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SECURITY OF NUMBER THEORETIC PUBLIC KEY CRYPTOSYSTEMS AGAINST RANDOM ATTACK, I
Bob Blakley and G. R Blakley

Recently W. Diffie and M. Heilman [2] introduced public key cryptosystems. More 
recently R. L Rivest, A. Shamir and L. Adleman [5] used elementary number theory to 
construct the most elegant known public key cryptosystem. The gist of the major re
sults below is as follows. There are integers c d £ 2 which make the congruence

xCd s x mod(m)

into an identity in x if and only if the modulus m is square free. When m is
the product of k distinct primes there are at least 3 positive integers x £ m 
such that

x6 e x mod(m)

for any odd e It follows that an RSA public key cryptosystem must always leave at 
least nine messages unchanged by its coding process. Six of these nine messages con
stitute a definite weakness, but their discovery by a cryptanalyst or transmission by 
a sender is unlikely. Some RSA public key cryptosystems, unfortunately, fail to change 
any messages [1] by their coding process. However, it is possible to choose a coding 
exponent c in an RSA public key cryptosystem in such a fashion that only these nine 
messages satisfy the congruence

xC = x mod(m).

Thus most messages are scrambled by the coding process in a well chosen RSA public 
key cryptosystem. If safe primes (defined below in the paper) are multiplied together 
to yield m the cryptosystem is more resistant to sophisticated factoring algorithms 
applied to m, as Rivest, Shamir and Adleman have noted. But it also has other 
interesting properties, as shown below. The second paper in this series, which will 
appear in the next issue of CRYPTOLOGIA, carries these ideas further.

1. Introduction. Public key cryptosystems have become a household word since the appearance
of Hew Directions in Cryptography by W. Diffie and M. Heilman [2]. More recently R. L. Rivest,
A. Shamir and L. Adleman have enunciated [5] an elegant number theoretic method for obtaining
digital signatures and public key cryptosystems. Since these brief readable papers are already
classics, many readers of this paper will be familiar with them. Nevertheless the treatment
below is self contained. Section 2 defines the needed cryptographic terminology and outlines
the RSA public key cryptosystem. A central point of the paper [5] concerns a person who wants
to receive coded messages and decode them. This would-be message receiver wants to be able to
produce lists (c,d,m) of three positive integers with the property that the congruence 
cclx = x mod(m) holds for every integer x (i.e. is an identity in x). Section 3 shows that 

it is possible to find c and d larger than 1 to do this if and only if m is square free. 
A precise statement of this is contained in Theorems 1.1 and 1.2. But first we introduce the 
* and + notations common in computer science. The symbol x+f will stand for the fth 
power of x, and the symbol a*b for the product of a and b. Thus 3*5 = 5*3 = 15. Also 
3i5 f 243, and 5+3 =125.

Theorem 1.1: Let m be a positive integer. Suppose that there is a prime p such that p+2 
is a factor of m. Then there is no integer f > 2 such that the congruence x+f = x mod(m) 
holds identically in x.
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To avoid a crazy quilt of notation all up and down the page we define six useful symbols. Let 
A be a finite set of integers and let f be a function whose domain includes A. Then the 
symbols

n{f(a) | a € A}, 2{f(a) | a € A>, LCM {f(a) | a € A>,
GCD {f(a) I a € A}, MAX {f(a) | a € A>, and MIN {f(a) | a 6 A}

stand for, respectively, the
product, sum, least common multiple [4, p. 22] ,
greatest common divisor [4, p. 14], maximum, and minimum

of the numbers f(a) over every member a of the set A. For example suppose that

900,000,000

825

A = {-15, "10 10,

n{f(a) I a € A}

2 {f(a) 1 a € A}
LCM {f (a) 1 a e A}

GCD (f(a) 1 a € A}

MAX {f (a) 1 a 6 A}

MIN {f (a) 1 a € A}

It is well known [4, p. 22] that if A contains exactly two elements then 
n{f (a) | a € A} = (LCM {f (a) | a € A» * (GCD {f (a) | a € A» .

A positive integer m is square free if and only if it is the product of distinct primes be
longing to some finite set T of primes. In other words m = n{p | p € T}. In this case let
X(m) w LCM {p-1 | p € T}. The converse of Theorem 1.1 now has the following form.

Theorem 1.2: Let m be a positive integer which is not divisible by the square of any prime 
p. If a positive integer s is relatively prime to \(m) then there are positive integer 
solutions t to the congruence st e 1 mod(X(m)). For such s, t and m the congruence 
x+st = x mod(m) holds identically in x. In fact, let f be an integer and suppose that 
2 5 f. Then the congruence x+f s x mod(m) holds identically in x if and only if 
f s 1 mod(X(m)).

Definition 1.1: A number theoretic public key cryptosystem is a list (c,d,m) of three 
integers, where m is square free and

2 £ c 5 m-1, 2 £ d £ m-1, and cd = 1 mod(X(m)).
The integer m is called the public coding modulus. The integer c is called the public 
coding exponent. The integer d is called the secret decoding exponent.

