
Probabilistic Checking of Proofs: A New
Characterization of NP

SANJEEV ARORA

Princeton University, Princeton, New Jersey

AND

SHMUEL SAFRA

Tel-Aviv University, Tel-Aviv, Israel

Abstract. We give a new characterization of NP: the class NP contains exactly those languages L for
which membership proofs (a proof that an input x is in L) can be verified probabilistically in
polynomial time using logarithmic number of random bits and by reading sublogarithmic number of
bits from the proof.

We discuss implications of this characterization; specifically, we show that approximating Clique
and Independent Set, even in a very weak sense, is NP-hard.

Categories and Subject Descriptors: F.1.2 [Computation by Abstract Devices]: Modes of Computa-
tion; F.1.3 [Computation by Abstract Devices]: Complexity Classes; F.2.1 [Analysis of Algorithms and
Problem Complexity]: Numerical Algorithms and Problems; F.2.2 [Analysis of Algorithms and
Problem Complexity]: Numerical Algorithms and Problems; F.4.1 [Mathematical Logic and Formal
Languages]: Mathematical Logic

General Terms: Algorithms, Theory, Verification

Additional Key Words and Phrases: Approximation algorithms, complexity hierarchies, computations
on polynomials and finite fields, error-correcting codes, hardness of approximations, interactive
computation, NP-completeness, probabilistic computation, proof checking, reducibility and complete-
ness, trade-offs/relations among complexity measures

A preliminary version of this paper was published as in Proceedings of the 33rd IEEE Symposium on
Foundations of Computer Science. IEEE, New York, 1992, pp. 2–12.
This work was done while S. Arora was at CS Division, UC Berkeley, under support from NSF PYI
Grant CCR 88-96202 and an IBM graduate fellowship.
This work was done while S. Safra was with Stanford University and IBM Almaden.
Authors’ current addresses: S. Arora, 35 Olden Street, Princeton, NJ 08544, e-mail:
arora@cs.princeton.edu; S. Safra, Math Department, Tel-Aviv University, Tel-Aviv, Israel, e-mail:
safra@math.tau.ac.il.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1998 ACM 0004-5411/98/0100-0070 $05.00

Journal of the ACM, Vol. 45, No. 1, January 1998, pp. 70 –122.

1. Introduction

Problems involving combinatorial optimization arise naturally in many applica-
tions. For many problems, no polynomial-time algorithms are known. The work
of Cook [1971], Karp [1972], and Levin [1973] provides a good reason why: many
of these problems are NP-hard. If they were to have polynomial-time algorithms,
then so would every NP decision problem, and so P 5 NP. Thus, if P Þ NP—as
is widely believed—then an NP-hard problem has no polynomial-time algorithm.

In the two decades following the Cook–Karp–Levin work, classifying computa-
tional problems as tractable (i.e., in P) or NP-hard has been a central endeavor
in computer science. But one important family of problems, by and large, defies
such a simple classification: the problem of computing approximate solutions to
NP-hard problems. For a number a . 1, an algorithm is said to approximate an
optimization problem within a factor a if it produces, for every instance of the
problem, a solution whose cost is within a factor a of the optimum cost. For
example, let the clique number of a graph G, denoted v(G), be the size of the
largest subset of vertices of G whose every two members are adjacent to each
other. (Computing v is a well-known NP-hard problem.) To approximate the
clique number within a factor a, an algorithm needs to output, for every graph
G, a clique in G of size at least v(G)/a. (Thus, the closer a is to 1, the better
the algorithm.)

Approximation versions of most NP-hard problems are not known to be in P,
at least for “reasonable” factors of approximation. In all these cases, one might
conjecture that approximation is NP-hard, but demonstrating this— even for very
small factors— has proved difficult. The clique problem is a good example. The
best polynomial-time algorithm approximates clique number within a factor
O(n/log2 n) [Boppana and Halldórsson 1992] whereas, until recently, it was not
known even if approximating within a factor 1 1 e, for any fixed e . 0, is
NP-hard.

Feige et al. [1991] recently provided a breakthrough, by showing that if the
clique number can be approximated within any constant factor in polynomial
time, then every NP problem can be solved deterministically in time nO(log log n).
Since some NP problems (SAT, for example) are widely believed to have no
subexponential-time algorithms, this result provides a strong reason to believe
that the clique number has no good approximation algorithms. (The authors
therefore proclaimed clique approximation “almost” NP-hard.)

At the core of the result of Feige et al. [1991] is a new technique for doing
reductions, which uses recent results from the theory of interactive proofs. The
use of this radically new technique (not to mention the fact that it shows the
problem is “almost”-NP-hard instead of NP-hard), suggests that the result of
Feige et al. [1991], though impressive, is not the end of the story.

The results in this paper confirm this. We show, firstly, that approximating the
clique number within any constant factor is NP-hard (in fact, we can also show
the NP-hardness of approximating the clique number within a factor 2log0.52e n,
where n is the number of vertices in the graph and e is an arbitrarily small
positive constant). We use techniques derived from those in Feige et al. [1991]
and some earlier papers.

Second, we provide a new, and surprising, characterization of the class NP. As
we will describe soon, this characterization is the logical culmination of recent

71Probabilistic Checking of Proofs: A New Characterization of NP

results about interactive proofs, which have provided new characterizations for
traditional complexity classes such as PSPACE and NEXPTIME.

In fact, our NP-hardness result for clique approximation is a corollary of our
new characterization of NP. An earlier draft of this paper posed the question
whether other hardness results can be derived from this new characterization.
This question has been answered—positively— by a series of swift developments
that followed this paper. Section 6 discusses those developments.

Section 6 also discusses how our ideas have figured in subsequent research.
Two of these are verifier composition and an improved low degree test.

1.1. CONTEXT OF THIS WORK. We briefly discuss recent results in complexity
theory and where our work fits in relation to them.

1.1.1. Interactive Proofs. The model of interactive proofs was introduced by
Goldwasser et al. [1989] for cryptographic applications, and by Babai [1985] as a
game-theoretic extension of NP. The model consists of a probabilistic polynomi-
al-time verifier V communicating with a prover P who tries to convince V that
the input x is in a language L. A language L is in IP (for interactive proofs) if
there exists a verifier V that is always convinced when x [L, but if x [y L then
any prover P has only a small probability of convincing V to the contrary.

The model of multi-prover interactive proofs was introduced by Ben-Or et al.
[1988]. The model consists of a random polynomial-time verifier V communicat-
ing with two infinitely powerful provers who cannot communicate with each
other during the protocol. The provers try to convince the verifier that the input
x is in a language L. A language L is in the class MIP (for multi-prover
interactive proofs) if there exists a V that is always convinced when x [L but if
x [y L, then the provers have only a small probability of convincing V to the
contrary.

1.1.2. Proof Verification. An equivalent formulation of the class MIP was
suggested by Fortnow et al. [1988]. In this model, a random polynomial-time
Turing machine M is interacting with an oracle Ox that is trying to convince M
that x [L. As in the multi-prover model, when x [L, there is an oracle that
convinces the verifier always, and when x [y L any oracle has only a small
probability of convincing the verifier to the contrary.

Since an oracle’s replies (unlike a prover’s) are fixed in advance, we can think
of an oracle as a string of bits to which the verifier has random access (i.e., the
verifier can read individual bits of this string). This string is expected to represent
a proof that x [L (in other words, a membership proof). Hence, MIP can be
characterized as all languages L for which a membership proof can be verified
probabilistically in polynomial-time. (Realize that the verifier, having random
access to the proof, could conceivably check proofs of even exponential size,
since accessing any bit in the proof only requires writing its address.)

1.1.3. The Unexpected Power of Interaction. The classes IP and MIP seem
quite unlike traditional complexity classes. Both contain NP, but were not even
thought to contain co-NP. Some evidence to this effect was provided by the
relativization results of Fortnow and Sipser [1988] and Fortnow et al. [1988],
which show the existence of a language O such that if Turing machines are given
access to a membership oracle for O, then co-NP is not contained in MIP (or
IP).

72 S. ARORA AND S. SAFRA

It therefore came as a surprise when Lund et al. [1992] and Shamir [1992]
showed, using techniques developed for program checking [Blum and Kannan
1989; Blum et al. 1990; Lipton 1989], that IP 5 PSPACE. (The class PSPACE is
believed to be quite larger than NP and co-NP.) Shortly afterwards, Babai et al.
[1991] introduced even more powerful techniques to show that MIP 5 NEXP-
TIME. Note that NEXPTIME is the set of languages that can be decided by
nondeterministic exponential-time Turing machines.

1.1.4. Scaling Down MIP 5 NEXPTIME. Since NEXPTIME can be charac-
terized as the set of languages that have exponential-size membership proofs, the
result MIP 5 NEXPTIME [Babai et al. 1991], combined with the oracle
formulation of MIP [Fortnow et al. 1988], shows that if a language has
membership proofs of exponential size, then some probabilistic polynomial-time
verifier can check those membership proofs.

There were two efforts to “scale down” the above result, that is, to show
efficient verification procedures for checking membership proofs for smaller
nondeterministic classes, such as NP. Note that membership proofs for NP have
polynomial size, so a straightforward meaning of “scaling-down” would require
the running time of the verifier to be polylogarithmic. But this cannot be, since
the verifier must take linear time simply to read the input.

Babai et al. [1991] nevertheless obtained a scale-down result (including a
scale-down in the running time of the verifier) by changing the model of
computation: in the new model, the input has to be provided to the verifier in an
encoded form using a specific error-correcting code. The authors showed that in
this model, membership proofs for any language L [NP can be verified by a
probabilistic verifier in polylogarithmic time. This counterintuitive result is
possible because the verifier can randomly sample a small number of bits of the
encoded input, use them to gain very “global” knowledge about the entire input,
and then check that the membership proof is correct for the input. (Babai et al.
also suggested an application of their ideas to mechanical checking of mathemat-
ical proofs. We return to this application in Section 6.)

However, if the model of computation has to be left unchanged, then a
different scale-down result could still be possible: instead of scaling down the
running time of the verifier, scale down just the number of random bits and query
bits (number of bits looked at in the membership proof) it uses. This approach
was suggested by Feige et al. [1991], who showed that there exist verifiers for NP
that run in polynomial time, but use only O(log n log log n) random bits and
query bits.

1.1.5. MIP and the Hardness of Approximation. The above-mentioned devel-
opments were exciting. Even more exciting was a connection, discovered in Feige
et al. [1991] between their scaled-down version of MIP 5 NEXPTIME and the
hardness of approximating the clique number.

We will describe this connection in greater detail later, but briefly stated, the
two results shown were as follows. First, if there is a polynomial-time approxima-
tion procedure that approximates v(G) even to within a factor of 2log12en, then
any NP problem can be solved deterministically in quasi-polynomial(5 n logO(1)n)
time. This suggests that unless all NP problems can be solved in “almost”
polynomial time, there are no efficient algorithms for approximating v(G) even
in a very weak sense. Second, in an attempt to prove clique approximation as

73Probabilistic Checking of Proofs: A New Characterization of NP

close to NP-hard as possible, Feige et al. showed that if v(G) can be approxi-
mated to within any constant factor in polynomial time, then every NP problem
can be solved deterministically in nO(log log n) time.

1.2. THIS PAPER. The notion of efficiently checkable membership proofs is
inherently interesting because it represents a new way of looking at classical
complexity classes such as NP. The notion becomes even more intriguing in light
of the possible trade-offs, hinted at in the results of Feige et al. [1991] and Babai
et al. [1991], between the verifier’s running time, random bits, and query bits. If
these trade-offs can be improved, improved nonapproximability results for the
clique problem follow, as we will soon see. To facilitate the study of such
trade-offs, we define below a hierarchy of complexity classes PCP (for probabi-
listically checkable proofs). Section 1.2.2 describes a new characterization of NP
in terms of PCP, and shows how it leads to improved hardness results for the
clique problem.

1.2.1. Probabilistically Checkable Proofs. A verifier is a probabilistic polynomi-
al-time Turing machine M that is given an input x and an array of bits P, called
the proof string (or just proof for short). For an input x, random string t and
proof string P, define MP(x, t) to be 1 if M accepts x using t after examining
proof string P. Otherwise, MP(x, t) is 0.

The next definition formalizes a concept dating back to Fortnow et al. [1988].

Definition 1.2.1.1. Let L be a language. A verifier M checks membership
proofs for L if it behaves as follows for every input x.

(1) If x [L, there is a proof P that causes M to accept for every random string,
that is,

Pr
t

@MP~ x, t! 5 1# 5 1.

(2) If x [y L, then for all proofs P,

Pr
t

@MP~ x, t! 5 1# , 1
2 .

(In both cases, the probability is over the choice of the random string t.)

In Feige et al. [1991], a new twist was introduced in this setting: there is a
(startlingly low) limit on the number of random bits used by the verifier, and the
number of bits it can read in the proof. Note that the verifier is allowed random
access to proof P; that is, it can read individual bits of P. The operation of
reading a bit of P is called a query.

FIG. 1. A Probabilistically Checkable
Proof (PCP) System. Proof P is an array
of bits to which the verifier M has ran-
dom access. The verifier uses a random
string t.

74 S. ARORA AND S. SAFRA

For integer valued functions r and q, we say that M is (r(n), q(n))-restricted if,
on an input of size n, it uses at most O(r(n)) random bits for its computation,
and queries at most O(q(n)) bits in the proof string.

More specifically, the (r(n), q(n))-restricted verifier behaves as follow on an
input of size n. The verifier first reads the input x and the random string t. Next,
it computes1, in poly(n) time, a sequence of locations i1(x, t), i2(x, t), . . . ,
iO(q(n))(x, t). Then it reads the bits P[i1(x, t)], . . . , P[iO(r(n)(x, t)] from the
proof onto its work-tape. Here P[i] denotes the ith bit of proof P. Then, the
verifier computes further for poly(n) time before deciding to accept or reject.

Definition 1.2.1.2. A language L is in PCP(r(n), q(n)) if there is an (r(n),
q(n))-restricted verifier that checks membership proofs for L.

By definition, NP is PCP(0, poly(n)), the class of languages for which
membership proofs are checkable in deterministic polynomial-time. Further,
MIP, the class of languages for which membership proofs can be checked by a
probabilistic polynomial-time verifier, is just PCP(poly(n), poly(n)).

Also, we remark that PCP(r(n), q(n)) # Ntime(2O(r(n))q(n) 1 poly(n)).
The reason is that an (r(n), q(n))-restricted verifier has at most 2O(r(n)) possible
runs— one for each choice of its random string—and in each run it reads at most
O(q(n)) bits in the proof string. Hence, over all runs, it reads at most
2O(r(n))q(n) bits from the proof string. To decide whether there exists a proof
string which the verifier accepts with probability 1, a nondeterministic Turing
machine “guesses” the proof string in 2O(r(n))q(n) time, and then deterministi-
cally goes through every possible run of the verifier. Thus every language in
PCP(r(n), q(n)) is in Ntime(2O(r(n))q(n)).

