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SECURITY OF NUMBER THEORETIC PUBLIC KEY 
CRYPTOSYSTEMS AGAINST RANDOM ATTACK, III

Bob Blakley and G. R. Blakley

This paper concludes the discussion we began in the last two issues 
of CRYPTOLOGIA. A typical message receiver using an RSA public key 
cryptosystem believes that the secret nontrivial factors p and q 
of his public coding modulus m are primes. But he need not know 
that p or q are prime, or even square free. We give a few ex­
amples below. In some of them the "RSA public key cryptosystem" 
based on integers P and Q erroneously thought both to be prime 
works perfectly, but is more vulnerable to a cryptanalytic attack 
of the type G. J. Simmons and J. N. Norris [7] have suggested. In 
other cases these cryptosystems malfunction in an obvious fashion 
likely to be apprehended quickly by the message receiver. After 
the examples we prove all the results in I and II except a few 
which, like Theorems 1.1, 1.2 and 1.3, are obvious corollaries of 
other results in those papers.

8. Examples. We continue the numbering scheme of the previous paper in this 
series, II, which appeared in the last issue of CRYPTOLOGIA. This is 
Section 8. Consider the square free positive integer m = 105. Evidently 
^(105) = 12. It follows that (c,d,105) is a number theoretic public key 
cryptosystem based on 105 whenever c and d are integers larger than 2 
such that cd E 1 mod(12). Therefore, in particular, (5,5,105), (7,7,105),
(11.11.105) , (11,23,105) and (47,59,105) are number theoretic public key
cryptosystems. It follows from Table 8 below that there are 45 solution 
classes modulo 105 of xt5 E x mod(105), that there are 63 solution 
classes modulo 105 of xl7 E x mod(105), and that there are 27 solution
classes modulo 105 of each of the four congruences:
xfll E x mod (105) ; x+23 E x mod (105) ; x+47 E x mod (105) ; and x-t-59 E x mod (105)
Example 8.1: Suppose a message receiver acts as if P = 15 and q = 7 were 
both primes because they pass a few tests based on a presumed "converse to 
Fermat's theorem," to wit:

4114 E 4 mod(15); 11114 E 11 mod(15);
216 E 2 mod(7); and 516 E 5 mod(7).

He thinks that the modulus m = Pq = 105 is the coding modulus of an RSA 
public key cryptosystem. He acts as if 7(105) = LCM{14,6} = 42 and 
<j)(105) = 14*6 = 84. As coding exponent he may choose the prime c = 47. He
observes that 47*59 = 1 + 33*84, whence he believes, erroneously, that
(47.59.105) is an RSA public key cryptosystem. It is, as we have just seen, 
a number theoretic public key cryptosystem, but not an RSA public key crypto­
system. He notes that GCD{47,42} = 1 and GCD{46,42} = 2, so he believes, 
erroneously, that there are only 9 solution classes modulo 105 of the 
congruence x!47 E x mod(105). He also believes, erroneously, that Table 9 
describes the numbers of multiplicative periods of various residue classes 
modulo 105. The real state of affairs has been given in Table 8. In summary 
his cryptosystem works, though not for the reasons he believes. But it is 
more vulnerable than he thinks to an attack of the type G. J. Simmons and
J. N. Norris describe in [7] because both the maximum and the average multi­
plicative orders of residue classes modulo 105 are smaller than he thinks.
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The average is less than 6, whereas he believes it to exceed 21. The masimum 
is 12, whereas he believes it to be 42.
Example 8.2: A message receiver who acts as if P ^ 15 and q = 7 were both 
primes might choose c ~ 13. Since 13*55 = 1 + 17*42 he might believe, erro­
neously, that (13,55,105) is a number theoretic public key cryptosystem. In 
fact the congruence (xil3) i-55 = x mod(105) is equivalent to the congruence 
x+7 = x mod(105). There are exactly 63 residue classes modulo 105 whose 
members satisfy it. But the other 42 residue classes modulo 105 contain 
no x which satisfy it. If the message receiver sends himself enough test 
messages he will become aware of the discrepancey.
Example 8.3: Suppose a message receiver acts as if Q = 21 and p = 5 were 
primes. In setting up what he thinks is an RSA public key cryptosystem with 
105 = m = pQ as coding modulus he forms [p - 1][Q - 1] = 4*20 = 80 which 
he thinks is <j)(105) . Similarly he thinks that A(105) = 20. Evidently 
37*80 + 1 = 63*47. So he incorrectly concludes that (47,63,105) is an RSA 
public key cryptosystem. It is not, in fact, a number theoretic public key 
cryptosystem of any sort. He notes that GCD{47,20} = 1 and GCD{46,20} = 2 
and is misled into believing that there are only 9 solution classes modulo 
105 of the congruence xi47 E x mod(105). Finally, he is in error in his 
belief that (x+47)+63 = x mod(105) for all x. This congruence is equivalent 
to x+9 B x mod(105), which holds for x belonging to 45 residue classes 
modulo 105. But the other 60 residue classes modulo 105 consist of num­
bers with multiplicative periods modulo 105 which are divisible by 3, and 
do not satisfy the congruence. If he sends himself check messages the message 
receiver is likely to discover the discrepancy and abandon the idea that 105 
is the product of two primes.
Example 8.4: A message receiver who acts as if P' = 3 and Q' =35 were 
primes believes that cf>(105) = 2*34 = 68 and that A(105) = 34. Evidently 
38*68 + 1 = 55*47. So he incorrectly concludes that (47,55,105) is an RSA 
public key cryptosystem. It is not, in fact, a number theoretic public key 
cryptosystem of any kind since A(105) = 12 and 47*55 = 12*215 +5. He 
notes that GCD{47,34} = 1 and that GCD{46,34} = 2 and concludes, errone­
ously, that there are only 9 solution classes modulo 105 of the congruence 
x+47 e x mod(105). He believes that the congruence (x+47)+55 = x mod(105) 
holds for all x. But it is equivalent to the congruence x+5 = x mod(105), 
which holds only for the 45 residue classes mentioned in Example 8.3.
Example 8.5: Since 651 = 31*21 = 31*7*3 it is obvious that A(651) = 30. 
Somebody who acted as if 21 were prime would be misled into believing that 
A(651) = LCM{20,30} = 60. Such a person would look for positive integers c 
and d such that the congruence cd = 1 held modulo 60 and would believe 
that (c,d,651) was an RSA cryptosystem based on the primes 21 and 31. 
Although this would be false, the fact that the foregoing congruence holds 
modulo 30 when it holds modulo 60 would guarantee that any such (c,d,651) 
was a number theoretic public key cryptosystem.
Example 8.6: Consider P = 27, and q = 11, and m = 297. Since 297 is not 
square free it cannot be the coding modulus of any number theoretic public key 
cryptosystem. See Table 10. It shows that 88 of the 297 residue classes 
modulo 297 consist of integers which have a multiplicative cycle modulo 297 
but lack a multiplicative period modulo 297. Note that 
A(297) = LCM{18,10} = 90.
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d