The Diffie-Hellman public key distribution system sketched in [2, p. 649] is, in a sense, a 
number theoretic public key cryptosystem based on a modulus m = p which is a product of 
n f; 1 primes. The RSA public key cryptosystem [5] is a number theoretic public key crypto
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system based on a modulus m = pq which is a product of n = 2 primes. Diffie and Heilman 
[2, private communication] have pointed out a weakness in their key distribution system afore
mentioned which can be remedied by requiring that p = 2a + 1, where a is also prime.
Rivest, Shamir and Adleman have also pointed out a weakness [5, p. 124] in the RSA public key 
cryptosystem unless p-1 and q-1 have very large factors. We shall second these two 
separate motions and argue below for the strongest possible assumption along these lines, to 
wit that every prime devisor p of the square free coding modulus m in a number theoretic 
public key cryptosystem be of the form p = 2a + 1, where a is also prime. Such primes p 
will, for this reason, be called safe primes.

With the general definition of number theoretic public key cryptosystems at our disposal we can 
say that the Diffie-Hellman public key distribution system and the RSA number theoretic method 
are, respectively, the cases n = 1 and n = 2 of the general definition of a number theo
retic public key cryptosystem, in which the coding modulus m is the product of n distinct 
primes. It is also possible to buy even greater resistance to cryptanalysis, at the cost of 
increasing the size of m, by making it the product of three or more 100 digit primes.

Definition 1.2: Let m and c be positive integers. Suppose that c 5 m-1. Then c is 
called a permuting exponent for m if any x, y which satisfy the congruence 
x+c B y+c mod(m) also satisfy the congruence x = y mod(m).
Definition 1.3; A permuting exponent c > 2 for a positive integer modulus m is called a
deranging exponent for m when x satisfies the congruence xtc = x mod(m) if and only if
it satisfies the congruence x+3 = x mod(m).
As in [1] the idea is that to some m (namely square free positive integer m, as we shall see 
below) there corresponds at least one integer exponent e > 1 such that the function 
f(x) = x+e determines a permutation of the residue classes modulo m. Any such exponent e 
can be used as a public coding exponent in a number theoretic public key cryptosystem based on 
the coding modulus m. A message receiver would like the f corresponding to the public cod
ing exponent to be more than a permutation. He would like it to be a derangement, viz. a per
mutation with no fixed points. This would mean that no message is unchanged by the coding pro
cess. The hope is, of course, a vain one since 0+e = 0 mod(m) and lie = 1 mod(m). More 
generally it will become clear below that a coding exponent e must be odd, and that 
x+e = x mod(m) whenever x+3 s x mod(m). But this is as far as it has to go. A careful message 
receiver can choose n distinct primes (whose product is m! and a positive integer c < m in 
such a way that the function f(x) = x+c effects a permutation of the residue classes modulo m 
and also has the property that there are only the inevitable 3+n solution classes to the con
gruence x+c s x mod(m), namely those residue classes x modulo m which obey the congruence 
x+3 = x mod(m). Thus careful selection of the prime factors of m guarantees the existence 
not merely of a permuting exponent for m but of a deranging exponent for m. This point,
Which has never been addressed before, is crucial. It implies that the coding process in an 
appropriately constructed RSA public key cryptosystem (namely a number theoretic public key
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cryptosystem based on a modulus m which is the product of two prime factors) really codes.
It changes the appearance of all but nine messages. The exact result is as follows.

Theorem 1.3: Let m be a positive integer which is not divisible by the square of any prime 
p. Let c be a positive integer. To avoid trivial cases assume that 2 < c 5 m-1. Then c 
is a deranging exponent for m if and only if both the following conditions hold:

GCD{\(m) , c} = 1; and GCD{A.(m) r c-1} = 2.

These three theorems constitute a fundamental property of number theoretic public key crypto
systems . They follow from the results stated in Section 3. In the interests of brevity the 
results in Sections 3 and 4 are not themselves proved here since the proofs are all easy 
for anybody acquainted with number theory to provide, once the results are stated. For more on 
proofs, consult the sequel.

2. The RSA number theoretic method. This section is an outline of the parts of the theory of 
RSA public key cryptosystems which are needed below. The reader interested in digital signa
tures, key distribution, forgery and certain other topics omitted below should consult [2,5] .
All logarithms in this paper are to base 2. Thus, for example, log(8) = 3.
A directorate publishes, and periodically updates, a directory, available to anybody in the 
world willing to pay for a copy or borrow it from a library. This directory begins by specify
ing two positive real numbers, the gauge g, and the width w. It then describes a universally 
agreed upon scheme for going back and forth between short pieces of messages typed in Hollerith 
characters and integers x such that 0 < log(x) < 2g. One such standard scheme, described 
in [5], is to represent Hollerith characters as two digit numbers so that, for example,
BLANK +-*■ 00, A +-*■ 01, B +-*- 02, C +-+ 03, ... .

