A Use of Ramsey Theory in Comm. Comp.
This is from An Application of Hindman’s Theorem to a Problem in Commmuni-
cation Complezity by Pavel Pudlak, which appeared in [1].

1 Introduction

Def 1.1 Let ¥ be an alphabet. Let n € N. Let f: 3" x X" x X® — D be a function.
The Simulataneous Message Complezity of f, denoted SM(f), is defined as follows.
Alice has z, Bob has y, and Carol has z. They will all send a message to THEMAN.
This is the only communication. THEMAN then computes f(z,y, z) from the three
messagses send to him. SM(f) is the length of the longest message send.

Notation 1.2 Let X = {a,b,c,n} throughout. Let s € ©*. s,., means take the
string s and replace the a’s with n’s. Similar for sy, Secy.

Def 1.3 ABC is the following function. On input (sq—y, Spen, Sc—y) determine if
s € Yra¥*pX*eX*. (If the input is not of the form (sS4, Spey, Secy) then the
output can be arbitrary.) We'll say things like “Alice gets s” when actually “Alice
gets sq,” is accurate.

2 Upper Bound
Theorem 2.1 SM(ABC) = loglogn + O(1).

Proof:  Let s be the input. Let P4 be the position of the first a in s. Let P¢ be
the position of the last ¢ in s. Let P,g be the position of the first b after the first a

if it exists. Let Pg. be the position of the last b before the last c if it exists.
If s € ABC then
PA < PaB < PBc < PC"

Hence

(Pop —Pa) + (Pc —Pp.) < (Pe—Py)
If s ¢ ABC then

Pp. <Py < PC < P,B.

Hence

(PC — PBc > PC — PA) A (PaB —PA > PC — PA)



We rewrite this:

se ABC = (PaB —PA) + (PC _PBC) < (PC —PA).

s ¢ ABC = ((Pe — Ppo) > (P —Pa) A (Pop — Pa) > (Pe — P4))).

We will refer to the above statements as THE DICHOTOMY. We will take ad-
vantage of THE DICHOTOMY and refer back to it.

1. Alice has s,.,, Bob has s;.,, and Carol has s..,,.

2. Alice computes P — Pg.. Alice then computes the most position of the most
significant 1-bit of P — Pg.. This is denoted SIG(Pys — Pp.). Alice sends
SIG(P¢ — Pg.) to THEMAN.

3. Bob computes P — P4. Bob then computes the most position of the most
significant 1-bit of P —P 4. This is denoted SIG(Pc—P4). Bob sends SIG(P¢—
P,4) to THEMAN.

4. Carol computes P,g — P4. Carol then computes the most position of the most
significant 1-bit of P,g — P4. This is denoted SIG(P,g — P4). Carol sends
SIG(P,g — P4) to THEMAN.

5. (a) If SIG(P,g — P4) > SIG(Pc — P4) or SIG(P¢c — Pg.) > SIG(Pc — Py)
then REJECT.
(b) If SIG(PQB — PA) < SIG(PC — PA) or SIG(PC — PBc) < SIG(PC — PA)
then ACCEPT.
(C) If SIG(PGB - PA) = SIG(PC - PA) and SIG(PC - PBC) = SIG(PC - PA)
(the only remaining case) then REJECT.

How many bits are communicated? The numbers P4, Po, P.g, Pg. are all < n so
they take logn + O(1) bits. Hence a position in them takes loglogn + O(1) bits.
Why does the protocol work?

Case 1: SIG(P,g — P4) > SIG(P¢ — P4). From this we easily see
(PaB — PA) > (PC — PA)

Hence
(PaB — PA> -+ (PC — PaB) ﬁ Po—Pa.

By THE DICHOTOMY s ¢ ABC.
Case 2: SIG(Pc — Pg.) > SIG(Pc — P4). Similar to Case 1.



Case 3: SIG(P,g — Pa) < SIG(P¢ — P4) From this we easily see that
(PaB — PA) < (PC — PA)

By the DICHOTOMY statement we get s € ABC. (Look at the s ¢ ABC part and
take the contrapositive.)

Case 4: SIG(P¢ — Pp.) < SIG(P¢ — P4) Similar to Case 3.

Case 5: SIG(PaB — PA) = SIG(PC — PA) and SIG(PC — PBC) = SIG(PC — PA)
From this we easily see SIG((P,g — Pa) + (Pc — Pg.)) = SIG(Pc — P4) + 1 Hence
(Ppe = P4) + (Pc — Pup) > Po — P4. By THE DICHOTOMY s ¢ ABC. 1

Can we do better?