The number of residue 
classes modulo 105 with 

multiplicative period d 
modulo 105 is

15
d

7 is a safe prime. Somebody who thinks 
is a prime thinks the number of residue 
classes modulo 105 with multiplicative 

period d modulo 105 would be
1 8 1 4
2 19 2 5
3 8 3 4
4 18 6 8
6 28 7 12

12 24 14 24
21 12
42 36

105 —

105
Table 8

.
Table 9

d

Number of residue classes 
modulo 297 whose members 
have multiplicative period 

d modulo 297

number of residue classes 
modulo 297 whose members 
lack multiplicative period 

modulo 297 but have multipli­
cative cycle d modulo 297 TOTAL

1 4 16 20
2 5 8 13
3 4 4
5 8 32 40
6 8 8
9 12 12

10 16 32 48
15 8 8
18 24 24
30 24 24
45 24 24
90 72 72

209 88 297
Table 10

Somebody who thinks 27 is a prime 
thinks the number of residue classes 

modulo 297 with multiplicative 
d period d would be

1 4
2 5
5 8

10 16
13 24
26 48
65 48

130 144
297
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Example 8.7: Somebody who acts as if P = 27 and q = 11 are both primes 
will erroneously believe th^t they are both safe primes and that ^(297) f 260 
and X(297) f 130. He will look for solutions c,d of the congruence 
cd = 1 mod(260). Now 83*47 = 15*260 + 1. So he will think that (47,83,297) 
is an RSA public key cryptosystem, even though the function f(x) f x!47 
does not even permute the residue classes modulo 297. He will think that the 
numbers of multiplicative periods modulo 297 are as shown in Table 11. He 
notes that GCd{47,130} f 1 and GCD{46,130} =2 so he believes that there 
are exactly 9 solutions to the congruence xl47 = x mod(297). He is cor­
rect, even though there are 33 residue classes modulo 297 whose members 
have a multiplicative cycle no larger than 2. The message receiver will pro­
bably code and decode some test messages. Since the congruence 
(x+47)t83 = x mod(297) holds if and only if x+31 = x mod(297) we know that 
it holds only for x belonging to those 77 residue classes whose members 
have multiplicative periods modulo 297 which are factors of 30. Therefore 
the message receiver can discover that (47,83,297) is not a number theoretic 
public key cryptosystem, and abandon the notion that 297 is the product of 
two primes.
Example 8.8: Somebody who acts as if P = 9 and Q = 33 were both primes 
would nevertheless form GCd{9,33} =3 as a precaution, and would not try to 
use 297 as a coding modulus under these circumstances. This points up the 
fact that a coding modulus m will be square free if and only if every one of 
the factors the message receiver multiplied together to obtain m is square 
free, given that the message receiver acts rationally and forms GCD{p,q} for 
every pair p,q of distinct factors of m which are known to him.
Example 8.9: The Carmichael [11] numbers P = 11 93221 and Q = 2 94409 are 
interesting as the basis of a purported RSA cryptosystem with coding modulus 
M = 35 12950 01389. Evidently 1(11 93221) = 1260 , X(2 94409) = 216 , and 
X(35 12950 01389) = 7560. Somebody who believes that P and Q are prime 
thinks, erroneously, that