In this translation scheme the number 201 04000 30120 = 0201 04000 30120 is rendered as the
phrase BAD CAT and vice Versa. Everybody who can afford a copy of the directory will use this 
scheme to go back and forth between (possibly very long) Hollerith character typescripts and 
(possibly very long) lists of (possibly very small) positive integers. The remaining pages of 
the directory are devoted to numerous listings. A listing consists of the name N of a re
ceiver (i.e. person or organization hoping to receive coded communications) together with two 
positive integers m(N) and c(N), which receiver N has communicated to the directorate. The 
coding modulus m(N) of the receiver N is an integer such that 2g < log(m(N)) < 2g + 2w.
The coding exponent c(N) of the receiver N is a positive integer less than m(N). The di
rectorate is trustworthy to the following extent. If the directory contains a listing involving 
the receiver N then that listing originated with N and is exactly as N submitted it. This 
is a realistic assumption since each receiver N whose name occurs in a listing in the directo
ry can check the listing and issue a public denial if necessary. See [5] for more on this.
Suppose that you want to send a private communication in the form of a Hollerith character type
script to receiver N over a public channel. You obtain a copy of the directory. You use the
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The last congruence holds because c(N) is an odd positive integer in consequence of the way 
it was chosen.
The general idea of number theoretic public key cryptosystems, suggesting a development based 
on Theorems 1.1, 1.2 and 1.3, has several advantages. First, the Diffie-Hellman key distribu
tion scheme and the RSA number theoretic method are both subsumed under it, as are a host of 
other cryptosystems. Second, it replaces 4> (m) with the more fundamental X(m) in accordance 
with a suggestion made by Rivest, Shamir and Adleman [5, p. 126], and thus clarifies the situa
tion. Third, it is possible to understand the solution set of the congruence xfcd = x mod(m) 
V/hether or not the message receiver is correct in his assumption that p and q are both 
prime.
A few remarks about computational difficulty are in order. It is easy to tell whether a large 
positive integer is a square, a cube, a fifth power,... . It is easy to verify that a large 
positive integer is not prime, or that it is prime to all intents and purposes. It is easy to 
add, subtract, multiply and raise large positive integers to large positive integer powers 
modulo a large positive integer modulus. It is easy to calculate logarithms to base two, 
greatest common divisors and least common multiples. It is hard to factor a large positive 
integer, to tell whether a large positive integer is prime, or even to tell whether a large 
positive integer is square free. As of this writing every positive integer p known to be 
prime satisfies the inequality 0 < log(p) < 19937. So it is hard to find large primes.

3. The background in modular arithmetic.

Definition 3.1: The Euler totient [4, pp. 27-29] function 4> and the universal exponent 
[4, p. 53] function X are defined as follows. Let b be any positive integer. Let q be 
any odd prime. Let T be any finite set of primes. Then

<MD 

4>(4> 
4> (2+ (1+b)) 

■ 4> (q+b) 
4> (H {pfe (p) | p € T})

X (II{pie (p) | p € T})

= 4,(2) = X(l) = X (2) = 1 
= X(4) = X (8) - 2 

= X(2f(2+b)) = 2+b 

= X(qtb) - (q-1) q+ (b-1)
= n{<#> (pie (p) ) | p € T}
= LCM{X(pte(p)) | p € T}.

Now suppose that a and m are positive integers, and that a is a divisor of m. It is 
obvious from Definition 3.1 that X(a) is a divisor of X(m), as well as that 4(a) is a divi
sor of 4 (#0 • It is also clear that X(m) is a divisor of 0(m) for every positive integer 
m. The only m at which these two functions coincide are 1, 2, 4, the powers of any single 
odd prime q, and twice the powers of any single odd prime. For example,

X(628 67805) = X(3*5*7*ll*13*53*79) - LCM {2,4,6,10,12,52,78} = 780

4 (628 67805} = <£(3*5*7*11*13*53*79) = 2*4*6*10*12*52*78 = 233 62560
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universally agreed upon translation scheme described at the front of the directory to turn this 
typescript into a list of cleartext messages, h cleartext message is an integer x such that 
0 < log(x) < 2g. Anybody with a copy of the directory can easily turn your list of cleartext 
messages back into a.copy of your original typescript, of course. But now you code each clear
text message x in the list. This is done as follows. Form the smallest positive integer y 
such that y s x+c(N) mod(m(N)). The number y is the coded message corresponding to the 
cleartext message x. You now transmit your list of coded messages to receiver N, perhaps by
printing them as an ad in Newsweek. Receiver N has three closely held secrets. They are two
positive integers p(N) and q(N), which he believes to be primes, and a third positive inte
ger d(N), his decoding exponent. Before submitting his listing to the directory he looked at 
a copy and ascertained g and w. He then chose an integer r at random subject to the con
straint that g < log(r) < g + w. He then applied one of the fairly cheap probabilistic tests 
mentioned in [5] to r in order to see whether r is prime to all intents and purposes, i.e. 
to see whether the probability that r is a prime is as close to 1 as he can afford to 
verify, given the time and money at his disposal, and the value to him of secure incoming com
munications . If r failed the test he discarded it, picked another integer, subject to the 
same constraints, and tested again. The first two of these numbers which passed the tests, i.e. 
turned out to be prime to all intents and purposes, became p(N) and q(N). Rivest, Shamir 
and Adleman [5] suggest the use of two 100 digit primes p(N) and q(N). This amounts to a 
choice of g = 328.870..., and w = 3.321... . The coding modulus m(N) in the directory 
listing corresponding to the message receiver N is their product. Thus m(N) = p(N)q(N).
The receiver then found a positive integer c(N) which is relatively prime to both p(N) - 1
and q(N) - 1. It follows that c(N) was odd. After that, he found the smallest positive 
integer solution d to the congruence c(N)d s 1 mod([p(N)-1] [q(N)-1]). This smallest posi
tive solution is his third secret number d(N). To turn your coded message y into his 
decoded message z, the message receiver N finds the smallest positive integer z such that 
z = y+d(N) mod(m(N)). If he is correct in his assumption that p(N) and q(N) are both 
prime then z = x. In other words the progression from cleartext message x to coded message 
y to decoded message z is a loop which ends where it started. He decodes the entire list of 
cleartext messages from you in the same way. Then he turns each of them back into a piece of 
Hollerith typescript according to the universally agreed upon procedure for doing this which is 
printed at the front of every copy of the directory. And the typescript he reads is the same 
as the one you wrote—if he was correct in assuming that p(N) and q(N) are both primes. 
Recall that a cleartext message x satisfies the inequalities 0 < log(x) < 2g < log(m(N)).
It follows that 2 2 x £ m(N) - 1. In particular the numbers 0 and 1 are not cleartext 
messages. This is quite reasonable, since three trivial numbers are unchanged by the coding 
process. In other words,

