; j), where ared edge is counted only if its endvertices belong
to two such sets with distinct <.

We now average over L € L and . We have

SN HIL,e) <Y Y f(TL,5). (23)
LeLs & LeL &
The sum on the right-hand side of (23) above is, however,
(g —2)(w — 1) 2
times the number of red edges across the A; (i.e., having endvertices in

distinct A;). To see this, let us fix one such edge e; say, e = zy and z € A;;
and y € Ayjy. Note for later reference that ¢ # '. The vertices z and y
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determine a unique line L € L. It now suffices to notice that the values
of i # 4, j, and j' tells us that, out of all the q!w!? possibilities, exactly
(g — 2)Y(w — 1)2w!9=2 vectors & = (0g; 01, ...,0,) are such that

z € Aij N La(i,j) and y € Ay N L&(i’,j’)-

Therefore, we may indeed deduce that the left-hand side of (23) above is,
by (20), at most

_ 1
(1= Dw =Pl oy > 14ill4

1<i<j<q
w!? (q qlwl?
<(q—-2)!'—5— 2= ;2
<=2 5¢2w* (2>m 10q2w4m
Since (22) holds and there are g!w!? many o, there exists a pair (L, o)
with L € L; satisfying

m2

f(Lo) < s (24)
Fix such a pair (L,5). Recall (21), and pick a set X;; C Ai; N La )
with |X;;| = s = [(3/4)m/qw?\/n] for each 1 < i < ¢, 1 < j < w. Note
that the ¢ sets X;; induce in R a copy of Hy, the s-fold blow-up of H. We
have m < (4/3)squw?/n. Hence, we have that the number of red edges in
this copy of Hj is at most f(L,5) < s2, by (24). It now suffices to apply
Lemma 13 to H; to deduce that there is an induced blue copy of H in R, as
required. O

3.3. The proof of Theorem 3. As observed in Section 3.1, it suffices to
prove Lemma 14 to prove Theorem 3. Lemma 14 is, however, a consequence
of assertion (1) in Section 3.1, and hence we are left with proving that
assertion.

Proof of (). We fix ¢ = 1/10 and pick a prime p such that n = p? +p+1
satisfies
tClclogq <n< 4tCklogq’

where C = 1000. The existence of such a prime p follows easily from Cheby-
shev’s theorem. Observe now that

logn < t < nf/2. (25)

Indeed, the lower bound on t follows since ¢t > k2, and the upper bound
follows by the choice of C. Let us now observe that, quite crudely,

n04 > 1+100k(logy g-+1) (26)

Moreover, note that there is an absolute constant ¢y such that if ¢ > t,

then n > ny(1/10,1/30,1/80,t), where ng is as given in Corollary 11.

Clearly, we may assume that ¢g > 80. We shall show that this choice of %y
will do in assertion ().
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Suppose graphs G and H as in (f) are given, and suppose that ¢ > .
Let P = (V, L) be a projective plane of order p. Then |V| = [£| = n =
p? + p + 1. Recall (25), and invoke Corollary 11 to see that there is a
family of V(H)-indexed partitions IT = (II;) e, of the lines of P for which
property P(e,1/30,1/80,1I) = P(1/10,1/30,1/80,1II) holds. Fix such a II,
and let R = R,(P,H,II). We claim that R — (G, H). Clearly, this will
finish the proof of (7).

To prove our claim, we invoke Lemmas 15 and 16. Since t > to > 80
and property P(1/10,1/30,1/80,1I) holds, according to Lemma 15, we may
assume that V(R) contains no e-HRR subset. Indeed, according to that
lemma, if there is an e-HRR set of vertices in R, we must have a red induced
copy of G in R. In the remainder of the proof, we show that the existence of
no such e-HRR subset of vertices implies the existence of sets 4; (1 < i < gq)
as required in Lemma 16. An application of that lemma will then give us a
blue induced copy of H, completing the proof of ().

To carry out the plan above, we shall need the following technical lemma.
Let {0,1}¢ denote the set of all 0-1 strings of length £.

