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INFORMATION THEORETIC APPROACH TO SECURE LSFR CIPHERS

David August

[This paper is the winning paper in the Cryptologia Fourth 
Annual Undergraduate Paper Competition in Cryptology.]

ABSTRACT: To break a normal LFSR cipher, a cryptanalyst needs only 
2n bits of corresponding plain and ciphertext, where n is the number 
of stages of the shift register.[1] In this paper, a method of 
substituting completely random characters into the ciphertext and 
therefore preventing the encipherment of a full 2n-length sequence 
(under its proper key) will be discussed. Due to the high redundancy 
of English, a cipher containing several completely random characters 
will still be readable.

KEY WORDS: Linear feedback, shift register, random substitution, 
plaintext redundancy, hardware efficiency.

Meyer and Tuchman in [1] demonstrate a method of breaking an n-stage linear 
feedback shift register (LFSR) given 2n bits of known plaintext. The basic 
method is to set up the matrix equation

Yn+1 + Xn+1 Vi • • . xx ”■ V

» 0 ^n ^n-l • . . X2 S3

a

e =

0 0 .

•
a a

S3

•

J2n + *2n ^

«

0 0 Xn

or K = XS where X is the matrix of successive shifts of the first n bits of 
plaintext, Y is the ciphertext, and S is the unknown matrix of switch states. 
Y + X = K, the key matrix. (Note: In modulo 2 addition, since X + K = Y, 
then X + Y = K.) Thus, the switch values can be obtained by inverting X and 
solving S = X K.
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The matrix method, however, requires 2n consecutive bits of known plaintext, 
and herein lies its chief weakness. If getting 2n consecutive bits x^„. X2n 
is never possible, then the equation provides no solution for S. This, then, 
is the cryptographer's problem. The trivial answer, of course, limits all 
messages to length less than 2n. This solution would require either very 
short messages or enormous shift registers, neither of which are very 
practical.

A more beneficial answer is found in an information theoretic approach. The 
English language is quite redundant. For example.

SNINCS WTHT WLS R SILL FRLY SY T RD

A message of length k may still be read if it lacks some quantity D(k) of 
letters. Alternately, the message remains fairly easy to read if D(k) random 
letters are substituted for characters. Consequently, one may still "read" a 
2n-length sequence of characters containing D(2n) random substitutions (eg. 
bits from a noisy diode), yet never have a "complete" 2n sequence. With a new 
algorithm that

1) Includes some random bits in every set of 2n message characters

2) Discards the unused part of the 2n sequence of key bits after a random 
insertion has been made. This prevents a normal known plaintext attack 
(as in [1]) on the reconstructed plaintext

3) Repeats this process for a message of length k

we can theoretically obtain a modified, secure LFSR cipher, mod (LFSR) may be 
described functionally using a composite form:

E1(X) = X + K
-c)X

(1)

where c is a binary flag, R is some random byte, and K is the key. c is on or 
off depending on whether or not the key byte corresponds to a certain preset 
configuration. R is a byte rather than a bit because, to implement the new 
configuration algorithm, it is necessary to change the normal LFSR cipher from 
a stream cipher to a block cipher, with a convenient block size of eight.
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Before discussing the practicality of the new cipher, we must first review 
some probability and information theory. The probability of x successes in n 
independent trials of a random experiment is

P(x) = (*)pV~X

where p = probability of success of each trial, and q = 1 - p. This is called 
the "Binomial distribution". Thus, P(0) = (Q)p0qnr0 = q11. For the proba
bility of success to be 99%, an equivalent condition is that the probability 
of failure P(0) be less than 1%. Thus,

1 - P(0) > .99 
1 - > S9
.01 > qn
n > ln(.01)/ln(q) (2)

provides the number of trials, n, necessary such that the probability of 
failure is 1% or less.

In order to include some random bytes in every 2n set of cipher bits, we need 
some sort of a "flag" — a condition available to both parties contained 
within the key. If the flag is set, we substitute a random byte for cipher- 
text; if the flag is clear, enciphering proceeds normally as in (1).

The condition that the last two bits of a byte are "11" has, for instance, 
probability P = 1/4 = (1/2) (1/2). In the corresponding Binomial distribir- 
tion, q = 1 - p = 3/4, and from (2), we get n > 16. Interpreting this result, 
we say that for one byte to have the form H with 99% proba
bil ity, we need at least 16 randomly chosen bytes — such as those from a 
normal LFSR.