Of c (N) = 0 mod(m(N) )

ltc(N) = 1 mod (m (_N))
(rn(N) -1) +c (N) s (-l)fc(N) = -1 = (m(N)-l) mod (m (N) ) .
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X(1200) = 1(16*3*25) = LCM {4,2,20} = 20 
$ (1200) = <t> (16*3*25) = 8*2*20 = 320.

Lemma 3.1: If m is a positive integer and x is an integer then x+ Om+\(m)) = xlm mod(m).
Lemma 3.2: If a positive integer m is square free then x!(1+X(m)) = x mod(m) for every
integer x.
Definition 3.2: Let .m be a positive integer. Let x be an integer. The mult-ipl'Lcati.ve 
aycle of x modulo m (written cyo[x,m]) is the smallest positive integer s to which there 
corresponds an integer t(s) such that x+(t(s)+s) s x+t(s) mod(m). The multiplicative period 
of x modulo m (written per[x,m]) is the smallest positive integer r such that 
xf(1+r) = x mod(m). The multiplicative order of x modulo m (written ord[x,m]) is the 
srnallest positive integer n such that xtn = 1 mod (m) .

Obviously the phrase integer t(s) such that in the definition of multiplicative cycle can be
replaced by the phrase positive integer t(s) such that to yield an equivalent definition. To 
see this merely note that if x+(t(s)+s) a x+t(s) mod(m) and if w > |t(s)| then w + t(s) is 
positive and xf(w+t(s)+s) s xl(w+t(s)) mod(m).

For example the successive positive integer powers of 39, 40, and 41 modulo 45 are as follows: 
{39+n mod(45)| 1 £ n} = {39,36,9,36,9,36,9,36,9,36,...}
{40+0 mod(45)) 1 S n} =■{40,25,10,40,25,10,40,25,10,40,...}

{41+n mod(45) J 1 £ n} = {41,16,26,31,11,1,41,16,26,31,...}
Therefore ord[39,45] , per[39,45] and ord[40,45] do not exist. Also

eye [39,45] = 2 
per[40,45] = eye[40,45] = 3 

ord[41,45] - per[41,45] = eye[41,45] = 6.
Lemma 3.3: Let m be a positive integer and let x be an integer. Then ord[x,m] exists
if and only if x is relatively prime to m. Moreover per[x,m] exists if and only if 
every prime common factor p of x and m occurs to at least as high a power in x as it 
does in m.

Lemma 3.4: Let m be a positive integer. If v is a factor of \(m) then there is a
positive integer b such that ord [b,m] = v. Conversely, if eye [x,m] p- s then s is a 
factor of X(m).

Let Z be the set of integers. It is an obvious corollary of Lemma 3.4 that
{ord [x,m] | x £ Z} <= {per [x,m] | x £ Z} = {eye [x,m] | x £ Z}

= {f| f is a positive integer factor of X(m)}.

Theorem 3.1: Let Y be a finite set of pairwise relatively prime positive integers.
Let m be the product of the members of Y. Then eye[x,m] = LCM {eye[x,y]\ y £ Y}.
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For example 5 and 9 are relatively prime and
eye[2,5] = 4, eye[2,9] = 6,

cyc[33,5] = 4< cyc[33,9] = 1.

Taking the least common multiple, we see that eye[2,45] = LCM {4,6} = 12 and that 
cyc[33,45] = LCM {1,4} = 4. It then also follows that ord[2,45] = per[2,45] = 12. On the 
other hand cyc[2,15] = 4 and cyc[2,3] = 2. So the relative primeness assumption in Theorem 
3.1 is necessary.

Lemma 3.5: Let p be a prime and let m be a positive integer. If pi2 is a divisor 
of m then the congruence piv = p mod(m) cannot be satisfied by any integer v 5 2.

A partial converse of Lemma 3.5, adequate to the purposes at hand, is the following.

Lemma 3.6: If an odd positive integer m is square free then the congruence 
x+d+v) s x mod(m) is an identity in x if and only if v is a multiple of X(m).
As a corollary we have

Theorem 3.2: Suppose an odd positive integer m is square free. Let c and d be integers. 
They satisfy the congruence cd s 1 mod(X(m)) if and only if the congruence x+cd = x mod(m) 
is an identity in x.