(1) Let £ = [logyq]. There are 2¢ pairwise disjoint sets X; C V(R) (I €
{0,1}%), each of cardinality m = [n/t'0%]  satisfying

) X, X 1 R ) Xr||X 27
ZI?éJered( ,Xy) < = WZI#\ | Xgl, (27)

where Z%)U indicates sum over all I, J € {0,1}¢ with I # J.

We postpone the proof of (1), and carry on with the proof of (). Asser-
tion (}) gives us 2¢ sets X satisfying (27), where £ = [log, ¢]. In particular,
we have 2¢ > g. A simple averaging argument now gives that some ¢ of the
sets X1, say A; (1 <i < gq), are such that the number of red edges across
these ¢ sets is at most the quantity given in (20), as required in Lemma, 16.
Recall that property P(1/10,1/30,1/80,II) holds. Moreover, note that the
sets A; have cardinality m = [n/t'%%] > w(n®® 4+ 1). It follows from
Lemma 16 that there must be a blue induced copy in R. This completes the
proof of the claim that R — (G, H), and the proof of () will be complete
once we establish (). O

Proof of (1). We prove the existence of the sets X7 (£ € {0,1}¢) by induction
on £. This is simple for £ = 1: since V(R) is not e-HRR, there are sets X{,
X| C V(R) with |X}| > n/kt'% (i € {0,1}) so that
1

1012
An easy averaging argument shows that there are in fact Xy C X, X; C X}
with | Xo| = | X1| = [n/t}0%] < n/kt'% such that (28) remains true if X] is
replaced X; (i € {0,1}). We now turn to the induction step.

Assume that, for some 1 < £ < log, ¢ = logy X(H), we have constructed 2¢
sets X (J € {0,1}%) with | X | = [n/t'°%] such that inequality (27) holds.

erea(X0, X1) < 75| X0l | X1]. (28)
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We checked above that we do have this situation for £ = 1. Our aim now
is to show that there exist sets X; (I € {0,1}**!) satisfying condition (27)
with £ replaced by £ + 1 and with |X;| = [n/t'00¢+DE] for all 1.
Let
1

= [5( 100k _ kthk)J _

We now prove the following assertion.

(t1) Each X; (J € {0,1}%) contains u + 1 pairs of disjoint sets Yo,
Yj2i+1 € X; (0 <i <wu) such that

n
\Yroi| = |Ys2i41] = LNO(TU’C] (29)
and
1
ered (Y726, Y 2i41) < W‘YJ,%HYJ,%—I—ﬂ- (30)

Let us prove (11). We fix J € {0,1}¢ and construct the Y;; (0 < j <
2u + 1) by induction, using the fact that no subset of X is e-HRR.

Since each X; has cardinality larger than n'/2t¢¢1% but is not e-HRR,
we can find set Yo, Y1 satisfying (29) and such that (30) holds. We now
proceed inductively. Suppose the sets Y;o¢_1), Yyoi—1)41 (1 <4 < u) have
been found. Put Z; = X7\ U0<j<2u_1 Y; ;. Observe that

_ . wok___ ™
1Zy] = |X4] = . 22: 1 Y551 = Kt 94100k (£+1) "
<j<2u-—

where the last inequality is in fact quite crude. Since ¢ < log, ¢ and (26)
holds, we have

10k n 10k n 0.6,10k _ . 1/2+4&,10k
R SR 2 M giortog, e 2 L S ET

Hence, the fact that Z; is not e-HRR implies that there are two sets Yo,

Y 2i+1 satisfying (29) and (30). The existence of the sets Y;; (0 < j <

2u+ 1) follows by induction. Since J was arbitrary, assertion (1) is proved.
Let us now proceed with the proof of (1). For all J € {0, 1}, set

2u+1

Yy = Yu.
=0

Then we have that

n
[¥7] > 2(u+ 1) | 05|

100k 10k n k
> (1 — k™) [t100(8+1)k-| Z (1 - W) REE
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We may therefore infer from (27) that

