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1 Introduction

We describe an application of Ramsey’s Theorem to proving programs terminate, by which
we mean terminate on any input. This paper is self contained; it does not require knowledge
of either Ramsey’s Theorem or Programming Languages.

Our account is based on the articles of B. Cook, Podelski, and Rybalchenko [11, 26]
and Lee, Jones, and Ben-Amram [21]. Many other papers [9, 10, 25, 27, 28] have used the
techniques I present here. Termination checkers that use the methods of B. Cook, Podelski,
and Rybalchenko include ARMC [31], Loopfrog [19], and Terminator [8]. Earlier Terminator
checkers that used methods from [25] are Terminlog [22] and Terminweb [6]. Termination
checkers that use the methods of Lee, Jones, and Ben-Amram include ACL2 [1], AProVE [2],
and Julia [3].

Convention 1.1 The statement The Program Terminates means that it terminates no mat-
ter what the user does. The user will be supplying inputs as the program runs; hence we
are saying that the user cannot come up with some (perhaps bizarre) inputs that make the
program run forever.

In the summary below we refer to Programs 1,2,3 and 4 which appear later in the paper.

1. Section 3: We prove Program 1 terminates. This proof uses a simple well founded
ordering. We then state Theorem 3.2 that encapsulates this kind of proof.

2. Section 4: We prove Program 2 terminates. This proof uses a complicated well founded
ordering and Theorem 3.2.

3. Section 5: We prove Program 2 terminates using Ramsey’s Theorem. We then state
Theorems 5.6 and Theorem 5.7 which encapsulates this kind of proof. This proof of
termination is easier than the proof is Section 4 in some ways, but more complicated
in other ways.

4. Section 6: We prove Program 2 terminates using Theorem 5.6 and hence using Ram-
sey’s Theorem; however, we prove the premise of Theorem 5.6 using matrices. We then
state and prove Theorems 6.4 and 6.5 that encapsulates this kind of proof. We discuss
how this approach can be made into an algorithm that generates proofs-of-termination
in some cases.

5. Section 7: We prove Program 3 terminates using Theorem 5.7 and hence using Ram-
sey’s Theorem; however, we prove the premise of Theorem 5.7 using transition invari-
ants. We then state Theorem 7.4 that encapsulates this kind of proof. It seems difficult
to obtain a proof that Program 3 terminates without using Ramsey’s Theorem.
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Program 0

(x , y ) = ( input (NAT) , input (NAT) )
While x>0

con t r o l = input (1 , 2 )
i f c on t r o l == 1

(x , y)=(x+10,y−1)
else
i f c on t r o l == 2

(x , y)=(y+17,x−2)

6. Section 8: We prove Program 3 terminates using Theorem 6.5 and hence using Ram-
sey’s Theorem and matrices. Program 3 has some properties that make this a good
illustration.

7. Section 9: We prove Program 4 terminates using Theorem 7.4 and hence Ramsey’s
Theorem and transition invariants. Program 4 has some properties that make this a
good illustration.

8. Section 10: We show that the full strength of Ramsey’s Theorem is not needed for the
proofs of Theorems 5.5, 5.6,and 5.7 and discuss what is needed.

9. Section 11: We examine some cases of program termination that are decidable and
some that are undecidable.

2 Notation and Definitions

Notation 2.1

1. N is the set {0, 1, 2, 3, . . . , }. All variables are quantified over N. For example For all
n ≥ 1 means for all n ∈ {1, 2, 3, . . . , }. We use N in prose and NAT in programs.

2. Z is the set of integers, {. . . ,−2,−1,−, 1, 2, . . .}. We use Z in prose and INT in
programs.

3. Q is the set of rationals. We use Q in prose and RAT in programs.

Notation 2.2 In a program the command
x = input(INT)

means that x gets an integer provided by the user. More generally, if A is any set, then
x = input(A)

means that x gets a value from A provided by the user.
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All of the programs we deal with in this paper do the following: initially the variables
get values supplied by the user, then there is a While loop. Within the While loop the
user can specify which one of a set of statements get executed.

We define this type of program formally. We call it a program though it is actually a
program of this restricted type. We also give intuitive comments in parenthesis.

Def 2.3

1. A program is a tuple (S, I, R) where the following hold.

• S is a set of states. (If (x1, . . . , xn) are the variables in a program and they are of
types T1, . . . , Tn then S = T1 × · · · × Tn.)

• I is a subset of S. (I is the set of states that the program could be in initially.)

• R ⊆ S × S. (R(s, t) iff s satisfies the condition of the While loop and there is
some choice of instruction that takes s to t. Note that if s does not satisfy the
condition of the While loop then there is no t such that R(s, t). This models the
While loop termination condition.)

2. A computation is a (finite or infinite) sequence of states s1, s2, . . . such that

• s1 ∈ I.

• For all i such that si and si+1 exist, R(si, si+1).

• If the sequence is finite and ends in s then there is no pair in R that begins with
s. Such an s is called terminal.

3. A program terminates if every computation of it is finite.

4. A computational segment is a sequence of states s1, s2, . . . , sn such that, for all 1 ≤ i ≤
n− 1, R(si, si+1). Note that we do not insist that s1 ∈ I nor do we insist that sn is a
terminal state. Henceforth we denote this comp. seg.

Example 2.4 Program 0 can be defined by the following.

• S = Z× Z.

• I = N× N.

• R = {(x, y), (x + 10, y − 1) | x, y ≥ 1}
⋃
{(x, y), (y + 17, x− 2) | x, y ≥ 1}.

Note 2.5 All programs in this paper will be of the same form as Program 5.
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Program 1

(x , y , z0 = ( input (INT) , input (INT) , input (INT) )
While x>0 and y>0 and z>0

con t r o l = input (1 , 2 , 3 )
i f c on t r o l == 1 then

(x , y , z )=(x+1,y−1,z−1)
else
i f c on t r o l == 2 then

(x , y , z )=(x−1,y+1,z−1)
else
i f c on t r o l == 3 then

(x , y , z )=(x−1,y−1,z+1)

3 A Proof of Termination Using a Simple Well Founded

Ordering

Consider Program 1. We want to prove that every computation of Program 1 is finite. That
is, whatever the user inputs, the program will terminate. The key is to find some quantity
that, during every iteration of the While Loop, decreases. None of x,y,z qualify. However,
the quantity x+y+z does. We use this in our proof.