We now note an obvious consequence of Lemma 3.6 and Theorem 3.2. Let m be a positive integer 
Then there is a positive integer v such that the congruence xi(l+v) = x mod(m) is an 
identity in x if and only if m is square free. When m is square free the only such 
exponents v are those for which v is a multiple of the universal exponent \(m).
At this point we have proved Theorems 1.1 and 1.2.

Theorem 3.3: Let m be a positive integer. Suppose that the integers c and X(m) are
relatively prime. Suppose that 1 < c < X(m). Every integer d such that the congruence
x+cd = x mod(m) holds identically in x satisfies the inequality |d| > X(m)/c - 1. One of 
these integers d satisfies the inequality 1 < d < X(m).

Corollary 3.1. Let a, b, p and q be primes. Suppose that a < b, that 2a + 1 = p, that 
2b + 1 = q, and that pq = m. Suppose that c is relatively prime to 2ab. Suppose that 
1 < c < 2ab. Then every integer d such that the congruence x+cd = x mod(m) holds identi
cally in x satisfies the inequality |d| > 2ab/c - 1. One of these integers satisfies the 
inequality 1 < d < 2ab.

Theorem 3.4: Let m be a positive integer. Then cyc[x,m] exists for every integer x. If
v, w and x are integers for which x+(v+w) s x+v mod(m) then w is a multiple of eye[x,m].
If an integer x has a multiplicative order modulo m then it has a multiplicative period 
modulo m and ord[x,m] = per[x,m]. If an integer x has a multiplicative period modulo m 
then per[x,m] = cyc[x,m]. Finally, it is true that x+(v+cyc[x,m]) = x+v mod(m) for every 
integer vim.
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Corollary 3.2: cyc[x+u m] divides eye[x,m] if x, u, and m are positive integers.

You do not change the multiplicative period modulo m of a message in a number theoretic public 
key cryptosystem when you code it or decode it. To see this merely note that y = x+c mod(m) 
if and only if x a y+d mod(m). An application of Corollary 3.2 to each of these congruences 
shows that eye[y,m] is a factor of eye[x,m] and conversely. Therefore per[x,m] = per[y,m].
Lemma 3.7: A positive integer m is prime if and only if every integer which is not a multi
ple of m has a multiplicative order modulo m. A positive integer m is square free if and 
only if every integer has a multiplicative period modulo m.
Lemma 3.8: Let m be a square free positive integer. Let c be a positive integer. Let x 
be an integer. Then x+c s x mod(m) if and only if per[x,m] is a common divisor of c-1 
and X Cm) .

Theorem 3.5: Let m be a square free odd positive integer. Let c be an odd positive inte
ger. Suppose that GCD {c-1, X(m)} = 2. Then x+c = x mod(m) if and only if per[x,m] £ 2.

Lemma 3.9: A positive integer c is a permuting exponent for a square free odd positive inte
ger modulus m if and only if GCD {X(m), c} = 1.

Theorem 3.6: Suppose that a positive integer c is a permuting exponent for a square free odd 
positive integer modulus m. Then c is a deranging exponent for m if and only if 
GCD {X(m), c-1} = 2.

Corollary 3.3: Let m be a square free odd positive integer modulus. Let c 2 2 be an
integer. Then c is a deranging exponent for m if and only if both GCD{X(m), c} = 1 and
GCD{X(m), c-1} = 2.

At this point we have proved Theorem 1.3.

4. Coding moduli which are products of distinct safe primes. Rivest, Shamir and Adleman point 
out in [5, p. 124] that the prime factors p and q of a coding modulus m should be chosen 
so that p-1 and q-1 themselves have large prime factors. This provides some protection 
against sophisticated factoring algorithms. They did not explicitly pursue this precaution to 
its logical conclusion, the notion of a safe prime. But they confined their treatment of 
examples largely to safe primes. So did Simmons and Norris [7].
Definition 4.1: A prime p is safe if there is an odd prime a such that 2a + 1 = p. An
unsafe prime is a prime which is not safe. If p is a safe prime let a(p) be the odd prime 
such that 2a(p) + 1 = p. If no confusion is likely to result we shall write a instead 
of a(p).

Thus 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467, 479, 503, 563, 587, 
719, 839, 863, 887, 983, 1019, 1187 and 1283 are the smallest safe primes. Every safe prime 
is congruent to 3 modulo 4. The primes p and q in Corollary 3.1 are safe.



OCTOBER 1978 314

Lemma 4.1: Suppose that p and q are safe primes whose product is m. Then the inequality
4 < (m-1) /a(p) a (q) < 5.5 always holds.
Lemma 4.2: Suppose that p and q are distinct safe primes whose product is m. Then there
are exactly three positive integers f £ m such that the congruence x+f = x mod(m) holds 
identically in x.

Theorem 4.1: If p is a safe prime then the equalities

per [0 ,p] = per[l,p] = 1, 
per[x+2,p] = a, and

hold for every integer x such that 2 £ x £ a.

Comment: The assumption that p is a safe prime makes all the difference from a cryptographic
viewpoint since, for example, 3t3 = 9+3 s 5+4 = 1 mod(13). To see one application to crypto
graphy, merely let T be a set containing n safe primes. Then Theorems 3.1 and 4.1 give the
exact structure of the multiplicative period of every residue x modulo m, where 
m = Il{p | p € T}. It suffices to know the multiplicative period of x modulo p for every
p € T. This will turn out to be important below. Theorems 3.1 and 4.1 have the following
immediate corollary.

