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1 Introduction

The 3-hypergraph Ramsey numbers R(3, k) (which we will define below) were first shown to exist

by Ramsey [8]. His bound on them was enormous (formally the Tower function). Erdös-Rado [4]

obtained much better bounds, namely R(3, k) ≤ 224k−Ω(log k) . Recently Conlon-Fox-Sudakov [3]

have obtained R(3, k) ≤ 222k−Ω(log k) We present all three proofs. Before starting the second and

third proofs we will discuss why it improves the prior one.

We also present extensions of all three proofs to the hypergraph case. The first two are known.

The extension of Conlon-Fox-Sudakov seems to be new. The bounds obtained from it yield better

upper bounds then were previously known.

2 Notation and Ramsey’s Theorem

Def 2.1 Let X be a set and a ∈ N. Then
(

X
a

)
is the set of all subsets of X of size a.

Def 2.2 Let a, n ∈ N. The complete a-hypergraph on n vertices, denoted Ka
n, is the hypergraph

with vertex set V = [n] and edge set E =
(
[n]
a

)
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In this paper a coloring of a graph or hypergraph always means a coloring of the edges.

Def 2.3 Let G = (V, E) be an a-hypergraph, and let COL be a c-coloring of the edges of G. A

set of vertices H is homogeneous for COL if every edge in
(

H
a

)
is the same color. We will drop

the for COL when it is understood.

Note 2.4 Assume we are coloring the edges of the complete a-hypergraph. For a = 2 a homoge-

neous set is a complete monochromatic graph. What about a = 1? The complete 1-hypergraph on

n vertices is just a set of n points. The edges are the 1-sets of vertices, which are just vertices. A

homogeneous set is a set of vertices that are all the same color.

Def 2.5 Let a, c, k ∈ N. Let R(a, k, c) be the least n such that, for all c-colorings of Ka
n there

exists a homogeneous set of size k. We denote R(a, k, 2) by R(a, k). We have not shown that

R(a, k, c) exists; however, it does.

Convention 2.6 If we state a theorem of the form (say) R(a, k) ≤ 224k then it means that R(a, k)

exists and is less than the bound given.

We state Ramsey’s theorem for 1-hypergraphs (which is trivial) and for 2-hypergraphs (just

graphs). The 2-hypergraph case, along with the a-hypergraph case, is due to Ramsey [8] (see

also [5, 6, 7]). The bound we give on R(2, k) seems to be folklore (see [6]).

Theorem 2.7 Let k ∈ N.

1. R(1, k) = 2k − 1.

2. R(2, k) ≤
(
2k−2
k−1

)
≤ 22k

√
k
≤ 22k−Ω(log k).

3. For all n, for every 2-coloring of Kn, there exists a homogenous set H of size at least

1
2
log2 n + Ω(1). (This follows from part 1 easily.)
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Note 2.8 Theorem 2.7.2 has an elementary proof. A more sophisticated proof, by David Con-

lon [2] yields R(2, k) ≤ k−D log k
log log k

(
2k
k

)
, where D is some constant. A simple probabilistic argu-

ment shows that R(2, k) ≥ (1 + o(1)) 1
e
√

2
)k2k/2. A more sophisticated argument by Spencer [9]

(see [6]), that uses the Lovasz Local Lemma, shows R(2, k) ≥ (1 + o(1))
√

2
e

k2k/2.

Note 2.9 Ramsey’s theorem generalizes to c colors to yield the following: R(2, k, c) ≤ cck+c−1.

We state Ramsey’s theorem on a-hypergraphs [8] (see also [6, 7]).

Theorem 2.10 Let a, k, c ∈ N. For all k ∈ N, R(a, k, c) exists.

3 Summary of Results

All of our proofs are for the 2-color case; however, they can all be easily modified for the c-color

case. We will include notes about what the results are for c colors.

We present three proofs of the 3-hypergraph Ramsey Theorem (Theorem 2.10 in the case of

k = 3 and c = 2), due to Ramsey [8], Erdös-Rado [4], and Conlon-Fox-Sudakov [3]. Each proof

will yield better and better upper bounds on R(3, k). We then use the ideas in these proofs to

present three proofs of the a-hypergraph Ramsey Theorem. The first two proofs are due to Ramsey

and Erdös-Rado. The third one uses the ideas of Conlon-Fox-Sudakov but seems to be new. Each

proof will yield better and better upper bounds on R(a, k).

We will need both the tower function and Knuth’s arrow notation to state the results.

Def 3.1 TOWc(a, k) is defined as follows

• TOWc(0, k) = k

• For all a ≥ 1, TOWc(a, k) = cTOWc(a−1,k).

Notation 3.2 If we leave out the subscript on TOW then it is assumed to be 2.
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Example 3.3

1. TOW(1, k) = 2k.

2. TOW(2, 17k) = 2217k .

3. TOW5(2, 17k) = 5517k .

Notation 3.4

a ↑n b =



a if n = 0,

ab, if n = 1,

1, if b = 0,

a ↑n−1 (a ↑n (b− 1)), otherwise.

The list below contains both who proved what bounds and the results we will prove in this

paper.

1. Ramsey’s proof [8] yields:

(a) R(3, k) ≤ TOW(2k − 1, 1).

