A Use of Ramsey Theory in Comm. Comp.

This is from An Application of Hindman's Theorem to a Problem in Communication Complexity by Pavel Pudlak, which appeared in [1].

1 Introduction

Def 1.1 Let Σ be an alphabet. Let $n \in \mathbb{N}$. Let $f: \Sigma^n \times \Sigma^n \times \Sigma^n \to D$ be a function. The *Simulataneous Message Complexity of f*, denoted $\mathrm{SM}(f)$, is defined as follows. Alice has x, Bob has y, and Carol has z. They will all send a message to THEMAN. This is the only communication. THEMAN then computes f(x, y, z) from the three messages send to him. $\mathrm{SM}(f)$ is the length of the longest message send.

Notation 1.2 Let $\Sigma = \{a, b, c, \eta\}$ throughout. Let $s \in \Sigma^*$. $s_{a \leftarrow \eta}$ means take the string s and replace the a's with η 's. Similar for $s_{b \leftarrow \eta}$, $s_{c \leftarrow \eta}$.

Def 1.3 ABC is the following function. On input $(s_{a\leftarrow\eta}, s_{b\leftarrow\eta}, s_{c\leftarrow\eta})$ determine if $s \in \Sigma^* a \Sigma^* b \Sigma^* c \Sigma^*$. (If the input is not of the form $(s_{a\leftarrow\eta}, s_{b\leftarrow\eta}, s_{c\leftarrow\eta})$ then the output can be arbitrary.) We'll say things like "Alice gets s" when actually "Alice gets $s_{a\leftarrow\eta}$ " is accurate.

2 Upper Bound

Theorem 2.1 $SM(ABC) = \log \log n + O(1)$.

Proof: Let s be the input. Let P_A be the position of the first a in s. Let P_C be the position of the last c in s. Let P_{aB} be the position of the first b after the first a if it exists. Let P_{Bc} be the position of the last b before the last c if it exists.

If $s \in ABC$ then

$$P_A < P_{aB} \le P_{Bc} < P_C$$
.

Hence

$$(P_{aB} - P_A) + (P_C - P_{Bc}) < (P_C - P_A)$$

If $s \notin ABC$ then

$$P_{Bc} < P_A < P_C < P_{aB}$$
.

Hence

$$(P_C - P_{Bc} > P_C - P_A) \wedge (P_{aB} - P_A > P_C - P_A).$$

We rewrite this:

$$s \in ABC \Rightarrow (P_{aB} - P_A) + (P_C - P_{Bc}) \le (P_C - P_A).$$

$$s \notin ABC \Rightarrow (((P_C - P_{Bc}) > (P_C - P_A) \land ((P_{aB} - P_A) > (P_C - P_A))).$$

We will refer to the above statements as THE DICHOTOMY. We will take advantage of THE DICHOTOMY and refer back to it.

- 1. Alice has $s_{a \leftarrow \eta}$, Bob has $s_{b \leftarrow \eta}$ and Carol has $s_{c \leftarrow \eta}$.
- 2. Alice computes $P_C P_{Bc}$. Alice then computes the most position of the most significant 1-bit of $P_C P_{Bc}$. This is denoted $SIG(P_C P_{Bc})$. Alice sends $SIG(P_C P_{Bc})$ to THEMAN.
- 3. Bob computes $P_C P_A$. Bob then computes the most position of the most significant 1-bit of $P_C P_A$. This is denoted $SIG(P_C P_A)$. Bob sends $SIG(P_C P_A)$ to THEMAN.
- 4. Carol computes $P_{aB} P_A$. Carol then computes the most position of the most significant 1-bit of $P_{aB} P_A$. This is denoted $SIG(P_{aB} P_A)$. Carol sends $SIG(P_{aB} P_A)$ to THEMAN.
- 5. (a) If $SIG(P_{aB} P_A) > SIG(P_C P_A)$ or $SIG(P_C P_{Bc}) > SIG(P_C P_A)$ then REJECT.
 - (b) If $SIG(P_{aB} P_A) < SIG(P_C P_A)$ or $SIG(P_C P_{Bc}) < SIG(P_C P_A)$ then ACCEPT.
 - (c) If $SIG(P_{aB} P_A) = SIG(P_C P_A)$ and $SIG(P_C P_{Bc}) = SIG(P_C P_A)$ (the only remaining case) then REJECT.

How many bits are communicated? The numbers P_A , P_C , P_{aB} , P_{Bc} are all $\leq n$ so they take $\log n + O(1)$ bits. Hence a position in them takes $\log \log n + O(1)$ bits.

Why does the protocol work?

Case 1: $SIG(P_{aB} - P_A) > SIG(P_C - P_A)$. From this we easily see

$$(P_{aB} - P_A) > (P_C - P_A).$$

Hence

$$(P_{aB} - P_A) + (P_C - P_{aB}) \not \leq P_C - P_A.$$

By THE DICHOTOMY $s \notin ABC$.