Theorem 4.2: Let T be a finite set of safe primes. Let m = II{p| p € T}. Then
X(m) = 2 II{a(p) | p 6 T}. Moreover, per [x,m] is a divisor of X (m) for every integer x.

Theorem 4.2, in turn, has the following special case when T has exactly two members.
Corollary 4.1: Suppose that p and q are distinct safe primes. Suppose that a = a(p), that 
b f= a (q) , and that pq = m. Then per [x,m] is one of the eight members of the set 
{l,2,a,b,2a,2b,ab,2ab}

Theorem 4.3 below is the explicit statement of the joint import of Theorem 3.1 and Theorem 4.1.
We need some notation before stating it. Let p be a safe prime. Then there are four pair
wise disjoint sets which, between them, exhaust the set Z of integers:

A (p) - {x | x = 0 mod (p) or x s 1 mod (p) } ;

B (p) = {x| x = -1 mod (p) };
C (p) *= {b | b = x+2, where x A (p) U B (p) };

D (p) = {b | b = -x+2, where x A(p) U B (p) }.

Thus C(p) is the set of nontrivial quadratic residues modulo p (i.e. squares which are not 
congruent to either 0 or 1 modulo p). The set D(p) consists of all numbers of the form 
P-c, where c belongs to C(p). It is thus the set of nontrivial quadratic nonresidues modulo 
p. Each of these two sets is the union of a-1 residue classes modulo p. The set B(p) is a 
single residue class modulo p, namely the residue class containing p-1. The set A(p) is 
the union of the zero residue class modulo p and the class to which 1 belongs modulo p.

per[p-1,p] = 2, 
per [p-x+2 ,p] = 2a
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Theorem 4.3: If p and q are distinct safe primes let a w a (p) , let b >« a(q), and let 
m = pq. Then the set A(p) fl A(q) consists of integers with multiplicative period 1 modulo 
m. It is the union of 4 residue classes modulo m. The set

[A (p) fl B (q) 3 U [A (q) (1 B(p)] U [B(p) fl B(q)]
consists of integers with multiplicative period 2 modulo m. It is the union of 5 residue 
classes modulo m. The set A(p) (1 C(q) consists of integers with multiplicative period b 
modulo m. It is tha union of 2 (b-1) residue classes modulo m. The set A (q) fl C (p) con
sists of integers with multiplicative period a modulo m. It is the union of 2(a-1) residue 
classes modulo m. The set

[B (p) fl C (q) ] U [B (p) fl D (q) ] U [A(p) fl D(q)]

consists of integers with multiplicative period 2b modulo m. It is the union of 4(b-1) 
residue classes modulo m. The set

[B (q) n C(p)] U [B (q) fl D(p) J U [A(q) f) D (p) ]
consists of integers with multiplicative period 2a modulo m. It is the union of 4(a-1) 
residue classes modulo m. The set C (p) fl C (q) consists of integers with multiplicative 
period ab modulo m. It is the union of (a-1) (b-1) residue classes, modulo m. The set

[C(p) n D(q) ] U [C(q) n D(p) ] U [D(p) n D(q)]

consists of integers with multiplicative period 2ab modulo m. It is the union of 
3(a-1)(b-1) residue classes modulo m.

The integer m in the statement of Theorem 4.3 is square free. Therefore per[x,m] exists 
for every integer x. If y belongs to one of the m + 1 - p - q residue classes which are 
relatively prime to m then y has multiplicative order modulo m, and ord[y,m] = per[y,m]. 
Therefore we have

Corollary 4.2: If p and q are distinct safe primes let a = a(p), let b = a(q), and let 
m ?= pq. Then every integer with multiplicative order 1 modulo m is congruent to 1 modulo 
m. The integers x with multiplicative order 2 modulo m are those which satisfy one of the 
following three pairs of simultaneous congruences:

x s 1 mod(p) , x = -1 mod(q);

or
x = -1 mod(p) , x = 1 mod (q) ;

or
x s -1 mod(p) , x e -1 mod (q) .

The Integers with multiplicative order b modulo m make up b-1 residue classes modulo m. 
They are the integers which have multiplicative period b modulo m and are not congruent to 
zero modulo p. A similar statement holds regarding integers with multiplicative order a 
modulo m. The integers with multiplicative order 2b modulo m make up 3(b-1) residue
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classes modulo m. They are the integers which have multiplicative period b modulo m and 
are not congruent to zero modulo p. A similar statement holds regarding integers with multi
plicative order 2a modulo m. Finally

Example 4.1:

ord[x,m] = ab if and only if per[x,m) r ab
ord[x,m] = 2ab if and only if per[x,m] r 2ab

les 7 and 23 are safe. Evidently
0 = 0*7 0*23
1 1+0*7 = 1+0*23

70 - 10*7 = 1+3*23
92 = 1+13*7 = 4*23
22 = 1+3*7 -1+1*23
69 = -1+10*7 = 3*23
91 = 13*7 = -1+4*23

139 -1+20*7 = 1+6*23
160 = -1+23*7 = -1+7*23

Hence we have all the numbers whose multiplicative period modulo 161 is either 1 or 2. More 
generally, the situation which Theorem 4.3 classifies is exemplified in Table 1 below.