(b) R(a, k) ≤ 2 ↑a−1 (2k − 1)

2. The Erdös-Rado [4] proof yields:

(a) R(3, k) ≤ 224k−Ω(log k) .

(b) R(a, k) ≤ TOW(a− 1, 4k − Ω(log k)).

3. The Conlon-Fox-Sudakov [3] proof yields:

(a) R(3, k) ≤ 2A
√

k22k , where A = 2√
π
∼ 1.128.
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(b) (This result is new though it uses the techniques of Conlon-Fox-Sudakov.)

R(a, k) ≤


TOW(a− 1, 2k + O(log k)) if a is odd

TOW(a− 1, 4k − Ω(log k)) if a is even

We will need the following notation

Notation 3.5 PHP stands for Pigeon Hole Principle.

4 The Tower Function

We will need the following lemma about the Tower function. We leave the proof to the reader.

FILL IN - CHECK WHAT IS NEEDED OF LEMMA BELOW

Lemma 4.1 Let 0 < ε < 1. Let b, b1, b2, L, L1, L2) > 0.

1. For a ≥ 0, for almost all k, b + TOW(a, Lk) ≤ TOW(a, (L + ε)k).

2. For a ≥ 1, for almost all k, bTOW(a, Lk) ≤ TOW(a, (L + ε)k). (To prove this you need

Part 1.)

3. For a ≥ 2, for almost all k, TOW(a, Lk)b ≤ TOW(a, (L + ε)k). (To prove this you need

Part 2.)

4. For a ≥ 1, for almost all k TOW(a− 1, L1k)TOW(a, L2k) ≤ TOW (a, (L2 + ε)k).

5. For a ≥ 2, for L1 ∈ N there exists L2 such that, for all k,

TOW(a, Lk − L1 log k)a ≤ TOW(a, Lk − L2 log k).
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5 Ramsey’s Proof

Theorem 5.1 For all k R(3, k) ≤ TOW(2k − 1, 2).

Proof:

Let n be a number to be determined. Let COL be a 2-coloring of K3
n. We define a sequence of

vertices,

x1, x2, . . . , x2k−1.

Here is the basic idea: Let x1 = 1. This induces the following coloring of
({2,...,n}

2

)
:

COL∗(x, y) = COL(x1, x, y).

By Theorem 2.7 there exists a homogeneous set for COL∗ of size 1
2
log2 n + Ω(1). Keep that

homogeneous set and ignore the remaining points. Let x2 be the least vertex that has been kept.

(bigger than x1). Repeat the process.

We describe the construction formally.

CONSTRUCTION

Let V0 = [n].

Assume 1 ≤ i ≤ 2k − 1 and that Vi−1, x1, x2, . . . , xi−1, c1, . . . , ci−1 are all defined. We define

xi, COL∗, Vi, and ci:

xi = the least number in Vi−1

(∀{x, y} ∈
(

Vi−1−{xi}
2

)
)[COL∗(x, y) = COL(xi, x, y)]

Vi = the largest homogeneous set for COL∗

ci = the color of Vi
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KEY: for all y, z ∈ Vi, COL(xi, y, z) = ci.

END OF CONSTRUCTION

We have vertices

x1, x2, . . . , x2k−1

and associated colors

c1, c2, . . . , c2k−1.

There are only two colors, hence, by PHP, there exists i1, . . . , ik such that i1 < · · · < ik and

ci1 = ci2 = · · · = cik

Denote this color by c, and consider the k vertices

H = {xi1 , xi2 , . . . , xik}.

If x < y < z ∈ H then, by definition, COL(x, y, z) = c. Hence H is homogeneous for COL.

We now see how large n must be so that the construction can be carried out. By Theorem

2.7, if k is large, at every iteration Vi gets reduced by a logarithm and then cut in half and then a

constant (how big depends on how large k is) is added. Using this it is easy to show that, if k is

large enough,

|Vj| ≥
1

2
log

(j−1)
2 n.

We want to run this iteration 2k − 1 times Hence we need
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|V2k−1| ≥
1

2
log

(2k−1)
2 n ≥ 1.

We can take n = TOW(2k − 1, 2).

Note 5.2 The proof of Theorem 5.1 generalizes to c-colors to yield

R(3, k, c) ≤ TOWc(ck − (c− 1), c).

We leave this as an exercise for the reader.

We now prove Ramsey’s Theorem for a-hypergraphs.

Theorem 5.3 For all a ≥ 1, for all k ≥ 1, R(a, k) ≤ 2 ↑a−1 (2k − 1)

FILL IN - HAVE THE THEOREM BE A RECURRENCE IN PART 1.

Proof sketch: This proof is by induction on a.

Base Case: If a = 1 then R(1, k) = 2k − 1 ≤ 2 ↑0 (2k − 1) = 2k − 1.

Induction Step: Assume that the theorem is known for a − 1-hypergraphs. The construction is

similar to that given in the proof of Theorem 5.1.

CONSTRUCTION

Let V0 = [n].