X(M) = LCM{11 93220, 2 94408} = 97581 53160 = 129076*7560.
Since M is square free it follows that every (C,D,M) such that 
CD = 1 mod(97581 53160) is a number theoretic public key cryptosystem. But 
it is much different from, and much more vulnerable to a Simmons-Norris [7] 
attack than, an RSA number theoretic public key cryptosystem with a public 
coding modulus m of approximately the same size. The need for P.abin's [12]
refinements (see also [10] and [11]) of a "converse to Fermat's theorem"
search for primes is apparent here. The congruence
X-Ml 93320 = 1 mod(11 93221) holds more than 95% of the time, and the con­
gruence xi2 94408 E 1 mod(2 94409) holds more than 95% of the time since 
2 79936/2 94409 > 11 34000/11 93221 > 95/100. Careless testing of these can­
didates might lead one to believe they were prime.
Corollary 2 in [1] can be expressed as follows.
Lemma 8.1: Let m be an odd square free integer larger than 2. Let e be 
an odd integer larger than 2. If there is an integer x such that 
x+e / x mod(m) then at most 60% of all residue classes y modulo m satisfy 
the congruence yle E y mod(m).
Comment: The non square free m case remains. In this case it is possible 
to construct examples in which a large majority of residue classes modulo m 
satisfy the congruence x+e I x mod(m). For example, it follows from Table 10 
that just over 70% of all residue classes x modulo 297 satisfy the congru­
ence x+91 = x mod(297). But, in any case, one of the factors P of m which
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the message receiver knows has a square factor. If P = Rf2 for some 
R the simple extraction of a square root will show this. Otherwise 
P = S*Rl2. But then some factor of P is smaller than the cube root of P.
If P is not much greater than the square toot of m the message receiver 
need only search among numbers no larger than the sixth root of m. If 
m < 10f204 then m would have a nontrivial factor W <_ 10134. This might 
still be hard to find.

9. Proofs■ This section gives proofs of the results in I and II which are 
not obvious corollaries of immediately preceding results. For the sake of 
completeness a proof is given here if it is not readily accessible elsewhere. 
But most are so natural that no claim to substantial originality, other than 
that the result was unlikely to be sought outside a cryptographic context, 
should be inferred.
Proof of Lemma 3.1: A. E. Livingston and M. L. Livingston proved a stronger 
result [9, Theorem 3.2], of which this is a special case.
Proof of Lemma 3.2: E. Hewitt proved a stronger result [8] from which this 
follows.
Proof of Lemma 3.3: We know [4, p. 54] that xlA(m) = 1 mod(m) if x is
relatively prime to m. Conversely if p is a prime common factor of x and
m, and if b is a positive integer, then it is impossible that

xfb - 1 = (plb)c - 1

be a multiple of p. So it cannot be a multiple of m. This proves the first 
statement. To prove the second statement we merely appeal to [9, Theorem 3.1]. 
It suffices to note that, in the notation of that paper, = an<^
only if every prime common factor p of x and m occurs to at least as 
high a power in x as it does in m.
Proof of Lemma 3.4: We know [4, p. 55] that there is a number a such that
ord[a,m] = X(m). So if a positive integer v is a factor of X(m) it is
obvious [4, p. 48] that

ord [af (X (m) /v) ,m] = v.
Now we prove the second statement. Choose any integer x. It satisfies the 
congruence xf(m+X(m)) E xfm mod(m). If s is a positive integer then, 
clearly,

xl (m+s+X (m) ) E xt(m+s) mod(m).
Now suppose that the multiplicative cycle of x modulo m is the positive 
integer b. Evidently b <_ X (m) , and there is some positive integer s such 
that xf(m+s+b) E xf(m+s) mod(m). It follows from the division algorithm that 
there are nonnegative integers Q and R such that R < b and 
X(m) = Qb + R. Consequently

m+s + Qb<m+s + X (m) = m+ s + Qb + R,
and therefore
xt(m+s) E xl(m+s+b) E xf(m+s+2b) E ... =

E xl (m+s+Qb) E x-f (m+s+X (m) ) E xf (m+s+Qb+R) mod (m) .
But b is the smallest positive integer for which the congruence
xl (T+b) E xtT mod(m) holds for any integer T. Moreover 0 <_ R < b and

xl(m+s+Qb) E xl(m+s+Qb+R) mod(m).
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Consequently R = 0. Thus X(m) = Qb. This completes the proof.
Proof of Theorem 3.1: It is mope natural to prove a stronger result, pis. 
that for all integers x, all finite sets Y of positive integers, we have 
the equality

cyc[x,LCM{y |y 6 ¥}] - LCM{cyc[x,y] |y <: Y}.
To each y ^ Y there corresponds a positive integer A(y) such that for
every pair s, t, of integers larger than A(y) the congruence
xfs E x+t mod(y) holds if and only if t-s is a multiple of cyc[x,yj. Let