Theorem 3.1 Every computation of Program 1 is finite.

Proof:
Let

f(x, y, z) =

{
0 if any of x,y,z are ≤ 0;

x + y + z otherwise.
(1)

Before every iteration of the While loop f(x, y, z) > 0. After every iteration of the
While loop f(x, y, z) has decreased. Eventually there will be an iteration such that, after
it executes, f(x, y, z) = 0. When that happens the program terminates.

The key to the proof of Theorem 3.1 is

1. We map each state of the program, (x,y,z), to an element of N, denoted f(x, y, z).

2. We show that at every iteration of the While loop, f decreases.

3. Once f hits 0 the program must terminate.

There is a more general theorem, due to Floyd [13] lurking here which we state without
proof. Our statement uses a different notation than his.

4



Program 2

(w, x , y , z)= ( input (INT) , input (INT) , input (INT) , input (INT) )
While w>0 and x>0 and y>0 and z>0

con t r o l = input (1 , 2 , 3 )
i f c on t r o l == 1 then

x=input (x+1,x +2 , . . . )
w=w−1

else
i f c on t r o l == 2 then

y=input (y+1,y +2 , . . . )
x=x−1

else
i f c on t r o l == 3 then

z=input ( z+1,z +2 , . . )
y=y−1

Theorem 3.2 Let PROG = (S, I, R) be a program. Assume there is a well founded order
(P, <P ), and a map f : S → P such that the following occurs.

1. If R(s, t) then f(t) <P f(s).

2. If the program is in a state s such that f(s) is the minimum element of P , then the
program terminates.

Then any computation of PROG is finite.

4 A Proof of Termination Using an Ordering on 4-

Tuples

Consider Program 2. We want to prove that every computation of Program 2 is finite. That
is, whatever the user inputs, the program will terminate. The key is to find some quantity
that, during every iteration of the While Loop, decreases. None of w,x,y,z qualify. No
arithmetic combination of w,x,y,z qualifies.

Def 4.1 Let P be an ordering and k ≥ 1. The lexicographic ordering on P k is the ordering

(a1, . . . , ak) <lex (b1, . . . , bn)

if for the least i such that ai 6= bi, ai < bi.
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Example 4.2 In the ordering (N4, <lex)

(1, 10, 10000000000, 99999999999999) <lex (1, 11, 0, 0).

Theorem 4.3 Every computation of Program 2 is finite.

Proof:
Let

f(w, x, y, z) =

{
(0, 0, 0, 0) if any of w,x,y,z are ≤ 0;

(w, x, y, z) otherwise.
(2)

We will be concerned with the order (N4, <lex). We use the term decrease with respect
to <lex.

We show that both premises of Theorem 3.2 hold.
Claim 1: In every iteration of the While loop f(w, x, y, z) decreases.
Proof of Claim 1:

Consider an iteration of the While loop. There are three cases.

1. control=1: w decreases by 1 and x’s value changes (it may increase a lot). Since the
order is lexicographic, and w is the first coordinate, and x is the second coordinate, if
w decreases by 1 then the tuple decreases no matter how x changes.

2. control=2: x decreases by 1 and y’s value changes (it may increase a lot). This case is
similar to the control=1 case.

3. control=3: y decreases by 1 and z’s value changes (it may increase a lot). This case is
similar to the control=1 case.

End of Proof of Claim 1

Claim 2: If f(w, x, y, z) = (0, 0, 0, 0) then the program has halted.
Proof of Claim 2:

If f(w, x, y, z) = (0, 0, 0, 0) then one of w,x,y,z is ≤ 0. Hence the While loop condition
is not satisfied and the program halts.
End of Proof of Claim 2

By Claim 1 and 2 both premises of Theorem 3.2 are satisfied. Hence Program 2 termi-
nates.
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5 A Proof of Termination Using Ramsey’s Theorem

In the proof of Theorem 4.3 we showed that during every single step of Program 2 the
quantity (w,x,y,z) decreased with respect to the ordering <lex. The proof of termination
was easy in that we only had to deal with one step but hard in that we had to deal with a
complicated ordering.

In this chapter we will prove that Program 2 terminates in a different way. We will not
need an ordering on 4-tuples. We will only deal with w,x,y,z individually. However, we will
need to prove that, for any comp. seg, one of those quantities decreases.

We will use the infinite Ramsey’s Theorem [30] (see also [14, 15, 20]) which we state here.

Notation 5.1

1. If n ≥ 1 then Kn is the complete graph with vertex set V = {1, . . . , n}.

2. KN is the complete graph with vertex set N.

Def 5.2 Let c, n ≥ 1. Let G be Kn or KN. Let COL be a c-coloring of the edges of G. A
set of vertices V is homogeneous with respect to COL if all the edges between vertices in V
are the same color We will drop the with respect to COL if the coloring is understood.

Ramsey’s Theorem:

Theorem 5.3 Let c ≥ 1. Every c-coloring of the the edges of KN has an infinite homoge-
neous set.

Note 5.4 The term Ramsey’s Theorem often refers to the version on hypergraphs. In this
paper we take it to mean Theorem 5.3 which is just for graphs.

Theorem 5.5 Every computation of Program 2 is finite.

Proof:
We first show that for every finite comp. seg. one of w,x,y,z will decrease. There are

several cases.

1. If control=1 ever occurs in the segment then w will decrease. No other case makes w
increase, so we are done. In all later cases we can assume that control is never 1.

2. If control=2 ever occurs in the segment then x decreases. Since control=0 never occurs
and control=3 does not make x increase, x decreases. In all later cases we can assume
that control is never 1 or 2.

3. If control=3 is the only case that occurs in the segment then y decreases.
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We show Program 2 terminates. Assume, by way of contradiction, that there is an infinite
computation. Let this computation be

(w1, x1, y1, z1), (w2, x2, y2, z2), . . .

Since in every comp. seg. one of w, x, y, z decrease we have that, for all i < j, either
wi > wj or xi > xj or yi > yj or zi > zj. We use this to create a coloring of the edges of
the KN. Our colors are W, X, Y, Z. In the coloring below each case assumes that the cases
above it did not occur.

