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Abstract This paper proposes a public key cryptosystem using a reciprocal
number. Breaking the proposed cryptosystem is proven to be as difficult
as factoring a large number. Encryption requires O(n?) bit operations and
decryption requires O(n?) bit operations. (n is the bit length of a plaintext.)

1 Introduction

A public key cryptosystem proposed by Rabin [1] is excellent because it has
been proven that breaking the cryptosystem is as hard as factoring a large
number. However, a ciphertext cannot be uniquely deciphered because four
different plaintexts produce the same cipher. Williams [2] showed that this
disadvantage can be overcome if the secret two prime numbers, p and ¢, are
chosen such that p = ¢ = 3 mod 4.

RSA cryptosystem [3] is the most well-known public key cryptosystem.
However, it is not known whether breaking RSA cryptosystem is as hard as
factoring a lagre number. Recently, Williams [4] proposed a modified RSA
cryptosystem which utilizes quadratic irrational numbers. He showed that
the cryptosystem is as difficult to break as it is to factor a large number.



Such RSA schemes require O(n?) bit operations for both encryption and
decryption (where n is the bit length of a plaintext).

This paper proposes a public key cryptosystem using a reciprocal num-
ber. Breaking the proposed cryptosystem is proven to be as difficult as fac-
toring a large number. Encryption requires only O(n?) bit operations and
decryption requires O(n?) bit operatinos. The secret two prime numbers, p
and ¢, are arbitrary, which is a great advantage over Williams’ version [2]
of Rabin’s cryptosystem.

2 Preliminaries

2.1 Legendre’s symbol and Jacobi’s symbol
The following symbol is called Legendre’s symbol.

A1 if “z? = a mod p” has a solution;

(a/p) 2 .
1 otherwise,

where p is a prime number other than 2. Half of the integers “a” such that

0 < a < p satisfy (a/p) =1 and the other half satisfy (a/p) = —1.
The following symbol is called Jacobi’s symbol.

(a/p)(a/q),

where R = pq. The value of (a/R) is computed efficiently by applying a
method like Euclidean algorithm to “a” and R.

(a/R) =

2.2 Rabin’s cryptosystem

Rabin proposed the following public key cryptosystem [1].
(Secret key) two lagre prime numbers, p and q.
(Public key) R(= pq) and c.

(Plaintext) M, where 0 < M < R.

(Ciphertext) £ = M (M + ¢) mod R.

(Decryption) Solve the following quadratic equations.

M?+cM — E
M?>+cM — E

0 mod p (1)
0 mod ¢ (2)



He has proved that breaking the crytosystem is as hard as factoring pg. How-
ever, the ciphertexts cannot be uniquely deciphered because four different
plaintexts produce the same cipher.

Williams showed that the following special form of Rabin’s cryptosystem
can overcome the above disadbantage [2].

(Secret key) two lagre prime numbers, p and ¢, where p = ¢ = 3 mod 4.
(Public key) R(= pq).
(Plaintext) M, where 0 < M < R/2 and (M/R) = 1.

(Ciphertext) E = M? mod R.

We call the above cryptosystem “restricted Rabin’s cryptosystem” because
p and q are restricted such that p = ¢ = 3 mod 4.

3 Public key cryptosystem using a reciprocal numb-
ner

We present a public key cryptosystem that utilizes the reciprocal number
of a plaintext modulo R(= p - ¢). Breaking our cryptosystem is proven to
be as hard as factoring R. The encryption procedure requires O(n?) bit
operateions and decryption requires O(n?) bit operations, where n is the bit
length of a plaintext. The secret two prime numbers, p and ¢, are arbitrary,
which is a great advantage over restricted Rabin’s cryptosystem.

(Secret key) two lagre prime numbers, p and q.

(Public key) R(= pq) and c such that
(¢/p) = (e/q) = =1 (3)

(Plaintext) M, where 0 < M < R and ged(M, R) = 1.

(When p and ¢ are 250 bits long, the probability that ged(M, R) = p
or ¢ is (p+q)/R ~ 27259 which is negligibly small. RSA cryptosystem
is also broken if ged(M, R) = p or q.)