A = MAX{A(y)|y £ Y}
and consider a pair s, t of integers larger than A. If

t-s = LCM{cyc[x,y] |y $ Y}
then t-s is a multiple of cyc[x,y] for each y £ Y. So xft - xfs is a 
multiple of y for each y £ Y. Therefore x+t - x+s is a multiple of 
LCM{y|y £ Y}. Hence t-s is a multiple of eye[x,LCM{y|y £ Y}]. Conse- 
quantly

eye [x,LCM{y | y £ Y}] <_ LCM{cyc [x,y] | y (■ Y}.
On the other hand consider two integers s, t such that A <_ s < t, and that

t-s < LCM{eye [x,y] I y (. Y} .
Since t-s is strictly positive it follows that there exists y £ Y such 
that cyc[x,y] is not a factor of t-s. But s and t both exceed A and, 
therefore, A(y) also. It follows that x+s £ x+t mod(y) whence

This ends the proof.
x+s ^ x+t mod(LCM{y|y £ Y})

Proof of Lemma 3.5: Obviously p+2 - p is not a multiple of p+2. If 3 v 
then

p+v - p = p[p-l] [ (p+(v-2)+p+(v-3)+ . . ,+p)+l] = p(p-l) (pq+1) .
Thus, in any case, p+v - p cannot by a multiple of p+2. So it cannot be a 
multiple of m.
Proof of Lemma 3.6: E. Hewitt [8] showed that A(m) is the smallest positive 
integer b such that the congruence x+(1+b) s x mod(m) is an identity in 
x. Evidently

x+ (1+2A (m) ) = [x+(1+A (m) ) ] [x+A (m) ] E (x) (x+A (m) ) E x+(l+A(m)) E xmod(m).
x+(l-A(m)) E [x+2] [x+(-1-A (m) ) ] E [x+2] [x+(1+A (m) ) ] + (-1) E 

E (x+2) (x+ (-1) ) e x mod(m) .
It follows in a similar fashion that x+(l+QA(m)) E x mod(m) for every inte­
ger Q. If v is an integer for which the congruence x+(1+v) e x mod(m) 
holds identically in x then the division algorithm yields integers Q and 
R such that 0 <_ R < A (m) and v - QA (m) + R. But then

x+(l+v) E x+(1+QA (m)+R) E [x+ (1+QA (m) ) ] [x+R] E x(x+R) E x+(1+R) mod (m) .
Since 0 <_ R < A(m) and since A(m) was the smallest positive integer of 
this sort, it follows that R - 0. So v was a multiple of A(m). This com­
pletes the proof.
Proof of Theorem 3.2: It is an obvious corollary of Lemma 3.6.
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Proof of Theorem 3.3: We prove the second statement first. We know that the 
congruence rfcd i x mod(m) holds identically in x if and only if 
cd p 1 mod(A(m)). Since c and A,(m) are relatively prime there is one 
equivalence class modulo A(ml of solutions d to the latter congruence.
This solution class cannot contain 0 or 1. Therefore its smallest posi­
tive member d satisfies the inequality 1 < d < \(m). Now consider the 
proof of the first statement. The congruence cd p 1 mod(A(m)) means that 
there is an integer a such that cd = aA (ml +1. We know that cd 5^ 1 by 
the way c was chosen. Hence a 7^ 0. The equality immediately above implies 
the inequalities.

o |d| j> |a|x(m) - 1 ^ X<m) - 1.
Therefore

| d | ^ A(m)/c - 1/c > A(m)/c - 1.
This proves the first statement and, therewith, the theorem. Corollary 3.1 
now follows as a special case.
Proof of Theorem 3.4: There are only finitely many residue classes modulo m. 
So cyc[x,m] exists for every x. To prove the second statement let s be 
the multiplicative cycle of x modulo m. Then s £ w and there are non­
negative integers Q and R such that R < s and w = Qs + R. Also there 
is a nonnegative integer y such that xf(y+s) = xfy mod(m). Evidently 
xf (y+v+w) E x-Hy+v) mod(m) . Thus [xfv] [xfty+Qs+R) - xfy] = 0 mod(m) . But

xfy E xf(y+s) e xl(y+2s) = ... = x-t-(y+Qs) mod(m).
Therefore

[xfv] [xf (y+Qs+R) - xfy] E [xfv] [xf (y+R) - xfy] E 0 mod(m) .
Since R < s and xf(v+y+R) E xf(v+y) mod(m) it follows from the minimality 
of s that R = 0. This proves the second statement. Obviously per[x,m] 
exists and per[x,m] £ ord[x,m] when the multiplicative order of x modulo m 
exists. If r and n are positive integers such that x(xfr - 1) = 0 mod(m) 
and xfn - 1 E 0 mod(m) then x is relatively prime to m. It follows that 
xfr - 1 E 0 mod(m). If n is the multiplicative order of x modulo m it 
follows that n £ r. Consequently ord[x,m] £per[x,m]. This proves the 
third statement. Obviously cyc[x,m] £per[x,m] when the multiplicative 
period of x modulo m exists. Conversely let r be the multiplicative period 
of x modulo m. Let m = H{pte(p) |p e D), where D = A |J B, and A consists 
of all prime common divisors of m and x, and B consists of all prime 
divisors of m which are relative prime to x. Then:

m = ab; a = II{pfe(p)|p e A}; and b = II{Pte(p)|p e B} .
If s and t are any positive integers for which (xft)(xfs - 1) E 0 mod m 
then xfs - 1 is a multiple of b and xft is a multiple of a. But the 
existence of per[x,m] implies, in view of Lemma 3.3, that x is a multiple 
of a and, hence, that x(x+s - 1) = 0 mod(m). Therefore per[x,m] £ s. The 
trivial case t = 0 causes no difficulty. So it follows that 
per[x,m] £ cyc[x,m]. This proves the fourth statement. Finally, let s be 
the multiplicative cycle of x modulo m, and suppose that v £ m. We know

{x+j mod(m)|l £ j £ m} - {xlk mod(m)|k is a positive integer}
because the set of powers of x modulo (m) has at most m members. So if 
there is a nonnegative integer t such that x+(t+cyc[x,m]) I xft mod(m) 
then there is already a nonnegative integer u < m for which
x+(u+cyc[x,m]) = xfu mod(m). It follows that xf(u+w+cyc[x,m]) = xf(u+w) mod(m) 
for every nonnegative integer w. This ends the proof.
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Proof of Corollary 3.2: Let A = cyc[x,m], and let B = cyc[xtu,m]. Then we
know that x + (uit\ + uB) = xtn(m + B) = xtum mod (m) . Consequently uB is a
multiple of A- K B were to have a factor which A lapked there would be
a prime p such tha,t uB/p is also a multiple of A. But then
xtu(m + B/p) = xtum mod(m) whence B ^ cyc[x+u,m] contrary to assumption.
This ends the proof.
Proof of Lemma 3.7: Suppose m is prime, if an integer a is not a multiple 
of m then (a,mi := 1, whence [4, p. 42] ai^(m) = 1 mod(m) . Hence ord[a,m] 
exists. Conversely if pq is a factor of m, where p and q are (not 
necessarily distinct) primes, then the congruence pie = 1 mod(m) has no 
positive integer solutions e because pie - 1 is not divisible by p.
E. Hewitt [8] proved the second statement.
Proof of Lemma 3.8: Since m is a square free positive integer, every inte­
ger x has a multiplicative period modulo m. We know that
xtc = xt(1+(c-1)) = x mod(m) if and only if c-1 is a multiple of per[x,m]. 
But A(m) is necessarily a multiple of per[x,m]. Hence the equality holds 
if and only if c-1 and A(m) are multiples of per[x,m].
Proof of Theorem 3.5: The only positive common divisors of c-1 and A(m) 
are 1 and 2. So the result follows immediately from Lemma 3.8.
Proof of Lemma 3.9: If c is relatively prime to A(m) then the congruence 
cd = 1 mod(A(m)) has a solution d. Hence we know from Theorem 3.2 that 
(x+c)id = x mod(m) for every integer x. The operation of raising to the cth 
power is therefore a permutation of the residue classes modulo m. The proof 
that c is relatively prime to A(m) whenever the operation of raising to 
the cth power effects a permutation of the residue classes modulo m can be 
found in [1].
Proof of Theorem 3.6: If c is a deranging exponent for m then 
per[x»m] e {1,2} for every integer ss such that xl(l+(c-l)) E xtc = x mod(m). 
But all divisors of A(m) occur as multiplicative periods modulo m. This 
implies that no divisor of A(m) other than 1 or 2 is a factor of c-1.
To verify the converse assume that there is an integer x such that 
xfc E x mod (in) and 3 <_ per[x,m] . But per[x,m] is a factor of A On) , as 
well as of c-1. Hence 3 <_ per[x,m] <_ GCD{ A (m) ,c-l} . This completes the 
proof. Corollary 3.3 is an immediate consequence.
Proof of Lemma 4.1: Evidently

m-1 = pq - 1 = (2a(p) + 1) (2a(q) +1) - 1 = 4a(p)a(q) + 2a(p) + 2a(q) .
Therefore 4 < (m-1)/a(p)a(q). On the other hand, 7 is the smallest safe 
prime and a(7) = 3. Therefore if s is any safe prime then s/a(s) <_ 7/3.
Thus

(m-1)/a(p) a(q) < pq/a(p)a(q) <_ 49/9 .
This completes the proof.
Proof of Lemma 4.2: In this case A(m) - 2a(p)a(q). Because of Lemma 4.1 we 
know that

