
An Exposition of Ramsey’s Result in Logic
By William Gasarch

1 Introduction

In Ramsey’s celebrated paper [5] (see also, [2],[3],[4]) his goal was to solve a problem in logic. In
this note we discuss what he proved in logic.

We will first state and prove his theorem in logic for undirected graphs (no self loops), and then
we will state and prove his theorem in logic for colored hypergraphs.

Def 1.1

• A graph is a pair (V,E) where E is a subset of unordered pairs of distinct elements of V . V
is referred to as the set of vertices. E is referred to as the set of edges.

• A clique in a graph is a set of vertices such that every pair of vertices in it has an edge.

• An independent set in a graph is a set of vertices such that every pair of vertices in it has an
edge.

The following is a subcase of Ramsey’s Combinatorial theorem.

Theorem 1.2 For all m there exists a number R(m) such that, for every graph on R(m) vertices,
there is either a clique or independent set of size m.

Note 1.3 It is well known that 2m/2 ≤ R(m) ≤ 22m. A more sophisticated proof, by David

Conlon [1] yields, for all k, n ≥ k
−D log k

log log k
(
2k
k

)
suffices, where D is some constant. A simple

probabilistic argument shows that n ≥ (1 + o(1)) 1
e
√

2
)k2k/2 is necessary. A more sophisticated

argument shown by Spencer [6] (see [3]) shows n ≥ (1 + o(1))
√

2
e k2

k/2 is necessary.

Def 1.4 A sentence is in the language of graphs if it only has the usual logical symbols, E a 2-ary
predicate, and =. We will interpret such sentences as being about undirected graphs with no self
loops. Hence we will implicitly assume (1) E(x, y) iff E(y, x) and (2) ¬E(x, x).

Def 1.5 If φ is a sentence in the language of graphs then spec(φ) is the set of all n such that there
is an undirected graph with no self-loops on n vertices where φ is true.

Convention 1.6 For ease of notation we make the following conventions.

• If there is a contiguous string of the same type of quantifiers then all of the variables in it are
distinct. Hence

(∃x1)(∃x2)(∀y1)(∀y2)[φ(x1, x2, y1)]

actually means
(∃x1)(∃x2 6= x1)(∀y1)(∀y2 6= y1)[φ(x1, x2, y1)]
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• There are no self-loops. Hence E(x, y) means E(x, y) ∧ x 6= y.

• E is symmetric. So E(x, y) means E(x, y) ∧ E(y, x).

Example 1.7

1.
φ = (∀x)(∀y)[E(x, y)].

This states that every pair of distinct vertices has an edge. For all n this is satisfied by Kn.
Hence, spec(φ) = N.

2.
φ = (∃x, y, z)(∀w)[E(w, x) ∧ E(w, y) ∧ E(w, z)].

φ states that there are three distinct vertices x, y, z such that every w /∈ {x, y, z} is connected
to x, y, z. For all n ≥ 0 Kn,3 satisfied φ. No graph on 0,1, or 2 vertices satisfies φ. Hence,
spec(φ) = {3, 4, 5, . . . , }. (Note that K0,3 satisfies φ vacuously.)

3.
φ = (∃x1)(∃x2)(∀y)[x1 = y ∨ x2 = y].

φ is satisfied by all graphs on 2 vertices; however, it is not satisfied by any other graphs.
Hence spec(φ) = {2}.

Note that in all three examples spec(φ) was either co-finite or finite. We will later see that, for
all φ, this is the case.

2 Definitions and a Lemma Needed for the Graph case

Lemma 2.1

1. The following is decidable: Given a sentence φ and a graph G, determine if φ is true in G.

2. The following is decidable: Given a sentence φ and a number n, determine if n ∈ spec(φ).

Proof: Use brute force.

We will use Lemma 2.1 without comment.

3 Ramsey’s Theorem in Logic on Graphs

The following is a simple case of what Ramsey proved.

Theorem 3.1 The following function is computable: Given φ, a sentence in the language of graphs
of the form

(∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

output spec(φ). (spec(φ) will be a finite or cofinite set; hence it will have an easy description.)
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Proof:
Claim 1: If G satisfies φ and x1, . . . , xn are the witnesses then any induced subgraph H of G that
contains x1, . . . , xn satisfies φ.
Proof of Claim 1:

The statement
(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

is true in H since it is true in G and now there are just less cases to check.
End of Proof of Claim 1

Claim 2:

1. If there exists N0 ≥ n+ 2nR(m) such that N0 ∈ spec(φ) then

{n+m,n+m+ 1, . . . , } ⊆ spec(φ).