Theorem 4.4: Suppose that p and q are distinct primes whose product is m. Suppose that 
x is not congruent modulo m to one of the trivial values -1, 0 or 1. If per[x,m] = 1 
then GDC {x,m} is either p or q. If per[x,m] = 2 then GCD {x+l,m} is either p or q.

Example 4.2: Rivest, Shamir and Adleman considered an instructive example [5] of a number theo' 
retie public key cryptosystem. G. J. Simmons and J. N. Norris [7] also considered it. Let 
p = 47 and q = 59. Then

a(p) = a = 23, a(q) = b = 29, pq = m = 2773, and
(1/2)0(2773) = \(2773) = 2*23*29 = 1334.

Thus we know from Lemma 4.2 that the congruences

xtl s x+1335 b x+2669 s x mod(2773)
hold identically in x 
x+ (1+r) = x mod(2773) 
easy to verify that

0 = 0*47
1 = 1 + 0*47

236 1 + 5*47
2538 = 54*47
235 - 5*47
471 1 + 10*47
2302 = -1 + 49*47

where 3 S t. It is

0*59 
1 + 0*59 

4*59 
1 + 43*59.
-1 + 4*59 
-1 + 8*59 
1 + 39*59

Other positive integer exponents r for which the congruence 
holds identically in x are of the form r = 1334t
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2537 = -I + 54*47 - 43*59
2772 = -I + 59*47 s -1 + 47*59.

Therefore per[0,2773] - per[1,2773] = per[236,2773] = per[2538,2773] = 1 and 
per[235,2773] = per[471,2773] = per[2302,2773] = per[2537,2773] « per[2772,2773] = 2. 
In accordance with Theorem 4.4 one sees that

GCD {236,2773} = GCD {1+235,2773} - GCD {1+471,2773} = 59 = q 
GCD {2538,2773} = GCD {1+2302,2773} = GCD {1+2537,2773} = 47 - p.

Thus neither ord[0,2773] nor ord[236,2773] nor ord[2538,2773] exist. It is also easy to 
see that neither ord[235,2773] nor ord[2537,2773] exist. On the other hand 1 has multi
plicative order 1 modulo 2773. Moreover 471, 2302 and 2772 are relatively prime to 2773,
and therefore have multiplicative order 2 modulo 2773. These nine integers represent the only 
residue classes with multiplicative period less than 23 modulo 2773. Since 7 and 953 and 
2287 are all relatively prime to 1334 = \{2773) it is clear from the foregoing that

Thus if one chooses

0+2287 = 0+953 = 0+7 s 0+3 £ 0 mod(2773),
1+2287 s 1+953 = 1+7 £ 1+3 = 1 mod(2773),

235+2287 = 235+953 = 235+7 £ 235+3 £ 235 mod(2773),
236+2287 s 236+953 £ 236+7 £ 236+3 £ 236 mod(2773),
471+2287 = 471+953 = 471+7 £ 471+3 £ 471 mod(2773),
2302+2287 = 2302+953 £ 2302+7 £ 2302+3 = 2302 mod(2773),
2537+2287 2537+953 = 2537+7 = 2537+3 £ 2537 mod(2773),
2538+2287 = 2538+953 = 2538+7 £ 2538+3 £ 2538 mod(2773),
2772+2287 = 2772+953 = 2772+7 5 2772+3 S 2772 mod(2773).
7 or 953 or 2287 as public coding exponent, or as secret decoding ex

ponent, these nine message are unchanged by the coding process. The public key cryptosystems
in question are (7, 953, 2773), (7, 2287, 2773) , (953, 7, 2773), (953, 1341, 2773) ,
(953, 2675, 2773), (2287, 7, 2773), (2287, 1341, 2773), and (2287, 2675, 2773). For each of 
these nine messages, 0, 1, 235, ... , 2772, the ciphertext is equal to the cleartext, in ac
cordance with Theorem 3.5, no matter what coding exponent is chosen. It follows from Theorem 
4.3 and Corollary 4.2 that Table 2 below describes numbers of residue classes with the various
possible multiplicative periods and orders modulo m = 2773.
Let c = 7, let d = 953, and let e = 2287. Then cd = 6671 = 1 + 5*1334, and
ce = 16009 = 1 + 12*1334. Therefore x+cd = x+ce s x mod (2773) for every integer x. Note
that e > d > 191 > 1334/7 - 1 = \(m)/c - 1 in accordance with Theorem 3.3. We close this 
consideration of 47 and 59 with a few remarks which will be useful when we return to these 
safe primes in the sequel. Note that the sets $,(47) and A(59) contain 0 and 1, that 
46 € B (47), that 58 € B(59), and that it is easy to verify that the typical members of C(47), 
D(47) , C(59). and D(59) are shown in Table 3 below. By a typical member of the set C(p)

(resp. D(p)3 we mean a member j of C(p) (resp. D(p)) such that 1 < j < p. It follows
from Table 3 and Theorem 4.3 that
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* * * *
•k * * *
* A(7) contains * B (7) contains * C(7) contains * D(7) contains
* * * *
* 0 1 * 6 * 2 4 * 3 5

*******************************************************************************************
* *************** ******* **************** *************
* * in this box * * * * in this box * * *