0 < 1 < 1 + A (m) < 1 + 2A (m) < m < 3A (m) .
Evidently the congruence

xfl E x+(l+A(m)) E xl (1+2A (m)) E x mod(m)
is an identity in x. But the congruence xtd+g) E x mod(m) is an identity 
in x if and only if g is a multiple of A(m)• This completes the proof.
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Proof of Theorem 4.1: Recall that 2a+l = p. Obviously per[0,p] = 1. 
Moreover ord[l»p] = 1 and ord[p~l,p] = ord[-l,p] =2. Sg it only remains 
to prove the last two equalities. Eulep's criterion [3, p. 46] states that 
for each quadratic residue b the congruence bla E 1 mod(p)_ holds. If 
2 £ x <_ a and b E xi2 mod(p) , then b is not congruent to 1 or -1.
Since a is prime it follows that

per[xl2,p] = ordtxlljp] = ord[b,p] = a.
Euler's criterion also states that for every quadratic nonresidue n the con­
gruence nta E 1 mod(p) fails. For every n we know that ord[n,p] is a 
divisor of X(p) = p-1 = 2a. But the nonzero residue classes modulo p form 
a field. So the congruence xl2 E 1 mod(p) has only two solution classes 
modulo p, namely the class of 1 and the class of -1. Thus, throwing 
away 1, 2 and a as divisors of 2a, we see that the nontrivial quadratic 
nonresidues must all have multiplicative order 2a modulo p. This ends the 
proof.
Proof of Theorem 4.2: The formula for A(m) is obvious. Evidently 
cyc[x,p] = cyc[x,2a(p) +1] is a factor of 2a(p) for every x, and every 
factor p of m. It follows from Theorem 3.1 that

cyc[x,Il{p|p e T} ] = LCM{eye [x,p] | p £ t}
is a factor of LCM{2a(p)|p £ t} = X(m) for every X. This ends the proof. 
Corollary 4.1 is the special case in which T contains exactly two primes.
Proof of Theorem 4.3: It is immediate from Theorems 3.1 and 4.1. To estab­
lish Corollary 4.2 one needs merely to sort the integers into invertible 
and noninvertible residue classes modulo m.
Proof of Theorem 4.4: If x(x-l) = 0 mod(pq) and if x is not congruent to 
0 or 1 modulo pq then there are two possibilities:

I) x E 0 mod(p) and x-1 E 0 mod(q); 
or

II) x E 0 mod(q) and x-1 E 0 mod(p).
Thus GCD{x,pq} is either p or q. Moreover if x(x-1)(x+1) E 0 mod(pq)
but x(x-l) ^ 0 mod(pq) then either p is not a factor of x(x-l) or q is
not a factor of x(x-l). Since x is not congruent to 0,1 or -1 modulo 
pq, it follows that either p or q (but not both) is a factor of x+1.
Hence GCD{x+l,pq} is either p or q. This ends the proof.
Proof of Lemma 5.1: Since b is the smallest member of {a(p)|p £ t} it
follows that 2 ^ x 2a(p)-l for every p £ T. Therefore x is not con­
gruent to 0, 1 or -1 modulo p for any p £ T. It follows that 
per [x,p] e (a(p),2a(p)} for every p E T. But

per[x,m] = cyc[x,m] = LCM{eye [x,p] |p £ T} = LCM{per [x,p] |p £ t} .
The word set implies distinct elements. No two members of T are equal. For
each p £ T either per[x»p] = a(p) or per[x,p] = 2a(p). Hence this least
common multiple per[x,m] is equal to II{a(p)|p e t} if per[x,p] = a(p) 
for every p £ T. Otherwise per[x,p] - 2a(p) for some p £ T, in which case 
the least common multiple, per [x,m] , is 2II{a(p)|p £ T} . This ends the proof
Proof of Theorem 5.]: Since per[x,m] < I]{a(p)|p £ t} there must be some 
q £ T and some r £ {-1,0,l} such that x = r mod(q). Since x 0 {-1,0,1} 
it follows that x belongs to one of the sets
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A = {±q, +2q, +3q,...}
B = {1+q, l±2q, l+3q,...}
C = {-l±q, -l+2q, -l+3q,...}.

