An Exposition of the Main Theorem in
Enumerations of the Kolmogorov Function
Authors of paper:
Beigel, Buhrman, Fejer, Fortnow Grabowski, Longpre, Muchnik, Stephan, Torenvliet
Author of this writeup: Gasarch

1 Introduction and Definitions

The following definition is basic to Kolmogorov complexity (see [?]).
Def 1.1 Let x be a string of length n.

1. C(x) is the size of the smallest program that outputs x. This is the
Kolmogorov complexity of z. (Note- to formalize this we would need
so specify what a program is; however, the Kolmogorov complexity of
a string changes by only a constant when you change programming
systems.)

2. We define Cs(x) to be an approximation to C' after s steps. Formally
we define Cyp(z) = n + O(1) since without any work you know there
is a program that stores x and prints it. (The O(1) depends on the
particular programming system.) Cg(x) is obtained by running the
first s Turing machines for s steps on 0; if any of them prints = and
has size < Cs_1(z) then output the size of the smallest such machine.

Intuitively a function f is m-enumerable if there is a process that, on
input x, enumerates < m candidates for f(x) one of which really is f(z).
We formalize this.

Notation 1.2 W, is the domain of the eth Turing machine, so Wy, W1, ...
is a list of all c.e. sets. W/ is the domain of the eth oracle Turing machine
using oracle A, so W({‘, WlA, ... 1is a list of all c.e.-in-A sets.

Def 1.3 [1, 2] Let m > 1 and let A C N.

1. f is m-enumerable if there is a computable function A such that

2. f is m-enumerable-in-A if there is a computable function h such that
() Wik | < m A flz) € Wi,

3. EN“(m) is the class of all m-enumerable-in-A functions.
We need the following definition and theorem from computability theory.

Def 1.4 Let f be a partial function and F' be a total function. f is domi-
nated by F if, for every x such that f(x) exists, f(x) < F(x). fis computably
dominated if there is a computable function F' such that f is dominated by F'.

Def 1.5 [3] A set X is extensive if, for every computably dominated par-
tial computable function f, there is a total function g <t X such that g
extends f.

Lemma 1.6 [3] Let A be a set. There exists a set X such that the following
hold.

1. A<t X.

2. KSTX%KSTA.

3. X 1is extensive.
We need the following definition and theorem from bounded queries.

Def 1.7 Let k € N and D C N. Then #2(z1,...,2) = [D N {x1,..., 21}
Lemma 1.8 [1, 2] Let k € N. If #5 € ENA(k) then K <1 A.

Note 1.9 Kummer showed [4] that, for all D, #2 € EN4(k) then D <t A.

We need the following easy lemma and corollary from kolgmorov theory.
They are both folklore; we include their proofs for completeness.

Lemma 1.10 Let a,b € N such that a+1 < b. Let G be a set of at least 2°
strings. Then there exists at least 2 strings w € G such that C(w) > a.

Proof: Assume, by way of contradiction, that

Hw e G: C(w) > a}| <24
Note that

HweG:C(w) <a}| <{w:Cw) <a}| <2042 4... 42071 =201,
Hence

X< |G ={weG:C(w) <al+|{w e G: Cw) > a}| < 29—142% < 29+,

This implies b < a + 1 which contradicts the hypothesis that a +1 < b.

Corollary 1.11 Let i,m € N. If G is a set of gm—(i=D[vm] strings then
there exists at least 2™t Vm]|+[m'/?] strings w € G such that C(w) >

m—i[ym] + [ml/ﬂ.

Proof: Apply Lemma 1.10 with a = m — i [\/m] + {ml/ﬂ and b =
m—(i—1)[vm]. |

2 An Easy Theorem about C
Theorem 2.1 C <y K and K <t C.

Proof:
1) C <y K. Given x we can compute C(z) as follows. For all machines M
of length < |z| 4+ O(1) ask K “does M (0) halt and output 2?” Once you get
the answers, output the length of the shortest such M for which the answer
was YES.
2) K <t C. We need to look at the partial computable function f below:
f: On input x find s such that x € K; — Ks_1 (this might not happen). Let
|z| = n and m = 2". Find C4(z) for every z of length m. Output the z with
the largest Cs-value (break ties lexicographically). Note the following:

If x € K, z= f(x), and s is such that z € K; — K,_; then the following
hold.
Cs(2) > |z| =m+ O(1) (since (32/,]2| = m)[C(Z') > m + O(1))).
C(z) <logm+ O(1) (since z can be computed from the code for f and the
input z, || = n = logm).