Intrinsic to the security of mod (LFSR) is the fact that every message has many 
completely random "undecipherable" characters, which will be reconstructed in 
proper piaintext context. This may seem improper at first, but a brief 
glimpse into the redundancy rate of the English language alleviates any doubts 
as to the benefit of these "undecipherables."

The redundancy rate of a language Dn/n is defined in [2] as 4.700 - Rn/n where 
R, the rate of the language may be approximated by the entropy of the f irst n 
letters of plaintext H(X0,X^ . . . Xn_^). The limiting value is

lim {h(X0, . . . XB_1)/n} =3.2.
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Shannon in [5] provides a somewhat clearer definition, The redundancy is one 
minus the ratio of the plaintext source entropy to the maximum value it could 
have. Letting Zm be an alphabet of m symbols,

Dn(Z) = (1 - Hn(Z))/nlogZ

and

Hn(Z) = -E p(t)log(p(t)) 
t 8 Zm

are the redundancy and entropy of n-grams in Zm. The redundancy of the 
language is the limiting value

D(language) = lim Dn (Z)
n —y co

and has been assigned many values as Jurgenson [4] points out, ranging from 
50% to 78% (Konheim [2] calculates 57%).

In information theory, redundancy has a very specific technical definition, 
but it can also mean the percentage of characters that may be lost while still 
leaving the message readable. If the redundancy is 50%, one can reconstruct a 
message with only half of its total letters. Alternately, a message with 50% 
random characters should still be readable. For example, since

Y CM RD THS SNINC WTHT WLS

then surely.

YOX CANTREID FHISASENTTNCE EVEN 

TSONGHCITABASKRANDVM CTIALAXIERS

Apparently, a substitution of random characters about 25% of the time should 
not alter readability or reconstruetibility. This is the basis for mod 
(LFSR).

A1 though it is possible to "read" a 100 letter message with only 75 true 
characters, it is certainly easier given seven-eighths or 88 characters. In 
this case, the probability of the "randomizing flag" would only be p = 1/8. 
The tradeoff is in complexity. Since n = ln(.01)/lnq, as q increases from 3/4 
to 7/ 8, n must increase from 16 to 35, producing a corresponding increase in
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the number of stages in the shift register. In a sense, the cryptographer is 
involved in a mathematical game with himself. He seeks to maximize reada- 
bility and minimize shift register length in order to obtain a maximum 
"payoff in terms of security. A summary of tradeoffs between n and p appears 
in Table 1.

Case (2) is highly secure and easy to read, but rather complex to implement. 
Case (1) is just the opposite. Case (3) yields higher security and better 
readability, while not being overly complex to implement. The probability 
p = J.875 is obtained by setting the randomizing condition to be P(C) = P(A) 
or P(B) or P(A and B), where

CASE P Conf idence n length of sequence # of stage
level never obtainable of LFSR

(1) 1/4 90% 8 64 32
99% 16 128 64

(2) 1/8 90% 18 144 72
99% 35 280 140

(3) .1875 90% 12 96 48
95% 15 120 60

Table 1.

A = (*7X5X5X4X3111) bit configuration

B = (*7X5X5 *4lH*0) bit configuration

Thus, P(C) = (1/4) (3/4) = .1875. This is a more ideal condition: The
message will be easier to read since randomizing condition p is not as large
as 1/4, but on the other hand, the shift register will not have to be as large 
as with p = 1/8. Additionally, the cipher will have a 95% security level.
While on the subject of comparisons, an important aside is that for the same
randomness of key, it is still easier to implement even a fairly large shift 
register than, say, the Natural Bureau of Standards Data Encryption Standard. 
Returning to equation (1), we let c = 1 if C is satisfied and c = 0 otherwise.
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The first part of the algorithm has been discussed. However, the opponent may 
still perform a known plaintext attack as in [1], Step 1 of the algorithm 
assures only that a random block will occur in every 2n bit set, not where in 
the 2n set it will be. A portion of this must be thrown out after each random 
substitution. Consider a 16 stage shift register. Then 2n = 32. If the 
block size is 8 bits, a sequence of 2n may still be obtained even though every 
set of 32 bits has a random character (see Illust. 1). If, on the other hand, 
the modified enciphering algorithm automatically "runs through" — calculates, 
but does not use — A bits of key after each random substitution, we do not 
have this problem of ciphertext/reconstructed plaintext to key correspondence. 
For convenience, we let A = 2n - b, where b is the number of bits between the 
current random substitution and the previous one (see Illust. 2). In this 
case will not equal K^, and therefore K f X ^S. In these Illustra
tions, Ka = K<7aK<7a+i . . . K^a+^, and the same notation is used for Xa and Ya»