2. If n+ 2nR(m) /∈ spec(φ) then

spec(φ) ⊆ {0, 1, 2, . . . , n, n+ 1, n+ 2, . . . , n+ 2nR(m)− 1}.

Proof of Claim 2:
a) Since N0 ≥ n + 2nR(m) ∈ spec(φ) there exists G = (V,E), a graph on N0 vertices, where φ is
true. Let x1, . . . , xn be vertices such that the following is true of G:

(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)].

Let X = {x1, . . . , xn} and U = V − X. Note that |U | ≥ 2nR(m). Map every u ∈ U to
(b1, . . . , bn) ∈ {0, 1}n such that

bi =

{
0 if (u, xi) /∈ E
1 if (u, xi) ∈ E

(1)

Hence every u ∈ U is mapped to a description of how it relates to every element in X. Since
|U | ≥ 2nR(m) there exists R(m) vertices that map to the same vector. Apply Ramsey’s theorem
to these R(m) vertices to obtain z1, . . . , zm such that the following are true.

• Either the zi’s form a clique or the zi’s form an ind. set. We will assume the zi’s form a
clique (the other case is similar).

• All of the zi’s map to the same vector. Hence they all look the same to x1, . . . , xn.

Let H0 be the graph restricted to X ∪ {z1, . . . , zm}. By Claim 1.a H0 satisfied φ. For every
p ≥ 1 we form a graph Hp = (Vp, Ep) on n+m+ p vertices that satisfies φ.

• Vp = X ∪ {z1, . . . , zm, zm+1, . . . , zm+p} where zm+1, . . . , zm+p are new vertices.

• Ep is the union of the following edges.

– The edges in H0,
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– For all 1 ≤ i < j ≤ n+m+ p put an edge between zi and zj . (If i, j ≤ m then there is
already an edge there.)

– Let (b1, . . . , bn) be the vector that all of the elements of {z1, . . . , zm} mapped to. For
m+ 1 ≤ j ≤ m+ p, for 1 ≤ i ≤ m such that bi = 1, put an edge between zj and xi.

As far as X is concerned, all of the z1, . . . , zm+p look the same. Hence any subset of the
{z1, . . . , zm+p} of size m will look just like z1, . . . , zm as far as both X is concerned and as far as
their connectivity to each other. Hence Hp satisfies φ. Hence n+m+ p ∈ spec(φ).

b) Assume, by way of contradiction, that some N0 > n+2nR(m) ∈ spec(φ). Then, by part 1 of this
claim, all N ≥ n+m are in spec(φ). In particular n+ 2nR(m) ∈ spec(φ). This is a contradiction.
End of Proof of Claim 2

We can now give an algorithm for this problem:

1. Input φ which begins (∃x1) · · · (∃xn)(∀y1) · · · (∀ym).

2. Determine if n+ 2nR(m) ∈ spec(φ).

(a) If YES then by Claim 2a

{n+m,n+m+ 1, . . .} ⊆ spec(φ).

For 0 ≤ i ≤ n +m − 1 test if i ∈ spec(φ). We now know the finite set of numbers that
are not in spec(φ). Call this set NOT . Output spec(φ) is N−NOT .. Note that spec(φ)
is cofinite.

(b) if NO then, by Claim 2b

spec(φ) ⊆ {n+ 1, n+ 2, . . . , n+ 2nR(m)}.

Determine, for each N in this set, which ones are in spec(φ). Output that finite set.

4 The Colored Hypergraph Case

We discuss how to generalize Theorem 3.1. Theorem 3.1 was about a structure with a symmetric
non-reflexive binary relation E. We will now look at symmetric non-reflexive ≤ a-ary relations.
We will allow i-ary relations for 1 ≤ i ≤ a. By non-reflexive we also mean that E(x1, x1, x2, x3) is
false. We will later discuss what to do in the case of non-symmetric relations that are allowed to
be reflexive.

Def 4.1 Let n, a ∈ N.

1. An (a, c)-hypergraph is the complete hypergraph on n vertices where every edge in
([n]
≤a

)
exists

and has a color. The colors are from [c].
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2. Let G be an (a, c)-hypergraph on [n]. Let COL denote the coloring. Let H ⊆ [n]. H is
homogenous if for every 1 ≤ i ≤ a there exists a color ci such that for all A ∈

(
H
i

)
, COL(A) =

ci.

