Roth’s Theorem: If A C [n] is large then it has a 3-AP
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1 Roth’s Theorem

Notation 1.1 Let [n] ={1,...,n}. If £ € N then k-AP means an arithmetic progression of size k.

Consider the following statement:
If A C [n] and #(A) is ‘big’ then A must have a 3-AP.

This statement, made rigorous, is true. In particular, the following is true and easy:
Let n > 3. If A C [n] and #(A) > 0.7n then A must have a 3-AP.

Can we lower the constant 0.77 We can lower it as far as we like if we allow n to start later:
Roth [3, 4, 5] proved the following using analytic means.
(VA > 0)(Ing € N)(¥Yn > ng) (VA C [n])[#(A) > An = A has a 3-AP).

The analogous theorem for 4-APs was later proven by Szemeredi [3, 6] by a combinatorial proof.
Szemeredi [7] later (with a much harder proof) generalized from 4 to any k.

We prove the k = 3 case using the analytic techniques of Roth; however, we rely heavily on
Gowers [2, 1]

Definition 1.2 Let sz(n) be the least number such that, for all A C [n], if #(A) > sz(n) then A
has a 3-AP. Note that if A C [a,a +n — 1] and #(A) > sz(n) then A has a 3-AP. Note also that
if A C{a,2a,3a,...,na} and #(A) > sz(n) then A has a 3-AP. More generally, if A is a subset of
any equally spaced set of size n, and #(A) > sz(n), then A has a 3-AP.

2 Sparse Intervals

The next lemma states that if A is ‘big’ and 3-free then it is somewhat uniform. There cannot be
sparse intervals of A. The intuition is that if A has a sparse interval then the rest of A has to be
dense to make up for it, and it might have to be so dense that it has a 3-AP.

Lemma 2.1 Let n,ng € N; A\, A\g € (0,1). Assume X < Ao and (Ym > ng)[sz(m) < Agm|. Let
A C [n] be a 3-free set such that #(A) > An. Let a,b be such that a < b, a > ng, and n — b > ny.
Then Ao(b —a) —n(Ao — A) < #(ANa,b)).

Proof:
Since A is 3-free and a > ng and n — b > ng we have #(AN[l,a — 1]) < Ao(a — 1) < Aga and
#(AN[b+1,n]) < Ag(n —0b). Hence

M <#(A) = #AN[Da—-1])+#(ANa,b]) +#(AN[b+1,n])
An < Mpa+ #(ANa,b]) + No(n—0)
An — Xon + Aob — Moa < #(ANJa, b))
Ao(b—a) —n(Xo—A) < #(AN[a,b]).



3 Notation
Throughout this paper the following hold.

1. n € N is a fixed large prime.

2. Z, ={1,...,n} with modular arithmetic.

3. w=emi/n,

4. If a is a complex number then |a| is its length.

5. If A is a set then |A] is its cardinality.

4 Counting 3-AP’s

Lemma 4.1 Let A, B,C C [n]. The number of (z,y,z) € Ax BxC such that x+z =2y (mod n)

18
n

% S A@)By)C(2) S w2,

z,y,2€[n] r=1
Proof:
We break the sum into two parts:
Part 1:
1 n
— Z A(z)B(y)C(z) Z W T@=2y+2)
n z,y,2€[n],x+2=2y (mod n) r=1

Note that we can replace w™"(*=2¥+2) with w® = 1. We can then replace Y7, 1 with n. Hence
we have

1 3 A(z)B(y)C(z)n = > A(z)B(y)C(2)

n
z,y,z€[n],x+2=2y (mod n) z,y,2€[n],x+2=2y (mod n)

This is the number of (z,y,2) € A x B x C such that z + z =2y (mod n).
Part 2:

1 3 A@)BC(E) Y w2+,

" o yzelnlotz£2y  (mod n) r=1

We break this sum up depending on what the (nonzero) value of w = x+2—2y (mod n). Let

Sy = Z A(z)B(y)C(z) Z w .
z,y,z€[n],x—2y+2z=2 r=1
Since u # 0, Y qw ™ =>"_w " =0. Hence S, = 0.
Note that



n n—1
1 Z A(z)B(y)C(z) Z W@ % Z Su=0
r=1 u=1

" o yzelnlatz£2y  (mod n)

The lemma follows from Part 1 and Part 2. |

Lemma 4.2 Let A C [n]. Let B=C = AN[n/3,2n/3]. The number of (x,y,z) € Ax B x C such
that x,y, z forms a 3-AP is at least

1 = —r(r— V4
o S A@)B(y)C(2) Y w T — O(n).
z,y,2€[n] r=1
Proof: By Lemma 4.1

n

LY A@BE)C() Y

2,y,2€[n] r=1
is the number of (z,y,2) € A x B x C such that z + 2z =2y (mod n). This counts three types of
triples:
e Those that have © = y = z. There are n/3 of them.
e Those that have z + z = 2y + n. There are O(1) of them.
e Those that have x £y, y # 2z, x # 2z, and = + z = 2y.

