Ergodic Proofs of VDW Theorem-Handout

1 Definitions from Topology

Def 1.1

- 1. X is a metric space if there exists a function d (called a metric) with the following properties. (1) d(x,y) = 0 iff x = y, (2) d(x,y) = d(y,x), (3) $d(x,y) \le d(x,z) + d(z,y)$ (this is called the triangle inequality).
- 2. X, Y metric space. If $x \in X$ and $\epsilon \in R^+$ then $B(x, \epsilon) = \{y \mid d(x, y) < \epsilon\}$. Sets of this form are called *balls*.
- 3. Any union of balls is an open set.
- 4. If A is the complement of an open set then A is closed.
- 5. Let $A \subseteq X$ and $x \in X$. x is a limit point of X if $(\forall \epsilon > 0)(\exists y)[y \in B(x, \epsilon) \cap A]$.
- 6. If $x_1, x_2, \ldots \in X$ then $\lim_i x_i = x$ means $(\forall \epsilon > 0)(\exists i)(\forall j)[j \ge i \Rightarrow x_j \in B(x, \epsilon)]$.
- 7. $T: X \to X$. T is continuous if for all $x, x_1, x_2, \ldots \in X \lim_i x_i = x \Rightarrow \lim_i f(x_i) = f(x)$.
- 8. $T: X \to X$ is unif-continous if $(\forall \epsilon)(\exists \delta)(\forall a, b \in X)[d(a, b) < \delta \Rightarrow d(T(a), T(b)) < \epsilon]$.
- 9. $T: X \to X$ is bi-unif-continous if T is a bijection, T is uniformly continous, and T^{-1} is uniformly continous.
- 10. If $A \subseteq X$ then the closure of X, denoted cl(A), is the intersection of all closed sets containing X.
- 11. X is Barg if every infinite subset of X has a limit point.

Fact 1.2

- 1. cl(A) is the smallest closed set containing A.
- 2. If a set is closed then it contains all of its limit points.
- 3. In a metric space cl(A) is the union of A and the limit points of A.
- 4. If X is Barg and $X_1 \supseteq X_2 \supseteq X_3 \supseteq \cdots$ are nonempty closed sets then $\cap_i X_i \neq \emptyset$.

Def 1.3 Let X be a metric space and $T: X \to X$ be continous. Let $x \in X$. The point x is Recurrent for T if

$$(\forall \epsilon)(\exists n)[d(T^{(n)}(x), x) < \epsilon].$$

We prove a theorem about Recurrent points and then apply it to get VDW theorem.

Def 1.4 A metric space S is minimal if, for every $x \in S$,

$$S = cl(\{\dots, T^{-3}(x), T^{-2}(x), T^{-1}(x), T^{0}(x), T^{1}(x), T^{2}(x), T^{3}(c), \dots\})$$

We show the following by a multiple induction.

- 1. $A_r: (\forall \epsilon > 0)(\exists x, y \in S, n \in \mathbb{N})$ $d(T^{(n)}(x), y) < \epsilon, d(T^{(2n)}(x), y) < \epsilon, \dots, d(T^{(rn)}(x), y) < \epsilon.$
- 2. B_r : $(\forall \epsilon > 0)(\forall z \in S)(\exists x \in S, n \in \mathbb{N})$ $d(T^{(n)}(x), z) < \epsilon, d(T^{(2n)}(x), z) < \epsilon, \dots, d(T^{(rn)}(x), z) < \epsilon.$
- 3. C_r : $(\forall \epsilon > 0)(\forall z \in S)(\exists x \in S, n \in \mathbb{N}, \epsilon' > 0)$ $T^{(n)}(B(x, \epsilon') \subseteq B(z, \epsilon), T^{(2n)}(B(x, \epsilon') \subseteq B(z, \epsilon), \dots, T^{(rn)}(B(x, \epsilon') \subseteq B(z, \epsilon))$
- 4. $(\forall \epsilon > 0)(\exists w \in S, n \in \mathbb{N})$ $d(T^{(n)}(w), w) < \epsilon, d(T^{(2n)}(w), w) < \epsilon, \dots, d(T^{(rn)}(w), y) < \epsilon.$

Def 1.5 Let X be a metric space, $T: X \to X$ be a bijection, and $x \in X$.

1.

$$CLT(x) = cl(\{\dots, T^{(-3)}(x), T^{(-2)}(x), T^{(-1)}(x), T^{(0)}(x), T^{(1)}(x), T^{(2)}(x), T^{(3)}(x), \dots)$$

2. x is homogenous if

$$(\forall y \in CLT(x))[CLT(x) = CLT(y)].$$

3. X is barg if every infinite subset of X has a limit point in X.

Lemma 1.6 Let (X, \preceq) be a partial order. If every chain has an upper bound then there exists a maximal element

Lemma 1.7 Let X be a metric space, $T: X \to X$ be bi-continous, and $x \in X$. If $y \in CLT(x)$ then $CLT(y) \subseteq CLT(x)$.

Theorem 1.8 Let X be a barg metric space. Let $T: X \to X$ be a bijection then there exists a homogenous point $x \in X$.

Theorem 1.9 For all c, for all k, for every c-coloring of Z there exists a monochromatic arithmetic sequence of length k.