The above-mentioned paper [Feige et al. 1991] implicitly defined a hierarchy
of complexity classes similar to PCP. The hierarchy was unnamed there, so for
sake of discussion we give it the name MO (for “memoryless oracle,” a term used
in that paper). For every integer-valued function c such that c(n) # poly(n), the
class MO(c(n)) is the same as our PCP(c(n), c(n)). The Feige et al. [1991]
paper showed that NP # MO(log n z log log n). Since, as noted above,
MO(log n z log log n) is in turn contained in Ntime(nO(log log n)), this
result shows that MO(log n z log log n) is sandwiched between NP and
Ntime(n

O(log log n)

). (We note that NP # PCP(poly(log n), poly(log n)), a slightly
weaker result, was also implicit in Babai et al. [1991].)

1.2.2. A New Characterization of NP and Its Applications. As mentioned
above, NP 5 PCP(0, poly(n)). An interesting open question arising from the
“sandwich” result implicit in Feige et al. [1991] was whether NP has an exact
characterization in terms of PCP. Our main theorem settles this question.

THEOREM 1.2.2.1. (MAIN). NP 5 PCP(log n, log n).

1 Note that we are restricting the verifier to query the proof nonadaptively: the sequence of locations
queried by it depend only on the input and the random string, and not upon the bits it may already
have queried in P. The original draft of this paper allowed verifiers to query the proof adaptively.
This caused confusion among readers, since the verifiers we actually construct in the paper are
nonadaptive. Also, the Composition Lemma, our most important lemma, relies crucially on verifiers
being nonadaptive.

75Probabilistic Checking of Proofs: A New Characterization of NP

Theorem 1.2.2.1 is probably optimal, in the following sense: if NP # PC-
P(o(log n), o(log n)), then NP 5 P. This implication is a consequence of a
reduction in Feige et al. [1991] (see Theorem 26 in the Appendix), which reduces
every language in L [PCP(o(log n), o(log n)) to sublinear instances of the
clique problem; that is, it reduces the membership problem for inputs of size n to
clique instances of size no(1). Thus, if NP # PCP(o(log n), o(log n)), we can
reduce the clique problem on graphs of size n to the clique problem on graphs of
size no(1). By iterating this reduction, we can reduce the clique problem on
graphs of size n to the clique problem on graphs of size O(log n), which is
trivially in P.

However, the above argument leaves open the possibility that NP # PCP(log
n, o(log n)). As a matter of fact, we can prove the following result:

THEOREM 1.2.2.2. For every fixed e . 0, NP 5 PCP(log n, log0.51e n).

Note that Theorems 1.2.2.1 and 1.2.2.2 together imply that PCP(log n, log n)
5 PCP(log n, log0.51e n), thus raising the question (which was actually raised in
an early draft of this paper) whether the O(log0.51e n) query bits could be
reduced further.

Soon after the initial circulation of the draft of this paper, it was noticed
[Arora et al. 1992b] that the techniques of this paper actually show NP 5
PCP(log n, (log log n)2). Then Arora et al. [1992a] showed that NP # PCP(log
n, 1). (See Section 6.)

Our new characterization of NP also allows us to prove the NP-hardness of
approximating the clique problem, thus resolving an open question in Feige et al.
[1991].

COROLLARY 1.2.2.3. For any positive constants c, e, if a polynomial-time
algorithm approximates the clique problem within a ratio 2c log0.52en, then P 5 NP.

PROOF. We show that the hypothesis implies a polynomial-time algorithm for
SAT. We use a reduction from PCP to clique described in Feige et al. [1991] (see
Theorem A.7), and an error-amplification technique from Ajtai et al. [1987] (the
idea of using this technique in the context of proof checking is from Zuckerman
[1991]).

Since NP 5 PCP(log n, log0.51e/2 n), there is a (log n, log0.51e/2 n)-restricted
verifier that checks membership proofs for SAT. The randomness-efficient error
amplification in Ajtai et al. [1987] allows us to change the verifier into one that is
(log n, log n)-restricted and has the following property. If x [SAT, there is a
proof Px that the verifier accepts with probability 1. But if x [y SAT, the verifier
accepts every proof with probability less than

p 5 22(log n)/~log0.51e/2n! 5 22log0.52e/2n.

Now apply the reduction from Feige et al. [1991] (see Theorem A.7) to this
new verifier. Given a Boolean formula of size n, the reduction produces graphs
of size 2O(log n) 5 nO(1). Let N denote this size. The reduction ensures that the
clique number when x [SAT is higher than the clique number when x [y SAT
by a factor 1/p 5 2log0.52e/2n. As a function of N, this gap is 2u(log0.52e/2N), which is
asymptotically larger than 2clog0.52eN for every constant c. Hence, if the approxi-
mation algorithm mentioned in the Lemma statement exists, then it can be used

76 S. ARORA AND S. SAFRA

to distinguish between the cases x [SAT and x [y SAT in polynomial time, and
so P 5 NP. e

1.3. OTHER RELATED WORKS. Alternative characterizations of NP exist. Fa-
gin [1974] gave a characterization in terms of spectra of second order formulas.
This characterization has become the focus of renewed interest since the work of
Papadimitriou and Yannakakis [1991], in which they use Fagin’s ideas to define
restricted subclasses of NP optimization problems and define a notion of
completeness (with respect to approximability) within the subclasses.

Recent work in program checking and interactive proof systems has resulted in
other characterizations of NP. For instance, Lipton [1989] showed that member-
ship proofs for NP can be checked by probabilistic logspace verifiers that have
one-way access to the proof and use O(log n) random bits. It is easily seen that
this is another exact characterization of NP. Lipton’s work has recently been
extended by Condon and Ladner [1989] to give a somewhat stronger result. In
these characterizations, the verifier, though very restricted, at least receives a
polynomial number of bits of information about the proof.

Condon [1993] used the bounded-away probability in such characterizations of
NP to show the NP-hardness of approximating the Max-Word problem. This
largely unknown result was independent of (and slightly predated) the result of
Feige et al. [1991].

The main difference between the above probabilistic characterizations of NP
and our characterization is that they restrict the computational power of the
verifier, whereas we restrict the amount of randomness available to it and the
number of bits it can extract from the membership proof.

2. Overview

We prove Theorem 1.2.2.2 by composing verifiers, a new technique that is
described below (see Lemma 3.4). This technique has played a pivotal role in all
subsequent works in this area.

Our starting point is the verifier of Babai et al. [1991a] in its scaled-down form
[Babai et al. 1991b and Feige et al. 1991]. This verifier, because of its reliance on
a special error-correcting code, has certain strong properties, some of which were
earlier noted in Babai et al. [1991b]. We will use such properties to compose
verifiers. Composition,2 when done correctly, improves efficiency (the resulting
verifier reads very few bits from the proof). However, it requires that the
verifiers have certain properties, and that one of the verifiers be in normal form.
We will later describe how to construct such verifiers.

In addition to verifier composition, we also develop some other techniques to
prove our main results. Chief among them is our improved analysis of the
efficiency of the verifiers in Babai et al. [1991b] and Feige et al. [1991],
specifically, of a procedure called the low degree test. (This improved analysis
becomes possible through our Lemma 5.2.1.)

The rest of the paper is organized as follows. Section 2.1 defines some
coding-related terms that will be used often (in fact encodings are inherent to the

2 A preliminary version of this paper used the term “Recursive Proof Checking” instead of “verifier
composition.” We decided on this change because, as observed by several people, “recursion” was an
incorrect term for the process we were describing.

77Probabilistic Checking of Proofs: A New Characterization of NP

idea of composition). Section 3 describes the composition technique and normal
form verifiers, and how they are used to prove Theorem 1.2.2.2. Section 4
describes a certain normal form verifier that is used in the proof of Theorem
1.2.2.2.

Throughout this paper, we will often describe verifiers for the language 3SAT.
Since 3SAT is NP-complete, verifiers for other NP languages are trivial modifi-
cations of this verifier. Throughout this paper, w denotes a 3CNF formula that is
the verifier’s input, and n denotes the number of variables in it. We identify, in
the obvious way, the set of bit strings in {0, 1}n with the set of truth assignments
to variables of w.

2.1. CODES AND ENCODING SCHEMES. Let S be a finite alphabet. If x and y
are strings in Sm for some m $ 1, then the distance between two words x and y,
denoted D(x, y), is the fraction of coordinates in which they differ. (This
distance function is none other than the well-known Hamming metric, but scaled
to lie in [0, 1].)

A code # over the alphabet S is a subset of Sm for some m $ 1. Every word in
is called a codeword. A word y is g-close to # (or just g-close when it is clear
from the context what the code # is) if there is a codeword z [# such that
D(y, z) , g.

The minimum distance of code #, denoted dmin(#) (or just dmin when # is
understood from context), is the minimum distance between two codewords.
Note that if word y is dmin/2-close, there is exactly one codeword z whose distance
to y is less than dmin/2. For, if z9 is another such codeword, then by the triangle
inequality, D(z, z9) # D(z, y) 1 D(y, z9) , dmin, which is a contradiction. For
a dmin/2-close word y, denote by ỹ the codeword nearest to y.

Codes are useful for encoding bit strings. For any integer k such that 2k # u# u,
let s be a one-to-one map from {0, 1}k to # (such a map clearly exists; in our
applications it will be defined in an explicit fashion). Note that the encoding
satisfies, @x, y [{0, 1}k, that d(s(x), s(y)) $ dmin. We emphasize that the
map s need not be onto, that is, s21 is not defined for all codewords. An
encoding scheme is a family of encodings, one for all string lengths.

Definition 2.1.1 (encoding scheme). An encoding scheme s 5 {(Sn, #n, sn)
: n $ 1} with minimum distance dmin is an infinite sequence of (alphabet, code,
encoding) triples. Each Sn is an alphabet, each #n is a code of minimum distance
dmin over the alphabet Sn, and sn : {0, 1}n 3 #n is an encoding of n-bit strings
using #n.

For a string s [{0, 1}n, we use s(s) as a shorthand for sn(s).

3. Normal Form Verifiers and Their Use in Composition

In this section, we prove Theorem 1.2.2.2. The essential ingredients of this proof
are the Composition Lemma (Lemma 3.4), which we will prove in this section,
and Theorem 3.5, which we will prove in Section 4.

As already mentioned, our starting point are the verifiers for 3SAT that were
constructed in Babai et al. [1991a; 1991b] and Feige et al. [1991]. Now we
mention some of their properties that will be of interest.

78 S. ARORA AND S. SAFRA

(1) The proof can be viewed as a string over a nonbinary alphabet. The verifier has
an associated sequence of alphabets {Sn : n 5 1, 2, 3, . . .}. When the
input Boolean formula has size n, the verifier expects the proof to be a string
over the alphabet Sn. A query of the verifier involves reading a symbol of Sn.

(2) The verifier has a low decision time. Recall that, by definition, the verifier
queries the proof nonadaptively. In other words, its computation can be
viewed as having three stages. In the first, it reads the input and the random
string, and decides which locations to examine in the proof. In the second
stage, it reads symbols from the proof string P onto its work tape. In the
third stage, it decides whether or not to accept. Usually this third stage takes
very little time compared to n (for concreteness, the reader may think of it as
poly(log n)). To emphasize this fact, we use a special name for the running
time of the third stage: it is the verifier’s decision time.

A clarification is in order about Property (1). As originally defined, the proof
is an array of bits, to which the verifier has random access. This is still the case.
However, the verifier treats this array as if it were partitioned into chunks of
loguSnu bits (each representing a symbol of Sn). The verifier either reads all
the bits in a chunk or none at all. (Henceforth, whenever we say that the verifier
“expects” the proof to have a certain structure, the reader should interpret that
statement in a similar way.)

Now we encapsulate the two properties above in the definition of the
complexity class RPCP (the letters stand for Restricted PCP).

Definition 3.1 (RPCP(r(n), q(n), s(n), t(n))). Let r, q, s, t be functions
defined on the positive integers. A language L is in RPCP(r(n), q(n), s(n),
t(n)) if there is a verifier that checks membership proofs for L and on inputs of
size n obeys the following constraints: (i) It uses O(r(n)) random bits, (ii) It uses
an alphabet of size 2O(s(n)) (i.e., an alphabet whose every symbol requires
O(s(n)) bits to represent), (iii) It makes O(q(n)) queries (each of which reads
an alphabet symbol). (iv) It has a decision time of O(t(n)).

Note that RPCP(r(n), q(n), s(n), t(n)) # PCP(r(n), q(n) z s(n)). For all
our verifiers, r(n) 5 log n. The parameter that differs most dramatically among
our verifiers is the number of bits read from the proof, which is O(q(n) z s(n)).
The composition lemma gives a technique to reduce this parameter, provided
there exists a “reasonably” efficient normal form verifier.

Roughly speaking, a normal form verifier is a verifier with an associated
encoding scheme, s. The verifier is able to do the following kind of verification
extremely efficiently for any p $ 1:

Given: A circuit C on k inputs and p codewords s(a1), . . . , s(ap), where
each ai [{0, 1}k/p.

To Check: C(a1 + a2 +. . .+ ap) 5 accept.

Suppose there is some “reasonably” efficient normal form verifier V2. Now
suppose L [RPCP(r(n), q(n), s(n), t(n)) and let V be a verifier for L. We
indicate how to use V2 to reduce the parameter q(n)s(n). Let us fix an input for
V, thus fixing the verifier’s alphabet S, the number of queries Q, and the
decision time, T. For any random string r, the verifier’s decision to accept or

79Probabilistic Checking of Proofs: A New Characterization of NP

reject a provided proof P is based upon the contents of only Q locations in P.
Furthermore, this decision is arrived in time T. Thus by using a standard
transformation from a time T computation to a size O(T2) size circuit [Papa-
dimitriou 1994], we can think of the third stage as being represented by a circuit
Cr of size O(T2) (see Figure 2) whose input3 is a bit string of size Q z log S.
The verifier accepts proof P using r as a random string iff

Cr~P@i1~r!# + P@i2~r!# +· · ·+ P@iQ~r!#! 5 accept, (1)

where (i1(r), . . . , iQ(r)) is the Q-tuple of queries made by the verifier using r as
a random string,4 P[j] 5 the contents of the jth location in proof P (we are
thinking of P[j] as a bit string) and + denotes string concatenation. We will refer
to this circuit Cr, which represents the verifier’s third stage, as the decision
circuit. We emphasize again that Cr is very small compared to the input size n.

The key idea in verifier composition is to eliminate the need for V to read the
strings P[i1(r)], . . . , P[iQ(r)] in their entirety. Instead V expects the proof
string to have a slightly different format: each symbol of P is not present in
“plaintext” but is present in an encoded form using V2’s encoding scheme s. In
other words, the proof is s(P[1]), s(P[2]), Now, checking whether condition
(1) holds is easy: our verifier V has random access to s(P[i1(r)]), . . . ,
s(P[iQ(r)]), so it can just use the program of the normal-form verifier V2 to do
this check. Potentially, this reduces the number of bits read from the proof. The
input to V2 is the decision circuit Cr, so the number of bits V2 reads from the
proof is a function of uCru, and uCru ,, n. (Of course, this rough sketch has not
addressed potential problems such as: what happens to the verifier if the entries
in the presented proof are not codewords but some arbitrary strings? It turns out
that the normal-form verifier can detect this situation and reject. The formal
definition below clarifies this.)

