The Monotone Sequence Game
Exposition by Gasarch

1 Introduction

This is a writeup of some of the material in [?].

Recall the following theorem. For six proofs of this theorem see [?].

BILL- ADD HTTP SITE TO THE REF.

Def 1.1 Let \(n \geq 1 \). Let \(L \) be any linear order. Let \(\vec{a} \in L^* \). A monotonic subsequence of \(\vec{a} \) of length \(n \) (henceforth \(n \)-mono-subseq) is a subsequence that is either increasing or decreasing.

Theorem 1.2 Let \(n \geq 1 \). Let \(L \) be any linear order with at least \((n - 1)^2 + 1\) elements. Let \(\vec{a} \) be a sequence of at least \((n - 1)^2 + 1\) distinct elements from \(L \). Then either there exists an \(n \)-mono-subseq.

This theorem inspires the following game.

Def 1.3 Let \(n \geq 1 \). Let \(L \) be a linear order.

1. Let \(G(L, n) \) be the following game. Players I and II alternate play with I going first. In each turn a Player picks an element of \(L \) that has not been picked before. The picks forms a sequence. The first Player to complete an \(n \)-mono-subseq wins. If \(L \) is finite and all of the numbers are chosen without a winner, then the game is a tie.

2. Let \(\vec{a} \in L^* \). Let \(GAL(L, n, \vec{a}) \) be the game that is just like \(GAL(L, n) \) but it starts with position \(\vec{a} \). Player I has the first move iff \(|\vec{a}| \) is even. Note that if \(\vec{a} \) is the empty vector then we recover \(GAL(L, n) \).

Def 1.4 Let \(n \geq 1 \). Let \(L \) be a linear order. Let \(\vec{a} \in L^* \).

\[
WIN(L, n, \vec{a}) = \begin{cases}
I & \text{if Player I has a winning strategy for the game } G(L, n, \vec{a}) \\
II & \text{if Player II has a winning strategy for the game } G(L, n, \vec{a}) \\
T & \text{if neither Player has a winning strategy for the game } G(L, n, \vec{a})
\end{cases}
\]

(1)

Note that if \(WIN(L, n, \vec{a}) = T \) and both Players play perfectly then the game is a TIE.
Notation 1.5 $WIN(L, n)$ is $WIN(L, n, \lambda)$ where λ is the empty vector.

Theorem 1.6 Let L be a linear order such that $|L| \geq (n-1)^2 + 1$. Then $WIN(L, n) \neq T$.

Proof: This follows from Theorem 1.2. \[\square\]

Def 1.7 If $N \in \mathbb{N}$ then L_N is the ordering $1 < 2 < \cdots < N$. As usual \mathbb{Z} is the integers, \mathbb{N} is the naturals, \mathbb{Q} is the rationals. These are all ordered sets.

Note 1.8 By Theorem 1.6 $W(L_{(n-1)^2+1}, n) \neq T$. The following question is open and interesting: Given n, what is the least m such that $W(L_m, n) \neq T$?

We show the following.

Def 1.9

1. For all $N \in \mathbb{N}$ there exists $n_0 \in \mathbb{N}$ and $J \in \{I, II\}$ such that

\[\forall n \geq n_0 [WIN(L_N, n) = J].\]

2. For all $n \geq 4$, $WIN(\mathbb{Q}, n) = I$.

2 Useful Definitions and Lemmas

Def 2.1 Let L be a linear order.

1. A function $f : L \to L$ is an order preserving bijection if f is a bijection and, for all $x < y \in L$, $f(x) < f(y)$.

2. A function $f : L \to L$ is an order investing bijection if f is a bijection and, for all $x < y \in L$, $f(x) > f(y)$.
We leave the following easy theorem as an exercise.

Theorem 4.1 $W(Q, 1) = I, W(Q, 2) = II, W(Q, 3) = I$.

Lemma 4.2 Assume the following are true. Let $\vec{a} \in Q^*$ and $n \in N$. Let a_i be the ith element of \vec{a}. Let \vec{a}' be \vec{a} with a_i removed.

1. $W(L, n, \vec{a}) = II$.
2. $W(L, n, \vec{a}') = II$.
3. At the end of the game $W(L, n, \vec{a})$ there is an n-mono-subseq that does not contain a_i.

Then $W(L, n, \vec{a}) = I$. (This yields a contradiction.)

Theorem 4.3 For all $n \geq 4$, $W(Q, n) = I$.

Proof: By Theorem 1.6 one of the two Players has a winning strategy. Assume, by way of contradiction, that II has a winning strategy. We give a strategy for Player I such that, if Player II plays his winning strategy, Player I wins.

Winning strategy for Player I

1. On the first move Player I plays a_1 (the value of a_1 does not matter).
2. Player II’s plays a_2. We assume that $a_1 < a_2$. (If $a_2 < a_1$ then a similar strategy works.)
3. Player I plays $a_3 < a_1 < a_2$.
4. There are four cases depending on what Player II does.
(a) Player II plays \(a_4 < a_3 < a_1 < a_2 \). If \(n = 4 \) then Player I plays \(a_5 < a_4 \) to form \(a_1 > a_2 > a_4 > a_5 \) and win.