(Ciphertext) (F,s,t), where

E = M+ (¢/M)modR (4)
. {0 if (M/R) =1; )
Uit (M/R) = 1.
. 0 if (¢/M mod R) > M;
b= {1 if (¢/M mod R) < M, (6)

(Decryption) From (4), we obtain

M? ~EM +c¢=0 (7)

Let a; and ag be the roots of (7) mod p and b; and by be the roots of
(7) mod q. (Solving (7) mod p or mod g will be shown in Sec. 5.) Then,
(7) mod R has the following four roots:

Ml - [alybl]y MQ - [a27b2]
M3 - [albe]y M4 - [a27b1]
where My = [ay,b1] means My = a; mod p and M; = by mod ¢. (Chinese
remainder theorem gives M; from a; and by.)
The plaintext M is one of the four roots. s and t tell the receiver which

root the plaintext M is. From (3) and the relationship between the roots
and the coefficients of (7), we obtain

(a1/p)(az/p) = (¢/p) = —1.

We set
(a1/p) =1,  (az/p) = -1 (8)
Similarly, we set

(b1/q) =1, (b2/q) = —1. (9)

Then, we obtain
(My/R) = (My/p)(Mi/q) = (a1/p)(br/q) = 1.
Similarly, we get

(My/R) = 1
(M3/R) = (M4/R)=—1.



Therefore, the receiver sees that

M= My or My if s =0;
| Mzor My ifs=1.

Now, suppose that s = 0. The relationship between the roots and the
coefficients of (7) gives us

MM, = [ajas, bibs] = [¢,¢] = ¢ mod R.

Hence,
My = ¢/M; mod R.

Therefore, the receiver sees that

= min(My, My) ift = 0;
- | max(My, My) ift=1.

When s =1,
= min(Ms, My) ift = 0;
| max(Ms, My) ift=1.

Thus, a ciphertext is uniquely deciphered.

(Digital signature) Let
E;=FE+j.

Increase j (7 = 0,1,2,...) until the following equation holds.

(B —40)/p) = (B} — 40)/q) =1 (10)

Let j satistying (10) be .J and let M; be any one of the plaintexts obtained
from Ej. The signed message is (M, J).

4 Intractability of breaking the proposed cryptosys-
tem

It will now be shown that breaking the proposed cryptosystem is as difficult

as factoring a large number. It is clear that the proposed cryptosystem is

broken if one can factor R = pg. We will prove the converse. That is, one
can factor R = pq if the proposed cryptosystem is broken.

THEOREM 1 Neither “(7) mod p ” nor “(7) mod ¢ ” has a multiple root.



(Proof)
From (8) and (9), we get

a1 # ag mod p, b1 # by mod g
Q.E.D.

THEOREM 2 Suppose that there exists a polynomaial time algorithm finding
the plaintext from any ciphertext of the proposed cryptosystem. Then, there
exists a polynomial time algorithm factoring R = pq with probability 1/4.

(Proof)

Choose at random a number 0 < ¢ < R. ¢ satisfies (3) with 1/4 proba-
bility. Let (R, c) be a public key of the proposed cryptosystem.

Pick any plaintext M. Compute M’ as follows:

M (E,s,t) (Encryption)
(E,s,1)

M' (Decryption),

Ll

where § = s + 1 mod 2.
Let M = [f1,¢1]. Since 5 = s + 1 mod 2,

M = [fl:gQ] or M' = [f?:gl]-

Let’s consider the case of M' = [f, g2]. Then,

M~ M =[fi,:1] — [f1,92] = [0,01 — g2].

From Theorem 1, g; — g2 # 0 mod q. That is, M — M’ = 0 mod p and
M — M’ # 0 mod q. Therefore, gcd(M — M', R) = p.

The number of bit operations required by the above procedure is clearly
polynomial of n (n is the bit length of R). The proof in the case of M' =
[f2,91] is the same.

Q.E.D.

The probability that the above probabilistic algorithm fails after 100
trials is (3/4)'%% = 10~!3, which is negligibly small.
The next theorem strengthens Theorem 2.



THEOREM 3 Suppose that there exists a polynomaial time algorithm finding
the plaintext from 1/K of all the ciphertexts of the proposed cryptosystem.
Then, there exists a polynomaial time algorithm factoring R = pq with prob-
ability 1/4K.