Now we give a formal definition of “normal form verifiers.” We slightly deviate
from the rough sketch in that we define this notion using 3CNF formulae instead
of circuits. We also remark at this point that the “encoded inputs” idea of Babai

3 Strictly speaking, the input to the decision circuit also includes up to T bits that the verifier may
have written, ahead of time, on its work-tape. However, these bits can be “hardwired” into the circuit.
4 The sequence of queries actually depends on both the input and the random string r (see the remark
before Definition 1.2.1.2). However, in the current discussion the verifier’s input has been fixed.

FIG. 2. Using random string r, the
verifier computes a tiny circuit Cr

and a tuple of queries (i1(r), . . . ,
iQ(r)). It accepts iff P[i1(r)] +

P[i2(r)] +. . .+ P[iQ(r)] is an input
on which circuit Cr outputs “accept.”
The size of Cr is quadratic in the
verifier’s decision time.

80 S. ARORA AND S. SAFRA

et al. [1991b] was a simpler version of this definition (specifically, they used p 5
2 and didn’t characterize the verifier using as many parameters).

Definition 3.2 (Normal Form Verifiers). Let functions r, s, q, t be defined on
the positive integers. An (r(n), s(n), q(n), t(n))-constrained normal-form
verifier is a verifier V with an associated encoding scheme s 5 (Sn, #n, sn) of
some minimum distance dmin.

Given any 3CNF formula w with n variables and an integer p that divides n,
the verifier has the following behavior.

(a) It can check whether a given p-part split-encoded assignment satisfies w. The
verifier is provided random access to a “proof-string” z1]. . .] zp] p,
where the zi’s and p are strings over the alphabet Sn/p and] is a special
symbol. The verifier’s behavior falls into one of the following cases:

—If z1, . . . , zp are codewords such that each s21(zi) is an (n/p)-bit string
and s21(z1) +. . .+ s21(zp) is a satisfying assignment to w, then there is a p
such that

Pr@verifier accepts z1]· · ·] zp] p# 5 1.

—If ?i : 1 # i # p such that zi is not dmin/3-close, then for all p,

Pr@verifier accepts z1]· · ·] zp] p# , 1
2 .

—If each zi is dmin/3-close, but s21(N(z1)) +. . .+ s21(N(zp)) is not a
satisfying assignment, where N(zi) is the codeword nearest to zi, then again
for all p

Pr@verifier accepts z1]· · ·] zp] p# , 1
2 .

(b) Can do (a) while obeying certain resource constraints. While doing the check in
part (a), the verifier obeys the following constraints: (i) It uses O(r(n))
random bits, (ii) it uses an alphabet Sn/p of size 2O(s(n)) (i.e., an alphabet
whose every symbol requires O(s(n)) bits to represent), (iii) it reads O(p 1
q(n)) symbols from the proof, and (iv) it has decision time O(p z t(n)). e

Remarks. (i) It should be surprising that the number of queries in part (b) is
O(p 1 q(n)). As we increase p, the verifier reads an average of O(1 1 q(n)/p)
symbols from each of the p 1 1 parts of the proof. Naively, one would expect it
to read O(q(n)) symbols per part, for a total of O(p z q(n)) queries. (ii) If the
verifier is checking a p-part split-encoded assignment and is observed to accept
some proof with probability .1/2, then we can conclude that the input Boolean
formula is satisfiable. We expand upon this remark in the following proposition:

PROPOSITION 3.3. If there exists an (r(n), q(n), s(n), t(n))-constrained normal-
form verifier, then NP # RPCP(r(n), q(n), s(n), t(n)).

PROOF. The main point is that a normal-form verifier can be used to check
membership proofs for 3SAT (in the sense of Definition 1.2.1.1). Suppose V is an
(r(n), q(n), s(n), t(n))-constrained verifier and s is its encoding scheme. We
use V to check 1-part split-encoded assignments. This means that if the given
formula has a satisfying assignment s, then there exists a proof of the form s(s)

81Probabilistic Checking of Proofs: A New Characterization of NP

] p that the verifier accepts with probability 1. If the formula is not satisfiable,
then no proof-string of the form z] p is accepted with probability more than
1/2.

Furthermore, in checking such a proof the verifier reads only O(q(n))
symbols, where each symbol is represented by s(n) bits. We conclude that
3SAT [RPCP(r(n), q(n), s(n), t(n)). e

LEMMA 3.4 (COMPOSITION).5 Let r, q, s, t be any functions defined on the
natural integers. Suppose there is a normal-form verifier V2 that is (r(n), s(n), q(n),
t(n))-constrained. Then, for all functions R, Q, S, T,

RPCP~R~n! , S~n! , Q~n! , T~n!! #

RPCP~R~n! 1 r~t! , s~t! , Q~n! 1 q~t! , Q~n!t~t!! ,

where t is a shorthand for O((T(n))2).

Remark

(i) When we say t is a shorthand for O((T(n))2), we mean for example that s(t)
should be interpreted as s(O(T(n)2).

(ii) To understand the usefulness of the lemma, realize that we are showing how
to use V2 to convert a verifier that reads O(S(n)Q(n)) bits into a verifier
that reads only O(s(t) z (q(t) 1 Q(n))) bits from the proof. Whenever we
use the lemma, t and s(n) are ,,n. Thus, the saving is potentially large.
This will become clearer in our proof of Theorem 1.2.2.2 below.

The proof of the following theorem will take up Section 4.

THEOREM 3.5. Let h, m be positive integers such that (h 1 1)m21 , n # (h 1
1)m and h $ log n. Then there is a (log n, h log(h), m, poly(h))-constrained
normal-form verifier.

Note that in Theorem 3.5, m ' log n/log h , log n # h. Now we prove
Theorem 1.2.2.2.

PROOF (OF THEOREM 1.2.2.2). For any positive fraction e, we show that
3SAT has a (log n, log0.51e n)-restricted verifier.

Let V1 be the verifier whose existence is guaranteed in Theorem 3.5 when we
choose h 1 1 5 2=log n, and m 5 O(=log n). Then V1 is (log n, 2O(=log n),
=log n, 2O(=log n))-constrained. Thus, by Proposition 3.3,

3SAT [RPCP~log n, 2O(Î log n! , Îlog n, 2O(Î log n)). (2)

Verifier V1 uses O(log n) random bits, which is acceptable. But the number of
bits it reads from the proof (even for p 5 1) is 2O(=log n) z 2O(=log n) 5
2O(=log n). First, we use the existence of V1 and apply the Composition Lemma
to statement (2). Let t(n) 5 2O(=log n) denote the decision time before
composition. The various parameters of the resulting verifier are obtained as
follows.

5 This lemma is a fleshed-out version of the original lemma in Arora and Safra [1992]. The concept of
a normal-form verifier was not made very explicit in that paper.

82 S. ARORA AND S. SAFRA

(1) Number of random bits. Changes from O(log n) to

O~log n 1 log~t~n!2!! 5 O~log n 1 Îlog n! 5 O~log n! .

(2) Logarithm of alphabet size. Changes from s(n) 5 O(=log n) to

O~s~t~n!2!! 5 O~ Îlog t~n!! 5 O~log1/4 n! .

(3) Number of queries. Changes from q(n) 5 O(=log n) to

O~q~n! 1 q~t~n!2!! 5 O~ Îlog n 1 Îlog t~n!! 5 O~ Îlog n! .

(4) Decision time. Changes from t(n) 5 2O(=log n) to

O~q~n! z t~t~n!2!! 5 O~ Îlog n z 2O(Î log t~n!!) 5 2O(log1/4n).

In other words,

3SAT [RPCP~log n, 2O(log1/4n! , Îlog n, 2O(log1/4n)). (3)

Let V2 be this new verifier for 3SAT. We again use the existence of V1 to apply
the Composition Lemma to statement (3). The reader can check that this gives

3SAT [RPCP~log n, 2O(log1/8n! , Îlog n, 2O(log1/8n)). (4)

Let V3 be this newest verifier for 3SAT.
Continuing this way for 1 1 log(1/log e) steps, at each step applying the

Composition Lemma to the verifier obtained in the previous step, we end up with

3SAT [RPCP~log n, 2O(loge/2n! , Îlog n, 2O(loge/2n)). (5)

Denote this verifier by V.
Though getting better, our verifier is still reading O(=log n z 2O(loge/2n)) bits

from the proof. Furthermore, O(1) applications of the Composition Lemma
using verifier V1 will not reduce the decision time (or the logarithm of the
alphabet size) below 2O(logcn) where c . 0 is some fixed constant. (We do not
wish to invoke the Composition Lemma more than O(1) times because it hid
constant factors in its O(z) notation and those constant factors could grow very
fast.) What we need instead is the existence of a normal form verifier whose
decision time is log3 n, say, since log3(2O(logcn)) 5 O(log3cn), which is subloga-
rithmic if c , 1/3.

We return to Theorem 3.5, but choose h 5 O(log n) and m 5 log n/log h 5
O(log n/log log n). Let Vsavior be the normal form verifier whose existence is
thus guaranteed. Note that Vsavior is (log n, log n log log n, log n/(log log n),
poly(log n))-constrained.

We use the existence of verifier Vsavior and apply the Composition Lemma on
statement (5). This gives a verifier Vfinal that uses an alphabet of size
O(log t1(n)log log t1(n)), where t1(n) 5 2O(loge/2n) is the decision time of V.
Thus, the alphabet size is loge/ 21o(1) n. Furthermore, the number of queries
made by Vfinal is O(q1(n) 1 log(t1(n)2)/log log t1(n)), where q1(n) 5
O(=log n) is the number of queries made by V. Thus, the number of queries is

83Probabilistic Checking of Proofs: A New Characterization of NP

O(=log n). Similarly the decision time of Vfinal is poly(log(t1(n)2)). We con-
clude that

3SAT [RPCP~log n, loge/ 21o(1) n, Îlog n, poly~log n!! . (6)

Hence, we have shown that 3SAT [PCP(log n, log1/ 21e/ 21o(1) n), and thus
3SAT [PCP(log n, log1/21e n). This finishes the proof of Theorem 1.2.2.2. e

Remark. If we only wish to show that SAT [PCP(log n, o(log n)), we can
just use the existence of Vsavior and apply the Composition Lemma on statement
(3). This shows SAT [RPCP(log n, log1/4 n, (log n)1/ 21o(1), poly(log n)).

Now we prove the Composition Lemma.

PROOF (COMPOSITION LEMMA). Let L be a language in RPCP(R(n), Q(n),
S(n), T(n)), and let V1 be the corresponding verifier for it. We will assume that
the probability 1/2 in the definition of “checking membership proofs” has been
replaced by 1/4. (This can be achieved by repeating V1’s actions twice using
independent random strings. This is allowable since R(n), Q(n), S(n), T(n)
were specified using O(z) notation anyway.) We will assume the same of verifier
V2.

Let x be an input of size n. Let R, S, Q, and T denote, respectively, the
number of random bits, the logarithm of the alphabet size, the number of queries
made, and the size of the decision circuit of V1 on this input. (The hypothesis of
the lemma implies that Q, R, S, T are O(Q(n)), O(R(n)), and O((T(n))2).)

For a random string w [{0, 1}R, we denote by Cw the decision circuit
computed by V1 using random string w, and we denote by (i1(w), i2(w), . . . ,
iQ(w)) the Q-tuple of queries made by verifier V1. Let P[j] denote the jth
symbol of proof P (we think of it below as a string of S bits). Then V1 accepts
proof P using w as a random string iff

Cw~P@i1~w!# + P@i2~w!# +· · ·+ P@iQ~w!#! 5 accept. (7)

The Cook–Levin theorem for circuits (see Papadimitriou [1994] for a descrip-
tion) gives an effective way to change this circuit Cw into a 3SAT formula cw of
size O(T) such that V1 accepts using random string w iff

?yw : P@i1~w!# + P@i2~w!# +· · ·+ P@iQ~w!# + yw satisfies cw. (8)

Note that the yw part corresponds to auxiliary variables used to transform a
circuit into a 3CNF formula. We assume without loss of generality (by “padding”
the formula with irrelevant variables) that each P[j] has the same number of bits
as yw.

To make our description cleaner, we assume from now on that P contains an
additional 2R locations, one for each choice of the random string w. The wth
location among these supposedly contains the string yw. Further, we assume that
verifier V1, when using the random string w, makes a separate query to the wth
location to read yw. Let iQ11(w) denote the address of this location. Thus, V1
accepts using the random string w iff

P@i1~w!# +· · ·+ P@iQ~w!# + P@iQ11~w!# satisfies cw. (9)

After this change, let (see Figure 3(a))

84 S. ARORA AND S. SAFRA

Y 5 Number of locations that V1 expects in a proof for input x. (10)

Now we describe the new verifier Vnew. It will check membership proofs for
input x by using the ability of V2 to check (Q 1 1)-part split-encoded
assignments to a formula of size O(T) (this formula is cw, the decision formula
of V1 for a particular random string). Let R9, Q9, S9, T9 respectively denote the
four parameters describing V2 in such a situation. Since V2 is (r(n), q(n), s(n),
t(n))-constrained, and checking a (Q 1 1)-part split-encoded assignment,

R9 5 O~r~T!! , Q9 5 O~Q 1 q~T!! , S9 5 s~T! , T9 5 O~Q z t~T!! . (11)

Let s denote the encoding scheme of V2 and suppose it encodes strings of size
O(T/(Q 1 1)) by words of length Y9 over an alphabet S9 (where log S9 5 S9).

Program of Vnew. Verifier Vnew expects the proof Pnew for x to contain Y 1 2R

words, where each word is over the alphabet S9 and has length Y9. We denote by
Pnew[i] the ith word.

Step (1). Vnew picks a random string w [{0, 1}R. Then it simulates verifier
V1 on input x and random string w to generate the decision formula cw and the
queries (i1(w), . . . , iQ11(w)). Note that thus far Vnew has not queried the
proof.

Step (2). For j 5 1, . . . , Q 1 1 let us use the shorthand zj for Pnew[i j(w)]
and let p be shorthand for Pnew[Y 1 w] (here Y 1 w denote the sum of Y and
the integer represented by w).

Vnew picks a random string w9[{0, 1}R9 and uses it to simulate the normal-
form verifier V2 on the input cw and the Q 1 1-part split-encoded assignment

z1] z2]· · ·] zQ11] p.

If V2 accepts during this simulation, then Vnew accepts. (NOTE: In simulating V2,
it is not necessary to read the words z1, . . . , zQ11, p in entirety. Instead Vnew,

FIG. 3. (a) Verifier V1 expects a proof with Y symbols. Using w [{0, 1}R as a random string it
queries locations i1(w), . . . , iQ11(w). (b) Verifier Vnew expects a proof with Y 1 2R words. Using
w [{0, 1}R it selects Q 1 2 words; these are shaded in the figure. These words are viewed as a
Q 1 1-part split-encoded assignment z1] z2]. . .] zQ11] p, which Vnew checks using the
normal-form verifier V2.