This completes the proof. Corollary 5.1 is the special case in which T con­
tains exactly two members.
Proof of Theorem 5.2: If per[x,m] - a(p] then x is congruent to 0 or
1 modulo q. But x is not 0 or 1. So it is at least as large as a posi­
tive integer multiple of q. If per[x,m] = a(q) then x is congruent to 
0 or 1 modulo p. But p is not congruent to 0 or 1 modulo q. So x 
is unequal to p. Hence x is either of the form 2p, 3p, 4p,... or of the 
form p+1, 2p+l, 3p+l,... . This ends the proof.
Proof of Theorem 5.3: Evidently x is not congruent to 0, 1, -1 modulo p. 
Thus x ^ {0,1}. But x is congruent to 0, 1, or -1 modulo q. Therefore 
the smallest possible positive integer value x can have is q-1.
Proof of Theorem 5.4: If, on the one hand, per[x,m] = 1 then per[x,p] = 1 
for every p e T. But the integers modulo any prime p form a field. In 
such a field the congruence xt2 = x mod(p) has only 0 and 1 for solu­
tions. If, on the other hand, per[x,m] = 2 and p e T then 
per[x,p] e {1,2}. Moreover there is at least one q £ T for which
per[x,q] = 2. For any prime p, the equation xl3 E x mod(p) has only 0, 1
and -1 for solutions. Since per[x,q] ^1 it follows that x is not con­
gruent to 0 or 1 modulo q. So x = -1 mod(q). It follows from the Chinese 
remainder theorem [4, p. 35] that there are Ifk solutions of the congruence 
xt2 s x mod(m), since 0 and 1 are the only solutions of the congruence 
x+2 = x modulo any prime p. It also follows from the Chinese remainder 
theorem that these 2+k residue classes modulo m are all to be found among 
the 3+k solutions of the congruence x+3 E x mod(m), since 0, 1 and -1 
are the only solutions of the congruence x+3 E x modulo any prime p. From 
these facts follow all the statements in the theorem. Corollary 5.2 is its 
specialization to the case in which m is the product of k = 2 primes.
Proof of Lemma 5.2: Clearly (A+B)p E Ap + Bp E 0 mod(q). Hence A + B is a 
positive integer multiple of q. Evidently 0 < A < q and 0 < B < q. Con­
sequently 0 < A + B < 2q. Therefore A + B = q. This ends the proof.
Lemma 5.3 is an immediate corollary.
Proof of Lemma 5.4: Evidently 0 < A < q, and 0 < B < p, and 0 < C < q, 
and 0 < D < p. There are two cases to consider. If A < q/2 then

B = Ap/q - 1/q < Ap/q < p/2.
If, on the other hand, A >_ q/2 then A > q/2. Let C and D be defined by 
setting C = q-A, and D = p-B. Then

Cp+l=qp-Ap+l=qp-Bq=Dq
0<C=q-A<q- q/2 = q/2

0<D,= p- B- Cp/q + 1/q < p/2 + 1/q.
But D and p are integers, and 1/q £ 1/3. It follows that D < p/2. This 
ends the proof.
Proof of Theorem 5.5: Let A, B, C, D be the smallest nonnegative integers 
such that Ap = Bq + 1, and Cp + 1 - Dq. It follows from Corollary 5.2 that 
x is the smaller of the two numbers Ap and Dq. Either way it is clear 
from Lemma 5.4 that x < pq/2.
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Proof of Theorem 5.6: Recall Corollary 5.2. If x = 0 mod(p), and 
x 5 1 mod(.q) then x = Ap = Bq + 1 where A and B are positive. If
x B 1 mod(p) , and x B 0 mod(q)_ the argument is similar.
Proof of hemjna 5.5: It is obvious that A, C, E, and G are positive. 
Clearly Ap + Ep = 0 rnod{q), and Cp + Gp E 0 mod(q)_. Of course p and q 
are relative prime. Hence A + E and C + G are both positive integer mpl- 
tuples of q. Evidently 0 < A < q, and 0 < C < q, and 0 < E < q, and
0 < G < q. Consequently 0 < A + E < 2q, and 0 < C + G < 2q. Therefore
A + E = q, and C + G = q. This ends the proof. Corollary 5.3 follows 
immediately.
Proof of Theorem 5.7: Let m = pq. The four nontrivial numbers y, z, t, s 
with multiplicative period 2 modulo m are the smallest positive integers 
which satisfy the following four pairs of simultaneous congruences:

y = 0 mod(p), and 
z H 1 mod(p), and 
t E -1 mod(p), and 
s E -1 mod(p), and

y E -1 mod(q); 
z E -1 mod(q); 
t E 0 mod(q); 
s E 1 mod(q) .

Note that 2t + 1 is congruent to s modulo both p and q, whence modulo 
their product m. Similarly 2y + 1 is congruent to z modulo m. Now 
let A, B, C, D, E, F, G and H be the smallest nonnegative integers such 
that

y = Ap = Bq - 1, 
t = Ep - 1 = Fq, and

z=Cp+l=Dq-l,
s=Gp-l=Hq+l.

Then the integers A, B, C, D, E, F, G and H are all positive. Moreover we 
can employ the argument which established Lemma 5.3 to show that either both 
the inequalities

0 < A < q/2, and 0 < B < p/2
hold, or else both the inequalities

0 < E < q/2, and 0 < F < p/2
hold. It follows from Corollary 5.3 that

y/p + (t+l)/p = A + E = q 
(z-l)/p + (s+l)/p = C + G = q.