Case 2: $SIG(P_C - P_{Bc}) > SIG(P_C - P_A)$. Similar to Case 1.

Case 3: $SIG(P_{aB} - P_A) < SIG(P_C - P_A)$ From this we easily see that

$$(P_{aB} - P_A) < (P_C - P_A).$$

By the DICHOTOMY statement we get $s \in ABC$. (Look at the $s \notin ABC$ part and take the contrapositive.)

Case 4: $SIG(P_C - P_{Bc}) < SIG(P_C - P_A)$ Similar to Case 3.

Case 5: $SIG(P_{aB} - P_A) = SIG(P_C - P_A)$ and $SIG(P_C - P_{Bc}) = SIG(P_C - P_A)$. From this we easily see $SIG((P_{aB} - P_A) + (P_C - P_{Bc})) = SIG(P_C - P_A) + 1$ Hence $(P_{Bc} - P_A) + (P_C - P_{aB}) > P_C - P_A$. By THE DICHOTOMY $s \notin ABC$.

Can we do better?

3 Lower Bound

We use the following version of Ramsey's Theorem.

Def 3.1 $[n]^2$ is the set of all unordered pairs of elements of $\{1, \ldots, n\}$. Let $COL \in \mathbb{N}$, $COL \geq 2$. Let $f: [n]^2 \to \{1, \ldots, COL\}$. A set $H \subseteq \{1, \ldots, n\}$ is Homogenous with respect to f if there exists a color $i \in COL$ such that, $(\forall x, y \in H)[f(x, y) = i]$.

Lemma 3.2 Let $COL \in \mathbb{N}$, $COL \geq 2$. Let $f : [n]^2 \to \{1, \dots, COL\}$. There exists a homogenous set H such that $|H| \geq \frac{1}{2} \frac{\log n}{\log COL}$. (The $\frac{1}{2}$ can be replaced with any $\delta < 1$.)

Theorem 3.3 $SM(ABC) = \Omega(\log \log n)$.

Proof: Assume $SM(ABC) = m = c \log \log n$. (will determine c later).

For $1 \le i < j \le n$ let s_{ij} denote the string that has η at all positions except the ith, where it has an a and the jth where it has a c. We have a picture of it below which serves as an example of how we will denote strings throughout this proof.

We color all unordered pairs $\{i,j\}$ with the message Bob sends if he sees s_{ij} . This uses 2^m colors. By Lemma 3.2 there is a homogenous set of size $\frac{1}{2}\frac{\log n}{\log 2^m} = \frac{\log n}{2m}$. We remove every other element so there is at least one number between every element. This set, H, has size $h = \frac{\log n}{4m}$. We can assume h is even.

$$H = \{i_1 < i_2 < \dots < i_h\}.$$

We create the string MAIN pictured below

For all odd j, $1 \le j \le h - 1$, let s_j be the string obtained by taking MAIN and replacing the η in the i_j th position with an a and the η in the i_{j+1} th position with a c. We show s_3 below:

Given j, form s_j , and map to the ordered pair formed by taking (1) first component is message Alice would send to THEMAN on input s_j , (2) second component is message Carol would send to THEMAN on input s_j .

This map has domain of size $\frac{h}{2}$ and range of size 2^{2m} . Unravelling the definitions this has domain of size

$$\frac{h}{2} = \frac{\log n}{8m} = \frac{\log n}{8c \log \log n},$$

and range of size

$$2^{2m} = 2^{2c\log\log n} = 2^{\log(\log n)^{2c}} = (\log n)^{2c}.$$

We take $c < \frac{1}{2}$. Now the domain is larger than the range so there exists $j, k \in \mathbb{N}$ such that the strings s_j and s_k that map to the same ordered pair. Hence we have the following.

- 1. Alice transmits the same message given s_j or s_k . Call this message m_A .
- 2. Carol transmits the same message given s_i or s_k . Call this message m_C .

Note that we also know the following

- 1. Since $i_j, i_{j+1}, i_k, i_{k+1} \in H$ Bob transmits the same message given s_j or s_k . Call this message m_B .
- 2. Since $s_i \notin ABC$, when THEMAN gets (m_A, m_B, m_C) he will reject.