85Probabilistic Checking of Proofs: A New Characterization of NP

since it has random access to the proof, can just look at those symbols in z1, . . . ,
p which V2 decides to query using w9 as a random string. Thus, Vnew reads only
Q9 symbols.)

Complexity of Vnew. We analyze Vnew’s efficiency. The verifier uses R 1 R9
random bits. The remaining parameters are the same as those of V2 when it is
given an input of size O(T) and asked to check Q 1 1-part split-encoded
assignments. Thus the alphabet size is S9, the number of queries is Q9 and the
decision time is T9. By examining (11), we see that the parameters of Vnew are as
claimed in the statement of the lemma.

Proof of Correctness. Now we prove that Vnew probabilistically checks mem-
bership proofs for language L.

Case 1. x [L. In this case, there is a proof P with Y symbols such that

Pr
w[{0,1}R

@verifier V1 accepts P using w as random string# 5 1.

Construct as follows a proof Pnew that has Y 1 2R words. First, encode each
entry of P with s, the encoding scheme of V2. These are the first Y words of
Pnew. Then for each random string w [{0, 1}R add a new location (with the
address Y 1 w) to the proof, and put in it a word p such that on input cw

Pr
w9[{0,1}R9

@V2 accepts s~P@i1~w!#!]· · ·] s~P@iQ~w!#!] s~P@iQ11~w!#!

] p using w9# 5 1.

(Such a word p exists because of condition (9) and the definition of “checking
split-encoded assignments.”) By construction,

Pr
w[{0,1}R,w9[{0,1}R9

@Vnew accepts Pnew using ~w, w9! as random string# 5 1.

Case 2. x [y L. In this case, V1 is known to accept every membership proof
with probability less than 1/4.

We show that Vnew accepts every membership proof with probability less than
1/2. Assume for contradiction’s sake that there is a candidate proof Pnew with
Y 1 2R words such that

Pr
w[{0,1}R,w9[{0,1}R9

@Vnew accepts Pnew using ~w, w9!# $ 1
2 . (12)

We construct a table P with Y locations, in which the symbol in the jth location
is P[j] 5 s21(N(Pnew[j])), where N(Pnew[j]) denotes the codeword nearest to
Pnew[j] (NOTE: If s21(N(Pnew[j])) is not defined, we use an arbitrary string of
bits instead). Let

p 5 Pr
w[{0,1}R

@V1 accepts P using w as a random string# , 1
4 ,

where the inequality is by the fact that x [y L.
Note that if w [{0, 1}R is such that V1 rejects P using w as a random string,

then by the definition of “checking split-encoded assignments,”

86 S. ARORA AND S. SAFRA

Pr
w9[{0,1}R9

@Vnew accepts Pnew using ~w, w9!# , 1
4 .

Hence, an upperbound on the probability with which Vnew accepts Pnew is

p 1 ~1 2 p! z 1
4 # 1

4 1 3
4

1
4 , 1

2 .

This contradicts (12), and the proof for Case 2 is finished. e

Remark. By using a more careful analysis of our composition technique and
Theorem 3.5, it is possible to show that NP 5 PCP(log n, (log log n)2). We omit
this (very complicated) proof from this paper, since the result has been super-
seded by the result NP 5 PCP(log n, 1) [Arora et al. 1992] anyway.

4. Proof of Theorem 3.5

In this section we prove Theorem 3.5. The proof is largely based upon that in
Babai et al. [1991a] and Feige et al. [1991], with ingredients dating back to Lund
et al. [1992] and Babai et al. [1991b]. The only new parts are our improved
analysis of the low degree test, and our technique for showing that the verifier is
in normal form (in particular, that it can check split-encoded assignments).

Underlying the description of the verifier is an algebraic representation of a
3SAT formula. The representation uses a simple fact: every assignment can be
encoded as a multivariate polynomial that takes values in a finite field (see
Section 4.1). A polynomial that encodes a satisfying assignment is called a
satisfying polynomial. Just as a satisfying Boolean assignment can be recognized
by checking whether or not it makes all the clauses of the 3SAT formula true, a
satisfying polynomial can be recognized by checking— using some special alge-
braic procedures described below—whether it satisfies some set of equations
involving the operations 1 and z of the finite field.

Section 4.1 describes the encoding of assignments with polynomials, and
defines terms used in the rest of the paper. Section 4.2 contains a description of
the main ideas used to construct the verifier, including an algebraic representa-
tion of 3SAT. Theorem 3.5 is proved in two parts in Sections 4.3 and 4.4. This
proof uses certain algebraic procedures, whose detailed descriptions and analyses
appear in Sections 4.5 and 4.6. Some results in Sections 4.4 and 4.6 use algebraic
results on polynomials that are proved later in Section 5.

4.1. POLYNOMIAL CODES AND THEIR USE. Let F be the finite field GF(q) and
k, d be positive integers. A k-variate polynomial of degree d over F is a sum of
terms of the form ax1

j1x2
j2 . . . xk

jk where a [F and each of the integers j1, . . . , jk

is at most d. Let Fd[x1, . . . , xk] be the set of functions from Fk to F that can be
described by a polynomial of degree d.6

We will be interested in representations of polynomials by value. A k-variate
polynomial defines a function from Fk to F, so it can be expressed by uFuk 5 qk

values. In this representation a k-variate polynomial (or any function from Fk to
F for that matter) is a word of length qk over the alphabet F.

6 The use of Fd above should not be confused with the practice in some algebra texts of using Fq as a
shorthand for GF(q).

87Probabilistic Checking of Proofs: A New Characterization of NP

Definition 4.1.1. The code of k-variate polynomials of degree d (or just polyno-
mial code when k, d are understood from context) is the code Fd[x1, . . . , xk] in
Fqk

.

Now we can define distance between two words in Fqk

and terms such as
d-close, just as in Section 2.1.

Definition 4.1.2. The distance between two functions f, g: Fk 3 F is the
fraction of points in Fk they disagree on.

The distance of a function f: Fk 3 F to the polynomial code Fd[x1, . . . , xk],
denoted Dd(f), is the distance of f to the polynomial in Fd[x1, . . . , xk] that is
closest to it. If Dd(f) , d, we say f is d-close to Fd[x1, . . . , xk] (or just d-close
when the degree d can be inferred from the context).

Now we observe (for a proof, see Fact A.2) that the polynomial code has large
minimum distance.

FACT 4.1.3 (SCHWARTZ). Two distinct polynomials in Fd[x1, . . . , xk] disagree
on at least 1 2 dk/q fraction of points in Fk.

Wherever this paper uses polynomial codes, dk , q/ 2. Thus, if f: Fk 3 F is
d-close for d , 1/4, then the polynomial in Fd[x1, . . . , xk] that agrees with f in at
least 1 2 d fraction of the points is unique. (In fact, no other polynomial
describes f in more than even d 1 kd/q fraction of the points.)

Definition 4.1.4. If f: Fk 3 F is a d-close function where d , 1/4, then the
symbol f̃ denotes the (unique) polynomial nearest to it.

Polynomials are useful to us as encoding objects. We define below a canonical
way (due to Babai et al. [1991a]) to encode a sequence of bits with a polynomial.
For convenience, we describe a more general method that encodes a sequence of
field elements with a polynomial. Encoding a sequence of bits is a subcase of this
method, since 0, 1 [F.

THEOREM 4.1.5. Let h be an integer such that set of integers [0, h] is a subset of
field F. For every function s: [0, h]m 3 F, there is a unique function ŝ [Fh[x1, . . . ,
xm] such that s(y) 5 ŝ(y) for all y [[0, h]m.

Remark. Readers uncomfortable with thinking of h as both the degree of a
polynomial (i.e., an integer) and as a field element should think of [0, h] as any
subset of the field F that has size h 1 1.

PROOF. We only prove the existence of ŝ; the reader can verify uniqueness
from our construction.

For u# 5 (u1, . . . , um) [[0, h]m, let Lu# be the polynomial defined as

Lu# ~ x1, . . . , xm! 5 P
i51

m

lui
~ xi! ,

where lui
is the unique degree-h polynomial in xi that is 1 at xi 5 ui and 0 at xi [

[0, h]\{ui}. (That lui
(xi) exists follows from Fact A.1.) Note that the value of Lu#

is 1 at u# and 0 at all the other points in [0, h]m. Also, its degree is h.
Now define the polynomial ŝ as

88 S. ARORA AND S. SAFRA

ŝ~x1, . . . , xm! 5 O
u#[[0,h]m

s~u#! z Lu#~x1, . . . , xm!. e

Example 4.1.6. Let m 5 2, h 5 1. Given any function f: [0, 1]2 3 F, we
can map it to a bivariate degree 1 polynomial, f̂ , as follows.

f̂~ x1, x2! 5 ~1 2 x1!~1 2 x2! f~0, 0! 1 x1~1 2 x2! f~1, 0!

1 ~1 2 x1! x2f~0, 1! 1 x1x2f~1, 1! .

Definition 4.1.7. Let h be an integer such that [0, h] # F. For a function s:
[0, h]m 3 F, the polynomial extension of s is the polynomial ŝ [Fh[x1, . . . , xm]
defined in Theorem 4.1.5.

The encoding. We define a method to encode sequences of field elements
with polynomials. Since 0, 1 [F, the method can also be used to encode bit
strings. Let h be an integer such that [0, h] # F, and l an integer such that l 5
(h 1 1)m for some integer m. Define a one-to-one map from Fl to Fh[x1, . . . ,
xm] (in other words, from sequences of l field elements to polynomials in
Fh[x1, . . . , xm]) as follows. Identify in some canonical way the set of integers
{1, . . . , l} and the set [0, h]m # Fm. (For instance, identify the integer i [
{1, . . . , l} with its m-digit representation in base h 1 1.) Thus, a sequence s of
l field elements may be viewed as a function s from [0, h]m to F. Map the
sequence s to the polynomial extension ŝ of this function. This map is one-to-one
because if polynomials f̂ and ĝ are the same, then they agree everywhere and, in
particular, on [0, h]m, which implies f 5 g.

The inverse map of the above encoding is obvious. A polynomial f [
Fh[x1, . . . , xm] is the polynomial extension of the function r : [0, h]m 3 F
defined as r(x) 5 f(x), @x [[0, h]m.

Note that we are encoding sequences of length l 5 (h 1 1)m by sequences of
length uFum 5 qm. Whenever we use this encoding scheme, this increase in size is
not too much. The applications depend upon some algebraic procedures to work
correctly, for which it suffices to take q 5 poly(h). Then, qm is hO(m) 5 poly(l).
Hence, the increase in size is polynomially bounded.

4.1.1. RESTRICTIONS OF POLYNOMIALS: SOME DEFINITIONS. We define some
more terms that will be useful later. For a function f: Fm 3 F and a subset S #
Fm, the restriction of f on S is the function from S to F whose value at any point
u [S is f(u). We will be interested in restrictions on very special subsets of Fm:
those obtained by fixing some of the coordinates.

Definition 4.1.1.1. For a function f: Fm 3 F and field-element a [F, the
restriction of f obtained by fixing x1 5 a is the function f ux15a: Fm21 3 F defined
as

f ux15a~ x2, . . . , xm! 5 f~a, x2, . . . , xm! @~ x2, . . . , xm! [Fm21. (13)

We likewise define, for any l , m, any point (a1, . . . , al) [Fl, and any
sequence of indices i1, . . . , i l # m, the restriction f u(xi1, . . . , xil)5aW .

Note that if f is a degree-h polynomial, then so are all its restrictions defined
in Definition 4.1.1.1.

89Probabilistic Checking of Proofs: A New Characterization of NP

4.2. DESCRIPTION OF THE VERIFIER: PRELIMINARIES. We present some of the
main ideas in the design of this verifier.

Recall that w denotes the instance of 3SAT given to the verifier. Throughout
this section, we let n denote both the number of clauses and the number of
variables in w. (We defend the use of n for both quantities on the grounds that
they can be made equal: just add redundant variables, which don’t appear in any
clauses, to the formula.) Also, h, m are the integers appearing in the hypothesis
of Theorem 3.5. In fact, we assume— by adding some irrelevant variables and
clauses to w—that n 5 (h 1 1)m. Since h . log n, we have m 5 log n/log(h 1
1) , h. Finally, F denotes a finite field with Q(h3m2) elements.7 Since m , h,
this field size is O(h5).

Now we give an overview of the verifier’s program. It uses the fact (see
Definition 4.1.7) that every assignment of w, since it is a string of n 5 (h 1 1)m

bits, can be encoded by its polynomial extension.

Definition 4.2.1. A polynomial in Fh[x1, . . . , xm] is a satisfying polynomial
for the 3CNF formula w if it is the polynomial extension of a satisfying
assignment for w.

Definition 4.2.2. For a function g: Fk 3 F and a set S # Fk, the sum of g on
S is the value ¥x[S g(x).

The verifier expects the proof to contain a satisfying polynomial f: Fm 3 F.
(Note that such a function is represented by uFum 5 (h3m2)m 5 O((h5)m) 5
O(n5) values.) The verifier uses two algebraic procedures to check that f is a
satisfying polynomial. The first, called the low degree test (Procedure (2)),
probabilistically examines the proof in a few places, and rejects with high
probability if the function f is not 0.01-close. So assume for argument’s sake that
f is indeed 0.01-close. Next, the verifier tries to decide whether f̃ , the polynomial
nearest to f, is a satisfying polynomial. Here Lemma 4.2.1.1 is useful: it gives a
probabilistic method to construct a polynomial Pf̃ such that the following holds.
If f̃ is a satisfying polynomial, then Pf̃ sums to 0 (in the sense of Definition 4.2.2)
on a certain fixed subset S # F4m. But if f̃ is not a satisfying polynomial, then
with high probability, Pf̃ does not sum to 0 on S. Now the verifier can use a
simple algebraic procedure from Lund et al. [1992] called the Sum-Check
(Procedure (1)) to verify that Pf̃ indeed sums to 0 on S.

Further details are provided below. Section 4.2.1 describes the algebraic
conditions that a satisfying polynomial must obey. Section 4.2.2 describes some
algebraic procedures that the verifier will use. The proof of Theorem 4.1.1 is split
in two parts, which are proved in Sections 4.3 and Section 4.4.

4.2.1. ALGEBRAIC REPRESENTATION OF 3SAT. In Lemma 4.2.1.1, we give an
algebraic characterization of satisfying polynomials. This lemma is similar in
spirit to a lemma in Babai et al. [1991b], although the precise formulation given
here is due to Babai et al. [1991a].

7 Most of our lemmas work with smaller field sizes. But Lemma 5.2.1 requires the field to be this
large.

90 S. ARORA AND S. SAFRA

LEMMA 4.2.1.1 (ALGEBRAIC VIEW OF 3SAT). Given A [Fh[x1, . . . , xm], there
is a polynomial-time constructible sequence of poly(n) polynomials P1

A, P2
A, . . . [

F7h[x1, . . . , x4m] such that

(1) If A is a satisfying polynomial for w, then the sum of each Pi
A on [0, h]4m is 0.

But if A is not a satisfying polynomial, this sum is 0 for at most 1/8th of the
Pi

A’s.
(2) For each point w [F4m, there are three points w1, w2, w3 [Fm such that

computing the value of each Pi
A at w requires only the values of A at w1, w2 and

w3, and moreover, this computation requires only poly(mh log F) time. Further-
more, if w is uniformly distributed in F4m, then each wi is uniformly distributed
in Fm.

