
PRIMALITY IS IN P

1 Introduction

Manindra Agrawal, Neeraj Kayal, and Nitin Saxena have a paper called “Primes
in P” which shows an algorithm, and a proof of correctness, that primality is in
P. This is a sketch of that algorithm. We care about the algorithm running in
time polynomial in log n, hence we will ignore factors of the form log log n.

2 History

Given a number n we want to test it for primality. We want the test to use time
bounded by a polynomial in log n. Note that the length of the input is log n.

There are very good randomized algorithms for this problem that either (a)
are very fast but might make a mistake, or (b) are always correct but if you are
unlucky may run along time. In addition there is an algorithm that, assuming
the Extended Riemann Hypothesis (well believed by most mathematicians),
runs in polynomial time and is always correct. The randomized algorithm is
excellent in practice, so the pragmatic need for an algorithm in P is not clear.
However, the question of obtaining a deterministic polynomial time algorithm
for Primality is still interesting:

1. Intellectually, its worth knowing.

2. There is a train of thought that anything for which there is a randomized
poly time algorithm for (like primality), there is also a deterministic poly
time algorithm. Nisan and Wigderson have proven that if you assume
some reasonable hypothesis then every problem in Randomized Polyno-
mial Time is actually in P. (There has been much follow up work that
sharpens what we need to assume.) Hence whenever a problem in ran-
domized polynomial time ends up in P this is further evidence for this
train of thought. (We note that the primality algorithm does not use the
techniques of NW to convert the randomized algorithm to a deterministic
one.)

3. Even though the algorithm is currently not practical the ideas in it may be
exploited to obtain a practical algorithm. This is optimistic speculation.

4. Even though the algorithm is for primality the ideas in it may be exploited
to obtain a practical algortihm for factoring. This is either optimistic
or pessimistic speculation depending on if you want to make or break
cryptosystems.

We give an example of a prior randomized algorithm. Our explanation will
be incomplete but it will give an idea of the type of algorithm we are concerned
with.
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Lemma 2.1 (Fermats little theorem) If n is prime then, for all a, an ≡ a
(mod n).

Randomized Algorithm for Primality

1. Input(n).

2. Pick s random values of a ∈ {2, 3, . . . , n− 1}. Call them a1, . . . , as.

3. For all i, 1 ≤ i ≤ n− 1, compute an
i (mod n) and see if it equals a.

4. If there exists an i such that an
i 6≡ ai (mod n) then output COMP.

Otherwise output PRIME.

PROS and CONS of the algorthim.
CON: There are nonprimes n such that, for all a, an ≡ a (mod n). Hence

the algorithm could be wrong. The algorithm can be modified to take care of
this.

CON: Possible (even with modification) that the s numbers you pick all have
an

i ≡ ai (mod n).
PRO: The probability of being that unlucky is at most 1

2s .
PRO: If n is prime the algorithm will output PRIME.
CON: Computing an

i (mod n) seems to take n operations which is alot
compared to the length log n.

PRO: By doing repeated squaring one can compute an
i in O(log n) steps.

You do a2
i , (a2

i )
2 (reduce mod n each time).

Our algorithm for primality in P will also use a lemma from number theory
similar the one above.

3 A Nice Characterization of Primality

Lemma 3.1 Assume n is prime. If 0 < i < n then n divides
(
n
i

)
.

Proof:
(
n
i

)
is n(n−1)···(n−i+1)

i! . Factor the numberator and denominator into
primes uniquely. The numerator has a factor of n which is prime, but the
denominator does not. Hence when you’re done cancelling there is still a factor
or n. Hence n divides

(
n
i

)
.

Lemma 3.2 If n is composite and gcd(a, n) = 1 then (x − a)n 6≡ xn − a
(mod n).

Proof:
Let q be a prime factor of n. Assume qk divides n but qk+1 does not divide

n.
Claim: qk does not divide

(
n
q

)
= n(n−1)···(n−q+1)

q! . This is because qk is the
highest power of q that divides the numerator, and q1 is the highest power of q
that divides the denominator; hence qk−1 divides

(
n
q

)
but qk does not.
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Note that

(x− a)n = xn + · · ·+
(

n

q

)
an−qxq + · · · an.

We claim that the coefficient of xq is 6≡ 0 (mod n). We have that qk−1

divides
(
n
q

)
but qk does not. Also q does not divide a (since gcd(a, n) = 1).

Hence the highest power of q that divides
(
n
q

)
an−q is qk−1. Since qk divides n

we have that
(
n
q

)
an−q 6≡ 0 (mod n).

We can now characterize primes in a very strong way.

Theorem 3.3

1. If n is an odd prime then for all a, 0 < a < n, (x−a)n ≡ xn−a (mod n).

2. If n is composite then for all a, gcd(a, n) = 1, (x−a)n 6≡ xn−a (mod n).

Proof: If n is prime then, by Lemma 3.1, for all i, 1 ≤ i ≤ n − 1,
(
n
i

)
≡ 0

(mod n). Hence

(x− a)n = xn +
n−1∑
i=1

(
n

i

)
(−a)ixn−i − an ≡ xn − an ≡ xn − a (mod n).