COL(i, j) =


W if wi > wj;

X if xi > xj;

Y if yi > yj;

Z if zi > zj.

(3)

By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·
such that

COL(i1, i2) = COL(i2, i3) = · · · .

(We actually know more. We know that all pairs have the same color. We do not need
this fact here; however, see the note after Theorem 5.7.)

Assume the color is W (the cases for X, Y, Z are similar). Then

wi1 > wi2 > wi3 > · · · .

Hence eventually w must be less than 0. When this happens the program terminates.
This contradicts the program not terminating.

The ideas in the proof of Theorem 5.5 are from Theorem 1 of [26], though similar ideas
were in [21]. In Theorem 5.5 we showed that, for any comp. seg, one of the variables
decreased. If some function of the variables decreased, this would have sufficed. The next
two theorems, which are subcases of Theorem 1 of [26], states this.

Theorem 5.6 Let PROG = (S, I, R) be a program of the form of Program 5. Note that the
variables are x[1],. . .,x[n]. If for all comp. seg. s1, . . . , sn there exists i such that x[i] in s1 is
strictly less than x[i] in sn then any computation of PROG is finite.

To prove that a program terminates we might use some function of the variables rather
than the variables themselves. The next theorem, which is a generalization of Theorem 5.6,
captures this.

Theorem 5.7 Let PROG = (S, I, R) be a program. Assume that there exists well founded
orderings (P1, <1),. . . , (Pm, <m) and functions f1, . . . , fm such that fi : S → Pi. Assume the
following.
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1. For all comp. seg. s1, . . . , sn there exists i such that fi(sn) <i fi(s1).

2. If the program is in a state s such that, for some k, fk(s) is the minimum element of
Pk, then the program terminates.

Then any computation of PROG is finite.

Note 5.8 The proofs of Theorems 5.6 and 5.7 do not need the full strength of Ramsey’s
Theorem. We will comment on this in Section 10.

6 Proof of Termination Using Matrices and Ramsey’s

Theorem

Part of the proof of Theorem 5.5 involved showing that, for any finite comp. seg. of Program
2, one of w,x,y,z decreases. Can such proofs be automated? Lee, Jones, and Ben-Amram [21]
developed a way to partially automating such proofs. They use matrices. The other part of
the proof of Theorem 5.5 used Ramsey’s Theorem. Hence they prove programs terminate
using matrices and Ramsey’s Theorem.

We use their techniques to give a proof that Program 2 terminates. We will then discuss
their general technique. Cook, Podelski, Rybalchenko have also developed a way to partially
automate the such proofs. We discuss this in Section 5.

Let P be a program with variables x[1],. . .,x[n] and control takes values in {1, ..., m}.
Let 1 ≤ k ≤ m. Let x[1],. . .,x[n] be the values of the variables before the control=k code
executes and let x[1]’,. . .,x[n]’ be the values of the variables after. In some cases we know
how x[i] relates to x[j]’. We express this information in a matrix. The key will be that matrix
multiplication (defined in a nonstandard way) of two matrices representing pieces of code
will result in a matrix that represents what happens if those pieces of code are executed one
after the other.

• If it is always the case that x[i]’≤x[j]+L then the (i,j) entry of the matrix is L ∈ Z.

• In all other cases the (i,j) entry is ∞. Note that this may well be most of the cases
since we often do not know how x[i]’ and x[j] relate.

Example 6.1 We describe the matrices for Program 2. The matrix for control=1 , which
we denote A, is 

−1 ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


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The matrix for control=2 is, which we denote B, is
0 ∞ ∞ ∞
∞ −1 ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


The matrix for control=3 is, which we denote C, is

0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −1 ∞
∞ ∞ ∞ ∞


We want to define matrix multiplication such that if Xa is the matrix for control=a

and Xb is the matrix for control=b then XaXb is the matrix for what happens if first the
control=a code is executed and then the control=b code is executed.

1. A decrease of L1 (hence the entry −L1) followed by a decrease of L2 (hence the entry
−L2) should yield a decease of L1 + L2 (hence the entry −(L1 + L2). Hence instead of
multiplying −L1 by −L2 we add them.

2. If we do not know how x[i]′ and x[j] relate (hence an entry of ∞) then even if we know
how x[i]′′ and x[j]′ relate, we do not know how x[i]′′ and x[i] relate. Hence instead of
multiplying ∞ by some element of Z ∪ {∞} we add them to get ∞.

3. If we do not know how x[i]′′ and x[j]′ relate (hence an entry of ∞) then even if we
know how x[i] and x[j]′ relate, we do not know how x[i]′′ and x[i] relate. Hence instead
of multiplying some element of Z ∪ {∞} we add them to get ∞.

4. Using items 1,2 and 3 we will always add rather than multiply.

5. Lets call the variables x[1],. . .,x[n]. It is possible that from the first matrix we know
x[i]≥x[k]’+L1’. and from the second one we know x[k]’≥x[j]”+L2”. Then we know
x[i]≥x[j]”+(L1 + L2)”. The way to achieve this we use min over k instead of addition.

6. In summary if Xa has entries a[i, j] and Xb has entries b[i, j] XaYb has in its (i,j) entry

min
k
{a[i, k] + a[k, j]}.

The following theorem, from [21], we leave for the reader.

Lemma 6.2 Let PROGa and PROGb be programs that use the variables x[1],. . . ,x[n]. (We
think of PROGa and PROGb as being what happens in the various control cases.) Let Xa be
the matrix that represent what is known whenever PROGa is executed. Let Xb bt the matrix
that represent what is known whenever PROGb is executed. Then the matrix produce XaXb

as defined above represents what is known when PROGa and then PROGb are executed.

10



We return to our example.

Theorem 6.3 Every computation of Program 2 is finite.

Proof:
We show that the premises of Theorem 5.6 hold. Item 1 is easily proven directly. Items

2,3,4,5,6,7 are easily proven by induction on the number of matrices being multiplied.