Proof. Since (h 1 1)m 5 n, we can identify the cube [0, h]m with the set of
integers {1, . . . , n}. By definition, polynomial A is a satisfying polynomial iff
the sequence of values (A(v) : v [[0, h]m) represents a satisfying assignment.

For j 5 1, 2, 3, let x j(c, v) be the function from [0, h]m 3 [0, h]m to {0, 1}
such that x j(c, v) 5 1 if v is the j th variable in clause c, and 0 otherwise.
Similarly let sj(c) be a function from [0, h]m to {0, 1} such that sj(c) 5 1 if the
j th variable of clause c is unnegated, and 0 otherwise. Since the OR of three
Boolean variables is 1 iff at least one of them is 1, it follows that A is a satisfying
polynomial iff for every clause c [[0, h]m and every triple of variables v1, v2, v3
[[0, h]m, we have

P
j51

3

x j~c, vj! z ~sj~c! 2 A~vj!! 5 0, (14)

that is to say, iff

P
j51

3

x ĵ ~c, vj! z ~s ĵ ~c! 2 A~vj!! 5 0, (15)

where in the previous condition we have replaced functions x j and sj appearing

in condition (14) by their degree-h polynomial extensions, xĵ : F2m3F and
sĵ: Fm3F respectively. Conditions (15) and (14) are equivalent because, by
definition, the polynomial extension of a function takes the same values on the
underlying cube (which is [0, h]m for sj and [0, h]2m for x j) as the function
itself.

Define a polynomial gA: F4m 3 F as

gA~ z# , w1, w2, w3! 5 P
j51

3

x ĵ ~ z# , wj! z ~s ĵ ~ z# ! 2 A~wj!! , (16)

where each of z# , w1, w2, and w3 takes values in Fm. Since each xĵ and sĵ has
degree h, and so does A, the degree of gA is 3 z 2 z h 5 6h.

Then, we may restate condition (15) as: A is a satisfying polynomial iff

gA is 0 at every point of @0, h#4m. (17)

91Probabilistic Checking of Proofs: A New Characterization of NP

Lemma 4.2.1.2 (below) asserts that condition (17) is equivalent to requiring,
for every Ri in a fixed set of degree h polynomials called the “zero-testers,” that
the following condition holds.

Ri z gA sums to 0 on @0, h#4m. (18)

Further, Lemma 4.2.1.2 implies that if the condition in (17) is false, then
condition (18) is false for at least 7/8 of the “zero-tester” polynomials.

Now define the desired family of polynomials {P1
A, P2

A, . . . , } by

Pi
A~ z# , w1, w2, w3! 5 Ri~ z# , w1, w2, w3! gA~ z# , w1, w2, w3! ,

where Ri is the ith “zero-tester” polynomial. Note that Pi
A is a polynomial of

degree 7h. Also, evaluating Pi
A at a randomly-chosen point in Fm requires the

value of gA at that point, which requires (as is clear from inspecting Eq. (16)) the
value of A at three random points in Fm.

Constructibility. The construction of the polynomial extension in the proof of

Theorem 4.1.5 is effective. We conclude that the functions xĵ , sĵ can be
constructed in poly(n) time. The family of Lemma 4.2.1.2 is likewise construct-
ible in poly(qm) 5 poly(n) time. Having constructed all the above, computing
the value of a function Pi

A at a point w [F4m is very fast, and takes poly(hm log
F) time. This is because we only need to compute a value of gA, which, by
inspecting (16), requires three values of A and O(1) field operations.

Thus, assuming Lemma 4.2.1.2, Lemma 4.2.1.1 has been proved. e

The following lemma concerns a family of polynomials that is useful for testing
whether or not a function is identically zero on the cube [0, h] j for any integers
h, j. We give its proof in the Appendix.

LEMMA 4.2.1.2 [“ZERO-TESTER” POLYNOMIALS [BABAI ET AL. 1991A; FEIGE ET

AL. 1991]. Let F 5 GF(q) and integers m, h satisfy 32mh , q. Then there exists a
family of q4m polynomials {R1, R2, . . .} in Fh[x1, . . . , x4m] such that if f: [0, h]4m 3
F is any function not identically 0, then if R is chosen randomly from this family,

PrF O
y[[0,h]4m

R~ y! f~ y! 5 0G #
1

8
. (19)

This family is constructible in qO(m) time.

4.2.2. THE ALGEBRAIC PROCEDURES. Now we give a “black-box” description
of the Sum-Check and the Low Degree test. Note that both procedures require,
in addition to the polynomial in question, a table with uFuO(m) 5 poly(n) entries.
Also, their randomness requirement is O(loguFum) bits, which is O(log n) for us.
Finally, the procedures’ queries to the provided tables are nonadaptive: they
depend only upon the random string and not upon the bits already inspected in
the tables.

Sections 4.5 and 4.6 provide further details on the procedures and establish the
desired properties and complexities.

PROCEDURE 1 (SUM-CHECK). Let integers d, l and field F 5 GF(q) satisfy
4dl , q.

92 S. ARORA AND S. SAFRA

Given: Polynomial B [Fd[y1, . . . , yl], a subset H # F, a value c [F, and a
table T whose each entry is a string of O(d log q) bits.

Properties of the procedure: If the sum of B on Hl is not c, the procedure rejects
with probability at least 1 2 dl/q irrespective of the contents of table T. But if
the sum is c, then there is a table T such that the procedure accepts with
probability 1.

Complexity: The procedure uses the value of B at one random point in Fl and
reads another O(l) entries from T. It makes these queries nonadaptively. It uses
log(uFul) random bits and runs in time poly(l 1 d 1 uH u 1 loguFu).

PROCEDURE 2 (LOW DEGREE TEST). Let F 5 GF(q) and d, l be integers
satisfying 100d3l2 , q.

Given: f: Fl 3 F, a number d , 0.01, and a table T whose each entry is a string
of O(d log q) bits.

Properties of the procedure: If f [Fd[y1, . . . , yl], then there is a table T such
that the procedure accepts with probability 1. If f is not d-close to Fd[y1, . . . ,
yl], then the procedure rejects with probability at least 3/4 irrespective of the
contents of table T.

Complexity: The procedure uses the value of f at O(1/d) points in Fl and reads
another O(l/d) entries from T. The queries are nonadaptive. It uses
O(log(uFul)/d) random bits and runs in time poly(l 1 d 1 loguFu).

4.3. PROOF OF THEOREM 3.5, PART (A). Now we prove Theorem 3.5. For
convenience, we prove it in two parts, (a) and (b). In this section we prove part
(a), where we prove that the verifier can check membership proofs for 3SAT. In
part (b) (in Section 4.4) we prove that the verifier can check split-encoded
assignments (in the sense of Definition 3.2), and so is in normal form.

PROOF (OF THEOREM 3.5; PART (A) OF THE PROOF). Our verifier expects the
proof to contain a function f: Fm 3 F, and a set of tables that allow it to
perform the following two steps.

First, the verifier does a low degree test to check that f is 0.01-close. Note that
the proof has to contain a table that allows the verifier to do this test. Further, if
f is not 0.01-close, the test will reject with probability at least 3/4, regardless of
this table’s contents. (Recall that the definition only asks that the verifier reject
with probability at least 1/2. But part (b) will need this probability to be at least
3/4.) So assume for argument’s sake that f is indeed 0.01-close.

Next, the verifier uses O(log n) random bits to select a polynomial Pi
f̃

uniformly at random from the family described in Lemma 4.2.1.1. It uses the
Sum-Check (Procedure (1)) to check that Pi

f̃ sums to 0 on [0, h]4m. Note that the
proof has to contain a sequence of tables, one for each polynomial in the above
family, that allows a Sum-Check to be performed on that polynomial. Out of this
sequence of tables, the verifier merely uses the one corresponding to the
polynomial it actually picks.

The Sum-Check requires the value of the selected polynomial Pi
f̃ at one

random point, which, by the statement of Lemma 4.2.1.1, requires values of f̃ at 3
random points. Getting these may seem like a problem, since the verifier has a
table for f and not for f̃ . Luckily, f and f̃ differ in at most 0.01 fraction of points,

93Probabilistic Checking of Proofs: A New Characterization of NP

and the verifier only needs the values of f̃ at three random points. So the verifier
just uses values of f for the Sum-Check, and hopes for the best. Indeed, the
probability that these are also the values of f̃ is at least 1 2 3 3 0.01 5 0.97.

Finally, the verifier accepts iff neither the low degree test nor the Sum-Check
fails.

Correctness. Suppose w is satisfiable. The verifier clearly accepts with proba-
bility 1 any proof that contains the polynomial extension of a satisfying assign-
ment, and the proper tables required by the various procedures.

Now suppose w is not satisfiable. If f is not 0.01-close, the low degree test
accepts with probability at most 1/4. So assume, without loss of generality, that f
is 0.01-close. Then the verifier can accept only if one of the three events happens.
(i) The selected polynomial Pi

f̃ sums to 0 on [0, h]4m. By Lemma 4.2.1.1, this
event can happen with probability at most 1/8. (ii) Pi

f̃ does not sum to 0, but the
Sum-Check fails to detect this. The probability of this event is upperbounded by
the error probability of the Sum-Check, which is O(mh/q). (iii) At one of the
three points at which the Sum-Check requires the value of f̃ , the functions f̃ and
f disagree. It is not clear that the Sum-Check fails in this case, but even if it does,
the probability of this event is upperbounded by 3 3 0.01 # 0.03.

To sum up, if w is not satisfiable, the probability that the verifier accepts is at
most 1/8 1 0.03 1 O(mh/q), which is less than 1/4 since q 5 Q(h3m2).

Nonadaptiveness. Although it may not be clear from the above description,
the verifier can query the proof nonadaptively. The reason is that the Sum-Check
does not need any results from the low degree test, so the verifier can read, in
one go, all the information required for both the tests. (Of course, the correctness
of the Sum-Check step cannot be guaranteed if f is not 0.01-close, but in that
case the low degree test rejects with high probability anyway.) Now, since the
Sum-Check and the low degree test are nonadaptive procedures as well, we
conclude that the verifier is nonadaptive.

Complexity. Recall that we have to show that the verifier is (log n, h log h,
m, poly(h))-constrained. By inspecting the complexities of the Sum-Check and
the low-degree test we see that the verifier needs only O(loguFu4m) 5 O(log n)
random bits for its operation. The tables in the proof contain entries of size s 5
O(h loguF)u 5 O(h log h). We think of each entry as a letter in a alphabet of size
2s. By examining the complexities of the Sum-Check and the low degree test, we
see that the verifier only examines O(m) of these entries.

In order to make the decision time poly(h), the verifier has to do things in a
certain order. In its first stage it reads the input, selects the above-mentioned
polynomial Pi

f̃ and carries out all the steps in the construction of Pi
f̃ (as described

in the proof of Lemma 4.2.1.1) except the part that actually involves reading
values of f̃ . All this takes poly(n) time, and does not involve reading the proof.
The rest of the verification requires reading the proof, and consists of the low
degree test and the Sum-Check, and the evaluation of Pi

f̃ at one point (by reading
three values of f). All these procedures require time poly(h 1 m 1 loguFu) 5
poly(h).

To finish our claim that the verifier is in normal form, we have to show that it
can check split-encoded assignments. We do this separately in Section 4.4. e

94 S. ARORA AND S. SAFRA

4.4. PROOF OF THEOREM 3.5: SPLIT-ENCODED ASSIGNMENTS. This is part (b)
of the proof of Theorem 3.5. We show how to modify the verifier in part (a)
(Section 4.3) so that it can check split-encoded assignments consisting of p parts
for any positive integer p.

Recall (Definition 3.2) that in this setting the verifier defines an encoding
method s, and expects the proof string to be of the form s(a1) +. . .+ s(ap) + p,
where p is some information that allows an efficient check that a1 +. . .+ ap is a
satisfying assignment to w (+ 5 concatenation of strings). Recall that we assume
that each ai includes the same number of variables, namely, n/p.

Assume, as in part (a), that n 5 (h 1 1)m where h, m are the same integers
as in the statement of Theorem 3.5. Assume further that p is a power of (h 1 1),
so n/p 5 (h 1 1) l for some integer l. This last assumption is without loss of
generality, since the verifier can use the usual trick of adding irrelevant variables
to the formula; the proof string then contains only the assignments to the original
variables, and the verifier supplies some trivial values for the irrelevant variables.

Since n and n/p are powers of (h 1 1), we can encode bits strings in {0, 1}n

and {0, 1}n/p by their degree-h polynomial extensions in Fh[x, . . . , xm] and
Fh[x, . . . , xl] respectively. Let s1 and s denote these encodings; i.e., s1: {0, 1}n

3 Fh[x, . . . , xm] and s: {0, 1}n/p 3 Fh[x, . . . , xl].
Now we describe how the verifier checks split-encoded assignments. It expects

the proof to contain a function f: Fm 3 F, along with tables that allow a quick
check—as in part (a)—that f is the polynomial extension of some satisfying
assignment. The verifier also expects the proof to contain p functions f1, . . . , fp:
Fl 3 F that are, supposedly, s(a1), . . . , s(ap), for some bit strings a1, . . . , ap.
Furthermore, the polynomials f and f1, . . . , fp are supposed to satisfy:

s1
21~ f ! 5 s21~ f1! +· · ·+ s21~ fp! . (20)

Checking such a proof-string involves two steps. In the first step, the verifier
checks that the provided function f is 0.01-close, and that f̃ is the polynomial
extension of a satisfying assignment. If not, the verifier accepts with probability
less than 1/4. (This step is the same as in part (a).) In the second step, the verifier
checks (using the Procedure in Figure 4.4) that the functions f, f1, . . . , fp satisfy
the concatenation property, which is defined below. If the functions do not satisfy
this property, then this part accepts with probability less than 1/4.

This finishes our description of how the verifier, given a p-part split-encoded
assignment, checks that it represents a satisfying assignment.

Definition 4.4.1. Let s and s1 be as defined above. Let f: Fm 3 F be
0.02-close and f1, . . . , fp be functions from Fl to F. Then f, f1, . . . , fp satisfy the
concatenation property if

each f i is 0.03-close (21)

and

s1
21~ f̃! 5 s21~ f̃1! + s21~ f̃2! +· · ·+ s21~ f̃ p! . (22)

Thus, to finish the description of this verifier, we describe how to check the
concatenation property by reading O(1) values of each of f, f1, . . . , fp and using
O(log n) random bits. See Figure 4.

95Probabilistic Checking of Proofs: A New Characterization of NP

Complexity: The test can query the tables for f, f1, . . . , fp nonadaptively,
since it can construct Li ahead of time, and then perform all 1000 steps
simultaneously. Furthermore, the test uses O(m loguFu) random bits, which is
O(log n) in our context, and examines 1000 values of each of f, f1, . . . , fp.