Hence y+t+l=pq=m, and z + s = pq = m. The remainder of the proof has 
two parts. Suppose, first that 0 < y < m/2. If y < m/3 we have the de­
sired result. If m/3 £ Ap = y < m/2 then m/2 < t + 1 £ 2m/3. It follows 
that m-1 < 2t+l £ 4m/3-l. But 2t + 1 E s mod(m) and s is not congruent to 
zero modulo m. Therefore 0 < s £ m-1, whence s = 2t + 1 - m. It follows 
that 0 < s < m/3. If 0 < t < m/3 we have the desired result. So all that 
remains is to assume that m/2 £ Ap = y < m and m/3 £ Ep - 1 = t. Since 
0<y+t<m it is clear that t < m/2. Consequently

2m/3 + 1 < 2t+l<m+l
and

m + l< 2y+l< 2m +1.
Therefore z = 2y + 1 - m. We also know that y + t + 1 = m, whence
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(2y + 1) + (2t + 1) = 2m
so that

(2y + 1) - m ==; m - (2t + 1) .
Prom the inequalities 2m/3 < 2t + 1 < m + 1 it follows that 
-1 < m - (2t + 1) < m/3, i.e. that -1 < z < m/3. Since z is not congruent 
to 0 or -1 modulo (m) it is thus clear that 0 < z < m/3. This ends the 
proof.
Proof of Lemma 5.6: Obviously 2 is not congruent to 0, 1 or -1 modulo 
either p or q since they are safe primes. So it follows from Theorem 4.3 
that

per [ 2 ,m] e {a (p) a (q) , 2a (p) a (q) } .
Evidently 6 p-1 q-3. Therefore p-1 is not congruent to 0,1 or -1
modulo q. It follows from Theorem 4.3 that

per[p-1,m] = 2a(q) = q-1.
Since p and q are distinct primes we know that q / 0 mod(p). Since p 
and q are both odd it is clear that q is not congruent to either 1 or 
-1 modulo p. It is a consequence of Theorem 4.3 that

per[q,m] e {a(p),2a(p)}.
To repeat the foregoing, we know that q-1 / 0 mod(p), and that 
q-1 / -1 mod(p). If, additionally, q/2 mod(p) then q-1 / 1 mod(p). It 
follows from Theorem 4.3 that per[q-l,m] = 2a(p) when q/2 mod(p). This 
ends the proof.
Proof of Theorem 5.8: Recall Corollary 5.2. Every number x with multipli­
cative period 2 satisfies one of the five pairs of congruences:

x = 0 mod(p), and x I -1 mod(q);
or

x = 1 mod(p) , and x I -1 mod(q) ;
or

x = -1 mod(p) , and x = 0 mod(q) ;
or

x = -1 mod(p), and x = 1 mod(q);
or

x = -1 mod(p) , and x r -1 mod(q) .
The smallest positive solution x of any of these pairs of congruences satis­
fies the inequalities p-1 £ x, and q-1 < x. This ends the proof.
Proof of Theorem 5.9: Neither x-1 nor x+1 is divisible by any prime p e T. 
Therefore 2 < per[x,p] for every p e T. But p is a safe prime for every 
p E T. Hence a(p) - (p-l)/2 is a prime for every p £ T. Therefore, if 
p £ T, then the only positive divisors of <ji (p) ^ A (p) - p-1 are 1, 2, a(p) , 
and 2a(p). It follows that the prime a(p) is a divisor of per[x,p] for 
every p £ T. If p £ T and q £ T and p / q then

LCM{a(p) |p £ T} = I[{a(p) |p e T} .
Therefore Il{a(p)|p £ T} is a divisor of
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per [x,m] = IiCM{per [x,p] |p e T}
which is, in turn, a divisor of t. This completes the proof.
Proof of Theorem 5.10; The positive integer m is the product of two dis­
tinct primes, p and q. So if 2 <. h 5L W-l ^nd GCP{h,m} 1 then the 
greatest common divisor is either p or q. This proves the first assertion. 
So now suppose that F = G - H r 1. It follows from Theorem 5.9 that ab is 
a factor of t. We know from Lemma 4.1 that t/ab < m/ab <6. We also know
from the hypotheses that {a,b} f] {2,3,5} f= 0. So let s be the largest
positive integer less than 6 such that s is a factor of t. It follows
that f = t/s = ab. Thus we know that f r ab, and m = (2a + 1)(2b + 1).
But then we calculate, successively, that

m - 4f r 2a + 2b + 1
2b = m - 4f - 2a - 1
2f = 2ab = a(m - 4f - 2a - 1)
0 = 2af2 + (1 + 4f - m)a + 2f.

It is a consequence of the quadratic formula that either
2p - 2 = 4a = (m - 4f - 1) + ( [1 + 4f - m]+2 - 16f)'M/2

= m - 4f - 1 + (1 + 16f+2 + m+2 - 8f - 2m - 8mf)'M/2.
or

2p-2=4a=m-4f-l- (1+ 16fl2 + mt2 - 8f - 2m - 8mf)ll/2.
Recall the definition of i and j in the statement of the theorem. 2i and 
2j differ by 2 from the last two right hand sides above. Since a and b 
enter symmetrically we see that {i,j} = {p,q}. This ends the proof.
We thank N. W. Naugle for the integral estimates in Section 5, R. L. Rivest 
for bringing the attack on RSA by means of exponents to our attention, and I. 
Borosh for many incisive comments and many improvements of proofs. We close 
with two minor errata. The inequality in the last line in Section 2 should 
now read 0 < log(p) < 21701, since a new Mersenne prime [13] was discovered 
after the proofs of I were read. A comma was omitted from cyc[xtu,m] in 
the statement of Corollary 3.2.
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