1. AB = BA, AC = CA, BC = CB.

2. For all i ≥ 1 Ai is 
−i ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ 0 ∞
∞ ∞ ∞ 0


3. For all j ≥ 1 Bj is 

0 ∞ ∞ ∞
∞ −j ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


4. For all k ≥ 1 Ck is 

0 ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −k ∞
∞ ∞ ∞ ∞


5. For all i, k ≥ 1 AiCk is 

−i ∞ ∞ ∞
∞ 0 ∞ ∞
∞ ∞ −k ∞
∞ ∞ ∞ ∞


6. For all j, k ≥ 1 BjCk is 

0 ∞ ∞ ∞
∞ −j ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞


7. For i, j, k ≥ 1 and k ≥ 0, AiBjCk =

−i ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ ∞
∞ ∞ ∞ 0


Note that the result does not depend on j or k.
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We are interested in any sequence of executions of control=1, control=2, and control=3.
Hence we are interested in any product of the matrices A, B, C. Since the multiplication of
these matrices is commutative we need only concern ourselves with AiBjCk for i, j, k ∈ N.
In all of the cases below i, j, k ≥ 1.

1. Ai: w decreases.

2. Bj: x decreases.

3. Ck: y decreases.

4. AiBj: x decreases.

5. AiCk: Both w and y decrease.

6. BjCk: x decreases.

7. AiBjCk: w decreases.

Hence, for any any comp. seg. s1, . . . , sn of Program 2 either w,x,y, or z decreases. Hence
by Theorem 5.6 Program 2 terminates.

The proof technique we used above is quite general. Basically you form the matrices
and see if all products of them has a negative number on the diagonal. Lee, Jones, and
Ben-Amram [21](Theorem 4) have essentially shown the following:

Theorem 6.4 Let PROG = (S, I, R) be a program in the form of Program 5. Let A1, A2, . . . , Am

be the matrices the n × n matrices associated to control=1, . . ., control=m cases. If every
product of the Ai’s yields a matrix with a negative integer on the diagonal then the program
terminates.

Proof: Consider comp. seg. s1, . . . , sn. Let the corresponding matrices be Ai1 , . . . , Ain .
By the premise the product of these matrices has a negative integer on the diagonal. Hence
some variable decreases. By Theorem 5.6 the program terminates.

Theorem 6.4 leads to the following potential algorithm to test if programs of the type we
have been considering halt.

1. Input Program P.

2. Form matrices for all the cases of control.

3. Determine if it is the case that all possible products of these matrices have a negative
number on the diagonal. (This step may be difficult.)

4. If so then output YES the program terminates.
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5. If not the then output DON”T KNOW.

This algorithm can be used to prove that some programs terminate but not all. It cannot
be used to prove that a program will not terminate.

Theorem 6.4 only dealt with how the variables changed. We will need a more general
theorem where we look at how certain functions of the variables change.

Theorem 6.5 Let PROG = (S, I, R) be a program in the form of Program 5. Let f1, . . . , fp

be functions of the n variables. Let A1, A2, . . . , Am be the p × p matrices that describe how
fi on the variables before the code is executed compares to fj on the variables after the code
is executed, in the control=1, . . ., control=m cases. Assume that when one of the fi is ≤ 0
then the While loop condition does not hold so the program stops. If every product of the
Ai’s yields a matrix with a negative integer on the diagonal then the program terminates.

Theorem 6.5 also leads to the a potential algorithm to test if programs of the type we
have been considering halt. This algorithm is similar to the one that follows Theorem 6.4
and hence we omit it.

The following extensions of Theorem 6.5 are known. The first one is due to Amir Ben-
Amram [4].

Theorem 6.6 Let PROG, f1, . . . , fp, A1, . . . , Am be as in Theorem 6.5. Further assume
that each column of each Ai has at most one non-infinity value. If every product of the Ai’s
is such that some power of it has a negative on the diagonal then the program terminates.

Proof:
FILL IN LATER

The condition on the columns turns out to not be necessary. Jean-Yves Moyen has shown
the following (you need to combine [23] and [24].

Theorem 6.7 Let PROG, f1, . . . , fp, A1, . . . , Am be as in Theorem 6.5. If every product
of the Ai’s is such that some power of it has a negative on the diagonal then the program
terminates.

Proof:
IF FIGURE IT OUT FILL IN LATER

The condition on the columns turns out to not be necessary. Jean-Yves Moyen has shown
the following (you need to combine [23] and [24].
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Program 3

(x , y ) = ( input (INT) , input (INT) )
While x>0 and y>0

con t r o l = input (1 , 2 )
i f c on t r o l == 1 then

(x , y)=(x−1,x )
else
i f c on t r o l == 2 then

(x , y)=(y−2,x+1)

7 A Proof of Termination Where Ramsey’s Theorem

Makes it Much Easier

We proved that Program 2 terminates in three different ways. The proof in Theorem 4.3 used
a complicated well founded order; however, the proof only had to deal with what happened
during one step of Program 2. The proofs in Theorem 5.5 and 6.3 used four simple well
founded orders and Ramsey’s Theorem; however, the proofs had to deal with any comp. seg.
of Program 2. Which proof is easier? This is a matter of taste; however, all of the proofs
are easy once you see them.

We present an example from [26] of a program (Program 3 in the paper you are reading)
where the proof of termination using Ramsey’s Theorem is easy (Podelski and Rybalchenko
found it by hand and later their termination checker found it automatically) but the proof
of termination using a well founded ordering seems difficult (we have not been able to find
one).

We want to prove that every computation of Program 3 is finite. That is, whatever the
user inputs, the program will terminate. The key is to find some set of quantities such that,
for every comp. seg, one of them decreases. We will use x,y, and x+y.

Theorem 7.1 Every computation of Program 3 is finite.

Proof:
We assume that the comp. seg. enters the While loop, else the program has already

terminated.
We show that both premises of Theorem 5.7 hold with P1 = P2 = P3 = N, f1(x, y) = x,

f2(x, y) = y, and f3(x, y) = x + y. It may seem as if knowing that x+y decreases you know
that either x or y decreases. However, in our proof, we will not know which of x,y decreases.
Hence we must use x,y, and x+y.
Claim 1: For any comp. seg, one of x,y,x+y decreases.
Proof of Claim 1:

We want to prove that, for all n ≥ 2, for all comp. segs. of length n

(x1, y1), (x2, y2), . . . , (xn, yn),
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either x1 > xn or y1 > yn or x1 + y1 > xn + yn. However, we will prove something stronger.
We will prove that, for all n ≥ 2, for all comp. segs. of length n

(x1, y1), (x2, y2), . . . , (xn, yn),

one of the following occurs.