The following is a Ramsey’s Combinatorial theorem in the form he used it.

Theorem 4.2 For all a, c,m there exists an number Ra,c(m) such that, for every c-coloring of
KRa,c(m) there is a homogenous set of size m.

Proof sketch: Use Ramsey’s theorem first on the coloring of a-sets. Obtain a homogenous set
H. Then use Ramsey’s theorem on the colorings of a− 1-sets of H. Keep doing this.

We now define terms so we can state and prove a theorem in Logic. Before we looked at the
language of graphs. We will look at the language of (a, c)-hypergraphs.

Def 4.3 φ is a sentence in the language of (a, c)-hypergraphs if it uses predicates Pi,j where i ∈ [a]
and j ∈ [c]. The intended interpretation is that Pi,j(x1, . . . , xi) is true iff the edge {x1, . . . , xi} is
colored j. We will also call φ an (a, c)-sentence.

Def 4.4 If φ is an (a, c)-sentence then spec(φ) is the set of all n such that there is a (a, c)-hypergraph
for which φ is true.

Convention 4.5 For ease of notation we make the following conventions.

• If there is a contiguous string of the same type of quantifiers then all of the variables in it are
distinct. Hence

(∃x1)(∃x2)(∀y1)(∀y2)[φ(x1, x2, y1)]

actually means
(∃x1)(∃x2 6= x1)(∀y1)(∀y2 6= y1)[φ(x1, x2, y1)]

• The hypergraph is strongly non-reflexive. This means that Pi,j(x1, . . . , xi) is false if any of
the vars are the same. Hence P3,17(x, y, z means P3,17E(x, y, z) ∧ x 6= y ∧ x 6= z ∧ y 6= z.

• Pi,jE is symmetric. So Pi,j(x, y, z) means

Pi,j(x, y, z) ∧ Pi,j(y, x, z) ∧ Pi,j(z, x, y) ∧ Pi,j(z, y, x) ∧ Pi,j(y, x, z) ∧ Pi,j(y, z, x)

.

Example 4.6

1.
φ = (∀x)(∀y)(∀z)[P3,1(x, y, z) ∨ P3,17x, y, z].

This states that every triple of distinct vertices is either colored 1 or colored 17. For all n
this is satisfied by the colored hypergraph that colors every triple 1. Hence, spec(φ) = N.
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2.
φ = (∃x, y, z)(∀w)[P3,4(x, y, w) ∧ P4,7(x, y, z, w).

φs states that there are three distinct vertices x, y, z such that every w /∈ {x, y, z} (x, y, w)
is colored 4 and (x, y, z, w) is colored 7. We leave it to the reader to show that spec(φ) =
{3, 4, 5, . . . , }.

Lemma 4.7 Let a, c ∈ N.

1. The following is decidable: Given an (a, c)-sentence φ and an (a, c)-hypergraph G, determine
if φ is true in G.

2. The following is decidable: Given an (a, c)-sentence φ and a number n, determine if n ∈
spec(φ).

Proof: Use brute force.

We will use Lemma 4.7 without comment.
The following is a subcase of what Ramsey proved. Its a subcase since Ramsey allowed non-

symmetric and reflexive predicates.

Theorem 4.8 The following function is computable: Given φ, an (a, c)-sentence of the form

(∃x1) · · · (∃xn)(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

output spec(φ). (spec(φ) will be a finite or cofinite set; hence it will have an easy description.)

Proof:
Claim 1: If G satisfies φ and x1, . . . , xn are the witnesses then any induced subgraph H of G that
contains x1, . . . , xn satisfies φ.
Proof of Claim 1:

The statement
(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)]

is true in H since it is true in G and now there are just less cases to check.
End of Proof of Claim 1

Claim 2:

1. If there exists N0 ≥ n+ 2nRa,c(m) such that N0 ∈ spec(φ) then

{n+m,n+m+ 1, . . . , } ⊆ spec(φ).

2. If n+ 2nRa,c(m) /∈ spec(φ) then

spec(φ) ⊆ {0, 1, 2, . . . , n, n+ 1, n+ 2, . . . , n+ 2nRa,c(m)− 1}.
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Proof of Claim 2:
a) Since N0 ≥ n+2nRa,c(m) ∈ spec(φ) there exists G = (V,E), an (a, c)-hypergraph on N0 vertices,
where φ is true. Let x1, . . . , xn be vertices such that the following is true of G:

(∀y1) · · · (∀ym)[ψ(x1, . . . , xn, y1, . . . , ym)].