Correctness of the Procedure: First, we note that if all the functions are degree
h polynomials and satisfy Condition (20), then the procedure accepts with
probability 1. To see this, note that by definition, s1

21(f) is the sequence of
values of f on [0, h]m and each s21(f i) is the sequence of values of f i on [0, h] l.
Further, i ranges over {1, . . . , p} 5 [0, h]m2l, so Condition (20) holds iff

f~i, u! 5 f i~u! @i [@0, h#m2l, u [@0, h# l. (23)

But since the polynomial Lj defined in the description of the procedure is 1 at
j [[0, h]m2l and 0 at every point in [0, h]m2l\{ j}, Condition (23) is equivalent
to

f~i, u! 5 O
j[[0,h]m2l

Lj~i! z f j~u! @i [@0, h#m2l, u [@0, h# l.

But f and ¥ j[[0,h]m2l Lj z f j are degree-h polynomials in m variables, so if they
agree on [0, h]m, they are the same polynomial (this follows from the uniqueness
of the polynomial extension; see Theorem 4.1.5). Hence, the procedure accepts
with probability 1.

The following theorem shows that if the procedure accepts with high probabil-
ity, then the concatenation property holds.

THEOREM 4.4.2. Suppose the procedure described above is given a 0.01-close
function f and some functions f1, . . . , fp, and it accepts with probability more than
1/4. Then f, f1, . . . , fp satisfy the concatenation property.

PROOF. Let g: Fm 3 F be defined as

g~x1, . . . , xm! 5 O
i[[0..h]m2l

Li~x1, · · · , xm2l! z fi~xm2l11, x2, . . . , xm!, (24)

FIG. 4. Procedure to check the concatenation property.

96 S. ARORA AND S. SAFRA

where Li is 1 at i and 0 elsewhere in [0..h]m2l. Note that the procedure
compares the values of f and g at 1000 points, accepting iff they are the same.
Hence, if D(f, g) $ 0.01, then the procedure rejects with probability at least
(1 2 0.01)1000 . 3/4. According to the hypothesis, the procedure accepts with
probability at least 1/4. Hence, D(f, g) , 0.01.

By hypothesis, f is 0.01-close, so it follows from triangle inequality that g is
0.02-close, and furthermore, that the polynomials closest to g and f are the same:
f̃ 5 g̃. We now show that the concatenation property follows. (We will use
Lemma 5.1.1, which is proved below in Section 5.)

For a function t: Fm 3 F, and points bW [Fl and aW [Fm2l, let t uxW15aW denote
the restriction of t obtained by fixing its first m 2 l arguments according to
(x1, . . . , xm2l) 5 aW and let t uxW25bW denote the restriction of t obtained by fixing
its last l arguments according to (xm2l11, . . . , xm) 5 bW .

Notice that for each bW [Fl, the function g uxW25bW is given by

g ux2W5bW~ x1, . . . , xm2l! 5 O
i[[0..h]m2l

Li~ x1, . . . , xm2l! z f i~bW ! . (25)

Since each Li is a degree-h polynomial, so is g uxW25bW .
Lemma 5.1.1 applies to functions from Fm to F that, like g, are 0.02-close, and

have the property that fixing their last l arguments always gives a degree-h
polynomial. (In terms of Definition 5.1, such functions are (m 2 l)-nice.) The
lemma shows that every such function has the following property (assuming the
field is “large enough”): fixing its first m 2 l arguments always gives a 0.03-close
function. In other words, for all aW [Fm2l, the restriction g uxW15aW is 0.03-close.
Furthermore, the lemma tells us that the polynomial nearest to g uxW15aW is just the
corresponding restriction of g̃ , namely, g̃ uxW15aW . We conclude that D(g uxW15aW ,
g̃ uxW15aW) # 0.03 for all aW [Fm2l.

Now note that g uxW15aW is merely the function

g uxW15aW~ xm2l11, . . . , xm! 5 O
i[[0..h]m2l

Li~aW ! z f i~ xm2l11, . . . , xm! .

Consider g uxW15i, where i [[0, h]m2l. Since Li(aW) 5 0 for aW [[0, h]m2l\{i},
we have,

g uxW15i 5 f i @i [@0, h#m2l.

Thus, we conclude that each f i is 0.03-close, and one half of the concatenation
property (Condition (21)) is proved.

As for the second half (Condition (22)), note that since f i 5 g uxW15i for each i [
[0, h]m2l, we have D(f i, g̃ uxW15i) # 0.03. Thus f̃ i, the polynomial nearest to f i, is
g̃ uxW15i. But since we proved earlier that g̃ 5 f̃ , we conclude that f̃ i 5 f̃ uxW15i.

The rest of the argument is similar to that given in the paragraphs before this
lemma. By definition of the polynomial extension, the degree-h polynomial f̃: Fm

3 F is s1(z), where z is the sequence of values that f̃ takes on [0, h]m. Hence,
s21(f̃) is z. Similarly, for each i [[0, h]m2l, f̃ uxW15i is s(zi), where zi is the
sequence of values of f̃ on {(i, u) : u [[0, h] l}. Therefore, we have trivially

s1
21~ f̃! 5 s21~ f̃ uxW151! +· · ·+ s21~ f̃ uxW15p! .

97Probabilistic Checking of Proofs: A New Characterization of NP

But we proved above that f̃ i 5 f̃ uxW15i. Hence, the second half of the concatena-
tion property, Condition (22), now follows. e

4.5. THE SUM-CHECK. We describe Procedure (1), the Sum-Check. The
procedure is due to Lund et al. [1992]; we include it here chiefly for complete-
ness, and to point out that the procedure can query the proof nonadapatively
(this fact is not clear in existing descriptions).

The inputs to the procedure consist of a degree-d polynomial B in l variables, a set H
F, and a value c [F. The procedure has to verify that the sum of the values of B on
the subset Hl of Fl is c. It will need, in addition to the table of values of B and the
integers l and d, an extra table. We first describe what the procedure expects in the table.

When we fix all arguments of B but one, we get a univariate polynomial of
degree at most d in the unfixed argument. It follows that for i such that 1 # i ,
l, and a1, . . . , ai21 [F, the sum

O
xi11, . . . , xl[H

B~a1, . . . , ai21, xi, xi11, . . . , xl! (26)

is a degree-d univariate polynomial in the variable xi. We denote this sum by
Ba1, . . . ,ai21

(xi). (For i 5 1 we use the notation Be(x1).)

Example 4.5.1. The univariate polynomial Be(x1) is represented by d 1 1
coefficients. When we substitute x1 5 a in this polynomial, we get the value
Be(a), which, by definition, is the sum of B on the following subcube:

$~ x1, . . . , xl! : x1 5 a, and x2, . . . , xl [H% .

(Equivalently, we can view the value Be(a) as the sum of the values of the
restriction B ux15a on Hl21.) Thus, Be(x1) is a representation of q 5 uFu sums
using d 1 1 coefficients. Suppose f(x1) is another degree-d univariate polyno-
mial different from Be(x1). Then, the two polynomials agree at no more than d
points. Hence, for q 2 d values of a, the value f(a) is not the sum of B ux15a on
Hl21. This observation is useful in designing the Sum-Check.

Definition 4.5.2. A table of partial sums is any table containing for every i,
1 # i # l, and every a1, . . . , ai21 [F, a univariate polynomial ga1, . . . ,ai21

(xi)
of degree d. The entire table is denoted by g.

Now we describe Procedure (1). It expects the table T to be a table of partial
sums. (In a good proof, the table contains the set of polynomials defined in (26).)

98 S. ARORA AND S. SAFRA

Complexity: The procedure needs l log q random bits to generate elements
a1, . . . , al randomly from F. It needs the value of B at one point, namely,
(a1, . . . , al). In total, it reads l entries from the table of partial sums, where
each entry is a string of size at most (d 1 1)log q. It performs O(ldh) field
operations, where h 5 uH u. Therefore, the running time is poly(ldh log q).

Correctness: Suppose B sums to c on Hl. The procedure clearly accepts with
probability 1 the table of partial sums containing the univariate polynomials Be,
Ba1

(x2), etc. defined in (26).
Suppose B does not sum to c. The next lemma shows that then the procedure

rejects with high probability (when dl ,, q).

LEMMA 4.5.3. Let l, d be integers and F 5 GF(q) be any field. Then for every
B [Fd[x1, . . . , xl] and c [F, if B does not sum to c on Hl, then

Pr@the Sum-Check outputs REJECT# $ 1 2
dl

q
,

regardless of what the table of partial sums contains.

Proof. The proof is by induction on the number of variables, l. Such an
induction works because the Sum-Check is essentially a recursive procedure: it
randomly reduces the problem of checking the sum of a polynomial in l variables
to checking the sum of a polynomial in l 2 1 variables.

To see this, view the table of partial sums as a tree of branching factor q (see
Figure 5). The polynomial ge(x1) is stored at the root of the tree, and the set of
polynomials { ga1

(x2) : a1 [F} are stored on the children of the root, and so on.
The first step in the Sum-Check verifies that the sum of the values taken by ge

on the set H is c. Suppose the given multivariate polynomial B does not sum to c
on Hl. Then the sum of the values taken by Be on H is not c, and the first step
can succeed only if ge Þ Be. But if ge Þ Be, then, as observed in Example 4.5.1,

FIG. 5. A table of partial sums
may be conceptualized as a tree
of branching factor q 5 uFu. The
Sum-Check follows a random
path down this tree.

99Probabilistic Checking of Proofs: A New Characterization of NP

ge(a) Þ Be(a) for q 2 d values of a in F. That is to say, for q 2 d values of a,
the value ge(a) is not the sum of the restriction B ux15a on Hl21. Since d ,, q, it
suffices to pick a value for x1 randomly out of F, say a1, and check (recursively)
that B ux15a1

sums to ge(a1) on Hl21.

(Note: While checking the sum of B ux15a1
on Hl21, the recursive call must use

as the table of partial sums the sequence of polynomials stored in the a1th
sub-tree of the root.)

This is exactly what the remaining steps of the Sum-Check do. In this sense the
Sum-Check is a recursive procedure.

Now we do the inductive proof.

Base case: l 5 1. This is easy, since B(x1) is a univariate polynomial, and Be

5 B. The table contains only one polynomial ge. If ge 5 B, then ge doesn’t sum
to c either, and is rejected with probability 1. If ge Þ B, then the two disagree in
at least q 2 d points. Therefore, Pra1

[ge(a1) Þ B(a1)] $ 1 2 d/q. Thus, the
base case is proved.

Inductive Step: Suppose the lemma statement is true for all polynomials in
l 2 1 variables. Now there are two cases.

Case (i): ge 5 Be. In this case,

O
x1[H

ge~ x1! 5 O
x1[H

Be~ x1! Þ c,

so the procedure will output REJECT rightaway (i.e., with probability 1). So the
inductive step is complete.

Case (ii): ge Þ Be. In this case, as observed in Example 2, for q 2 d values of
a,

ge~a! Þ Be~a! . (27)

Let a1 [F be such that ge(a1) Þ Be(a1) (i.e., ge(a1) is not the sum of B ux15a1

on Hl21). By the inductive assumption, no table of partial sums can convince the
Sum-Check with probability more than d(l 2 1)/q that ge(a1) is the sum of
B ux15a1

on Hl21. In particular, the table of partial sums stored in the subtree
rooted at the a1th child of the root cannot make the Sum-Check accept with
probability more than d(l 2 1)/q. Since this is true for q 2 d values of a1, the
overall probability of rejection is at least

S q 2 d

q D z S 1 2
d~l 2 1!

q D $ 1 2
dl

q
.

In either case, the inductive step is complete. e

4.6. LOW DEGREE TEST. This section describes Procedure (2), the low degree
test. We remind the reader that for a function f: Fl 3 F, Dh(f) denotes the
distance of f to Fh[x1, . . . , xl], the code of degree h polynomials.

The procedure is given a function f: Fm 3 F, an integer h, and a fraction d
. 0. It has to determine whether f is d-close, that is, Dh(f) # d. It accepts
every polynomial in Fh[x1, . . . , xm] with probability 1 and rejects every

100 S. ARORA AND S. SAFRA

function that is not d-close with probability at least 3/4. The procedure
described here is an obvious modification of the ones in Feige et al. [1991]
and Shen [1991] (which were described for degree h 5 1 and were called
multilinearity tests). We improve its analysis to show that it needs to examine
only O(m) entries in the proof, instead of the O(mh) entries required by the
earlier analysis. Our improvement uses ideas from algebra and coding theory
(as opposed to the counting arguments used in earlier papers), and has the
adverse side-effect of requiring uFu 5 V(h3m2) (for the existing analysis,
somewhat smaller fields suffice).

The procedure requires, in addition to the table of values of f, an extra table
whose contents we describe next.

Definition 4.6.1. For an (m 2 1)-tuple (a1, . . . , ai21, ai11, . . . , am) [
Fm21, the subset of Fm given by

$~a1, . . . , ai21, x, ai11, . . . , am! : x [F%

is called a dimension-i line, and denoted by {a1, . . . , ai21, p, ai11, . . . , am}.

Note that if f: Fm 3 F is a polynomial in Fh[x1, . . . , xm], then its restriction on
every dimension-i line is a univariate polynomial in xi of degree h.

Definition 4.6.2. If h, m are positive integers, then an h-decomposition of
dimension m (or just decomposition when h and m are clear from the context) is
a table that contains, for each i, 1 # i # l and for each dimension-i line of Fm,
a univariate degree-h polynomial.

The procedure expects the extra table in the proof to contain an h-decompo-
sition of dimension m that supposedly describes the restrictions of f on all lines
in Fm. Let g denote this decomposition and g[a1, . . . , ai21, p, ai11, . . . , am]
denote the univariate polynomial provided in this decomposition for the line
{a1, . . . , ai21, p, ai11, . . . , am}.

Note that we can view the decomposition g as a sequence of m functions,
g1, . . . , gm, where gi: Fm 3 F is formed using the univariate polynomials
provided in g for dimension-i lines.

gi~a1, . . . , am! 5 g@a1, . . . , ai21, p, ai11, . . . , am#~ai! . (28)

By definition, the restriction of gi to every dimension-i line is a univariate
degree-h polynomial. Furthermore, since the decomposition is supposed to
describe f, the procedure can expect it to obey, @i, j [[1, m] and @(a1, . . . ,
am) [Fm,

f~a1, . . . , am! 5 gi~a1, . . . , am!

5 gj~a1, . . . , am! . (29)

In particular, the previous statement should hold for j 5 i 1 1. This motivates
the following definition.

DEFINITION 4.6.3. A checkpoint is a member of {^i, a1, . . . , am& : 1 # i ,
m and a1, . . . , am [F}. A decomposition g is consistent at a checkpoint

101Probabilistic Checking of Proofs: A New Characterization of NP

^i, a1, . . . , am& if

gi~a1, . . . , am! 5 gi11~a1, . . . , am! . (30)

Correctness of the Procedure: Clearly, if f [Fh[x1, . . . , xm], and the
decomposition g contains restrictions of f on all the lines, then this test accepts
with probability 1.