Here is the key: If z € Ky — K, then there exists a string z = f(x) of
length m such that Cs(z) > C(z). Hence, if s is such that (Vz)[|z| = m —
Cs(z) = C(z)] then z € K iff z € K,. Using this we have the following
algorithm for K <t C.

K <t C: on input z, let || = n and m = 2". Find C(z) for all
z € {0,1}™. Find s such that, for all z € {0,1}", Cs(z) = C(2). If x € K
then output YES, otherwise output NO. 1

Note 2.2 Kummer has shown that K <y C [5].

3 Main Theorem
Theorem 3.1 Let k € N. If C € ENA(k) then K <t A.

Proof:

Let C € ENA(k) via h. Note that h is computable. We will not use h
until later.

By Lemma 1.6 there exists a set X such that A <7 X, K <7 X — K <7
A, and X is extensive (Definition 1.5). We show that # € EN¥(()k), hence
by Lemma 1.8, K <t X; so K <t A.

We need to define k + 1 partial computable functions on ordered k-tuple
(z1,...,x). We assume throughout that S-¥_ |2;| = n and that m = 2.

fo(xl, e ,{Bk) = {0, l}m

For 1 <i <k, fi(x1,...,z) is defined as follows: find the least s such
that #,°(1,...,2) = ¢ (this might not ever happen). Compute Cs(z) for
every z € fi_1(x1,...,2x). Order the strings by largest to smallest value
of Cs (break ties via lexicographic ordering). Output the highest ranked
gm—i[vm] strings.

Clearly fo,..., fr are partial computable functions that are computably
dominated. Hence, for each i, 0 < ¢ < k, there exists total g; <t X such
that g; extends f;. We may assume that, for all (z1,...,zy), for all ¢,
gi(x1,...,7k) is a set of size om=i[vm] Iy particular, it is not empty.
Claim 0: Let (x1,...,x,) € N. If there exists ¢, 1 < ¢ < k, such that
gi(x1,...,xk) € gi—1(x1,...,2k) then #f(ml, oo xE) £k
Proof: We prove the contrapositive. If #£ (21,...,2) = k then, for
i, 0 <i <k, fi(z1,...,2) = gi(x1,...,2x). Hence, for all i, 1 < i < k,
gi(x1, ..., zk) C gim1(x1, .., z). |

Claim 1: Let n € N. Let 21, ... 25, € N be such that 3% |2;| = n. Let m =
2. We assume that for all ¢, 1 < i <k, gi(x1,...,2%) C gi—1(21,...,Tk).
For 1 <4 < k define

6 — {the least s such that #,°(x1,...,2) =14 if #E (21, 7)) >4
T .
00 otherwise.

For all 4, 1 <17 <k, if s; < oo then
L (V2 € gi(@r, ..., @))[Cai(2) = m =i [ym] + [m!/3]], and

2. (Vz € gi(z1,...,2))[C(2) <m —i[y/m] +2logm + O(1)].

Proof: Let ¢ be such that s; < oo. Note that, for all 1 < j < 4,
fi(x1, ..., o) exists, so gj(z1,...,2k) = fj(z1,...,2x). Let z € gi(x1,. .., xp).

(1) We show that Cs,(z) > m —i[y/m]+ [ml/ﬂ. Since |gi—1(z1, ..., 2k)| =

gm—(i~1)[vim] , by Corollary 1.11, there are at least gm—i[vm]+[m!/?] strings
w € gi—1(x1,...,2%) such that C(w) > m —i[y/m] + [ml/ﬂ; hence,

Cs,(w) > C(w) >m —i[y/m] + [ml/ﬂ. Since z € gi(x1,...,z), Cs,(2) is

in the top gm—ilvm] of gi—1(z1,...,2x) in terms of Cy,-complexity. Hence
Cs,(z) >m—i[y/m] + [ml/ﬂ.
(2) We show that C'(z) < m —iy/m + 2logm + O(1).