1. x1 > 0 and y1 > 0 and xn < x1 and yn ≤ x1 (so x decreases),

2. x1 > 0 and y1 > 0 and xn < y1 − 1 and yn ≤ x1 + 1 (so x+y decreases),

3. x1 > 0 and y1 > 0 and xn < y1 − 1 and yn < y1 (so y decreases),

4. x1 > 0 and y1 > 0 and xn < x1 and yn < y1 (so x and y both decreases, though we
just need one of them).

(In the note after the proof we refer to the OR of these four statements as the invariant.)
We prove this by induction on n.

Base Case: n = 2 so we only look at one instruction.
If (x2, y2) = (x1 − 1, x1) is executed then (1) holds.
If (x2, y2) = (y1 − 2, x1 + 1) is executed then (2) holds.

Induction Step: We prove Claim 1 for n + 1 assuming it for n. There are four cases.

1. xn < x1 and yn ≤ x1.

If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < x1 − 1 < x1

• yn+1 = xn < x1

so (1) holds.

If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 ≤ x1 − 2 < x1

• yn+1 = xn + 1 ≤ x1

Hence (1) holds.

2. xn < y1 − 1 and yn ≤ x1 + 1

If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1
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Hence (3) holds.

If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 ≤ x1 − 1 < x1

• yn+1 = xn < y1

Hence (4) holds.

3. xn < y1 − 1 and yn < y1

If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1.

Hence (3) holds.

If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 < y1 − 2 < y1 − 1

• yn+1 = xn < y1 − 1 < y1

Hence (3) holds.

4. xn < x1 and yn < y1

If (xn+1, yn+1) = (xn − 1, xn) is executed then

• xn+1 = xn − 1 < x1 − 1 < x1

• yn+1 = xn < x1

Hence (1) holds.

If (xn+1, yn+1) = (yn − 2, xn + 1) is executed then

• xn+1 = yn − 2 < y1 − 2 < y1 − 1.

• yn+1 = xn < x1 < x1 + 1.

Hence (2) holds.

We now have that, for any comp. seg. either x,y, or x+y decreases.
End of Proof of Claim 1

The following claim is obvious.
Claim 2: If any of x,y,x+y is 0 then the program terminates.

By Claims 1 and 2 the premise of Theorem 5.7 is satisfied. Hence Program 3 terminates.
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In the proof of Theorem 7.1 we only needed to show that, for any comp. seg, either x or
y decreased.

1. We actually showed that either x,y, or x+y decreased. Clearly this is true iff one of x
or y decreased. However, if we had tried to show that one of x,y decreased directly the
invariant would have to be more complicated.

2. We actually showed that, for any comp. seg, the invariant held. This is a case of
strengthening the induction hypothesis. This is the key to the proof. We show how it
can be generalized below.

We can state the invariant differently. Consider the following four orderings on N × N
(we write the ordered pairs ((x, y), (x′, y)) to indicate (x, y) > (x′, y′)).

T1 = {((x, y), (x′, y′)) | x > 0 and y > 0 and x′ < x and y′ ≤ x}
T2 = {((x, y), (x′, y′)) | x > 0 and y > 0 and x′ < y − 1 and y′ ≤ x + 1}
T3 = {((x, y), (x′, y′)) | x > 0 and y > 0 and x′ < y − 1 and y′ < y}
T4 = {((x, y), (x′, y′)) | x > 0 and y > 0 and x′ < x and y′ < y}
T = T1 ∪ T2 ∪ T3 ∪ T4

Note that (1) each Ti is well founded, and (2) for any comp. seg. (x1, y1), (x2, y2), . . . , (xn, yn)
we have ((x1, y1), (xn, yn)) ∈ T.

It is easy to see that these properties of T are all we needed in the proof. This is Theorem
1 of [26] which we state and prove. This is the only theorem using Ramsey’s theorem in this
paper that uses the full strength of Ramsey’s Theorem. We discuss this more in Section 10.

Def 7.2 An ordering T is well founded if every set has a minimal element. Note that any
infinite sequence must have a minimum element.

Def 7.3 Let PROG = (S, I, R) be a program.

1. An ordering T such that S × S ⊆ T is a transition invariant if for any comp. seg.
s1, . . . , sn we have (s1, sn) ∈ T

2. An ordering T is disjunctive well-founded if there exists well founded orderings T1, . . . , Tk

such that T = T1 ∪ · · · ∪ Tk. Note that the Ti need not be linear orderings, they need
only be well founded. This will come up in the proof of Theorem 9.1.

Theorem 7.4 Let PROG = (S, I, R) be a program. Every run of PROG terminates iff
there exists a disjunctive well-founded transition invariant.
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Proof: Let T = T1 ∪ · · · ∪ Tk be the disjunctive well-founded transition invariant for
PROG.

Assume, by way of contradiction, that there is an infinite sequence s1, s2, s3, . . . , such
that each (si, si+1) ∈ R. Define a coloring COL be

COL(i, j) = the least L such that (si, sj) ∈ TL.
By Ramsey’s Theorem there is an infinite set

i1 < i2 < i3 < · · ·

such that

COL(i1, i2) = COL(i2, i3) = · · · .

Let that color be Tc. Then

si1 <c si2 <c< · · · <

This contradicts <c being well founded.

Finding an appropriate T is the key to the proofs of termination for the termination
checkers Loopfrog [19], and Terminator [8].

FILL IN LATER- DISCUSSION OF NOT USING TRAN RAMSEY, AND EXAMPLES.
LATER ON SPECULATE IF EQUIV TO FULL RAMSEY OVER RCA0.

8 Another Proof of Termination Using Matrices and

Ramsey’s Theorem

Theorem 8.1 Every computation of Program 3 is finite.

Proof: We will use Theorem 6.5 with functions x,y, and x+y. Note that x+y is not one
of the original variables which is why we need Theorem 6.5 rather than Theorem 6.4.