Assume 1 ≤ i ≤ 2k − 1 and that Vi−1, x1, x2, . . . , xi−1, c1, . . . , ci−1 are all defined. We define

xi, COL∗, Vi, and ci:

xi = the least number in Vi−1

(∀A ∈
(

Vi−{xi}
a−1

)
)[COL∗(A) = COL(xi ∪ A)]

Vi = the largest homogeneous set for COL∗

ci = the color of Vi
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KEY POINT: For all 1 ≤ i ≤ 2k − 1, (∀A ∈
(

Vi−{xi}
a−1

)
)[COL(xi ∪ A) = ci].

END OF CONSTRUCTION

We have vertices

x1, x2, . . . , x2k−1

and associated colors

c1, c2, . . . , c2k−1.

There are only two colors, hence, by PHP, there exists i1, . . . , ik such that i1 < · · · < ik and

ci1 = ci2 = · · · = cik

Denote this color by c, and consider the k vertices

H = {xi1 , xi2 , . . . , xik}.

Clearly (∀B ∈
(

Vi−{xi}
a

)
)[COL(B) = ci]. Hence H is homogeneous for COL.

We omit the analysis of how big n must be.

Note 5.4 The proof of Theorem 5.3 generalizes to c colors yielding

R(a, k, c) ≤ c ↑a−1 (ck − (c− 1)).

We leave this as an exercise for the reader.
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6 The Erdös-Rado Proof

Why does Ramsey’s proof yield such large upper bounds? Recall that in Ramsey’s proof we do

the following:

• Color a node by using Ramsey’s theorem (on graphs). This cuts the number of nodes down

by a log (from m to Θ(log m)). This is done 2k − 1 times.

• After the nodes are colored we use PHP once. This will cut the number of nodes in half.

The key to the large bounds is the number of times we use Ramsey’s theorem. The key insight

of the proof by Erdös and Rado [4] is that they use PHP many times but Ramsey’s theorem only

once. In summary they do the following:

• Color an edge by using PHP. This cuts the number of nodes in half. This is done 2R(k,2)2

times.

• After all the edges of a complete graph are colored we use Ramsey’s theorem. This will cut

the number of nodes down by a log.

We now proceed formally.

Theorem 6.1 For all k, R(3, k) ≤ 224k−Ω(log k)
.

Proof:

Let n be a number to be determined. Let COL be a 2-coloring of K3
n. We define a sequence of

vertices,

x1, x2, . . . , xR(2,k).

Recall the definition of a homogeneous set for a coloring of singletons from the note following

Definition 2.3. We will use it here.
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Here is the intuition: Let x1 = 1. Let x2 = 2. The vertices x1, x2 induces the following

coloring of {3, . . . , n}.

COL∗(y) = COL(x1, x2, y).

Let V1 be a homogeneous set for COL∗ of size at least n−2
2

. Let COL∗∗(x1, x2) be the color of V1.

Let x3 be the least vertex left (bigger than x2).

The number x3 induces two colorings of V1 − {x3}:

(∀y ∈ V1 − {x3})[COL∗
1(y) = COL(x1, x3, y)]

(∀y ∈ V1 − {x3})[COL∗
1(y) = COL(x2, x3, y)]

Let V2 be a homogeneous set for COL∗
1 of size |V1|−1

2
. Let COL∗∗(x1, x3) be the color of

V2. Restrict COL∗
2 to elements of V2, though still call it COL∗

2. Let V2 (reuse var name) be a

homogeneous set for COL∗
2 of size at least |V2|

2
. Let COL∗∗(x1, x3) be the color of V2. Let x4 be

the least element of V2. Repeat the process.

We describe the construction formally.

CONSTRUCTION

x1 = 1

V1 = [n]− {x1}

Let 2 ≤ i ≤ R(2, k). Assume that x1, . . . , xi−1, Vi−1, and COL∗∗ :
({x1,...,xi−1}

2

)
→ [2] are

defined.

xi = the least element of Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name).
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We define COL∗∗(x1, xi), COL∗∗(x2, xi), . . ., COL∗∗(xi−1, xi). We will also define smaller

and smaller sets Vi. We will keep the variable name Vi throughout.

For j = 1 to i− 1

1. COL∗ : Vi → [2] is defined by COL∗(y) = COL(xj, xi, y).

2. Let Vi be redefined as the largest homogeneous set for COL∗. Note that |Vi| is at least

half of its previous size. (Recall that COL∗ is a coloring of vertices, not edges, and that a

homogenous set is one that is all the same color.)

3. COL∗∗(xj, xi) is the color of Vi.

KEY: For all 1 ≤ a < b ≤ i, for all y ∈ Vi, COL(xa, xb, y) = COL∗∗(xa, xb).

END OF CONSTRUCTION

We now have

X = {x1, x2, . . . , xR(2,k)}.

Note that COL∗∗ is a 2-coloring of pairs of elements of X . We apply Ramsey’s theorem (on

graphs) to obtain a homogeneous set H of size k. It is easy to show that H is homogeneous relative

to COL.

We now see how large n must be so that the construction be carried out. Note that |Vi| will be

divided in half ≤ i times in stage i. Hence |Vi+1| ≥ |Vi|
2i . Therefore

|Vi| ≥
n

2i2/2
.

