
PUBLIC KEY CRYPTOSYSTEM USING ARECIPROCAL NUMBER WITH THE SAMEINTRACTABILITY AS FACTORING A LARGENUMBERKaoru KUROSAWA Toshiya Itoh Masashi TakeuchiDepartment of Electrical and Electronic Engineering,Faculty of Engineering,Tokyo Institute of Technology2{12{1 O-okayama, Meguro-ku, Tokyo 152, Japankurosawa@ss.titech.ac.jpAbstract This paper proposes a public key cryptosystem using a reciprocalnumber. Breaking the proposed cryptosystem is proven to be as di�cultas factoring a large number. Encryption requires O(n2) bit operations anddecryption requires O(n3) bit operations. (n is the bit length of a plaintext.)1 IntroductionA public key cryptosystem proposed by Rabin [1] is excellent because it hasbeen proven that breaking the cryptosystem is as hard as factoring a largenumber. However, a ciphertext cannot be uniquely deciphered because fourdi�erent plaintexts produce the same cipher. Williams [2] showed that thisdisadvantage can be overcome if the secret two prime numbers, p and q, arechosen such that p = q = 3 mod 4.RSA cryptosystem [3] is the most well-known public key cryptosystem.However, it is not known whether breaking RSA cryptosystem is as hard asfactoring a lagre number. Recently, Williams [4] proposed a modi�ed RSAcryptosystem which utilizes quadratic irrational numbers. He showed thatthe cryptosystem is as di�cult to break as it is to factor a large number.1



Such RSA schemes require O(n3) bit operations for both encryption anddecryption (where n is the bit length of a plaintext).This paper proposes a public key cryptosystem using a reciprocal num-ber. Breaking the proposed cryptosystem is proven to be as di�cult as fac-toring a large number. Encryption requires only O(n2) bit operations anddecryption requires O(n3) bit operatinos. The secret two prime numbers, pand q, are arbitrary, which is a great advantage over Williams' version [2]of Rabin's cryptosystem.2 Preliminaries2.1 Legendre's symbol and Jacobi's symbolThe following symbol is called Legendre's symbol.(a=p) 4= � 1 if \x2 = a mod p" has a solution;�1 otherwise,where p is a prime number other than 2. Half of the integers \a" such that0 < a < p satisfy (a=p) = 1 and the other half satisfy (a=p) = �1.The following symbol is called Jacobi's symbol.(a=R) 4= (a=p)(a=q);where R = pq. The value of (a=R) is computed e�ciently by applying amethod like Euclidean algorithm to \a" and R.2.2 Rabin's cryptosystemRabin proposed the following public key cryptosystem [1].(Secret key) two lagre prime numbers, p and q.(Public key) R(= pq) and c.(Plaintext) M , where 0 < M < R.(Ciphertext) E =M(M + c) mod R.(Decryption) Solve the following quadratic equations.M2 + cM �E = 0 mod p (1)M2 + cM �E = 0 mod q (2)2



He has proved that breaking the crytosystem is as hard as factoring pq. How-ever, the ciphertexts cannot be uniquely deciphered because four di�erentplaintexts produce the same cipher.Williams showed that the following special form of Rabin's cryptosystemcan overcome the above disadbantage [2].(Secret key) two lagre prime numbers, p and q, where p = q = 3 mod 4.(Public key) R(= pq).(Plaintext) M , where 0 < M < R=2 and (M=R) = 1.(Ciphertext) E =M2 mod R.We call the above cryptosystem \restricted Rabin's cryptosystem" becausep and q are restricted such that p = q = 3 mod 4.3 Public key cryptosystem using a reciprocal numb-nerWe present a public key cryptosystem that utilizes the reciprocal numberof a plaintext modulo R(= p � q). Breaking our cryptosystem is proven tobe as hard as factoring R. The encryption procedure requires O(n2) bitoperateions and decryption requires O(n3) bit operations, where n is the bitlength of a plaintext. The secret two prime numbers, p and q, are arbitrary,which is a great advantage over restricted Rabin's cryptosystem.(Secret key) two lagre prime numbers, p and q.(Public key) R(= pq) and c such that(c=p) = (c=q) = �1 (3)(Plaintext) M , where 0 < M < R and gcd(M;R) = 1.(When p and q are 250 bits long, the probability that gcd(M;R) = por q is (p+q)=R � 2�250, which is negligibly small. RSA cryptosystemis also broken if gcd(M;R) = p or q.)
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(Ciphertext) (E; s; t), whereE = M + (c=M) mod R (4)s = � 0 if (M=R) = 1;1 if (M=R) = �1. (5)t = � 0 if (c=M mod R) > M ;1 if (c=M mod R) < M , (6)(Decryption) From (4), we obtainM2 �EM + c = 0 (7)Let a1 and a2 be the roots of (7) mod p and b1 and b2 be the roots of(7) mod q. (Solving (7) mod p or mod q will be shown in Sec. 5.) Then,(7) mod R has the following four roots:M1 = [a1; b1]; M2 = [a2; b2]M3 = [a1; b2]; M4 = [a2; b1]where M1 = [a1; b1] means M1 = a1 mod p and M1 = b1 mod q. (Chineseremainder theorem gives Mi from aj and bk.)The plaintext M is one of the four roots. s and t tell the receiver whichroot the plaintext M is. From (3) and the relationship between the rootsand the coe�cients of (7), we obtain(a1=p)(a2=p) = (c=p) = �1:We set (a1=p) = 1; (a2=p) = �1: (8)Similarly, we set (b1=q) = 1; (b2=q) = �1: (9)Then, we obtain(M1=R) = (M1=p)(M1=q) = (a1=p)(b1=q) = 1:Similarly, we get (M2=R) = 1(M3=R) = (M4=R) = �1:4