The control=1 case of Program 3 corresponds to the following matrix which we denote
A.  −1 0 1

∞ ∞ ∞
∞ ∞ ∞


The control=2 case of Program 3 corresponds to the following matrix which we denote

B.  ∞ 1 ∞
−2 ∞ ∞
∞ ∞ −1


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We show that the premises of Theorem 6.5 hold. The following are true and easily proven
by induction on the number of matrices being multiplied.

1. For all i ≥ 1 Ai is  −i −i + 1 −i + 2
∞ ∞ ∞
∞ ∞ ∞


2. For all i ≥ 1, j odd, j = 2k − 1, Bj is −k ∞ ∞

∞ −k ∞
∞ ∞ −2k


3. For all j ≥ 2, j even, j = 2k, Bj is ∞ −k + 1 ∞

−k − 2 ∞ ∞
∞ ∞ −2k − 1


4. If i, j ≥ 1 then AiBj is −(i + dj/2e −(i− 1 + bj/2c −(j − 1)

∞ ∞ ∞
∞ ∞ ∞


5. If i, j ≥ 1, i is odd, then BiAj is ∞ ∞ ∞

−(bi/2c+ j + 2 −(bi/2c+ j + 1 −(bi/2c+ j
∞ ∞ ∞


6. If i, j ≥ 1, i is even, then BiAj is −(i/2) + j −(i/2) + j − 1 −bi/2c+ j − 2

∞ ∞ ∞
∞ ∞ ∞


We use this information to formulate a lemma.

Def 8.2 If we put < 0 (≤ 0) in an entry of a matrix it means any integer that is less than
0 (less than or equal to 0).
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Lemma 8.3 For all n ≥ 2, any product of n matrices all of which are A’s and B’s must be
of one of the following type:

1.  < 0 ≤ 0 ≤ 0
∞ ∞ ∞
∞ ∞ ∞


2.  ∞ ∞ ∞

< 0 < 0 < 0
∞ ∞ ∞


3.  < 0 ∞ ∞

∞ < 0 ∞
∞ ∞ < 0


4.

5.  ∞ < 0 ∞
< 0 ∞ ∞
∞ ∞ < 0


This can be proved easily by induction on n.

Note 8.4 One can show that every computation of Program 3 terminates using 2×2 matri-
ces. Amir Ben-Amram has done this and has allowed us to place his proof in the appendix
of this paper.

Theorem 8.5 Every computation of Program 4 is finite.

Proof: By Lemma 8.3 every finite product of the matrices A and B has a negative integer
on the diagonal. Hence by Theorem 6.5, every computation of Program 4 is finite.

9 Another Example

We want to prove that any run of Program 4 will terminate. Intuitively this is easy: even-
tually y is negative and after that point x will steadily decrease until x < 0. But this would
be hard for a termination checker since x might increases for a very long time. Instead we
need to find the right disjunctive well-founded transition invariant.

Theorem 9.1 Every run of Program 4 terminates.
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Program 4

(x , y ) = ( input (INT) , input (INT) )
While x>0

(x , y ) = (x+y , y−1)

Proof: We define orderings T1 and T2 (we write it as > instead of <) (we write the
ordered pairs ((x, y), (x′, y)) to indicate (x, y) > (x′, y′)).

T1 = {((x, y), (x′, y′)) | x > 0 and x′ < x}

T2 = {((x, y), (x′, y′)) | y ≥ 0 and y′ < y}.

Let

T = T1 ∪ T2.

Clearly T1 and T2 are well-founded (though see note after the proof). Hence T is dis-
junctive well-founded. We show that T is a transition invariant.

We want to prove that, for all n ≥ 2, for all comp. segs. of length n

(x1, y1), (x2, y2), . . . , (xn, yn)

either T1 or T2 holds.
We prove this by induction on n.
We will assume that the comp. seg. enters the While loop, else the program has already

terminated. In particular, in the base case, x > 0.
Base Case: n = 2 so we only look at one instruction. There are two cases.

If y1 ≥ 0 then since y1 > y1 − 1 = y2 T2 holds independent of what x1, x2 are.
If y1 < 0 then x1 > x1 + y1 = x2. Since x1 > 0, T1 holds.

Induction Step: There are four cases based on (1) y ≤ 0 or y > 0, and (2) T1 or T2 holds
between (x1, y1) and (xn, yn). We omit details.

Note 9.2 T1 and T2 are partial orders not linear orders. In fact, for both T1 and T2 there
are an infinite number of minimum elements. In particular

• the minimal elements for T1 are {(x, y) | x ≤ 0}, and

• the minimal elements for T2 are {(x, y) | y < 0}.

Hence the definition of Transitive invariant that allows partial orders is useful.

21



10 What Do We Need?

Podelski and Rybalchenko [28] noted that the proofs of Theorems 5.5, 5.6,and 5.7 do not
need the strength of the full Ramsey’s Theorem. In the proofs of these theorems the coloring
is transitive.

Def 10.1 A coloring of the edges of Kn or KN is transitive if, for every i < j < k, if
COL(i, j) = COL(j, k) then both equal COL(i, k).

Also note that the proofs of Theorems 5.5, 5.6,and 5.7. did not need a homogeneous set;
all they need is a monochromatic increasing path.

Def 10.2 Let c, n ≥ 1. Let G be Kn or KN. Let COL be a c-coloring of the edges of G. A set
of vertices V is a monochromatic increasing path with respect to COL if V = {v1 < v2 < · · · }
and

COL(v1, v2) = COL(v2, v3) = · · · .

(If G = Kn then the · · · stop at some k ≤ n.) We will drop the with respect to COL if the
coloring is understood. We will abbreviate monochromatic increasing path by mip from now
on.

Here is the theorem we really need. We will refer to it as the Transitive Ramsey’s
Theorem.

Theorem 10.3 Let c ≥ 1. For every transitive c-coloring of KN there exists an infinite mip.

Note 10.4 Replacing the premise any c-coloring with any transitive c-coloring does indeed
make the Transitive Ramsey’s Theorem weaker than Ramsey’s Theorem. However, replac-
ing the conclusion an infinite homogeneous set with an infinite mip does not change the
theorem—it is easy to see that, for any transitive c-colorings of the edges of KN there is an
infinite homogeneous set iff there is an infinite mip.

Is the Transitive Ramsey’s Theorem actually weaker than Ramsey’s Theorem? Yes, and
in three different ways: (1) Reverse Mathematics, (2) Computable Mathematics, (3) Finitary
Version.