Suppose f is not d-close, where d , 0.1. We show that the test then rejects with
probability more than 3/4, regardless of what g contains. If D(f, g1) $ d/ 2, then
the probability that part (i) of the procedure fails is at least 1 2 (1 2 d/2)4/d .
3/4. So we may assume that D(f, g1) , d/ 2. But then g1 is not d/2-close (since
otherwise by the triangle inequality, f would be d-close). Lemma 4.6.4 below (see
also the remark following that lemma) shows that if g1 is not d/2-close, then the
fraction of inconsistent checkpoints in the decomposition is at least d/4m. Thus,
part (ii) of the test rejects with probability at least 1 2 (1 2 d/4m)8m/d . 3/4.
Thus, in every case, the procedure rejects with probability at least 3/4.

Complexity: Each table entry is a degree-h univariate polynomial, and so is
represented by O(h loguFu) bits. The procedure reads O(m) such entries. Also, it
performs poly(mh) field operations, so its running time is poly(mh loguFu). Its
randomness requirement may appear at first sight to be O(m) 3 O(loguFum)
random bits, which is more than was claimed. So we indicate how to do the
procedure with O(loguFum) random bits.

As we pointed out, Lemma 4.6.4 shows that if g1 is not d/2-close, then the
fraction of inconsistent checkpoints in the decomposition is at least d/4m.
Hence, by sampling in a pairwise independent fashion (see Chor and Goldreich
[1989], for example), the verifier can choose a set of O(m/d) checkpoints such
that with probability 3/4, at least one of them is inconsistent. This sampling uses
only O(m log(uFu)) random bits when d is a constant.

To finish the proof of correctness, we have to prove the claim about the
fraction of checkpoints at which the decomposition is inconsistent.

LEMMA 4.6.4. Let uFu 5 Q(h3l2) and l $ 2. Let Yh(l, e) denote the minimum
fraction of inconsistent checkpoints among all h-decompositions of dimension l in
which the function g1 satisfies Dh(g1) $ e. Then,

Yh~l, e! $
g2(l21)

l 2 1
z min$0.1, e% ,

102 S. ARORA AND S. SAFRA

where g 5 1 2 =h/uFu.

Remark. We are interested in the case e , 0.1 and h/ uFu , 1/100l2. Then
g2(l21) $ (1 2 1/10l)2(l21) $ 1/5, so we get Yh(l, e) $ e/4l.

PROOF. Let (g1, . . . , gl) be a decomposition of dimension l in which Dh(g1)
$ e. We use induction on l to lowerbound the fraction of checkpoints at which it
is inconsistent.

Base case. (1 5 2). The Claim below implies that for a fraction g of a1 [F
we have

Dh~ g1ux15a1
! $ g z min$0.1, e% .

By definition, g2ux15a1
is a univariate polynomial. It follows that for a fraction g

of a1 [F,

d~ g1ux15a1
, g2ux15a1

! $ g z min$0.1, e% .

So the fraction of inconsistencies in the decomposition is

d~ g1, g2! 5
1

uFu O
a1[F

d~ g1ux15a1
, g2ux15a1

!

$ g2 z min$0.1, e% ,

which proves the base case.

Induction step. Assuming the claimed lowerbound is true for l 2 1, we prove
it for l.

For any a1 [F and i $ 2, the dimension-i line {a1, a2, . . . , ai21, ,,
ai11, . . . , al} in Fl can be viewed as a dimension-(i 2 1) line in the following
subspace (of size uFul21):

$~ x1, . . . , xm! : each xi [F and x1 5 a1% .

Thus, in the decomposition g 5 (g1, g2, . . . , gl), we can view (g2, . . . , gl) as
a disjoint union of the following uFu decompositions of dimension l 2 1.

~ g2ux15a1
, . . . , glux15a1

! @a1 [F. (31)

Since each checkpoint involves a check along dimension i for i [[1, l 2 1],
we account for the inconsistent checkpoints in g as coming from two sources: for
each a1 [F there are (1) checkpoints on which g1ux15a1

differs from g2ux15a1
,

(this corresponds to checkpoints in which i 5 1) and (2) inconsistent check-
points in (g2ux15a1

, g3ux15a1
, . . . , gmux15a1

), a decomposition of l 2 1 dimen-
sions. This number can be lowerbounded, using the inductive hypothesis, as a
function of Dh(g2ux15a1

).

103Probabilistic Checking of Proofs: A New Characterization of NP

Note that the total number of checkpoints in a decomposition of dimension l is
(l 2 1) uFu l, and the number of inconsistent ones is at least Y(l, e) z (l 2 1) uFu l.
Using an averaging over a1 [F, we can lowerbound the latter by

O
a1[F

~uFul21 z D~g1ux15a1
, g2ux15a1

! 1 ~l 2 2!uFul21 z Y~l 2 1, Dh~g2ux15a1
!!!. (32)

Dividing throughout by (l 2 1) uFu l and using the inductive hypothesis, we get

Y~l, e! $
1

uFu~l 2 1!
z O

a1[F

~D~g1ux15a1
, g2ux15a1

! 1 ~l 2 2! z Y~l 2 1, Dh~g2ux15a1
!!!

$
g2(l22)

uFu~l 2 1!
z O

a1[F

~D~ g1ux15a1
, g2ux15a1

! 1 min$0.1, Dh~ g2ux15a1
!%! .

By the triangle inequality, Dh(g2ux15a1
) 1 D(g1ux15a1

, g2ux15a1
) $ Dh(g1ux15a1

),
so we can simplify the last expression to

Y~l, e! $
g2(l22)

uFu~l 2 1!
z O

a1[F

min$0.1, Dh~ g1ux15a1
!% . (33)

Claim 4.6.5 implies that for at least a fraction g of a1 [F,

D~ g1ux15a1
! $ g z min$0.1, e% . (34)

Restricting the sum in Expression (33) to these guFu values of a1 [F, we get
the following lower-bound for Y(l, e):

Y~l, e! $
g2(l21)

~l 2 1!
z min$0.1, e% .

This completes the induction.
Now we state and prove the claim mentioned above.

CLAIM 4.6.5. Let t: Fl 3 F be a function whose restriction on every dimension-1
line is a univariate polynomial of degree h. If e 5 Dh(t), then for at least a fraction
g of a1 [F,

Dh~t ux15a1
! $ g z min$0.1, e% , (35)

where g 5 1 2 =h/uFu and uFu 5 Q(h3l2).

PROOF OF THE CLAIM. Note that the function t is 1-nice (in the sense of
Definition 5.1 below) and therefore Lemma 5.2.1 and Corollary 5.1.2 apply to it.
We prove the claim by considering two cases: e . 0.2 and e # 0.2.

Assume first that e . 0.2. Then we claim that the restriction t ux15a1
is 0.1-close

for no more than 10h values a1 [F. For, if the number of such a1’s exceeds

104 S. ARORA AND S. SAFRA

10h, then by Lemma 5.2.1 we would conclude that t is 1/9-close, which
contradicts e . 0.2. So the fraction of a1’s such that Dh(t ux15a1

) $ 0.1 is at least

1 2
10h

uFu
$ 1 2 Î h

uFu
5 g.

Now assume e # 0.2. Then, Corollary 5.1.2 implies that Dh(t ux15a1
) $ g z e for

a fraction g of a1 [F.
In either case, the claim has been proved.
This finishes the proof of Lemma 4.6.4. e

5. Two Lemmas About Polynomials

This section proves two lemmas, Lemma 5.1.1 and 5.2.1, about the restrictions of
k-nice functions, which are defined below. We remind the reader that restrictions
of functions were defined in Definition 4.1.1.1.

In all the lemmas and definitions in this section, h and m stand for arbitrary
positive integers and F denotes a field of size at least V(m2h3). (Some lemma
statements are true even if uFu is smaller that V(m2h3), but we don’t dwell on
that.) Both 1/m and 1/h are considered to be very small. As usual, Dh(f)
denotes the distance of function f to the nearest degree-h polynomial.

Definition 5.1. Let integer k be such that 1 # k , m. A function f: Fm 3 F
is k-nice, if for every sequence of m 2 k values a1, a2, . . . , am2k [F, the
restriction f u(xm2k11, . . . , xm)5(a1, . . . ,am2k), obtained by fixing the last m 2 k
arguments of f to a1, . . . , am2k, is a degree-h polynomial.

For example, a 1-nice function is one whose restriction on every dimension-1
line is a univariate degree-h polynomial.

5.1. d-CLOSE FUNCTIONS WITH NICE RESTRICTIONS. By definition, a k-nice
function g behaves “nicely” when we fix its last m 2 k arguments. The next
lemma (which was used in Section 4.4) shows that if g is in addition 0.2-close,
then it also behaves “nicely” when we fix its first k arguments. Specifically, part
(1) of Lemma 5.1.1 upperbounds, as a function of Dh(g), the distance between
this restriction and the degree-h polynomial closest to it. Part (2) lowerbounds
that same distance, for “most” restrictions.

LEMMA 5.1.1. Let k be an integer such that 1 # k , m. For g: Fm 3 F and bW [
Fk, let g uxW15bW denote the restriction of g obtained by fixing the first k arguments
according to (x1, . . . , xk) 5 bW.

Let g be k-nice and Dh(g) , 0.2. Then restrictions of g satisfy the following, where
d 5 Dh(g), b 5 1/(1 2 (hk/uFu)), and g 5 1 2 =(hk/uFu):

(1) Dh(g uxW15bW) # b z d for every bW [Fk,
(2) Dh(g uxW15bW) $ g z d for at least g fraction of bW [Fk.

PROOF. Consider an Fk 3 Fm2k matrix whose rows (respectively, columns)

105Probabilistic Checking of Proofs: A New Characterization of NP

are indexed by points in Fk (respectively, Fm2k). For counting purposes, let us
put a p at the intersection of row bW [Fk and column aW [Fm2k if g(bW , aW) Þ
g̃(bW , aW), where g̃ is the degree h polynomial nearest to g. By hypothesis, the
fraction of entries with p’s is d.

bW [Fk3

aW [Fm2k

2

3
z z z z z

z z z z z

z z p z z

z z z z z

z z z z z

4 .

Let aW [Fm2k be a column. The restrictions of g and g̃ to it are degree-h
polynomials (for g this follows from the hypothesis that g is k-nice; for g̃, by
virtue of the fact that restrictions of a degree-h polynomial are also degree-h
polynomials). Therefore, if there is even one p in this column, the two restric-
tions are unequal, and hence disagree on at least 1 2 hk/ uFu 5 b21 fraction of
the points in the column. That is to say, if there exists a p in the column, then at
least b21 fraction of the entries in that column are p’s.

If p is the fraction of columns with at least one p, then the previous
observation implies that the fraction of p’s in the matrix is at least p z b21. But
this fraction is d, so p # d z b.

We conclude that at most d z b of the columns have any p’s at all, which implies
that the fraction of p’s in each row is at most d z b. But the fraction of p’s in a row
bW [Fk is just the distance between the corresponding restrictions of g and g̃. We
conclude that for every bW [Fk, the distance

D~ g uxW15bW , g̃ uxW15bW! # d z b.

Thus, part (1) has been proved.
For part (2), we use the hypothesis that d , 0.2. As already proved, D(g uxW15bW ,

g̃ uxW15bW) # d z b , 1/4 for every row bW . Since g̃ uxW15bW is a degree-h polynomial, this
also means that g uxW15bW is d z b-close for every row bW and g̃ uxW15bW is the unique
degree-h polynomial closest to it (the uniqueness follows from the fact that b z d
, 1/4 and Definition 4.1.4). In other words, for every bW ,

Dh~ g uxW15bW ! 5 D~ g uxW15bW , g̃ uxW15bW!

5 fraction of points in row bW where g and g̃ disagree

5 fraction of points in row bW that have p’s.

Now let r be the fraction of rows such that Dh(g uxW15bW) , gd. Only a d fraction

106 S. ARORA AND S. SAFRA

of the entries in the matrix are p’s, and by part (1) the fraction of entries in each
row is at most d z b. So we have:

d 5 D~ g, g̃! 5
1

uFuk O
bW [Fk

D~ g uxW15bW , g̃ uxW15bW!

r z gd 1 ~1 2 r! z db.

It follows that

r #
b 2 1

b 2 g
5

Îhk

uFu

1 1 Îhk

uFu
2

hk

uFu

, Îhk

uFu
5 1 2 g.

Hence, part (2) has been proved. e

We state the following Corollary for sake of completeness, since it was used in
the proof of Lemma 4.6.4. It is just a special case—namely, when k 5 1— of part
(2) of the previous lemma.

COROLLARY 5.1.2. Let a function g: Fm 3 F be 1-nice. In other words, the
restriction of g on every dimension-1 line is a degree-h univariate polynomial. Let
Dh(g) 5 d # 0.2.

Then the fraction of a1 [F such that the restriction g ux15a1
is not g z d-close is

least g, where g 5 1 2 =h/uFu.

5.2. 1-NICE FUNCTIONS WHOSE RESTRICTIONS ARE d-CLOSE. The main
lemma in this section, Lemma 5.2.1, concerns 1-nice functions. It is a strong
contrapositive to part (1) of Lemma 5.1.1, in the following sense. Lemma 5.1.1
shows that if a 1-nice function is d-close, then restricting its first argument gives
a function that is d(1 1 o(1))-close. Lemma 5.2.1 will show that if “many”
(actually, just a “few”) restrictions of a 1-nice function are 0.1-close, then the
function is 0.12-close.

LEMMA 5.2.1. Let f: Fm 3 F be a 1-nice function and suppose there are points
a1, . . . , a10h [F such that the restriction fux15ai

is 0.1-close for i 5 1, . . . , 10h. If uFu
5 V(h3m2), then f is 1/9-close.

Note. This lemma has subsequently found important applications in the work
of Arora et al. [1992]. The relevant case there is m 5 2, for which simpler proofs
have been found [Sudan 1992; Polishchuk and Spielman 1994]. Currently, our
proof is the only one known for general m.

The mathematical facts used in our proof will include some very basic linear
algebra, specifically, how to solve systems of linear equations. All assumed facts
appear in the appendix.

In the rest of this section, f, m, h are the same as those in the hypothesis of
Lemma 5.2.1.

107Probabilistic Checking of Proofs: A New Characterization of NP

For clarity, view the values of f as lying in a matrix with uFu columns and uFum21

rows. (For bW [Fm21 and a [F, f(a, bW) is at the intersection of the column
given by a and the row given by bW .)

bW [Fm213 1
a1 a2 . . . a10h . . .

z z z z . . .

z z z z . . .

z z z z . . .

z z z z . . .

2 .

According to the hypothesis:

(1) Function f is 1-nice. Hence, in each row, a univariate polynomial of degree h
describes all uFu entries. For row bW , denote this polynomial by gbW(x), and call
it the row polynomial for bW .

(2) The restriction of f to the columns a1, . . . , a10h is 0.1-close. For notational
ease, we denote the restriction of f to column ai by f i (note that our usual
notation would be f ux15ai

) and by f̃ i the degree-h polynomial f i is close to.