A(23) contains * * period is 1 * * * * period is 3 * * *
* * * * * * * * *

0 * * 0 92 * * 69 * * 23 46 * * 115 138 *
1 * * 70 1 * * 139 * * 93 116 * * 24 47 *

********************** *************** * * **************** * *
* * * * *
* ******************* * ********************** *
* * in this box * * in this box *

B(23) contains * * period is 2 * * period is 6 *
* * * * *

22 * * 91 22 160 * * 114 137 45 68 *
********************** ************************* **********************************

* *************** ******* **************** *************
* * in this box * * * * in this box * * *

C (23) contains * * period is 11 * * * * period is 33 * * *
* * * * * * * * *

2 * * 140 71 * * 48 * * 2 25 * * 94 117 *
3 * * 49 141 * * 118 * * 72 95 * * 3 26 *
4 * * 119 50 * * 27 * * 142 4 * * 73 96 *
6 * * 98 29 * * 6 * * 121 144 * * 52 75 *
8 * * 77 8 * * 146 * * 100 123 * * 31 54 *
9 * * 147 78 * * 55 * * 9 32 * * 101 124 *

12 * * 35 127 * * 104 * * 58 81 * * 150 12 *
13 * * 105 36 * * 13 * * 128 151 * * 59 82 *
16 * * 154 85 * * 62 * * 16 39 * * 108 131 *
18 * * 133 64 * * 41 * * 156 18 * * 87 110 *

* *************** * * **************** * *
********************** * * * *

* ******************* * ********************** *
* * in this box * * in this box *

D(23) contains* * period is 22 * * period is 66 *
* * * * *

5 * * 28 120 97 * * 51 74 143 5 *
7 * * 7 99 76 * * 30 53 122 145 *

10 * * 56 148 125 * * 79 102 10 33 *
11 * * 126 57 34 * * 149 11 80 103 *
14 * * 14 106 83 * * 37 60 129 152 *
15 * * 84 15 153 * * 107 130 38 61 *
17 * * 63 155 132 * * 86 109 17 40 *
19 * * 42 134 111 * * 65 88 157 19 *
20 * * 112 43 20 * * 135 158 66 89 *
21 * * 21 113 90 * * 44 67 136 159 *

********************** ************************* ************************** ********
Table 1

The eight boxes above contain a complete set of residues modulo 161.
The row a residue occurs in identifies it modulo 23 and the column identifies it modulo 7. 

Each box contains nothing but residues with the multiplicative 
period modulo 161 peculiar to that box.
The scheme above exemplifies Theorem 4.3.
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d

number of residue 
classes modulo m 

with multiplicative 
period d modulo m

number of residue 
classes modulo m 

with multiplicative 
order d modulo m

1 4
2 5

23 44
29 56
46 88
58 112

667 616
1334 1848

1
3

22
28
66
84

616
1848

Total 2773 

Table 2

2668

Typical members 
of C(47)

2
3
4 
6
7
8 
9

12
14
16
17
18 
21
24
25
27
28 
32 
34
36
37 
42

Typical members 
of D(47)

5
10 
11 
13 

' 15
19
20 
22 
23 
26
29
30
31 
33 
35
38
39
40
41
43
44
45

Typical members 
of C(59)

3
4
5 
7 
9

12
15
16 
17
19
20 
21 
22
25
26
27
28 
29
35
36 
41
45
46
48
49 
51 
53 
57

Typical members 
of D(59)

2
6
8

10
11
13
14 
18
23
24
30
31
32
33
34
37
38
39
40
42
43
44 
47 
50 
52
54
55
56

Table 3



OCTOBER 1978 320

per[2,2773] = per[5,2773] = per[6,2773] = per[8,2773] « per[10,2773] ^ per[11,2773] = 1334 
per [3,2773] = per [4,2773] per [7,2773] = per [9,2773] - 667

Note the following equalities, which have obvious interpretations as congruences modulo 47 
and modulo 59:

49*47 = 2 + 39*59 - 2303;
44*47 = 3 35*59 = 2068;

1 -f 54*47 = 2 + 43*59 = 2539;
1 + 49*47 = 3 + 39*59 = 2304;

-.1 + 44*47 = 2 + 35*59 = 2067;
-1 + 39*47 = 3 + 31*59 = 1832;

12*59 = 3 + 15*47 = 708;
20*59 = 5 + 25*47 = 1180;

1 + 8*59 3 + 10*47 = 473;
1 + 16*59 = 5 20*47 = 945;

-1 + 16*59 = 3 + 20*47 = 943;
-1 + 24*59 = 5 + 30*47 = 1415.

It therefore follows from Table 3 and Theorem 4.3 that
per[2303,2773] = per[2539,2773] = per[2067,2773] = per[1832,2773] = 58 

per[2068,2773] = per[2304,2773] = 29 
per[1180,2773] = per[945,2773] = per[1415,2773] = per[943,2773] = 46 

per[473,2773] = per[708,2773] = 23
The sequel, II, will appear in the next issue of CRYPTOLOGIA. It deals with the resistance 
of number theoretic public key cryptosystems based on safe primes to random searches for 
solutions of congruences of the form xtf = x mod(m) and with practical measures which a mes
sage receiver can take, when setting up such a cryptosystem, to avoid certain weaknesses.
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