1 Definitions

Def 1.1 Let t(n),r(n) : N — N and err(n) : N — QN (0,1/2). (Think of
t(n),r(n) as poly and err(n) = 1/4.) Let BPP(¢(n),r(n),err(n)) be the set of
all A C {0,1}* such that there exists TM M that runs in time #(n) on inputs
of the form (z,y) where |z| = n and |y| = r(n). such that the following occurs.
Let z € {0,1}".
1. if # € A then, for at least 1 — err(n) of y € {0, 1}, M(z,y) = 1.
2. if x ¢ A then, for at least 1 — err(n) of y € {0,1}"™, M(z,y) = 0.

We also define BPP = ;2 BPP(n*, n*, 1).

Def 1.2 Let L : N — N (think Log), s : N — N (think 2¢*), and diff : N —
QN (0,1/2) (think). Assume that, for all n, G maps {0, 1}*™ into {0, 1}".

poly

G is (L(n), s(n), diff (n))-pseudorandom if

1. (Informally) For all n the set {Grm)(2) : 2 € {0,1}F™} “looks like”
{0,1}".

2. (Formally) For almost all n, for every s(n)-sized circuit C,,
IPr(Cp(y) =1:y € {0,1})=Pr(Cr(Gn(2)) = 1: z € {0,1}F™)| < diff(n).

(so no s(n)-sized circuit can tell the two sets apart, up to diff(n). When
assuming this is not true we freely use 0 intead of 1 and/or do not use
the absolute value signs.

Note 1.3 If we say that G € DTIME(¢(n)) we mean that it runs in time ¢(n)
where n is the length of the output.

Def 1.4 Let L : N — N (think Log), s : N — N (think 27"), and eps :
N — QN (0,1/2) (think ﬁ) Assume that, for all n, G maps {0, 1}*™ into
{0,1}". G is (L(n), s(n),eps(n))-next bit predictable if, for infinitely many n,
there exists i € {2,...,n} and a circuit C, : {0,1}*"! — {0, 1} such that

1. C, is a deterministic circuit of size s(n).

1

2.

For at least 1 +eps(n) of strings y € {Grpy(x)[1:i—1] |z € {0, 1}F™},
C(y) = Grwm(x)[i]. (Note that we interpret {Gpru(x)[1:7—1] |z €
{0,1}™} as a multiset.)

Def 1.5 Let f : {0,1}* — {0,1}. Let f, be the restriction of f to {0,1}".
f is (s(n),eps(n))-hard if there does not exist an s(n)-sized circuit C,, that
computes, for almost all n, f,, correctly on % +eps(n) of the strings in {0, 1}".

2

Notation Used Throughout the Paper

Notation 2.1 Throughout this paper the following hold.

1.
2.
3.

L(n) : N — N (think log). ¢ will be a constant. ¢L(n) will be used alot.
s(n),S(n) : N — N (think poly, 2*). Bounds on circuit size.

r(n) : N — N (think poly). We require r(n) > n. The random string
that a BPP machine uses.

. t(n),T(n): N — N (think poly, 2"). Run times.

G {0,1}* — {0,1}*. At different places we will also require that for all
n {0, 1}¢L() maps to {0, 1}", for some c¢. We denote the subfunction that
maps {0,1}™ to {0,1}" by G,,. (m will be L(n) or cL(n) or ¢*L(n)). A
potential psuedorandom generator.

. f:{0,1}* — {0,1}. We denote the subfunction that maps {0,1}" to

{0,1} by f,. A “hard” function.

. err(n) : N — QN (0,1/2) (think) An error, so the smaller it is the less

chance of error.
diff(n) : N — QN (0,1/2) (think ﬁ) diff(n) is decreasing. How much
two distributions differ. The smaller it is, the less they differ.

.eps(n) : N — Qn(0,1/2) (think —1-). eps(n) is decreasing. How much

poly
1

more than ; of the elements of some domain a function is computed

correctly. The larger eps(n) the large the domain we can compute the
function on.