Hence

n

#{(5y,2): bz =2)As £yhy £ 2na £ 2l = Y A@BE)CE) Y W 0(m)

We are not done yet. Note that (5,10, 15) may show up as (15,10,5). Every triple appears at
most twice. Hence

#{(z,y,2): (@+tz=22) ANz FyAy#z Nz #2})

< M({(y ) @ <y<)A(@rz=2) AT YAy £ AT £ o))

Therefore

1 S —r(z—2y+z ) :
on Z A(z)B(y)C(z) Zw (@=2y+2) _O(n) < the number of 3-AP’s with z € A,y € B, z € C' .

x,y,2€[n] r=1

We will need to re-express this sum. For that we will use Fourier Analysis.



5 Fourier Analysis
Definition 5.1 If f : Z, — N then f:Z, — C is

fry="73" fls)w.
s€(n]

~

f is called the Fourier Transform of f.

What does f tell us? We look at the case where f is the characteristic function of a set A C [n].
Henceforth we will use A(z) instead of f(x).
We will need the followng facts.

Lemma 5.2 Let AC{1,...,n}.
1. A(n) = #(A).
2. max, ey [A(r)| = #(A).

3. A(s) =L+ A(r)w™". DO WE NEED THIS?

r=1
b SR [A(r)P = n#t(A).
5. Y0y Als) = 50, A(n).

Proof:
Note that w™ = 1. Hence

Aln) =" A(s)w ™™ = > A(s) = #(A).

s€[n] s€[n]

Also note that

A =13 Al < D7 AW < D7 JAG)Iw ™™ < Y JA(s)] = #(4).

s€[n] s€[n] s€[n] s€[n]

Informal Claim: If A(r) is large then there is an arithmetic sequence P with difference 7~

(mod n) such that #(A N P) is large.
We need a lemma before we can proof the claim.

Lemma 5.3 Letn,m € N, s1,...,8n, and 0 < \,a, € < 1 be given (no order on A, a, € is implied).
Assume that (A — Z=L(X +€)) > 0. Let f(z1,...,2m) = | 220 wjw®i]. The mazimum value
that f(z1,...,2m) can achieve subject to the following two constraints (1) 371, x; > An, and (2)
(Vi)[0 <z < (A +€);:] is bounded above by emn + (A +€) ;-] 3271, w|



Proof:

Assume that the maximum value of f, subject to the constraints, is achieved at (x1,...,Zm).
Let MIN be the minimum value that any variable x; takes on (there may be several variables that
take this value). What is the smallest that MIN could be? By the contraints this would occur
when all but one of the variables is (A + ¢).~ and the remaining variable has value MIN. Since
>, = An we have

MIN + (m —1)(A+ €)= > An

MIN + ™=L(X\ +e)n > An

MIN > An— 2=L(X + €)n

MIN > (A= 2L(X+e)n

Hence note that, for all 7,

zj— MIN <z; — (A= =LA+ ¢e)n

Using the bound on z; from constraint (2) we obtain

x; — MIN

VA VAR VANNVAN

Note that

| 2oy 2w | |2 (w5 — MIN)w® + 375 MINw |

| 25 (zj — MIN)w® | + | 35 MINw|
i1 [(zj — MIN)||w® | + MIN| 37, w|

dotyen+ MIN|TT ) wsi

emn+MIN|Z;7"”:1wSJ’]

emn + (A + ) 2| ST |

AV VA VAN VAN

Lemma 5.4 Let A C [n], r € [n], and 0 < a < 1. If |A(r)| > an and |A] > An then there
exists m € N, 0 < € < 1, and an arithmetic sequence P within Z,,, of length - £ O(1) such that
#(ANP) > (A+e€)2. The parameters € and m will depend on \ and « but not n.

n
m

Proof: Let m and € be parameters to be picked later. We will note constraints on them as we
go along. (Note that e will not be used for a while.)
Let 1 =a; <ag <--- < am+1 = n be picked so that
g — a1 =a3 — A2 =+ = Gy — Am—1 and G411 — Ay IS as close to ag — a; as possible.
For1 <j7<mlet
Pi={sen]:a; <rs (modn) < ajii}.

Let us look at the elements of P;. Let r~1 be the inverse of  mod n.
1. s such that a; =rs (mod n), that is, s = a;r~1  (mod n).

2. ssuch that aj +1=rs (mod n), that is s = (a; + 1)r ! =a;r =+ 77! (mod n).



3. ssuch that aj +2=rs (mod n), that is s = (a; +2)r~ ! =a;r "' +2r~1  (mod n).
4. .