Def 10.5

1. For all c ≥ 1 let RT (c) be Ramsey’s theorem for c colors.

2. RT is (∀c)[RT (c)] which is the usual Ramsey’s theorem.

3. For all c ≥ 1 let TRT (c) be the Transitive Ramsey’s theorem for c colors.
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4. TRT is (∀c)[TRT (c)] which is the usual Transitive Ramsey’s theorem. This is the
theorem that we really need.

Reverse Mathematics: Reverse Mathematics [32] looks at exactly what strength of axioms
is needed to prove results in mathematics. A weak axiom system called RCA0 (Recursive
Comprehension Axiom) is at the base. The statement A 6→ B (A → B; A ≡ B) means that,
even allowing the use of the axioms in RCA0, one cannot prove B from A (one can prove
B from A; one can prove B from A, and A from B). The following are known and (items 1
and 2) indicate that the proof-theoretic complexity of RT is greater than that of TRT .

1. RT → TRT . The usual reasoning for this can easily be carried out in RCA0.

2. Hirschfeldt and Shore [17] have shown that TRT 6→ RT .

3. For all c, RT (2) ≡ RT (c). The usual reasoning for this can easily be carried out in
RCA0. Note how this contrasts to the next item.

4. Cholak, Jockusch, and Slaman showed that RT (2) 6→ (∀c)[RT (c)].

For Program X and programs like it we know that there is some c such that

TR(c) → Program X terminates.

In the spirit of the reverse mathematics program we ask the following: For each c is there
a program P such that the following holds:

P terminates → TR(c).

Note that the following is open: for which i, j ≥ 2 do we have i, j ≥ 2 if TRT (i) →
TRT (j)? Other variants of Ramsey Theory can also be explored.
Computable Mathematics: Computable Mathematics looks at theorems in mathematics
that are proven non-effectively and questions if there is an effective (that is computable)
proof. The answer is usually no. Then the question arises as to how noneffective the proof
is. Ramsey’s Theorem and the Transitive Ramsey’s Theorem have been compared in this
light. The following are known and (items 1 and 2) indicate that the complexity of H is
larger than the complexity of P .

1. Jockusch [18] has shown there exists a computable 2-coloring of the edges of KN such
that, for all homogeneous sets H, H is not computable in the halting set.

2. For all c, for every computable transitive c-coloring of the edges of KN, there exists an
infinite mip P that is computable in the halting set. This is folklore.

3. There exists a computable transitive 2-coloring of the edges of KN with no computable
infinite mip. This is folklore.
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4. Hirschfeldt and Shore [17] have shown that there exists a computable transitive 2-
coloring of the edges of KN with no low infinite mip.

Finitary Version: There are finite versions of both Ramsey’s Theorem and the Transitive
Ramsey’s Theorem. The finitary version of the Transitive Ramsey’s Theorem yields better
upper bounds.

Notation 10.6 Let c, k ≥ 1.

1. R(k, c) is the least n such that, for any c-coloring of the edges of Kn, there exists a
homogeneous set of size k.

2. TR(k, c) is the least n such that, for any transitive c-coloring of the edges of Kn, there
exists a mip of length k.

It is not obvious that R(k, c) and TR(k, c) exist; however, they do.
The following is well known [14, 15, 20].

Theorem 10.7 For all k, c ≥ 1 R(k, c) ≤ cck−c+1,

Improving the upper and lower bounds on the R(k, c) (often called the Ramsey Numbers)
is a long standing open problem. The best known asymptotic results for the c = 2 case are
by Conlon [7]. For some exact values see Radziszowski dynamic survey [29].

The following theorem is easy to prove; however, neither the statement, nor the proof,
seem to be written down anywhere. We provide a proof for completeness.

Theorem 10.8 For all k, c ≥ 1 TR(k, c) = (k − 1)c + 1.

Proof:
I) TR(k, c) ≤ (k − 1)c + 1.

Let n = (k− 1)c + 1. Assume, by way of contradiction, that there is transitive c-coloring
of the edges of Kn that has no mip of length k.

We define a map from {1, . . . , n} to {1, . . . , k − 1}c as follows: Map x to the the vector
(a1, . . . , ac) such that the longest mono path of color i that ends at x has length ai. Since
there are no mip ’s of length k the image is a subset of {1, . . . , k − 1}c.

It is easy to show that this map is 1-1. Since n > (k − 1)c this is a contradiction.

2) TR(k, c) ≥ (k − 1)c + 1.
Fix k ≥ 1. We show by induction on c, that, for all c ≥ 1, there exists a transitive

coloring of the edges of K(k−1)c that has no mip of length k.
Base Case: c = 1. We color the edges of Kk−1 all RED. Clearly there is no mip of length
k.

Induction Step: Assume there is a transitive (c−1)-coloring COL of the edges of K(k−1)c−1

that has no homogeneous set of size k. Assume that RED is not used. Replace every vertex
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with a copy of Kk−1. Color edges between vertices in different groups as they were colored
by COL. Color edges within a group RED. It is easy to see that this produces a transitive
c-coloring of the edges of and that there are no mip of length k.

Note 10.9 Erdös and Szekeres [12] showed the following:

• For all k, for all sequences of distinct reals of length (k − 1)2 + 1, there is either an
increasing monotone subsequence of length k or a decreasing monotone subsequence
of length k.

• For all k, there exists a sequences of distinct reals of length (k − 1)2 with neither an
increasing monotone subsequence of length k or a decreasing monotone subsequence
of length k.

This is equivalent to the c = 2 case of Theorem 10.8. For six different proofs see Steele’s
article [33]. Our proof of Theorem 10.8 was modeled after Hammersley’s [16] proof of the
upper bound and Erdös-Szekeres’s proof of the lower bound.

If c is small then TR(k, c) is substantially smaller than R(k, c). This indicates that the
Transitive Ramsey’s Theorem is weaker than Ramsey’s Theorem. We speculate that, in
some cases, by using the transitive Ramsey’s Theorem, a proof of termination may also
provide a bound on run time. This is also possible for Ramsey’s Theorem; however, using
the transitive Ramsey’s Theorem, one may be able to obtain a much better bound.