We want |VR(2,k)| ≥ 1.

n

2R(2,k)2/2
≥ 1
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We do not use the 2 in the denominator of the exponent. We take n = 2R(2,k)2 . By Theorem 2.7

we obtain

R(3, k) ≤ 2R(2,k)2 ≤ 22(2k−Ω(log k))2 ≤ 24k−Ω(log k).

Note 6.2 The proof of Theorem 6.1 generalizes to c-colors yielding

R(3, k, c) ≤ cc(ck−(c−1))−1

.

This proof uses Note 2.9 for the bound on R(2, k, c).

We now consider the a-ary Ramsey Theorem.

Theorem 6.3

1. For all a ≥ 2, for all k, R(a, k) ≤ 2R(a−1,k)a−1

.

2. For all a ≥ 1, for all k, R(a, k) ≤ TOW(a− 1, 4k − Ω(log k)).

Proof:

1) Assume that R(a− 1, k) exists and a ≥ 2.

CONSTRUCTION

x1 = 1

... =
...

xa−2 = a− 2

Va−2 = [n]− {x1, . . . , xa−2} We start indexing here for convenience.
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Let 2 ≤ i ≤ R(a− 1, k). Assume that x1, . . . , xi−1, Vi−1, and COL∗∗ :
({x1,...,xi−1}

2

)
→ [2] are

defined.

xi = the least element of Vi−1

Vi = Vi−1 − {xi} (We will change this set without changing its name).

We define COL∗∗(A ∪ {xi}) for every A ∈
({x1,...,xi−1}

a−2

)
. We will also define smaller and

smaller sets Vi.

For A ∈
({x1,...,xi−1}

a−2

)
1. COL∗ : Vi → [2] is defined by COL∗(y) = COL(A ∪ {xi, y}).

2. Let Vi be redefined as the largest homogeneous set for COL∗. Note that |Vi| is at least

1/2 of its previous size. (Recall that COL∗ is a coloring of vertices, not edges, and that a

homogenous set is one that is all the same color.)

3. COL∗∗(A ∪ {xi}) is the color of Vi.

We have

x1, x2, . . . , xR(a−1,k)

and every (a − 1)-set is colored with one of 2 colors by COL∗∗. Apply the (a − 1)-ary Ramsey

Theorem to obtain a homogenous set. This is the homogenous set for the original coloring that we

seek.

We now see how large n must be so that the construction be carried out. Note that |Vi| will be

divided by 2 at most
(

i
a−2

)
≤ ia−2 times in stage i. Hence |Vi+1| ≥ |Vi|

2ia−2 . Therefore

|Vi| ≥
n

2ia−1 .
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We want |VR(a−1,k)| ≥ 1.

n

2R(a−1,k)a−1 ≥ 1.

Hence n = 2R(a−1,k)a−1 suffices. Therefore

R(a, k) ≤ 2R(a−1,k)a−1

.

2) We prove this by induction on a. We do the base case for a = 1, 2, 3 so that the reader can see

why the theorem gives the values that it does.

Base Case:

1. a = 1: R(1, k) = 2k − 1 = TOW(0, 2k − 1).

2. a = 2: R(2, k) ≤ 22k−Ω(log k) ≤ TOW(1, 2k − Ω(log k)) ≤ TOW(1, 4k − Ω(log k)). by

Theorem 2.7. We did not use the recurrence from Part 1; it would have give the bound

TOW(1, 4k − Ω(log k)).

3. a = 3: R(3, k) ≤ 2R(a−1,k)2 ≤ TOW(2, 4k − Ω(log k)) from Theorem 6.1. This proof does

use the recurrence. The exponent of a− 1 (2 in this case) goes directly into the top exponent

which is why we end up with 4k − Ω(log k) as the top term instead of 2k.

Induction Step: We assume the theorem is true for a− 1. We may assume a ≥ 4.

R(a, k) ≤ 2R(a−1,k)a−1

By Part 1.

≤ 2TOW(a−2,4k−Ω(log k)a−1 By the induction hypothesis.

≤ 2TOW(a−2,4k−Ω(log k)) By Lemma 4.1.

≤ TOW(a− 1, 4k − Ω(log k)) By the definition of TOW.

15



Note 6.4 The proof of Theorem 6.3 generalizes to c-colors to yield

R(a, k, c) ≤ TOWc(a− 1, 2ck).

7 Conlon-Fox-Sudakov

Recall the following high level description of the Erdos-Rado proof:

• Color an edge by using PHP. This cuts the number of nodes in half. This is done 2R(2,k)

times.

• After all the edges of a complete graph are colored we use Ramsey’s theorem. This will cut

the number of nodes down by a log.

Every time we colored an edge we cut the number of vertices in half. Could we color fewer

edges? Consider the following scenario:

COL∗∗(x1, x2) = R and COL∗∗(x1, x3) = B. Intuitively the edge from x2 to x3 might not be

that useful to us. Therefore we will not color that edge!

Two questions come to mind:

Question: How will we determine which edges are potentially useful?

Answer: We will associate to each xi a string σi that keeps track of which edges (xj, xi) are

colored, and if so what they are colored. (We denote the empty string by λ.) Say we already have

x1, . . . , xi

σ1, . . . , σi

(where σ1 = λ) defined. If i < j then the edge (xi, xj) will be colored if σi and σj do not conflict.
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Question: Since we only color some of the edges how will we use Ramsey’s theorem?