If n is composite then the statement follows from Lemma 3.2.

4 A First Cut at an Algorithm and How to Im-
prove it

We now look at at an algorithm inspired by this theorem. It will not be correct,
but it will set us on the right track.

1. Input(n) (Assume n is odd.)

2. Compute (x − 2)n (mod n). If this is ≡ xn − 2 (mod n) then output
PRIME. Else output COMP.

PROS: This algorithm is always correct.
CONS: Computing (x − 2)n is slow. Realize that this is a polynomial so,

even if we do repeated squaring the degree of the polynomial will get large
and computationally unwiedly. Note that at every iteration we are squaring a
polynomial of degree d for d as large as Θ(n). Note more directly that since the
answer could be a degree n polynomial we may have to output n things, which
takes time Ω(n). Even if the final answer is small (e.g. xn − 2), intermediary
computations may be expensive.

SO, how can we speed this up and keep the PROS? We will compute ((x−a)n

(mod (xr − 1)) (mod n)). This means that we replace xr with 1, xr+1 with x,
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etc. We would do repeated squaring, but after each operation replace all terms
of degree ≥ r. Hence we will do log n operations where each one is multplying
two degree r−1 polynomials over Zn This is log n operations, each one of which
is O(r2) multiplications mod n. Each such multiplication takes log2 n so this
takes time O(r2 log3 n). Using Fast Fourier Transforms this can be improved to
time O(r log2 n)

Henceforth we will denote
(XXX (mod (xr − 1)) (mod n)) by
(XXX (mod (xr − 1), n)).
Here is another attempt

1. Input(n)

2. Let r = log n.

3. Compute (x−2)n (mod (xr−1), n). See if this is ≡ xn−2 (mod (xr−
1), n). If yes then output PRIME, else output COMP.

PROS: This is fast. Takes O(r log2 n) steps.
PROS: If n is prime, this will output PRIME.
CONS: If n is composite this might be incorrect. Computing mod xr − 1

loses information.
We need to find an r such that computing mod xr − 1 does not lose infor-

mation.
Here is another attempt.

1. Input(n)

2. Choose an r very carefully (but still poly-log n).

3. Compute (x−2)n (mod (xr−1), n). See if this is ≡ xn−2 (mod (xr−
1), n). If yes then output PRIME, else output COMP.

The key to this algorithm is how to pick a special r? If we didn’t do the
calculation mod xr−1 then we have the strong statement that (see Lemma 3.2)

if n is composite then

(∀a)[gcd(a, n) = 1 ⇒ (x− a)n 6≡ xn − a (mod n).

If we compute (mod (xr − 1)) then we lose some information. Perhaps we
can make up for this by trying several values of a. Here is another incomplete
algorithm based on this idea.

1. Input(n)

2. Choose an r very carefully (but still poly-log n).

3. For a = 1 to (some bound based on r)

if (x− a)n 6≡ xn − a (mod (xr − 1), n) then output COMP.

4. (If you got this far then for all a tested you got ≡.) Output PRIME
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5 More Lemmas Needed

The first lemma in this section is proven in the paper. The second one is not,
but is referenced.

Lemma 5.1 Assume n is composite and not a power. If r is a prime, q is the
largest prime factor of r − 1, q ≥ 4

√
r log n, and n

r−1
q 6≡ 1 (mod r), and then

there exists a ≤ 2
√

r log n such that (x− a)n 6≡ xn − a (mod (xr − 1), n).

Lemma 5.2 Assume n is composite and not a power. One of the following
holds.

1. There exists r ≤ (log n)6 such that gcd(r, n) 6= 1 (which is evidence that n
is composite).

2. There exists r ≤ (log n)6 satisfying Lemma 5.1 (which means that there
exists a ≤ 2

√
r log n such that (x−a)n 6≡ xn−a (mod (xr−1), n), which

is evidence that n is composite).

6 The Final Algorithm

1. Input(n).

2. For b = 2 to log n Test if n is a bth power. If it is then output COMP.

3. For r = 2 to (log n)6

If gcd(r, n) 6= 1 then output COMP
If r is prime then

Factor r − 1
Let q be the largest prime factor of r − 1.

If q ≥ 4
√

r log n and n
r−1

q 6≡ 1 (mod r) then break out of loop.

4. (We have a good value of r.)
For a = 1 to 2

√
r log n

if (x− a)n 6≡ xn − a (mod (xr − 1), n) then output COMP.

5. (If you got this far then for all a tested you get ≡.) Output PRIME

If n is prime then, by Theorem 3.3.1, the algorithm will return PRIME.
If n is composite then, by Lemma 5.2, the algorithm will return COMP.
The rth iteration of the loop in step 3 takes O(r) steps (this can probably

be improved). Hence the entire loop takes O(
∑log6 n

r=2 r) = O(log12 n).
Every iteration of the loop in step 4 takes O(r log2 n) steps (using Fast

Fourier Transforms to do the multiplication). This is at most O(log12 n).
Hence the entire algorithm takes O(log12 n) steps.
It is thought that r need not go as high as log6 n and hence this should work

much better in practice.
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