We form a NEW string s which is MAIN except that we have an a in i_j th position and a c in i_{k+1} th position. The following picture summarizes what we have. The notation $\cdots b \cdots \eta \cdots$ means a string of b's and η 's. When it appears in the same column it means the same string. When the notation $\cdots \eta \cdots \eta \cdots$ appears in that same column it means that we take that string of b's and η 's and replace all the b's with η 's.

```
string
                                                       i_i \cdots i_{i+1}
                                                                                                            i_k \cdots i_{k+1}
                         \cdots b \cdots \eta \cdots
                                                        a\eta \cdots \eta c
                                                                                                             \eta\eta\cdots\eta\eta
                                                                                                                                  \cdots b \cdots \eta \cdots
                                                                             \cdots b \cdots \eta \cdots
        s_j
Alices's s_i \cdots b \cdots \eta \cdots
                                                                              \cdots b \cdots \eta \cdots
                                                                                                                                    \cdots b \cdots \eta \cdots
                                                        \eta\eta\cdots\eta c
                                                                                                             \eta\eta\cdots\eta\eta
 Bob's s_i
                         \cdots \eta \cdots \eta \cdots
                                                                               \cdots \eta \cdots \eta \cdots
                                                                                                                                    \cdots \eta \cdots \eta \cdots
                                                        a\eta \cdots \eta c
                                                                                                             \eta\eta\cdots\eta\eta
Carol's s_i
                         \cdots b \cdots \eta \cdots
                                                                                                                                    \cdots b \cdots \eta \cdots
                                                        a\eta \cdots \eta \eta
                                                                              \cdots b \cdots \eta \cdots
                                                                                                             \eta\eta\cdots\eta\eta
                         \cdots b \cdots \eta \cdots
                                                        \eta\eta\cdots\eta\eta
                                                                               \cdots b \cdots \eta \cdots
                                                                                                             a\eta \cdots \eta c
                                                                                                                                     \cdots b \cdots \eta \cdots
        s_k
                                                                              \cdots b \cdots \eta \cdots
Alices's s_k
                        \cdots b \cdots \eta \cdots
                                                                                                                                     \cdots b \cdots \eta \cdots
                                                        \eta\eta\cdots\eta\eta
                                                                                                             \eta\eta\cdots\eta c
 Bob's s_k
                         \cdots \eta \cdots \eta \cdots
                                                                             \cdots \eta \cdots \eta \cdots
                                                                                                                                     \cdots \eta \cdots \eta \cdots
                                                        \eta\eta\cdots\eta\eta
                                                                                                             a\eta \cdots \eta c
Carol's s_k
                        \cdots b \cdots \eta \cdots
                                                                              \cdots b \cdots \eta \cdots
                                                                                                                                    \cdots b \cdots \eta \cdots
                                                        \eta\eta\cdots\eta\eta
                                                                                                             a\eta \cdots \eta \eta
                                                                             \cdots b \cdots \eta \cdots
                         \cdots b \cdots \eta \cdots
                                                                                                                                     \cdots b \cdots \eta \cdots
         s
                                                        a\eta \cdots \eta \eta
                                                                                                             \eta\eta\cdots\eta c
 Alices's s
                        \cdots b \cdots \eta \cdots
                                                                              \cdots b \cdots \eta \cdots
                                                                                                                                     \cdots b \cdots \eta \cdots
                                                        \eta\eta\cdots\eta\eta
                                                                                                             \eta\eta\cdots\eta c
  Bob's s
                         \cdots \eta \cdots \eta \cdots
                                                        a\eta \cdots \eta \eta
                                                                             \cdots \eta \cdots \eta \cdots
                                                                                                             \eta\eta\cdots\eta c
                                                                                                                                    \cdots \eta \cdots \eta \cdots
 Carol's s
                        \cdots b \cdots \eta \cdots
                                                       a\eta \cdots \eta\eta \cdots b \cdots \eta \cdots
                                                                                                             \eta\eta\cdots\eta\eta
                                                                                                                                    \cdots b \cdots \eta \cdots
```

Lets look at the string s very carefully.

- 1. Alices's view of s and s_k are the same. Hence on s Alice sends m_A .
- 2. Carol's view of s and s_i are the same. Hence on s Carol sends m_C .
- 3. Since $i_j, i_{j+1}, i_k, i_{k+1}$ are in the homogenous set Bob transmits the same message on s_j, s_k, s . Hence Bob transmits m_B .
- 4. By the above Alice, Bob, and Carol transmit to THEMAN the same info on s_j, s_k, s . But $s \in ABC$ so this is a contradition.

4 What Else is Known?

We looked at the ABC problem with 3 people. We could also look at the ABCD problem with 4 people, the ABCDE problem with 5 people, etc.

- 1. $SM(ABC) = \Theta(\log \log n)$.
- 2. SM(ABCD) is not constant. No non-trivial upper bound is known.
- 3. SM(ABCDE) is not constant. No non-trivial upper bound is known.
- 4. SM(ABCDEF) and beyond. Nothing is known. It has been conjectured that it is not constant.

The proof that SM(ABCD), SM(ABCDE) are not constant uses a Ramsey-Type theorem called Hindman's theorem.

References

[1] P. Pudlak. An application of hindman's theorem to a problem on communication complexity. *Combinatorics, Probability and Computing*, 12, 2003.