Let X = {x1, . . . , xn} and U = V − X. Note that |U | ≥ 2nRa,c(m). Map every u ∈ U to
(b1, . . . , bn) ∈ {0, 1}n such that

bi =

{
0 if (u, xi) /∈ E
1 if (u, xi) ∈ E

(2)

Hence every u ∈ U is mapped to a description of how it relates to every element in X. Since
|U | ≥ 2nRa,c(m) there exists Ra,c(m) vertices that map to the same vector. Apply Ramsey’s
theorem to these Ra,c(m) vertices to obtain z1, . . . , zm such that the following are true.

For every 1 ≤ i ≤ a there exists a color ci such that every A ∈
(
z1,...,zm

i

)
is colored ci.

Let H0 be the (a, c)-hypergraph restricted to X ∪ {z1, . . . , zm}. By Claim 1.a H0 satisfied φ.
For every p ≥ 1 we form an (a, c)-hypergraph Hp = (Vp, Ep) on n+m+ p vertices that satisfies φ.

• Vp = X ∪ {z1, . . . , zm, zm+1, . . . , zm+p} where zm+1, . . . , zm+p are new vertices.

• Ep is the union of the following edges.

– The edges in H0, colored as they were in H0.

– For all 1 ≤ ij ≤ a color every subset of z1, . . . , zm+p of size i the color ci. (If you are
only dealing with a subset of z1, . . . , zm then it will already be colored ci.)

– Let (b1, . . . , bn) be the vector that all of the elements of {z1, . . . , zm} mapped to. For
m+ 1 ≤ j ≤ m+ p, for 1 ≤ i ≤ m such that bi = 1, put an edge between zj and xi.

As far as X is concerned, all of the z1, . . . , zm+p look the same. Hence any subset of the
{z1, . . . , zm+p} of size m will look just like z1, . . . , zm as far as both X is concerned and as far as
their connectivity to each other. Hence Hp satisfies φ. Hence n+m+ p ∈ spec(φ).

b) Assume, by way of contradiction, that some N0 > n + 2nRa,c(m) ∈ spec(φ). Then, by part 1
of this claim, all N ≥ n + m are in spec(φ). In particular n + 2nRa,c(m) ∈ spec(φ). This is a
contradiction.
End of Proof of Claim 2

We can now give an algorithm for this problem:

1. Input φ which begins (∃x1) · · · (∃xn)(∀y1) · · · (∀ym).

2. Determine if n+ 2nRa,c(m) ∈ spec(φ).

(a) If YES then by Claim 2a

{n+m,n+m+ 1, . . .} ⊆ spec(φ).

For 0 ≤ i ≤ n +m − 1 test if i ∈ spec(φ). We now know the finite set of numbers that
are not in spec(φ). Call this set NOT . Output spec(φ) is N−NOT .. Note that spec(φ)
is cofinite.
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(b) if NO then, by Claim 2b

spec(φ) ⊆ {n+ 1, n+ 2, . . . , n+ 2nR(m)}.

Determine, for each N in this set, which ones are in spec(φ). Output that finite set.

5 The Full Theorem

Lets say we want to allow things like Pi,j(x, y, z) 6= Pi,j(x, z, y). Or things like Pi,j(x, y, x). What
can we do? We will sketch how to reduce this to the case in Theorem 4.8. We can assume that the
vertex set is [n].

We can transform a (a, c)-hypergraph which allows asymmetry and repeated values to an (a,C)-
hypergraph graph which does not for some C > c.

We do an example. Let COL be the coloring of
([n]
≤a

)
. Assume a ≥ 3. In the new (a,C)-

hypergraph we will color (1, 2, 3) by the sequence
COL(1, 1, 1), (COL(1, 1, 2), COL(1, 1, 3), COL(1, 2, 1), COL(1, 2, 2), COL(1, 2, 3), COL(1, 3, 1), (COL(1, 3, 2), COL(1, 3, 3),
COL(2, 1, 1), (COL(2, 1, 2), COL(2, 1, 3), COL(2, 2, 1), COL(2, 2, 2), COL(2, 2, 3), COL(2, 3, 1), (COL(2, 3, 2), COL(2, 3, 3),
COL(3, 1, 1), (COL(3, 1, 2), COL(3, 1, 3), COL(3, 2, 1), COL(3, 2, 2), COL(3, 2, 3), COL(3, 3, 1), (COL(3, 3, 2), COL(3, 3, 3).
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