) ()
Z ered(lflaYJ) < ZI#J ered(XIaXJ)

I£J
1 2(¢-1) 1 1 2 ©
= (W) 10¢2 (1 _ kt_90k> ZI;U ‘YI||YJ|-

Now note that

ered(Y1,Y7) = Z ered (Y7,2i U Y7 2i41, Y72 UY79541),
,J

where the sum is taken over 0 < i < w and 0 < j < u. It follows from an
averaging argument that, for each T € {0,1}%, there exists r; (0 < r; < u)
so that

(0
ZI#J ered(YI,Zrl U YI,2r1+17 YJ,ZTJ U YJ,2'I"]+1)

1 2 0
< <1 — kt—go’“) 1022 EI# Y720, U YT 20,4101 Y72r, U Y 20,41

For each I € {0, 1}5, set X10 = Yr2r;, X1,1 = Yr,27,41. In this way we get
a collection of 2¢+! sets Xy, (L € {0,1}**!) with | X | = [n/t'00¢+DF] for
all L and such that

(e+1) 1 2 (e+1)
ZL#, ered (X1, X11) < ( — kt%k) o ZL#, [ XL||Xp.

This finishes the induction step and () is proved. O

4. ERDOS-HAINAL SIMPLE GRAPHS

Our aim in this section is to prove Theorem 4. We shall again use the
random graphs R = R,,(P, H) introduced in Section 2.1.

We start by observing that we may assume that the edge-density v =
e(H) (;)_1 of the graph H in the statement of Theorem 4 satisfies 3/7 <
v < 4/7. We shall make use of this assumption towards the end of this
section. Furthermore, we may assume that ¢ is larger than some suitably
large constant so that the inequalities below hold.

The proof of Theorem 4 will be by induction on the number of vertices
of G. However, to make the induction work, we shall need to boost up the
claim in that theorem.

4.1. A stronger version of Theorem 4. For graphs I', G, and H, and a

real number M > 0, let us write I’ ! (G, H) if in any red-blue colouring of
the edges of I', there are either at least M red induced copies of G, or else
there is at least one blue induced copy of H.

Suppose a projective plane P = (V, L) with |£| = |V| = n and a t-vertex
graph H are fixed. Consider the graph R = R, (P, H,II), where, as usual,
IT = (II1) Lec is some family of V(H)-indexed partitions of the lines L of P.
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Let a simple graph G on k vertices be fixed. We shall show below that,
if n > t/ for some large enough f = f(k) and property P(e, d,n,II) holds
for small enough ¢, 4, and n > 0, then

R % (G, H),

where M = n(1=9%_ for any constant p > 0 that is fixed in advance. It turns
out that the assertion above is still not enough to make the induction work.
Indeed, we need a ‘local’ version of the assertion above. In the result below,
as customary, if X C V', we write R[X] for the subgraph of R induced by X.

Lemma 17. Let constants € and ¢ > 0 and a k-vertex simple graph G be
given. Then there ezist constants f = f(e,0,G) and € = (g, 0,G) > 0 for
which the following holds. Let a t-vertex graph H be given, where t > 80,
and suppose P = (V, L) is a projective plane on n > tf points. Consider the
graph R = R, (P, H,11), where Il = (II1) e is such that P(g,1/30,1/80,1I)
holds. Then, for all X C V with | X| > n'/?*¢, we have

R[X] % (G, H), (31)
where M = | X|(1-0),

Proof. The proof will be by induction on k = |V(G)|. If K = 1, there is
nothing to do, as (31) holds trivially in this case for any ¢ > 0. Thus, let
us assume that k£ > 2 and that our lemma holds for smaller values of k.

Let €, o > 0, and a k-vertex simple graph G be given. Then G = G1 UG,
or else G = G1 V G for a pair of graphs (G1,G2) with G; of order k; < k
(1 =1, 2). Let us consider the case in which G is the join of the graphs G
and G5. The other case is similar and a little simpler. We shall make a
couple of comments about that case later on.

To find the constants f and € as required in the lemma, we need to make
a few numerical considerations. Let n = 1/2 + ¢.