Therefore, the receiver sees thatM = �M1 or M2 if s = 0;M3 or M4 if s = 1.Now, suppose that s = 0. The relationship between the roots and thecoe�cients of (7) gives usM1M2 = [a1a2; b1b2] = [c; c] = c mod R:Hence, M2 = c=M1 mod R:Therefore, the receiver sees thatM = �min(M1;M2) if t = 0;max(M1;M2) if t = 1.When s = 1; M = �min(M3;M4) if t = 0;max(M3;M4) if t = 1.Thus, a ciphertext is uniquely deciphered.(Digital signature) Let Ej = E + j:Increase j (j = 0; 1; 2; :::) until the following equation holds.((E2j � 4c)=p) = ((E2j � 4c)=q) = 1 (10)Let j satisfying (10) be J and let MJ be any one of the plaintexts obtainedfrom EJ . The signed message is (MJ ; J).4 Intractability of breaking the proposed cryptosys-temIt will now be shown that breaking the proposed cryptosystem is as di�cultas factoring a large number. It is clear that the proposed cryptosystem isbroken if one can factor R = pq. We will prove the converse. That is, onecan factor R = pq if the proposed cryptosystem is broken.Theorem 1 Neither \ (7) mod p " nor \ (7) mod q " has a multiple root.5



(Proof)From (8) and (9), we geta1 6= a2 mod p; b1 6= b2 mod q Q.E.D.Theorem 2 Suppose that there exists a polynomial time algorithm �ndingthe plaintext from any ciphertext of the proposed cryptosystem. Then, thereexists a polynomial time algorithm factoring R = pq with probability 1=4.(Proof)Choose at random a number 0 < c < R. c satis�es (3) with 1=4 proba-bility. Let (R; c) be a public key of the proposed cryptosystem.Pick any plaintext M . Compute M 0 as follows:M ! (E; s; t) (Encryption)! (E; �s; t)! M 0 (Decryption);where �s = s+ 1 mod 2.Let M = [f1; g1]. Since �s = s+ 1 mod 2,M 0 = [f1; g2] or M 0 = [f2; g1]:Let's consider the case of M 0 = [f1; g2]. Then,M �M 0 = [f1; g1]� [f1; g2] = [0; g1 � g2]:From Theorem 1, g1 � g2 6= 0 mod q. That is, M � M 0 = 0 mod p andM �M 0 6= 0 mod q. Therefore, gcd(M �M 0; R) = p.The number of bit operations required by the above procedure is clearlypolynomial of n (n is the bit length of R). The proof in the case of M 0 =[f2; g1] is the same. Q.E.D.The probability that the above probabilistic algorithm fails after 100trials is (3=4)100 = 10�13, which is negligibly small.The next theorem strengthens Theorem 2.6