3 Lower Bound
We use the following version of Ramsey’s Theorem.

Def 3.1 [n]? is the set of all unordered pairs of elements of {1,...,n}. Let COL € N,
COL > 2. Let f:[n]* — {1,...,COL}. Aset HC {1,...,n} is Homogenous with
respect to f if there exists a color i € COL such that, (Vz,y € H)[f(x,y) = i].

Lemma 3.2 Let COL € N, COL > 2. Let f : [n]> — {1,...,COL}. There exists a

homogenous set H such that |H| > %lo}goggL’ (The 5 can be replaced with any 6 < 1.)

Theorem 3.3 SM(ABC) = Q(loglogn).

Proof:  Assume SM(ABC) =m = cloglogn. (will detemine c later).

For 1 <7 < j < nlet s;; denote the string that has n at all positions except the
1th, where it has an a and the jth where it has a ¢. We have a picture of it below
which serves as an example of how we will denote strings throughout this proof.

i
’r]..-n a ’r].--n C 77..."’]

We color all unordered pairs {i, j} with the message Bob sends if he sees s;;. This

uses 2 colors. By Lemma 3.2 there is a homogenous set of size %l})‘;gz’; = l‘;%ﬂ". We

remove every other element so there is at least one number between every element.

This set, H, has size h = l‘jﬁn ™. We can assume h is even.

H={i <iy<---<ip}.
We create the string M AIN pictured below
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B TR T A N P
b---b n--n bbb me-n be-b ome-en

For all odd j, 1 < j < h —1, let s; be the string obtained by taking M AIN and
replacing the 1 in the i;th position with an @ and the 7 in the i;,,th position with a
c. We show s3 below:

Cee dpeedg e dgeeeig eee s e e g
b...b 77.--7’] b-..b a’r]..-nc b...b n..-’r]

Given j, form s;, and map to the ordered pair formed by taking (1) first component
is message Alice would send to THEMAN on input s;, (2) second component is
message Carol would send to THEMAN on input s;.

This map has domain of size % and range of size 22™. Unravelling the definitions
this has domain of size
ho logn  logn

2 8m  8cloglogn’

and range of size
22m — 22cloglogn — 2log (log n)3¢ — (lOg n)Qc.

We take ¢ < % Now the domain is larger than the range so there exists 7,k € N
such that the strings s; and s, that map to the same ordered pair. Hence we have
the following.

1. Alice transmits the same message given s; or s;. Call this message m4.

2. Carol transmits the same message given s; or s,. Call this message mc.
Note that we also know the following

1. Since 7,741, %, ix+1 € H Bob transmits the same message given s; or s;. Call
this message mp.

2. Since s; ¢ ABC, when THEMAN gets (m4, mp, m¢) he will reject.

We form a NEW string s which is MAIN except that we have an a in i;th
position and a ¢ in 7, 1th position. The following picture summarizes what we have.
The notation ---b---n--- means a string of b’s and n’s. When it appears in the same
column it means the same string. When the notation ---n---n--- appears in that
same column it means that we take that string of ’s and n’s and replace all the b’s
with 7’s.



Lets look at the string s very carefully.
1.
2.

4 What Else is Known?

We looked at the ABC' problem with 3 people.

string
S;
Alices's s;
Bob's s;
Carol's s;
Sk
Alices’s s,
Bob's sy,
Carol’s s,
s
Alices’s s
Bob's s

Carol’s s

Alices’s view of s and s;, are the same. Hence on s Alice sends m 4.
Carol’s view of s and s; are the same. Hence on s Carol sends mc.

Since %, %41, Uk, tk+1 are in the homogenous set Bob transmits the same message
on s;, s, s. Hence Bob transmits mp.

By the above Alice, Bob, and Carol transmit to THEMAN the same info on

. Bj et
cbeeemeee oan--eme
cbeeemeee e
Cepeeem e an- e
cbeeemeee an--emn
b e
b mneeemm
Cemeeem e e
R R
cbeeemeee an--emn
cbeeeneee e
Cem e an e
cbeeemeee an--emn
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5j,5k,5. But s € ABC so this is a contradition.

We could also look at the ABC'D

U1

-
“mm
-
“m
nc
e
nc
“mm
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e
e
“mm

problem with 4 people, the ABC' DFE problem with 5 people, etc.

1.
2.
3. S
4.

The proof that SM(ABCD), SM(ABCDE) are not constant uses a Ramsey-Type
theorem called Hindman’s theorem.

SM(AB

ABCDE) is not constant. No non-trivial upper bound is known.

SM(ABCDEF) and beyond. Nothing is known. It has been conjectured that

C) = O(loglogn).

it i1s not constant.
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