11 Solving Subcases of the Termination Problem

The problem of determining if a program is terminating is unsolvable. This is not the
traditional Halting problem since we allow the program to have a potentially infinite number
of user-supplied inputs.

Def 11.1 Let M
()
1 , M

()
2 , . . . be a standard list of oracle Turing Machine. They do not take

inputs. (We interpret the oracle as the user-supplied inputs.) If A ⊆ N and s ∈ N then MA
i,s ↑

means that if you run MA
i it will not halt within s steps. Let M

()
1 , M

()
2 , . . . be a standard

list of oracle Turing Machine.

TERM = {i | (∀A)(∃s)[MA
i,s ↓]}.

Def 11.2

1. X ∈ Π1
1 if there exists an oracle Turing machine M () such that

X = {(∀A)(∃x1)(∀x2) · · · (Qnxn)[MA(x1, . . . , xn)] = 1}.
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Program 5

(Comment : X i s ( x [ 1 ] , . . . , x [ n ] )
X = ( input (INT) , input (INT ) , . . . , input (INT) )
While x [1] >0 and x [2] >0 and . . . x [ n]>0

con t r o l = input ( 1 , 2 , 3 , . . . ,m)
i f c on t r o l==1
X = (g11 (X, input (INT ) , . . . , input (INT) )

else
i f c on t r o l==2
X = (g21 (X, input (INT ) , . . . , input (INT) )

else
.
.
.

else
i f c on t r o l==m
X =(gm1 (X, input (INT ) , . . . , input (INT) )

2. A set X is Π1
1-complete if X ∈ Π1

1 and, for all Y ∈ Π1
1, Y ≤m X.

The following are known:

Theorem 11.3

1. TERM is Π1
1-complete

2. If X is Π1
1-complete then, for all Y in the arithmetic hierarchy, Y ≤m X.

3. For all Y in the arithmetic hierarchy Y ≤m TERM . (This follows from (1) and (2).)

Hence TERM is much harder than the halting problem. Therefore it will be very inter-
esting to see if some subcases of it are decidable.

Def 11.4 Let n ∈ N. Let FUN(n) be a set of computable functions from Nn to N. Let
m ∈ N. A (F (n), m))-program is a program of the form of Program 5 where, for all 1 ≤ i ≤ m

(gi1, . . . , gin) ∈ FUN(n)n.

Open Question: For which FUN(n), m) is the Termination Problem restricted to (FUN(n), m)-
programs decidable?

We list all results we know. Some are not quite in our framework. Some of the results for
the While loop condition Mx ≥ b for some matrix M and vector b; however, such programs
can easily be transformed into programs of our form.
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1. Tiwari [34] has shown that the following problem is decidable: Given matrices A, B
and vector c, all over the rationals, is the following program in TERM (interpreting
the variables over the reals).

Program 6

x = input (RAT)
while (Bx > b)

x = Ax + c

Since this is a program over the reals it does not fit into our framework.

2. Braverman [5] has shown that the following problem is decidable: Given matrices
A, B1, B2 and vectors b, b1, c, all over the rationals, is the following program in TERM
(interpreting the variables over the rationals.)

Program 7

x = input (RAT)
while (B1x > b) AND (B2x ≥ b1 )

x = Ax + c

In the homogeneous case, where b1 = b2 = c = 0 the result holds where the domain is
the integers. Hence our problem is decidable if m = 1 and FUN(n) consists of linear
functions with no constant term.

3. Ben-Amram, Genaim, and Masud have shown that the following problem is undecid-
able: Given matrices A0, A1, B and vector v all over the rationals, and i ∈ N does the
following program terminate.

Program 8

x=INPUT(INT)
while (Bx ≥ b)

i f x[i] ≥ 0
then x = A0x

else
x = A1x

This can be formulated as an undecidability result in our framework.

4. Ben-Amram [4] has shown a pair of contrasting results:

• The termination problem is undecidable for (FUN(n), m)-programs where m = 1
and FUN(n) is the set of all functions of the form

f(x[1],. . . ,x[n])= min{x[i1] + c1, x[i2] + c2, . . . , x[ik] + ck}
where 1 ≤ i1 < · · · < ik and c1, . . . , ck ∈ Z.
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• The termination problem is decidable for (FUN(n), m)-programs when m ≥ 1
and FUN(n) is the set of all functions of the form Notice that Program 3 falls
into this category.

f(x[1],. . . ,x[n])= x[i]+c

where 1 ≤ i ≤ n and c∈ Z. Program 3 falls into this category.

The results above contrast decidable and undecidable. It would be of interest to get a
more refined classification. Some of the undecidable problems may be equivalent to HALT
while others may be Σ1

1 complete.

12 Appendix: Termination of Program 3, Using The-

orem 6.4

This section is due to Amir Ben-Amram.
The case control=1 is represented by the matrix

A =

(
−1 0
∞ ∞

)
and the other case by

B =

(
∞ −2
+1 ∞

)
To show that Thm 6.4 holds, we form a representation of the closure set closA, b, that
is the set of all finite products of A and B’s. The representation (obtained according to
(Ben-Amram 2008)) is:

E = CDx, where C ∈ {A, B, AB, BA} and D =

(
−1 ∞
∞ −1

)
.

To apply the theorem, it suffices that the representation contains the closure set. This is
easily proved by induction. We multiply each of the four “patterns” in E on the left by
each of the matrices. We use the following identities: A2 = DA = AD = AB, B2 = D,
DB = BD.

1. A(ADx) = ADx+1

2. B(ADx) = (BA)Dx

3. A(BDx) = (AB)Dx

4. B(BDx) = BDx+1

5. A(ABDx) = ADBDx = ABDx+1

28



6. B(ABDx) = BADx+1

7. A(BADx) = A3Dx = ADx+2

8. B(BADx) = DADx = ADx+1

Now it remains to verify that every matrix represented by E , or some power thereof, has a
negative integer on the diagonal. Note that in one of the cases, squaring is necessary.

1. ADx =

(
−1− x −x
∞ ∞

)
2. (BDx)2 = B2D2x = D2x+1

3. ABDx = ADDx = ADx+1

4. BADx =

(
∞ ∞
−3 −2

)
Dx =

(
∞ ∞
−3 −2− x

)
.
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