Answer: We will not. Instead we go until one of the subscripts has either k R’s or k B’s in it.

We need two lemmas.

Lemma 7.1 For all k ≥ 1, for all x ≥ 0,
∑k−1

L=0

(
x+L

L

)
=

(
x+k
k−1

)
=

(
x+k
x+1

)
.

Proof: We prove this by induction on k.

If k = 1 then we get
(

x
0

)
=

(
x+1

0

)
which is true since they are both 1.

Assume true for k − 1. So

k−2∑
L=0

(
x + L

L

)
=

(
x + k − 1

k − 2

)
.

Add
(

x+k−1
k−1

)
to both sides

k−1∑
L=0

(
x + L

L

)
=

(
x + k − 1

k − 2

)
+

(
x + k − 1

k − 1

)
=

(
x + k

k − 1

)
.

Lemma 7.2 Let S ⊆ {R,B}∗ be such that no string in S has ≥ k R’s or ≥ k B’s. Then

∑
σ∈S

|σ| ≤ A
√

k2k

where A = 2√
π
∼ 1.128.

Proof:

Let Si,j be the set of all strings with i R’s and j B’s. Clearly

∑
σ∈S

|σ| =
k−1∑
i=0

k−1∑
j=0

∑
σ∈Si,j

|σ|.

Note that every σ ∈ Si,j is of length i + j. Hence
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∑
σ∈Si,j

|σ| =
∑

σ∈Si,j

i + j = (i + j)
∑

σ∈Si,j

1 = (i + j)|Si,j| = (i + j)

(
i + j

j

)
.

Hence we need

k−1∑
i=0

k−1∑
j=0

(i + j)

(
i + j

j

)
=

k−1∑
i=0

k−1∑
j=0

i

(
i + j

j

)
+ j

(
i + j

i

)
= 2

k−1∑
i=0

i
k−1∑
j=0

(
i + j

j

)
By Lemma 7.1 with x = i and L = j we obtain

k−1∑
j=0

(
i + j

j

)
=

(
i + k

i + 1

)
.

Hence we seek

2
k−1∑
i=0

i

(
i + k

i + 1

)
.

k−1∑
i=0

i

(
i + k

i + 1

)
=

k−1∑
i=0

(i + 1)

(
i + k

i + 1

)
−

k−1∑
i=0

(
i + k

i + 1

)
We look at each piece separately.

(i + 1)

(
i + k

i + 1

)
= (i + 1)

(i + k)!

(k − 1)!(i + 1)!
=

(i + k)!

(k − 1)!i!
= k

(i + k)!

k!i!
= k

(
i + k

i

)

Hence

k−1∑
i=0

(
i + k

i + 1

)
=

k−1∑
i=0

k

(
i + k

i

)
= k

k−1∑
i=0

(
i + k

i

)
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By Lemma 7.1 with x = k and L = i we obtain

k−1∑
i=0

=

(
i + k

i

)
=

(
2k

k + 1

)
,

Putting all of this together and using Stirling’s Formula we obtain

2
k−1∑
i=0

i

(
i + k

i + 1

)
= 2

(
k

(
2k

k + 1

)
−

k−1∑
i=0

(
i + k

i + 1

))
≤ 2k

(
2k

k

)
≤ A

√
k22k

where A = 2√
π
∼ 1.128.

Note 7.3 According to WolframAlpha [1]

k−1∑
i=0

(
i + k

i + 1

)
=

(
1 +

1

k

)(
2k

k + 1

)
+ 1.

This would yield ∑
σ∈S

|σ| = 2

((
k − 1− 1

k

)(
2k

k − 1

)
− 1

)
.

This more exact result does not help us obtain a smaller upper bound.

The following proof is by Conlon-Fox-Sudakov [3].

Theorem 7.4 For all k, R(3, k) ≤ 2A
√

k22k
where A = 2√

π
∼ 1.128.

Proof: Let n be a number to be determined. Let COL be a 2-coloring of K3
n. We define a

sequence of vertices x1, x2, . . . and a sequence of strings σ1, σ2, . . . ∈ {R,B, Q}∗. We will stop at

the first i such that |σi| has either k R’s or k B’s. (We will later show that this must happen.) We

say that two strings are compatible if there is no position where one says R and one says B.

FILL IN- WE MIGHT USE SUBSET OF INSTEAD OF COMPATIBLE.

Recall the definition of a homogeneous set relative to a coloring of a 1-hypergraph from the

note following Definition 2.3. We will use it here.
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Here is the intuition: Let x1 = 1 and x2 = 2. Let σ1 = λ. The vertices x1, x2 induces the

following coloring of {3, . . . , n}.

COL∗(y) = COL(x1, x2, y).

Let V1 be a homogeneous set of size at least n−2
2

. We will only work with V1 from now on. Let

COL∗∗(x1, x2) be the color of V1. Let σ1 = COL∗∗(x1, x2). So far this looks like the proof given

in Theorem 6.1

Let x3 be the least vertex in V1. The number x3 induces two colorings of V1 − {x}:

COL∗
1,3(y) = COL(x1, x3, y)

COL∗
2,3(y) = COL(x2, x3, y)

Let V2 be a homogeneous set relative to COL∗
1,3 of size |V1|−1

2
. Let COL∗∗(x1, x3) be the color

of V2. We also set σ3 = COL∗∗(x1, x3), though we will append to σ3 later. Restrict COL∗
2,3 to

elements of V2, though still call it COL∗
2,3. We will only work with V2 from now on.