In summary, to break a normal LFSR of n = 32 stages requires only 64 bits of 
known piaintext. Examples of these 64-bit sequences abound; "BUSINESS", 
"DEAR*SIR", "PROGRAM*", and "THAT*IS*" are only a few that come to mind. 
How ever, using a mod(LFSR) algorithm, it is po ssibl e to get a cipher 90% 
secure using a 32 stage shift register — if one is willing to have only 3/4 
of the characters come out decipherable. A cipher 95% secure with even fewer 
"undecipherables" (between 1/8 and 1/5) is possible with an addition of only 
16 stages to the shift register. Further,

length 2n length > 2n

Y1Y2R Y4 00c*-

PH R Y10 Y11 Y12
X1 X2 X3 X4 % X6 X7 X8 X9 X10 X11 X12
E1 K2 ~ X4 Kg - % Eg 9 K10 K11 K12

yl3 Y14 Y15 R 
X13 X14 X15 X16 
K13 K14 E15

corresponding key

Illustration 1.

length > 2n

yi y2 r y4 % R y7 Y8 R Y10 Y11 Y12
X1 x2 X3 X4 % x6 X7 X8 X9 X10 X11 X12
X1 K2 “ % K6 _ ^lO K13 K14 K15

Y13 Y14 Y15 R 
X13 X14 X15 X16 
K16 K17 K18

different key

Illustration 2.

357



CRYPTOLOGIA VOLUME 9 NUMBER 4

obtaining higher security necessitates a smaller proportional change in shift 
register length than without the modifying algorithm.

Calculating maximal length irreducible polynomials of high degree is a fairly 
easy process given one of a lower degree (cf. [3], [4]).

Very high security without a large shift register is only marginally 
approached using a normal LFSR to encipher. Consider this final comparison: 
To encipher a 500 letter message without using mod(LFSR) requires a shift 
register of minimum length (1/2) * (8 * 500) = 2000 stages for near perfect 
security. Using mod(LFSR), one can get a 99% secure cipher with a much 
smaller shift register — about 1/20 the size. And, much longer messages can 
be enciphered with the same smaller shift register using mod(LFSR) encipher
ment.

For those messages where it is vital that every single letter be correctly 
reconstructed in deciphered context, use this procedure: Encipher the mes
sage, decipher it, give it to someone else, and if that person cannot properly 
reconstruct the deciphered text, re-encipher with different keys until recon
structability is possible.

The statistical information theoretic approach to more secure encryption may 
have other applications as well. One can foil an "index of coincidence" 
attack on a Vigenere cipher. Normally, to determine the period, one finds the 
number of coincidences between successive shifts of the ciphertext Ys against 
itself, Y. Whenever IC(Y» Ys) is a local maximum, s is some multiple of the 
period. To foil this attack, place random letter wherever coincidences occur 
for shift number r, (r is the period) until IC(Y»Yr) is within the range of 
the other values, {IC(Y,Y^), . . . IC(Y,Yr_.)}. True, this procedure will 
change the other IC's, but relative values should remain the same, since the 
cipher has a fairly flat distribution to begin with.

Consider even a simple substitution cipher, S:X—>Y. The weakness of simple 
substitution is that the rearranged frequency curve resembles an exp(-x) form 
rather than a flat distribution. If the cryptographer were to substitute S(E) 
with S(Z), say, the message would still be readable, yet at the same time, the 
frequency of "E" would be lowered, and the frequency of "Z" would be raised. 
Perhaps a similar substitution of S(J) for S(T) and S(Q) for S(A) would make 
frequency based attack more difficult.

In real ity, there are other methods (eg. the phi test) for determining the 
period of a Vigenere, and simple substitution is a hopeless case no matter 
what is done to strengthen it. However, substituting completely random
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characters on the basis that messages, due to their high redundancy, will 
still be readable is surely a method deserving more research.
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