Hence P; is an arithmetic sequence within Z,, which has difference r~1. Also note that Py,..., P,
form a partition of Z,, into m parts of size - + O(1) each.
Recall that

Ar)y =" A(s)w™"".
s€n]

Lets look at s € P;. We have that a; <rs (mod n) < a;41. Therefore the values of {w"® : s €
P;} are all very close together. We will pick s; € P; carefully. In particular we will constrain m so
that it is possible to pick s; € P; such that Z’j":l w™ "% = 0. For s € P; we will approximate w™"*
by w™"%. We skip the details of how good the approximation is.

We break up the sum over s via P;.

Alr) = Yem Als)w™"
= i1 2sep, Als)w™"*
i1 2sep; Als)w™™
L w T Y sep; Als)
L w I (A N Py)
= I #ANP)
n < |A(r)| = [0 #(AN Pjw |

2

We will not use e. We intend to use Lemma 5.3; therefore we have the contraint (A — Z=1 (X +

€)) > 0.

Assume, by way of contradiction, that (Vj)[|ANP;| < (A+¢€),-. Applying Lemma 5.3 we obtain
m n m
#ANPHw | <emn+ (AN+¢€)— w " = emn.
|le (AN Fy) | (A+e) m\jzl |

Hence we have

an < emn

a < em.

In order to get a contradiction we pick € and m such that a > em.
Having done that we now have that (35)[|AN Pj| > (A +¢€) ]

We now list all of the constraints introduced and say how to satisfy them.

1. m is such that there exists s1 € Py, ..., S;m € Py, such that Z;»n:l w™ " =0, and
2. (A— mT_l(A—i—e)) > 0.
3. em < a.

First pick m to satisfy item 1. Then pick € small enough to satisfy items 2,3. |



Lemma 5.5 Let A, B,C C [n]. The number of 3-AP’s (z,y,z) € A x B x C is bounded below by

> " A(r)B(=2r)C(r) — O(n).

r=1

1
2n

Proof:
The number of 3-AP’s is bounded below by

o Y A@BEICE) Y e - o) =
r=1

x7y7ze[n}
We look at the inner sum.

n

S A@@)B(y)C(z) Y w et =

n

Z Z A(x)w " B(y)w C(2)w™ " =

r=1z,y,2€[n]
Z Z A(z)w™ "™ Z B(y)w?¥" Z Cw ™ =
r=1ze[n] y€(n] 2€ZLy

The Lemma follows. |

6 Main Theorem
Theorem 6.1 For all \, 0 < A < 1, there exists ng € N such that for all n > ng, sz(n) < An.

Proof:
Let S()\) be the statement

there exists ng such that, for all n > ng, sz(n) < An.

It is a trivial exercise to show that S(0.7) is true.
Let
C={N:S\N}.

C' is closed upwards. Since 0.7 € C' we know C # (). Assume, by way of contradiction, that
C # (0,1). Then there exists A < Ag such that A ¢ C and Ao € C. We can take Ay — A to be as
small as we like. Let ng be such that S()\g) is true via ng. Let n > ng and let A C [n] such that
#(A) > An but A is 3-free.

Let B=C=AnN|[n/3,2n/3|.

By Lemma 5.5 the number of 3-AP’s of A is bounded below by



212_: —91)C(r) — O(n).

We will show that either this is positive or there exists a set P C [n] that is an AP of length
XXX and has density larger than A. Hence P will have a 3-AP.

By Lemma 5.2 we have A(n) = #(A), B(n) = #(B), and C(n) = #(C). Hence

n—1
%A(n)é(n)é’(n) + % > A(r)B(-2r)C(r) — O(n) =
r=1
n—1
%#(A)#(B)#(C) + % Y- A(r)B(=2r)C(r) — O(n).
r=1

By Lemma 2.1 we can take #(B),#(C) > nA/4. We already have #(A) > An. This makes the
lead term Q(n3); hence we can omit the O(n) term. More precisely we have that the number of
3-AP’s in A is bounded below by

AS 2 1 n—1

St 2 AMB(=2r)C(r).

r=1
We are assuming that this quantity is < 0.

AS 2 1 n—1

16 n
A3n? 1 A
16 " n ; A(r)B(—2r)C(r))
Since the left hand side is positive we have
3,2 n— A
< RS AMBCm)
< k(maxrA(r)) SpZt |B(=2r)||C(r)|

By the Cauchy Schwartz inequality we know that

ZyB —2r)||C(r)| < Z\B —2r)]?)1/2)( Z )12y,

=1

Hence
A3 2 n—1

<l max A Z|B ~2r) )23 C0) 1)),

=1
By Parsaval’s inequality and the definition of B and C' we have




n—1 R )\7’L2
D 1B(=2n)P)? < n(B) = -
i=1
and
n—1 2
R A
> ICP)? < nt(0) = S5
i=1
Hence \3)2 o \
n “ 1An N n
6 < (1;7{135_1 A== (157{133_1 A5
Therefore

~ 2
[A(r) > 3355 1
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