Will we color (x2, x3)? If σ2 and σ3 are compatible then YES. If not then we won’t. This is the

key- every time we color an edge we divide V in half. We will not always color and edge- only the

promising ones. Hence V will not decrease as quickly as was done in the proof of Theorem 6.1.

If σ2 and σ3 are compatible then we let V2 (reuse var name) be a homogeneous set relative to

COL∗
2,3 of size at least |V2|

2
. Let COL∗∗(x2, x3) be the color of V2. Append that color to σ3 to form

a new σ2.

If σ2 and σ3 are not compatible then we do color (x2, x3). We do however append a Q to σ2. If

σ3 = RQ this means that the edge between x1 and x3 is colored R and there is no edge between

x2 and x3.

We describe the construction formally.
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CONSTRUCTION

V1 = [n]

x1 = 1

x2 = 2

σ1 = λ

σ2 = λ (This will change.)

(∀y ∈ V1 −X1)[COL∗(y) = COL(x1, x2, y)]

V2 = the largest homogeneous set for COL∗

COL∗∗(x1, x2) = the color of V2

σ2 = σ2COL∗∗(x1, x2)

KEY: for all y ∈ V1, COL(x1, x2, y) = COL∗∗(x1, x2).

Let i ≥ 2, and assume that Vi−1, x1, . . . , xi−1, σ1, . . . , σi−1 are defined. Also assume that

COL∗∗ :
({x1,...,xi−1}X

2

)
→ [2] is partially defined (that is, there may be some pairs that are not

assigned a color). If σi−1 has either k R’s or k B′s then stop. Otherwise proceed.

σi = λ (This will change.)

xi = the least element of Vi−1

Vi = Vi − {xi} (We will change this set without changing its name.)

We define some of COL∗∗(x1, xi), COL∗∗(x2, xi), . . ., COL∗∗(xi, xi). We will also define

smaller and smaller sets Vi. We will keep the variable name Vi throughout.

For j = 0 to i− 1

1. If σj and σi are compatible then proceed, otherwise append Q to σi to form new σi and go to

next j.

2. COL∗ : Vi → [2] is defined by COL∗(y) = COL(xj, xi, y).
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3. Vi is the largest homogeneous set for COL∗. Note that |Vi| will be decreased by at most half.

4. COL∗∗(xj, xi) is the color of Vi.

5. Append COL∗∗(xj, xi) to the end of σi to form a new σi.

KEY: for all y ∈ Vi, for all 1 ≤ a < b ≤ i such that σa � σb, COL(xa, xb, y) = COL∗∗(xa, xb).

END OF CONSTRUCTION

It is not clear that the construction ends; however, that will be proven by Claim 1 below which

is also used to obtain the upper bound on R(3, k). For now we assume that the construction ends.

When the construction ends we have a σ that has either k R’s or k B’s. We assume that its R’s.

Let

σi1 , σi2 , . . . , σik

be all of the prefixes of σ that end in an R. By the construction, for all 1 ≤ a < b < c ≤ k

COL(σia , σib , σic) = R.

Hence the set

xi1 , . . . , xik

forms a homogeneous set of size k.

We now need to determine a bound on n.

Def 7.5 If σ ∈ {R,B, Q}∗ then squash(σ) is formed by removing all of the Q’s from σ.

Claim 1: For all i1 < i2, squash(σi1) 6= squash(σi2).

Proof of Claim 1: Assume, by way of contradiction, that i1 < i2 and squash(σi1) = squash(σi2).
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Mini Claim: For 1 ≤ j ≤ i1 − 1 σi1 [j] = σi2 [j]. We prove this by induction on j.

Proof of Mini Claim:

Base Case: j = 1. σi1 [1] and σi2 [1] are non Q elements. They must be the same since squash(σi1) =

squash(σi2).

Induction Step: Assume that σi1 [1, 2, . . . , j−1] = σi2 [1, 2, . . . , j−1]. We also assume j ≤ i1−1.

Since σi1 [1, 2, . . . , j − 1] = σi2 [1, 2, . . . , j − 1] they will either both get a Q for the jth symbol (in

which case the Mini Claim holds for j) or both get a non-Q. If they both get a non-Q it must be

the same symbol since σi1 [1, 2, . . . , j − 1] = σi2 [1, 2, . . . , j − 1] and squash(σi1) = squash(σi2).

End of Proof of Mini Claim

By the Mini Claim σi1 is a prefix of σi2 . Hence when σi2 is being defined and j = i1, either

an R or a B will be appended to σi2 (say R). At that point σi1R will be a prefix of σi2 , so

squash(σi1) 6= squash(σi2). This is a contradiction.

End of Proof of Claim

Let S, T be defined as follows.

T = {σ1, σ2, . . .}.

S = {squash(σ) : σ ∈ T}.

Since the construction ends when σi has either k R’s or k B’s, we have that S ⊆ {R,B}≤2k−1

and hence is finite. Therefore the construction will terminate.