(1) There exist constants 7', 1", and p such that 1/2 < " < 5 < n,
0<p<o, and

(i) 0" <n' +n'(1 = 0)ks — nks,

(i) n"(1 — 0)k1 +n'(1 — 2)k2 + 1" —n > n(1 — 0)k.

We postpone the proof of (11), and carry on with the proof of Lemma 17.
Fix 7/, ", and ¢ as in the assertion above. Let '/ = 1/2 + ¢’ and 7" =
1/2 +€". Clearly, €', ¢ > 0. Let us apply the induction hypothesis to the
triples (E”a 57 Gl) and (815 51 G2) Let f(ella 51 Gl)a f(sla 5, GZ), g(‘g"a 55 Gl),
and £(¢’, 0, G2) be the constants whose existence is guaranteed by the in-
duction hypothesis. Put

f=f(6,Q,G)=maX{ 2

g —egl’

f(eﬂaa’ Gl)af(glag’ G2)} (32)
and
€= E(Ea o, G) = min{€7 g(g"’ 55 Gl)’ 5(5” §a G2)} (33)
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We claim that the above choice for f and € will do. To prove our claim, let a
t-vertex graph H be given, where ¢ > 80, let P = (V, £) be a projective plane
on n > t/ points, and suppose II = (II1)re. satisfies P(g,1/30,1/80,1I).
Moreover, fix X C V with |X| > n" = n!/2t¢. We shall now prove that (31)
holds for M = | X|(1=@k_ A simple averaging argument shows that it suffices
to consider the case in which |X| = n?7 = n'/2*¢. (For simplicity, in this
proof we ignore ceiling and floor functions.)

Let R[X] have its edges coloured red and blue, and suppose that there is
no blue induced of H in R[X]. We must find at least M red induced copies
of G in R[X]. Put £(X,1,II) = {L € L: Lis (X,1,II)-normal}. Then,
since P(e,1,1/2,1I) clearly holds, we have

|£(X,1,II)| > n/2. (34)

Let s = | X|/2ty/n. Each line L in £(X,1,II) induces an s-fold blow-up Hj
of s. Thus, by Lemma 13, each such line must induce at least s? red edges.
Using (34), we see that R[X] must contain at least

2
1, X

2 — 82
red edges. Write dx (z) for the number of red edges in R[X] that are
incident to the vertex z € X. A simple argument shows that the number
of vertices z € X such that d  (z) > |X|/8¢* is at least | X|/8¢2. Let us fix
one such vertex z, and let us look at the set X' = Nyeq(z) N X of vertices
in X that are joined to x by red edges.

Since f > 2/(e — €'), we have that |X'| > |X|/8t2 > n". Since f >
f(€',0,G2) and € > €(€', 9, G2), we may deduce that R[X'] induces at least
n(1=07'k2 red copies of Go. Thus, the total number of red induced copies
of K'V Gy within R[X] is at least

@n(lfé)n'lw > pt H(1-2)n'k2 |
8t2 -

Let us say that a red induced copy of Gy in R[X] is good if it belongs to
at least n red induced copies of K1V Go in R[X]. Again by a simple
argument, using inequality (i7) above, we may deduce that we have at least

ln(l—@n'kﬁn’—n (35)

2
good red induced copies of Gy in R[X]. Fix one such good copy, and let us
look at the set X" C X of vertices z" that, together with our good copy
of Gy, induce a red K*V Gy. We have |X”| > n"". Since f > f(¢”,5,G1)
and £ > £(¢", 9, G1), we may deduce that R[X"] contains at least n(1=@7" k1
red induced copies of G;. Thus, our good copy of G2 in R[X] belongs to
at least n(1=@7"k1 red induced copies of G. Taking into account that the
number of such good copies of G2 in R[X] is at least as large as the quantity
in (35), we deduce that the number of red induced copies of G in R[X] is at



INDUCED RAMSEY NUMBERS 23

least
1

— (=" k1+(1—=2)n'k2+n'—n

5 .