If \(n \geq 5 \) then Player I plays \(a_5 \) such that

\[
a_4 < a_3 < a_5 < a_1 < a_2.
\]

We show that the premises of Lemma 4.2 hold. Let \(\vec{a} = (a_1, a_2, a_3, a_4, a_5) \) and \(i = 1 \). Since Player II was playing a winning strategy \(WIN(L, n, \vec{a}) = II \). Look at \(\vec{a}' = (a_2, a_3, a_4, a_5) \). Note that

\[
a_4 < a_3 < a_5 < a_2.
\]

Claim 1: At the end of the game there will be an \(n \)-mono-subseq that does not contain \(a_1 \).

Proof of Claim 1:

If \(a_1 \) is in an increasing subsequence then that subsequence looks like

\[
a_1 < a_{i_2} < a_{i_3} < \cdots < a_{i_n}
\]

\[
1 < i_2 < i_3 < \cdots < i_n
\]

where \(i_2 \geq 2 \) and \(i_3 \geq 6 \). Hence the following is an increasing subsequence of length \(n \) that does not contain \(a_1 \).

\[
a_3 < a_5 < a_{i_3} < \cdots < a_{i_n}.
\]

If \(a_1 \) is in a decreasing subsequence then that subsequence looks like

\[
a_1 > a_{i_2} > a_{i_3} > a_{i_4} > \cdots > a_{i_n}
\]

where \(i_2 \geq 3 \). Hence the following is a decreasing subsequence of length \(n \) that does not contain \(a_1 \).

\[
a_2 > a_{i_2} > a_{i_3} > a_{i_4} > \cdots > a_{i_n}
\]

End of Proof of Claim 1
(b) Player II plays a_4 such that $a_3 < a_4 < a_1 < a_2$. **Claim 2:** At the end of the game there will be an n-mono-subseq that does not contain a_1.

Proof of Claim 2:

If a_1 is in an increasing subsequence then that subsequence looks like:

$$a_1 < a_{i_2} < a_{i_3} < \cdots < a_{i_n}$$

where $i_3 \geq 5$. Hence the following is an increasing subsequence of length n that does not have a_1.

$$a_3 < a_4 < a_{i_3} < \cdots < a_{i_n}.$$

If a_1 is in a decreasing subsequence then that subsequence looks like:

$$a_1 > a_{i_2} > a_{i_3} > \cdots > a_{i_n}$$

$$1 < i_2 < i_3 < \cdots < i_n.$$

Since $a_2 > a_1$ we know $i_2 \geq 3$. Hence the following is a decreasing subsequence of length n that does not have a_1.

$$a_2 > a_{i_2} > a_{i_3} > \cdots > a_{i_n}.$$

End of Proof of Claim 2

(c) Player II plays a_4 such that $a_3 < a_1 < a_4 < a_2$.

Claim 3: At the end of the game there will be an n-mono-subseq that does not contain a_1.

Proof of Claim 3:

If a_1 is in an increasing subsequence then that subsequence looks either like

$$a_1 < a_{i_2} < a_{i_3} < \cdots < a_{i_n}$$
$1 < i_2 < i_3 < \cdots < i_n$

where $i_3 \geq 5$

Hence the following is an increasing subsequence of length n that does not have a_1.

$$a_3 < a_4 < a_{i_3} < \cdots a_{i_n}.$$

If a_1 is in a decreasing subsequence then that subsequence looks like

$$a_1 > a_{i_2} > a_{i_3} > \cdots > a_{i_n}$$

where $i_2 \geq 3$.

Hence we have the following decreasing subsequence of length n that does not have a_1.

$$a_2 > a_{i_2} > a_{i_3} > \cdots > a_{i_n}$$

$$1 > i_2 > i_3 > \cdots > i_n$$

End of Proof of Claim 3

(d) Player II plays a_4 such that $a_3 < a_1 < a_2 < a_4$. If $n = 4$ then Player I plays $a_5 > a_4$ and wins via $a_1 < a_2 < a_4 < a_5$. If $n \geq 5$ then Player I plays a_5 such that

$$a_3 < a_5 < a_1 < a_2 < a_4.$$

Claim 4: At the end of the game there will be an n-mono-subseq that does not contain a_3.

Proof of Claim 4:

If a_3 is in an increasing subsequence then that subsequence looks either like

$$a_3 < a_{i_2} < a_{i_3} < \cdots < a_{i_n}$$

$$1 < i_2 < i_3 < \cdots < i_n$$
where $i_2 \geq 4$
Hence the following is an increasing subsequence of length n that does not have a_3.

$$a_1 < a_2 < a_{i_3} < \cdots < a_{i_4}.$$

If a_3 is in a decreasing subsequence then that subsequence looks like

$$a_{i_1} > a_3 > a_{i_3} > \cdots > a_{i_n}$$

$$i_1 < 3 < i_3 < \cdots < i_n$$

where $i_3 \geq 6$.
Hence we have the following decreasing subsequence of length n that does not have a_3.

$$a_{i_1} > a_5 > a_{i_3} > \cdots > a_{i_n}$$

End of Proof of Claim 4