Showing that a Propositional Logic is Incomplete

1 Kleene’s System

Kleene proposed the following set of axioms and rule of inference for Propositional Logic.
AXIOMS
For any formulas p, ¢, the following are axioms.

L p=(¢=p).

2. (p=la=r)=(r=0=p@=r).
3. (pNa)=p.

4. (pNg)=q

5.p=(¢= (pAq)).

6. p=(pVaq.

7.q=(pVa).

8. (p=q)=(r=q9 = (pVvr)=aq).
9. (p=4q) = ((p=~q) = (-p)).

10. ——p=p

RULES OF INFERENCE
Modus Ponens. That is, if you have p = ¢ and p then you get q.
COMPLETENESS It is known that Kleene’s system is complete— any tautology is provable.

2 Heyting’s System

Heyting was an intuitionist. Roughly speaking this means that he didn’t believe that (pV—p)
is true.

Hence he wanted a system that was NOT complete. He wanted a system where you
COULD NOT prove (pV —p).

His system is just like Kleene’s except that he replaced the last axiom with

p=(p=q).

3 How to Prove Incompleteness?

We will show that Heyting’s system cannot prove (p V —p) by using INVARIANTS— we
will show that the AXIOMS have a certain property, the Rules of inference preserve that
property but the statement (p V —p) does not have that property.

Def 3.1 We define truth tables for A, Vv, — that allow the truth values 0, %, 1.



1. p A q evaluates to min{p, ¢}.
2. pV q evaluates to max{p, q}.
3. —p evalutes to 1 — p.

4. p = q is evaluated by the following table which is a natural extrapolation of the usual
rules.
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Def 3.2 A formula is a taut™ + if, for any truth setting of 0’s, %’s, and 1’s, we get 1.

Theorem 3.3
1. All of the axioms of Heyting’s system are taut™.

2. If p is a taut™and p = q is a tautTthen q is a taut™ (so Modus Ponens preserves
taut™).

3. (pV —p) is not a taut™.

4. (pV —p) cannot be derived in Heyting’s system.

Proof:
1) This is a case analysis which we defer to the next section.

2) Assume p is a tautTand p = ¢ is a taut™. We assume that p, ¢ use the same set of vars.
We show that ¢ is a taut™. Let s be any setting of the vars in ¢ to {0, %, 1}. Under this
setting p evaluates to 1 and p = ¢ evaluates to 1. Since p = ¢ evaluates to 1 we must have
p < q. Since p evaluates to 1, g evaluates to 1.

3) In (p V —p) look at the setting p = % Then —p evaluates to %, and the V of two 2 is

1

2 ™2
Hence there is a setting where (p V —p) evaluates to % # 1.

4) Since all of the axioms are taut™and Modus Ponens preserves this, any formula that can
be derived is a tautalogy+. Since (p V —p) is not a taut™, it cannot be derived.



4 The Axioms are taut™

We show each axioms is a taut+ by trying to find a setting where it evaluates to 0 or % and
failing. The case where if evaluates to % often splits into two cases since there are 2 ways
that (p = ¢) can evaluate to 3.

Often we will find we are forced to have the variables be in {0,1}. In this case we will
stop since it is already known that the axioms are tautologies in the usual sense.

L (¢=(p=1q)

(a) Evaluates to 0. Then ¢ = 1 and (p = ¢) = 0. Hence p = 1 and ¢ = 0, so
p,q €40, 1}.
(b) Evaluates to 5. There are two cases.

i.g= % and (p = ¢q) = 0. Since (p = ¢) = 0 we have ¢ = 0 which contradicts
q= 2)

ii.g=1land (p=4q) = % In order for (p = q) = % you must have ¢ € {0, %},
which contradicts ¢ = 1.

| =

2. p=(@=r)=(=>9=p@=>r).

(a) Evaluates to 0. Then ((p = ¢q) = (p=1r)) =0. Hence (p = r) =0. Hencep =1
and r = 0. Since the expression evaluates to 1 we must have (p = (¢ =r)) = 1.
Since p = 1 we must have (¢ = r) = 1. Since r = 0 we must have ¢ = 0. We
have p,q,r € {0,1}.

(b) Evaulates to 5. There are two cases.

i. p=(¢=r))=1%and ((p = q) = (p=r)) = 0. The later forces p = 1,
r =0, and from p = 1 we get ¢ = 1. We have p,q,r € {0,1}.
ii. (p=(g=r))=1and ((p=q)= (p=r)) =3. We have two cases based
on why (p=q) = (p=r)) = 3.
A (p=q) = % and (p = r) = 0. The latter implies that » = 0 and p = 1.
With this, the former implies ¢ = 3. With these values (p = (¢ = r)) is
(1= (3 = 0)) which is (1 = 3) = 3 # 1 So we're done.

B. (p=>¢)=1and (p=r)=3. Since (p = r) = 1 we have p > r.