How big is T ? Actually, this is not what we care about. What we care about is how many times

the number of vertices will be cut in half. For every non-Q element in σi, the number of vertices

gets cut in half. So we really care about
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∑
σ∈T

Number of non-Q in σ .

By Claim 1 the summation can be restated (without fear of double counting) as

∑
τ∈S

|τ |.

By Lemma 7.2 this is bounded by A
√

k2k. Therefore we need n

2A
√

k22k ≥ 1. Thus we can take

n ≥ 2A
√

k22k
. Hence R(3, k) ≤ 2A

√
k22k

.

Note 7.6 The proof of Theorem 7.4 generalizes to c-colors yielding

R(3, k, c) ≤ cc2k2cck

.

The proof of this result does not use a modified Lemma 7.2. A modified Lemma 7.2 might lead

to a better result. Instead we use a modified Lemma 7.8. We leave the proof of this bound as an

exercise for the reader.

We consider the a-ary Ramsey Theorem. We need a lemma that is analogous to Lemma 7.2;

however, it won’t be as exact.

Def 7.7 We denote a colored graph by (V, E, COL) where V is the vertices, E is the edges and

COL is the coloring of the edges. We assume that if |V | = n then V = [n].

Lemma 7.8 Let S be the subset of 2-colored complete (a− 1)-hypergraphs that have no homoge-

nous set of size k. ∑
(V,E,COL)∈S

|E| ≤ R(a, k)a2R(a,k)a−1

.
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Proof:

The largest size of V such that a colored (a− 1)-hypergraph (V, E) has no homogenous set of

size k is bounded above by R(a− 1, k). Hence what we want to bound.

R(a−1,k)∑
i=1

∑
(V,E,COL)∈S,|V |=i

|E| ≤
R(a−1,k)∑

i=1

∑
(V,E,COL)∈S,|V |=i

ia−1

The number of 2-colored a-hypergraphs on i vertices is bounded above by 2ia . Hence we can

bound the above sum by

R(a−1,k)∑
i=1

2ia−1

ia−1 ≤ R(a− 1, k)2R(a−1,k)a−1

R(a− 1, k)a−1 ≤ R(a− 1, k)a2R(a−1,k)a−1

Theorem 7.9 For all a ≥ 3 the following holds.

1. For all k, R(a, k) ≤ 2R(a−2,k)a−12R(a−2,k)a−2

.

2.

R(a, k) ≤


TOW(a− 1, 2k + O(log k) if a is odd

TOW(a− 1, 4k − Ω(log k) if a is even

Proof:

1)

CONSTRUCTION
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Va−2 = [n] We start indexing here for convenience.

x1 = 1

x2 = 2

... =
...

xa−1 = a− 1

Xa−1 = {x1, . . . , xa−1}

G1 = ([1], ∅)

G2 = ([2], ∅)
...

...

Ga−2 = ([a− 2], ∅)

Ga−1 = ([a− 1], ∅) (The edge set will change.)

(∀y ∈ Va−1 −Xa−1)[COL∗(y) = COL(x1, x2, . . . , xa−1, y)]

Va−1 = the largest homogeneous set for COL∗

COL∗∗(x1, . . . , xa−1) = the color of Va−1

Ga−1 = ([a− 1], {[a− 1]}) with COLa−1([a− 1]) = COL∗ ∗ (x1, . . . , xa−1)

The Gi’s will be 2-colored (a − 2)-hypergraphs. We say that two such objects are compatible

if there is no edge where the disagree on the color. There may be vertices and edges in one and not

the other.

KEY: for all y ∈ V1, COL(x1, . . . , xa−1, y) = COL∗∗(x1, . . . , xa−1).

Let i ≥ 2, and assume that Vi, Xi = {x1, . . . , xi}, and σ1, . . . , σi are defined. Also assume

that COL∗∗ :
(

X
a−1

)
→ [2] is partially defined (that is, there may be some (a− 1)-sets that are not

assigned a color). If Gi has a homogenous set of size k then stop. Otherwise proceed.
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Gi = ∅ (This will change.)

xi = the least element of Vi

Vi = Vi − {xi} (We will change this set without changing its name.)

We define some of COL∗∗(A ∪ {xi) for A ∈
(

Xi

a−2

)
. We will also define smaller and smaller

sets Vi. We will keep the variable name Vi throughout.

FILL IN- COMPATIBLE- MIGHT USE SUBGRAPH

For A ∈
(

X
a−2

)
1. If for every j ∈ A, Gj and Gi are compatible then proceed, otherwise go to next A. (Note

that in Theorem 7.4 we explicitly colored the point Q to mean that we are not coloring it.

Here we simply do not color it.)

2. COL∗ : Vi → [2] is defined by COL∗(y) = COL(A ∪ {xi, y}).

3. Vi is the largest homogeneous set for COL∗. Note that |Vi| will be at most divided by 2.

4. COL∗∗(A ∪ {xi}) is the color of Vi.

5. In Gi color A with the color of Vi.

END OF CONSTRUCTION

KEY: for all y ∈ Vi, for all B ∈
(

Xi

a−1

)
, COL(B ∪ {y}) = COL∗∗(B).