(Proof)

Let X be the set of the ciphertexts which are broken by the supposed
algorithm. Choose at randam a number 0 < M < R. The ciphertext of M
belongs to X with 1/K probability. We can apply the same algorithm in the
proof of Theorem 2 to the M. It is clear that the total algorithm succeds
with probability 1/4K.

Q.E.D.

5 A quadratic equation mod p in the proposed cryp-
tosystem

This chapter shows how to solve “(7) mod p ” or “(7) mod ¢ ”. (We use the
same notation as in Sec. 3.) The following theorem is attained by modifying
Rabin’s method [5] to the proposed cryptosystem.

THEOREM 4 (i) Owver GF(p),

ged(z® V2 1 22 —Ea4c¢)=2—ay

(ii) Over GF(q),
ged( /2 — 1,2 —Bx4¢) =2 —b
(Proof)
(i) (8) and Euler’s criterion give us
(P=1)/2 _ 4 (-1)/2 _ _4

aq s D)

Therefore, a; is a root of z®~1/2 — 1 and ay isn’t. This shows that (i)
holds.

(ii) The proof is the same as (i).



Q.E.D.

as and by are obtained from the relationship between the roots and the
coefficients of (7) as follows:

ag = F —a; mod p
by = E — b; mod q.

Note that ged(zP~1/2 — 1,22 — Ex + ¢) can be obtained by computing

2P 1/2 mod (2? — Ex + ).

6 Computational complexity

Let a plaintext M be n bits long.

(Encryption) 1/M mod R is computed by applying Enclidean algorithm
to M and R. (M/R) is computed in a similar way. Euclidean algorithm
requires O(n?) bit operations. The multiplication of ¢ - (1/M) mod
R also requires O(n?) bit operations. Therefore, encryption of the
proposed cryptosystem requires O(n?) bit operations.

(Decryption) Note that the method shown in Sec. 5 is equivalent to com-
puting

2P D2 modz? — Ex 4+ ¢

Y2 mod 22 — Ex + c.

The above equations are computed by O(n?) bit operaionts. Therefore,
the complexity of decryption is O(n?).

Table 1 shows the comparison of computational complexity.

Table 1. Comparison of computational complexity
(bit operations)

Proposed | Rabin RSA

(Encryption) | O(n?) O(n?) | O(n?)(e is small.)

O(n?)(e is large.)

(Decryption) | O(n?) O(n?) | O(n?)




7 Discussion
The decryption procedure for Rabin’s cryptosystem is to solve
M?+cM — E =0.

On the other hand,
M?—EM +c¢=0,

must be solved in the proposed cryptosystem. The quadratic equation of the
proposed cryptosystem is given only by exchanging the constant term and
the linear term of Rabin’s quadratic equation. This exchange overcomes the

disadvantages of Rabin’s cryptosystem and restricted Rabin’s cryptosystem.
That is,

1. A ciphertext is uniquely deciphered.

2. The two secret prime numbers, p and q, are arbitrary.

8 Example

(Secret key) p=11,q =13
(Public key) R(=pq) =143,c =2
(Plaintext) M = 24

(Encryption)
E =24+ (2/24) = 36 mod 143,
s = 0 because (24/R) = 1. t = 1 because
c¢/M =2/24 =12 mod 143 and 12 < 24(= M).
(Ciphertext) (36,0,1)

(Decryption) Solving M? — 36M + 2 = 0 mod 11 yields
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Solving M? — 36M + 2 = 0 mod 13 yields
by =12, by =11
Since s = 0, the plaintext is
M, =[1,12] =12 or My = [2,11] = 24

Since t =1 and M7 < My, the receiver sees that M = 24.

Summary

The authors propose a Public Key Cryptosystem using a reciprocal number.

It has been proved that breaking the proposed cryptosystem is as hard as

factoring a large number. Encryption requires O(n?) bit operations and

decryption requires O(n?) bit operations. The proposed cryptosystem has

no disadvantage of Rabin’s cryptosystem.

It will take further work to develop a more efficient method that solves

a quadratic equation modp.
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