Recalling (i), we see that this quantity is no smaller than n(1=@k7_  This
completes the induction step in the case in which G = G1 V Gbs.

Let us now briefly look at the case in which G = G1 U G2. The argument
here is similar, except that we have to make use of the fact that R[X] con-
tains no pair (4, B) of fairly large disjoint sets with e(4, B) > (2/3)|A||B|-
This follows since v < 4/7, and inequality (15) holds with § = 1/6 for any A,
B C X with |A|, |B| > n'/?%¢, since P(g,1/30,1/80,1I) holds. We omit the
details. O

It now remains to prove (f7).

Proof of (11). First we choose 7'’ such that

n>n">1/2 (36)
and 7"k > nki — onk. This second inequality is equivalent to
n"k1 + nko > nk(1 — o). (37)

Inequalities (36) and (37) above imply that it is possible to choose an 7/
close enough to 7, with " < n’ <, ensuring that

(' —n)ke+1' >n" (38)
and that

Nk +n'ke +n" —n > nk(l — ). (39)

Comparing (38) and (39) with (i) and (47) in (1), we easily see that it is now
possible to choose 0 < g < p close enough to 0 to guarantee (7) and (i7). O

Write S* for the family of simple graphs on k points. In fact, the proof
of Lemma 17 given above gives that

R = RH(PaHaH) - (SkaH)a

that is, in any red-blue edge colouring of R, we either have a blue induced
copy of H, or else we have a red induced copy of every simple graph on k
vertices.

Corollary 11 and Lemma 17 imply Theorem 4.

5. SMALL TREES VERSUS GENERAL GRAPHS

Our aim in this section is to prove Theorem 5. Let a graph H of order ¢
be fixed, and let P = (V, L) be a projective plane with |V| = |£] = n.
Let an integer £k > 2 be given. In this section, we consider a random
graph R' = R/ (P, H, k) that is better suited for the purposes of this section.
Indeed, to be able to prove inequality (5), we must certainly consider graphs
that contain large induced trees, and hence we are better off by considering
sparser versions of the random graph R = R, (P, H) that we have considered
elsewhere in this paper.
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5.1. The construction of R' = R} (P, H,k). Let b = 200. Put
B log(kt?)
~ logloglog(kt?)

(For simplicity, we shall ignore floor and ceiling functions in this section.)
Suppose P = (V, L) is such that n = |V| satisfies

log(kt?) 2 log(kt*) ’
P —= ) <p <4k — 1 ) 41
t (log loglog(kt?) ) — n s Ak log log log (kt2) (41)

(40)

Let L € L be a line of P. Randomly choose ¢ pairwise disjoint sub-
sets Wi,...,W, C L of L, all of cardinality ¢. Note that this is possible
since tg < r 4+ 1 holds for large enough ¢. Now, randomly insert ¢ copies
of H in L using these W; as the vertex sets of these copies. Repeat this
procedure for all the lines L € £ of P, making all the random choices inde-
pendently. The resulting random graph is our R’ = R],(P, H, k).

Let us remark that the copies of H in R' = R],(P, H, k) are in fact pairwise
edge-disjoint. This will not, however, prevent us from proving an edge-
Ramsey result.

Lemma 18. There exist absolute constants ko and tg for which the following
holds. Let H be a graph of order t > ty, and consider R' = R],(P,H,k)
for k > ko. Then with positive probability we have that

R' =R/ (P,H,k) — (T,H) (42)
for any tree T of order k.

Clearly, Lemma 18 above implies Theorem 5. In the rest of Section 5, we
give a proof of Lemma 18. Let us mention that, similarly to what happened
in previous sections, our proof will in fact give a ‘universal’ version of (42).
Namely, one sees from the proof below that 7" in (42) may be replaced by T,
the family of all trees on k points, i.e., if no blue induced copy of H is found
in a red-blue edge-coloured R/, then all trees in 7% must be present in R’
as red induced subgraphs.