It is not clear that the construction ends; however, that will be proven by Claim 3 below which

is also used to obtain the recurrence for R(a, k) in terms of R(a − 2, k). For now we assume that

the construction ends.

When the construction ends we have a G that has a homogenous set of size k. We assume

that its color is R. The homogenous set of G is clearly a homogenous set for the original coloring

COL.
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We now need to determine a bound on n.

How long can this sequence

S = {G1, G2, . . .}.

go on for? Actually, this is not what we care about. What we care about is how many times the

number of times the number of vertices will be cut by 1/2. Determining this well take a sequence

of claims.

Claim 1: Each Gi in the construction is a complete graph.

Proof of Claim 1:

FILL I PROOF

End of Proof of Claim 1

Def 7.10 If G is a complete 2-colored graph on vertex set 1 ≤ i1 < i2 < · · · iL then squash(G) is

formed by, for 1 ≤ j ≤ L, renaming vertices ij by j.

Claim 2: For all i1 < i2, squash(Gi1) 6= squash(Gi2).

Proof of Claim 2:

FILL I PROOF

End of Proof of Claim 2

Claim 3: The construction works with n = FILL IN LATER- RECURRENCE

Proof of Claim 3:

FILL IN PROOF

End of Proof of Claim 3

FILL IN- MIGHT NEED TO CHANGE THE REST OF THE PROOF.

By Claim 3 R(a− 2, k)a−12R(a−2,k)a−2
. FILL IN - MIGHT NEET TO CHANGE THIS Hence

it will suffice to take n = 2R(a−2,k)a−12R(a−2,k)a−2

. Therefore
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R(a, k) ≤ 2R(a−2,k)a−12R(a−2,k)a−2

.

It will be sometimes be convenient to use the alternative form:

R(a, k) ≤ 22R(a−2,k)a−2
+(a−1) lg(R(a−2,k)).

2) We prove this by induction on a. We do the base case for a = 1, 2, 3, 4, 5 so that the reader can

see why the theorem has different cases for a even and a odd.

Base Case:

1. R(1, k) = 2k − 1 ≤ 2k = TOW(0, 2k) ≤ TOW(0, (4 + ε)k).

2. R(2, k) ≤ 22k = TOW(1, 2k). This follows from Theorem 2.7.

3. R(3, k) ≤ 2A
√

k22k ≤ 22(2k+O(log k)
= TOW(2, 2k + O(log k)). This follows from Theo-

rem 7.4.

4. R(4, k) ≤ 22R(2,k)2+3 lg(R(2,k)) ≤ 2224k−Ω(log k)
+6k ≤ 222(4k−Ω(log k)

= TOW(3, 4k − Ω(log k).

Note that we get the (4k−Ω(log k) term since (simplifying) (22k)2 = 24k. Contrast this with

what happens when a = 5.

5. R(5, k) ≤ 22R(3,k)3+4 lg(R(3,k)). Note that

R(3, k)3 ≤ (222k+O(log k)

)3 = (23×2(2k+O(log k)) ≤ 222k+O(log k)

= TOW(2, 2k + O(log k)).

Hence

2R(3,k)3 ≤ TOW(3, 2k + O(log k))

and

lg(R(3, k)) ≤ TOW(1, 2k + O(log k)).
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Hence FILL IN LATER TO GET TOW(4, 2k + O(log k)). Note that we get a a (2k +

O(log(k))k term because (simplifying) (22(Bk
)3 = 23×2Bk . Hence the cubing does not affect

the top term.

Because R(3, k) ended up with a top term of (2 + ε)k every even k ≥ 2 will end up with a top

term of (2 + ε)k. Because R(4, k) ended up with a top term of (4 + ε)k every even k ≥ 2 will end

up with a top term of (4 + ε)k.

Induction Step: Assume the theorem is true for all a′ < a. We can also assume a ≥ 6. We do the

case where a is odd. The case where a is even is similar.

By the recurrence, the above, and Lemma 4.1, for almost all k,

R(a, k) ≤ 2R(a−2,k)a−12R(a−2,k)a−2

By the recurrence from Part 1.

≤ 2TOW(a−3,2k+O(log k))a−12TOW(a−3,2k+O(log k))a−3

By the Induction Hypothesis.

≤ 2TOW(a−3,2k+O(log k))2TOW(a−3,2k+O(log k)) By Lemma 4.1.2

≤ 2TOW(a−3,2k+O(log k))TOW(a−2,2k+O(log k)) By the definition of TOW

≤ 2TOW(a−2,2k+O(log k) By Lemma 4.1.

≤ TOW(a− 2, 2k + O(log k)) By the definition of TOW.

Let ε1 = ε2 = ε3 = ε/3 to obtain the result we seek.

FILL IN- FIGUREOUT

Note 7.11 The proof of Theorem 7.9 generalizes to c-colors yielding the following.

1. For all k, R(a, k, c) ≤ cR(a−2,k,c)a−1cR(a−2,k,c)a−2

.
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2. For all ε > 0, for almost all k,

R(a, k, c) ≤


TOWc(a− 1, (c + ε)k) if a is odd

TOWc(a− 1, (2c + ε)k) if a is even

We leave this as an exercise for the reader.
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