Given (z1, ...,) one can produce f;(x1,...,zy) as follows: Let fo(z1,...,2m) =
{0,1}*. For 1 < j < i do the following: find the least s such that #kKS (T1y...,z) =
j, rank all the strings in {0, 1}™ via their Cs complexity (break ties via lex-
icographic ordering), and let f;(x1,...,2;) be the top 2™~IV™ strings in
fj—l(Ila ‘e ,SL‘k).

Given the lexicographic rank of z in f;(x1,. .., zx) one can easily produce
z from fi(x1,...,xk).

Hence, to describe z, you need (z1,...,x) and the lexicographic rank
r of z in fi(x1,...,x%). The space needed for (zy,...,x) is 2n (use the
standard trick of encoding 0 by 00, 1 by 11, and commas by 01). Note that
2n = 2log m. The space needed for r is log | fi(x1, . . ., z1)| = log(2™~ V™) =
m — iy/m. Hence the total description is size m —iy/m+2logm+0O(1). |

Claim 2: For almost all k-tuples (x1,...,z5) € N, if z € gx(x1,...,z
and s is the least stage such that Cs(z) = C(z), then #5 (z1,...,zx)
#kz S(:cl, ... ,xk).

k)

Proof: If #X(xy,...,2;) = 0 then the claim is obvious. Let s1,..., s
be as in Claim 1. By Claim 1, if #8(z,...,2) = i, and 25 24| is
large enough, then Cy,(2) > C(z) = Cs(z), hence s > s;. Therefore
#E (21,) = #4021, ap).

We now give an algorithm for #5 (1, ...,2;) € EN¥ (k). The algorithm
uses h (recall that C' € EN4 (k) via h and h is computable), and g1, ..., gr <t
X. The algorithm works for almost all k-tuples; however, one can easily code
the finite information needed to make it always work.

1. Input(zy,...,xx).
2. For 0 < i < k compute g;(z1,...,Tk).

3. If there exists i, 1 < i < k, such that g;(z1,...,2%) € gi—1(z1,...,2k)
then output {0,1,...,k — 1} and stop. (This is correct by Claim 0.)

S

. (Assume gg(z1,...,25) C -+ C go(x1,...,2%).) Let z be the lexi-
cographic least element of gi(z1,...,2) (such a z must exist since
gk(x1,...,2%) is not empty). Enumerate W;:%Z). For each number
enumerated we might output a candidate for #&(zq,...,2z). As-
sume W;:%Z) enumerates c¢. Find the least s such that Cs(z) = ¢ (this
will happen if ¢ = C(z) but might not happen otherwise). Output
#kKS(xl,...,xk). If ¢ = C(2) then, by Claim 2, #&(21,...,25) =
#. 0 (2, xg).

Note that (1) for every number enumerated by W}ﬁz) our algorithm may

output a candidate for #5 (x1,...,2x), and (2) when the correct value of
C(z) is enumerated by W,f(z) our algorithm outputs the correct value for

#K(xy,. .., vx). Hence #K € ENX(k). 1

References

[1] R. Beigel, W. Gasarch, J. Gill, and J. Owings. Terse, Superterse, and
Verbose sets. Information and Computation, 103(1):68-85, Mar. 1993.
Earlier version is TR, 1806, Univ of MD, 1987.

[2] W. Gasarch and G. Martin. Bounded Queries in Recursion Theory.
Progress in Computer Science and Applied Logic. Birkhauser, Boston,
1999.

[3] C. Jockusch and R. Soare. I} classes and degrees of theories. Transac-
tions of the American Math Society, 173:33-56, 1972.

[4] M. Kummer. A proof of Beigel’s cardinality conjecture. Journal of Sym-
bolic Logic, 57(2):677-681, June 1992. http://www. jstor.org/action/
showPublication?journalCode=jsymboliclogic.

[5] M. Kummer. On the complexity of random strings. In Thirteenth
International Symposium on Theoretical Aspects of Computer Science:
Proceedings of STACS 1996, Grenoble, France, Lecture Notes in Com-
puter Science, New York, Heidelberg, Berlin, 1996. Springer-Verlag.
http://www.springerlink.com.