5.2. A technical lemma on R' = R! (P, H, k). Let a graph H and a pro-
jective plane P as in the previous section be fixed. The integer k is also fixed
throughout this section. Consider the random graph R' = R} (P, H, k), and
let z, y € V(R') be two distinct vertices of R'. The common neighbour-
hood N (z) N N(y) of the vertices z and y in R’ may be ‘unexpectedly large’
(with respect to the edge-density of R'). Indeed, this may happen because z
and y may belong to one of the copies of H that we embed in R'. However,
our technical lemma below asserts that the number of common neighbours
of z and y that do not belong to the line L = L(z,y) € £ determined by z
and y is fairly small.
Let us say that z and y form a normal pair in R’ if

[(N(2) NN (y))\ L(z,y)| < Tog log log 1

30logn
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Lemma 19. Let R' = R} (P, H,k) be as above. Then, with probability ap-
proaching 1 as n — oo, all pairs of vertices of R are normal.

Proof. We prove a few assertions that together imply our lemma. Below
we shall use the term ‘almost surely’ to mean ‘with probability tending
to 1 as n — 0o.” Moreover, we shall tacitly assume that n is large enough
whenever needed.

(A1) Let x and y be two points of P, and fix a line L # L(z,y) that
contains y. Let Y = Y(z,y,L) C L\ {y} be the set of neighbours of

within L \ {y}. Then the probability that
Alogn

Y|< ————— 43

Y] < loglogn (43)

holds is at least 1 —n~%4/7  for any fixed constant A.

To prove assertion (Al), fix a vertex z € L\ {y}. If p is the probability
that = and z are adjacent, then, because of (41), we have

r+1\ 7" s _1  log(kt?) b
- < e = S g
P qe(H)( 2 ) S bkt™n loglog log(kt2) — /n’ (44)

where r is such that n = r2 47 41, and, as usual, e(H) denotes the number
of edges in H. Now, the events zz € E(R') (z € L\ {y}) are all independent.

Thus, letting
0 Alogn
"~ |loglogn
the probability that (43) fails is at most

12
1/2 b\ ¢
™\ ¢ en~' p € —6A/7
< < | — <
as required.

Note that, in particular, the following assertion holds.

(A2) If A > 3, then, almost surely, for all triples (z,y,L) as in (A1), the
set Y =Y (z,y, L) satisfies (43).

(A3) Let two points ¢,y € V and a constant B be fixed. Assume thatY =
Y (z,y, L) satisfies (43) for all lines L # L(z,y) and some fixed A. Then the
number of lines L € L\ {L(z,y)} that contain a neighbour of both z and y
in R' = R],(P, H,k) is less than
Blogn (45)
loglog logn

with probability at least 1 — n 6B/7,

To prove assertion (A3), first fix a line L # L(z,y). Since (43) holds,
in view of (44) the probability p that L contains a common neighbour of z
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and y satisfies
Ablogn
Vvnloglogn

Now, the events Y (z,y,L) N N(y) # 0 (L # L(z,y)) are all independent.
Hence, the probability that at least

Blogn
b= |———F—
logloglogn

of these events hold is, in view of (46), at most
12
/2
AP en’p —6B/T
< <

(A4) If B > 3, then, almost surely, for all pairs x, y € V of distinct vertices
of R = R} (P, H,k), the number of lines different from L(z,y) that contain
a common neighbour of x and y is less than the quantity given in (45).

Assertion (A4) follows immediately from (Al) and (A3).
(A5) Let y be a point of P, and let L € L contain y. Moreover, sup-

pose that a set Y C L\ {y} is given, and assume that Y satisfies (43)
for some constant A. Then the probability that |Y N N(y)| > 11 is at

most n~"/*(logn)™.

The probability that |[Y N N(y)| > £ happens is at most the probability
that a randomly chosen t'-element subset Z of L\ {y} meets Y in at least ¢
elements, where t' =t — 1. Writing s for the cardinality of Y, we have that
this latter probability is at most

() =06 =z () O

which, by (43) and the trivial lower bounds r > /n/2 and n > t, is seen

to be no larger than
9 t 2Alogn ¢
2) \y/nloglogn /)

Letting £ = 11, assertion (A5) follows.
A simple application of assertions (A1l)-(A5) with A = B = 3 proves
Lemma 19. 0

p<|Y(z,y,L)lp < (46)

as required.