Theorem 3 Suppose that there exists a polynomial time algorithm �ndingthe plaintext from 1=K of all the ciphertexts of the proposed cryptosystem.Then, there exists a polynomial time algorithm factoring R = pq with prob-ability 1=4K.(Proof)Let X be the set of the ciphertexts which are broken by the supposedalgorithm. Choose at randam a number 0 < M < R. The ciphertext of Mbelongs to X with 1=K probability. We can apply the same algorithm in theproof of Theorem 2 to the M . It is clear that the total algorithm succedswith probability 1=4K. Q.E.D.5 A quadratic equation mod p in the proposed cryp-tosystemThis chapter shows how to solve \(7) mod p " or \(7) mod q ". (We use thesame notation as in Sec. 3.) The following theorem is attained by modifyingRabin's method [5] to the proposed cryptosystem.Theorem 4 (i) Over GF (p),gcd(x(p�1)=2 � 1; x2 �Ex+ c) = x� a1(ii) Over GF (q), gcd(x(q�1)=2 � 1; x2 �Ex+ c) = x� b1(Proof)(i) (8) and Euler's criterion give usa(p�1)=21 = 1; a(p�1)=22 = �1Therefore, a1 is a root of x(p�1)=2� 1 and a2 isn't. This shows that (i)holds.(ii) The proof is the same as (i). 7



Q.E.D.a2 and b2 are obtained from the relationship between the roots and thecoe�cients of (7) as follows:a2 = E � a1 mod pb2 = E � b1 mod q:Note that gcd(x(p�1)=2 � 1; x2 �Ex+ c) can be obtained by computingx(p�1)=2 mod (x2 �Ex+ c):6 Computational complexityLet a plaintext M be n bits long.(Encryption) 1=M mod R is computed by applying Enclidean algorithmtoM andR. (M=R) is computed in a similar way. Euclidean algorithmrequires O(n2) bit operations. The multiplication of c � (1=M) modR also requires O(n2) bit operations. Therefore, encryption of theproposed cryptosystem requires O(n2) bit operations.(Decryption) Note that the method shown in Sec. 5 is equivalent to com-puting x(p�1)=2 mod x2 �Ex+ cx(q�1)=2 mod x2 �Ex+ c:The above equations are computed by O(n3) bit operaionts. Therefore,the complexity of decryption is O(n3).Table 1 shows the comparison of computational complexity.Table 1. Comparison of computational complexity(bit operations)Proposed Rabin RSA(Encryption) O(n2) O(n2) O(n2)(e is small.)O(n3)(e is large.)(Decryption) O(n3) O(n3) O(n3)8



7 DiscussionThe decryption procedure for Rabin's cryptosystem is to solveM2 + cM �E = 0:On the other hand, M2 �EM + c = 0;must be solved in the proposed cryptosystem. The quadratic equation of theproposed cryptosystem is given only by exchanging the constant term andthe linear term of Rabin's quadratic equation. This exchange overcomes thedisadvantages of Rabin's cryptosystem and restricted Rabin's cryptosystem.That is,1. A ciphertext is uniquely deciphered.2. The two secret prime numbers, p and q, are arbitrary.8 Example(Secret key) p = 11; q = 13(Public key) R(= pq) = 143; c = 2(Plaintext) M = 24(Encryption) E = 24 + (2=24) = 36 mod 143;s = 0 because (24=R) = 1. t = 1 becausec=M = 2=24 = 12 mod 143 and 12 < 24(= M):(Ciphertext) (36; 0; 1)(Decryption) Solving M2 � 36M + 2 = 0 mod 11 yieldsa1 = 1; a2 = 2:9



Solving M2 � 36M + 2 = 0 mod 13 yieldsb1 = 12; b2 = 11Since s = 0, the plaintext isM1 = [1; 12] = 12 or M2 = [2; 11] = 24Since t = 1 and M1 < M2, the receiver sees that M = 24.9 SummaryThe authors propose a Public Key Cryptosystem using a reciprocal number.It has been proved that breaking the proposed cryptosystem is as hard asfactoring a large number. Encryption requires O(n2) bit operations anddecryption requires O(n3) bit operations. The proposed cryptosystem hasno disadvantage of Rabin's cryptosystem.It will take further work to develop a more e�cient method that solvesa quadratic equation modp.References[1] M.O. Rabin, \Digitalized signatures and public-key functions as in-tractable as factorization ", Technical Report LCS/TR212, CambridgeMA:MIT, 1979.[2] H.C. Williams, \A modi�cation of the RSA public-key encryption pro-cedure ", IEEE Trans. Information Theory. 26: 726-729, 1980.[3] R.L. Rivest, A. Shamir, and L. Adleman, \A method for obtaining digitalsignatures and public-key cryptosystems ", Comm. ACM.21: 120-126,1978.[4] H.C. Williams, \Some public-key cryptofunctions as intractable as fac-torization ", Cryptologia. 9: 223-237, 1985.[5] M.O. Rabin, \Probabilistic algorithms in �nite �elds ", SIAM J. Com-put. 9: 273-280, 1980.
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