5.3. Proof of Lemma 18. We are now ready to prove Lemma 18, which,
as remarked above, implies Theorem 5.

Proof of Lemma 18. Let a projective plane P = (V, L) on n points be fixed,
and suppose a t-vertex graph H and an integer k are given. Suppose further
that (40) and (41) hold. Consider the graph R' = R! (P, H, k), and suppose
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that all pairs of distinct vertices of R’ are normal. We shall show below
that, under these conditions, we have

R — (T, H) (47)

for any tree T on k points. Invoking Lemma, 19, the proof of Lemma 18 will
be complete.

To prove (47), let R’ be red-blue edge-coloured in such a way that no blue
induced copy of H is present. Our aim is to show that, then, any tree T' on
at most k vertices appears as an induced subgraph of R’ with all its edges
coloured red. To this end, let us first observe that, since every copy of H
in each line of P must contain a red edge, there are at least gn red edges
in R'. In fact, we may choose exactly gn red edges in R’ so that, in each
line L € L, we have an independent set of ¢ red edges. Let R be such a
collection of red edges.

A standard argument now shows that there is a subset V' of V(R') such
that every vertex v € V' is incident to at least ¢ red edges in RN E(R'[V']).
In other words, the graph spanned by R N E(R'[V']) in R'[V’] has minimal
degree at least ¢. In what follows, we restrict our attention to R'[V].

We shall now prove by induction on |V (T)| that any tree T on at most k
vertices is present in R'[V’] as a red induced subgraph. Thus, R'[V'] will
be shown to be red k-tree-universal, that is, all trees on k vertices appear
in R'[V’] as red induced subgraphs (cf. the remark following the proof of
Lemma 15).

There is nothing to do if |V (T")| = 1. So assume that 2 < |V(T)| < k, and
that the subtree T" of T obtained from T by removing a leaf of T' appears
as a red induced subgraph in R'[V’]. (In the sequel, we identify 77 with
this copy of T” in R'[V'].) Clearly, it suffices to show that an appropriate
vertex ' € V(T') C V' has a neighbour z € V' such that zz’ is red and,
furthermore, z is not adjacent to any vertex in F = T — z'. Let such a
vertex ' be fixed.

Let

Z ={z€ N (") nV": L(z',2) NV (F) = 0}, (48)

where N%,(z') denotes the set of vertices connected to 2’ with edges in R,
and L(z',z) is the line of P determined by z' and z. Since there is at
most one red edge in R that is incident to z’ in each line that contains z’,

and |V (F)| < k — 2, we have that

11 log(kt?)
Z|>q—k+2>-—q=-bk—————————. 49
%12 q taz 29 log log log(kt2) (49)
Using the normality of the pairs (z/,y) for y € V(F'), we have that
—-2)1
U Nnz|< 0= Desn 50)

YV () logloglogn
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Comparing (49) and (50) (and recalling that b = 200), we see that there is
a vertex z € Z that is not adjacent to any vertex in F in R'. Thus, we have
found our red induced copy of T in R'[V'], as required. This completes the
induction step, and hence we have proved that R'[V'] is indeed red k-tree-
universal.

As remarked earlier, an application of Lemma 19 finishes the proof of
Lemma 18. U

6. CONCLUDING REMARKS

A refinement of Theorem 3 may be proved in the following fashion. As
is well known, the technique applied in the proof of Lemma 15 gives better
numerical results if the maximum degree of the graph G has smaller order
of magnitude than k = |V (G)|. This fact, coupled with slightly more careful
calculations, should suffice to improve (4) to

Ting (G, H) < 2c1kge2Alogq (51)

where A = A(G) is the maximum degree of G, and ¢; and ¢y are universal
constants.
However, even with (51), Problem 1 and Conjecture 2 remain open.
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