The proof will rely on an “extrapolation” argument, and will use (except in the
proof of Corollary 5.2.3) only the columns a1, . . . , a10h. For purposes of
counting, put a , symbol in the entry (ai, bW) if f i(ai, bW) Þ f̃ i(bW). Note that since
the row polynomial gbW always describes f, a , in row bW also denotes a place where
the row polynomial gbW disagrees with f̃ i. A priori, the ,’s might be arbitrarily
distributed thoughout the matrix, subject only to the restriction that no more
than 0.1 fraction of the entries in a column be ,’s. The following lemma shows
that the distribution of ,’s is much more restricted.

LEMMA 5.2.2. In the matrix described in the previous paragraph, there is a
submatrix consisting of 0.4 fraction of the rows and h 1 1 columns (out of {a1, . . . ,
a10h}) that contains no ,’s.

The proof of the lemma, given at the end of this section, involves finding a
“clean” description (i.e., as roots of a low-degree polynomial) of the set of points
with ,’s.

The following corollary of Lemma 5.2.2 not only shows that f is 1/9-close (thus
proving Lemma 5.2.1), but also provides an explicit formula for the degree-h
polynomial closest to f.

COROLLARY 5.2.3. Let {a1, a2, . . . , ah11} be the set of columns appearing in
the submatrix guaranteed by Lemma 5.2.2. Then, the following polynomial f [
Fh[x1, . . . , xm] satisfies d(f, f) # 1/9.

f~ x1, x2, . . . , xm! 5 O
i51

h11

Lai
~ x1! z f̃ i~ x2, . . . , xm! ,

where Lai
(x1) is the degree-h univariate polynomial that is 1 at ai and 0 at {a1, . . . ,

ah11}\{ai}.

108 S. ARORA AND S. SAFRA

PROOF. By definition of f, its restriction to the columns {a1, . . . , ah11}
coincides with the corresponding f̃ i in the column. First, we show that the same is
true for its restrictions to columns {ah12, . . . , a10h}. Consider a row bW that is
part of the submatrix that is free of ,’s. The row polynomial gbW correctly
describes the values of f̃1, . . . , f̃h11, and hence of f. It follows that the
restriction of f to the row— by construction, a univariate degree h polynomi-
al—is identical to the row polynomial, and hence describes values of f on the
entire row. Since the previous observation is true for every row of the submatrix,
D(f, f) # 1 2 0.4 5 0.6, and furthermore, D(f i, f ux15ai

) # 0.6 for i 5
1, . . . , 10h. By hypothesis, D(f i, f̃ i) # 0.1, so the triangle inequality implies
that D(f̃ i, f ux15ai

) # 0.6 1 0.1 # 0.7. But since f ux15ai
and f̃ i are both

degree-h polynomials, D(f̃ i, f ux15ai
) is either 0 or least 1 2 mh/ uFu 5 1 2 o(1).

Hence, we conclude that D(f̃ i, f ux15ai
) 5 0, and f ux15ai

5 f̃ i for i 5 h 1 2, . . . ,
10h, as claimed.

Now we show that D(f, f) , 1/9. Note that this statement refers to the
average distance between f and f on all the columns. In contrast, the only
columns we have been talking about (and in which we placed ,’s) are a1, . . . ,
a10h.

For each column ai, where i [[1, 10h], since f coincides with f̃ i in column
ai, an entry with a , corresponds exactly to a disagreement between the row
polynomial gbW and f. Furthermore, the restriction of f to a row is also a
univariate polynomial of degree h, so either it is different from the row
polynomial (in which case there are at least 9h disagreements in the row among
the first 10h columns), or is the same as the row polynomial (in which case there
are no disagreements and no ,’s in the row). Since the fraction of ,’s in each
column is at most 0.1, it follows by averaging that no more than 1/9 fraction of
the rows have more than 9h ,’s. So f describes 8/9 of the rows perfectly, and
D(f, f) # 1/9. e

From now on, our goal is to prove Lemma 5.2.2. The concept of well-described
sets of pairs will be relevant.

Definition 5.2.4. A set of (point, value) pairs, {(a1, p1), . . . , (a10h, p10h)},
where each ai, pi [F, is well described in Fh[x] if there is a degree-h univariate
polynomial s [Fh[x] such that

s~ai! 5 pi for at least 8h values of i.

We say that such a polynomial s well-describes the pairs.

Note that the above polynomial s must be unique, since any other polynomial
s9 with the same properties agrees with it in at least 6h points, and so equals s.

To see the relevance of well-described sets to Lemma 5.2.2, recall that in the
matrix (with 10h columns) defined in connection with the lemma, the fraction of
,’s in each column is at most 0.1. So the overall fraction of entries with ,’s is at
most 0.1. Hence, at most 1/2 of the rows have more than 0.2 3 10h 5 2h of
these ,’s. Call the remaining rows good. In a good row bW , the set of pairs {(a1,
f̃1(bW)), . . . , (a10h, f̃10h(bW))} is well described by the row polynomial gbW(x1).
The next lemma makes explicit the algebraic object that underlies well-described
sets of pairs: an overconstrained linear system.

109Probabilistic Checking of Proofs: A New Characterization of NP

LEMMA 5.2.5 (BERLEKAMP–WELCH). Let (a1, p1), . . . , (a10h, p10h) be well
described in Fh[x]. Then

(1) There is a polynomial c [F3h[x] and a nonzero polynomial e [F2h[x], such
that

c~ai! 5 e~ai! z pi for i 5 1, 2, . . . , 10h. (36)

In other words, the following system of equations has a nontrivial solution for
c0, . . . , c3h, e0, . . . , e2h (which are intended as the coefficients of c , e
respectively.

c0 1 c1a1 1 · · · 1 c3ha1
3h 5 ~e0 1 e1a1 1 · · · 1 e2ha1

2h! z p1

c0 1 c1a2 1 · · · 1 c3ha2
3h 5 ~e0 1 e1a2 1 · · · 1 e2ha2

2h! z p2

···
c0 1 c1a10h 1 · · · 1 c3ha10h

3h 5 ~e0 1 e1a10h 1 · · · 1 e2ha10h
2h ! z p10h.

(2) For any polynomials c , e that satisfy the condition in (36), e divides c as a
polynomial and the rational function c/e is the degree-h univariate polynomial
that well describes (a1, p1), . . . , (a10h, p10h).

PROOF. Let s be the polynomial that well-describes the set.
Let e be a nonzero univariate polynomial of degree 2h that is 0 on the set of

points {ai : s(ai) Þ pi}. (If this set is empty, we let e [1, the unit polynomial.)
Then, we have

e~ai! z s~ai! 5 pi z e~ai! @i [$1, . . . , 10h% . (37)

Part (1) now follows, by defining c(x) 5 s(x) z e(x). The claim about the
existence of a nontrivial solution to the given linear system also follows, since the
coefficients of e and c defined above satisfy the system.

As for part (2), let c, e be any polynomials that satisfy Eq. (36). Note that
s(x)e(x) 2 c(x) is zero at each ai where s(ai) 5 pi. Since s(x) well-describes
(a1, p1), . . . , (a10h, p10h), the polynomial s(x)e(x) 2 c(x) must have at least
8h roots. But it has degree at most 3h. Hence, s(x)e(x) 2 c(x) [0. Therefore,
c(x)/e(x) 5 s(x). e

Note. The linear system in the statement of Lemma 5.2.5 is homogeneous and
overconstrained: it has 10h constraints and only (2h 1 1) 1 (3h 1 1) variables.
Represent the system in standard form as A z y# 5 0# , where A is a (5h 1 2) 3
(10h) matrix and y# is the vector of variables (c0, c1, . . . , c3h, e0, . . . , e2h). The
system has a nontrivial solution. Hence, Cramer’s rule (Fact A.6) implies that the
determinant of every (5h 1 2) 3 (5h 1 2) submatrix of A is zero. This
observation will be useful in Lemma 5.2.7.

The following Lemma is an extension of Lemma 5.2.5 to the multivariate case
we are interested in. We need the following definition.

Definition 5.2.6. For integers l, d, the set Fl,d[x1, . . . , xm] contains func-
tions from Fm to F that are polynomials of degree at most d in the first variable
x1 and at most l in the other variables.

110 S. ARORA AND S. SAFRA

LEMMA 5.2.7. Let {a1, . . . , a10h} be a set of points and s1, . . . , s10h: Fm21 3 F
be polynomials of degree h such that for at least half of the points bW [Fm21,

$~a1, s1~bW !! , ~a2, s2~bW !! , . . . , ~a10h, s10h~bW !!% is well described in Fh@ x# .

Then there is a polynomial c [F3h,6h2[x1, . . . , xm] and a nonzero polynomial e [
F2h,6h2[x1, . . . , xm] such that

c~ai, bW! 5 si~bW! z e~ai, bW! @bW [Fm21 and i 5 1, . . . , 10h. (38)

Note. It is proved that the desired property of c, e holds for all bW [Fm21,
even though the hypothesis mentioned a property true only for half of the bW ’s.

PROOF. (In the following, yW denotes a point in Fm21. A polynomial in yW is a
polynomial in m 2 1 variables.)

For yW [Fm, consider the following linear system in the variables U0(yW), . . . ,
U2h(yW) and V0(yW), . . . , V3h(yW)

V0~ yW! 1 V1~ yW!a1 1 · · · 1 V3h~ yW!a1
3h 5 s1~ yW! z ~U0~ yW! 1 U1~ yW!a1

1 · · · 1 U2h~ yW!a1
2h!

V0~ yW! 1 V1~ yW!a2 1 · · · 1 V3h~ yW!a2
3h 5 s2~ yW! z ~U0~ yW! 1 U1~ yW!a2

1 · · · 1 U2h~ yW!a2
2h!

···

V0~ yW! 1 V1~ yW!a10h 1 · · · 1 V3h~ yW!a10h
3h 5 s10h~ yW! z ~U0~ yW! 1 U1~ yW!a10h

1 · · · 1 U2h~ yW!a10h
2h ! .

Suppose we represent the system in standard form as A z z# 5 0, where A is a
(5h 1 2) 3 10h matrix of coefficients

A 5 1
1

1
···
1

a1

a2
···

a10h

. . .

. . .
···

. . .

a1
3h

a2
3h

···
a10h

3h

2s1~ yW!

2s1~ yW!
···

2s1~ yW!

2a1 z s1~ yW!

2a2 z s1~ yW!
···

2a10h z s1~ yW!

. . .

. . .
···

. . .

2a1
2h z s1~ yW!

2a2
2h z s1~ yW!

···
2a10h

2h z s1~ yW!
2

and z# is the vector of variables (V0(yW), . . . , V3h(yW), U0(yW), U2h(yW)).
There are two ways to view this system. The first is as a collection of uFum21

systems, one for each yW [Fm21. In this viewpoint, whenever yW is one of the $1/2
fraction of points for which the given set of pairs is well described, Lemma 5.2.5
implies that the associated system has nontrivial solutions. As noted in the
comment after Lemma 5.2.5, it follows that for half the yW [Fm21, the
determinant of every (5h 1 2) 3 (5h 1 2) submatrix of A is 0.

However, the above viewpoint ignores the fact that each entry of A is the value
of some degree-h polynomial in yW . Thus, the solutions to the collection of uFum21

111Probabilistic Checking of Proofs: A New Characterization of NP

systems are very likely connected to each other. The next viewpoint takes this
into account.

We will adopt the viewpoint that A is a matrix over the ring of multivariate
polynomials. We claim that from this viewpoint, the system has a nontrivial
solution. Specifically, we construct a solution (V0(yW), . . . , V3h(yW), U0(yW),
V2h(yW)) in which each Vi, Ui is also a polynomial (of some appropriate degree)
in yW . To do this, it suffices (see Fact A.6) to show that the determinant of every
(5h 1 2) 3 (5h 1 2) submatrix of A is the zero polynomial in yW . Let B be the
submatrix. Since each entry of B is a degree-h polynomial in yW , and det(B) is
itself a degree-(5h 1 2) polynomial in the entries of B (see Fact A.5), we
conclude that det(B) is a polynomial of degree (5h 1 2)h in yW . As already noted
(in the first “viewpoint”), this determinant is zero for half the values of yW (i.e., for
each value of yW for which the above system has a solution). But a degree-(5h2 1
2h) polynomial that is zero at 1/ 2 . m(5h2 1 2h)/ uFu fraction of points is
identically zero. So det(B) is identically zero.

Now we solve the system (over the ring of polynomials) by using Cramer’s rule.
Fact A.6 implies that the solutions Ui(yW), Vi(yW) thus obtained are polynomials of
degree at most 5h 1 1 in the entries of A, in other words, are polynomials of
degree at most (5h 1 1) z h in yW .

Now, since (5h 1 1)h # 6h2 for h $ 1, we conclude that the polynomials c
and e defined by

c~ x, yW! 5 O
i50

3h

Vi~ yW! xi @x [F, yW [Fm21 (39)

and

e~ x, yW! 5 O
i50

2h

Ui~ yW! xi @x [F, yW [Fm21 (40)

are in F3h,6h2[x1, . . . , xm] and F2h,6h2[x1, . . . , xm], respectively, and fit the
requirements of the lemma. e

Using Lemma 5.2.7, we now formally prove Lemma 5.2.2.

PROOF (LEMMA 5.2.2). Call a row bW [Fm21 good if it has fewer than 2h ,’s; in
other words, the row polynomial gbW well-describes the set {(a1, f̃1(bW)), . . . , (a10h,
f̃10h(bW))}. A simple averaging shows that good rows constitute at least half of all
rows. Hence, the polynomials {f̃1, . . . , f̃10h} satisfy the conditions of Lemma 5.2.7,
and we conclude that there exists a polynomial c [F3h,6h2[x1, . . . , xm] and a
nonzero polynomial e [F2h,6h2[x1, . . . , xm] such that

c~ai, bW ! 5 f̃ i~bW ! z e~ai, bW ! @bW [Fm21 and i 5 1, . . . , 10h. (41)

Note that the restrictions of c and e to any row bW are univariate polynomials in x1
of degree 3h and 2h respectively. Denote these polynomials by cbW and ebW .

CLAIM 5.2.8. If row bW is good, then ebW divides cbW and furthermore, cbW/ebW 5 gbW.

PROOF OF CLAIM 5.2.8. If row bW is good, the set {(a1, f̃1(bW)), . . . , (a10h, f̃10h(bW))}
is well described in Fh[x] (namely, by the row-polynomial gbW). By our construction,

112 S. ARORA AND S. SAFRA

cbW~ai! 5 f̃ i~bW !ebW~ai! @i 5 1, . . . , 10h.

So part (2) of Lemma 5.2.5 implies that ebW divides cbW and furthermore, cbW /ebW well
describes the above set of pairs. Since the well-describing polynomial is unique
(as noted after Definition 5.2.4), it follows that cbW /ebW 5 gbW . Thus, Claim 5.2.8 has
been proved.

Since e is a nonzero polynomial of degree at most 2h in x1, it cannot be
identically zero on more than 2h of the columns. Assume without loss of
generality that {a1, . . . , a8h} are columns where it is not identically zero. Call a
row nice if the restriction of e to the columns a1, . . . , a8h is not zero in this row.

CLAIM 5.2.9. If row bW is nice, then cbW/ebW agrees with f̃i in for i 5 1, . . . , 8h.

PROOF OF CLAIM 5.2.9. By inspecting Eq. (41), we see that whenever e Þ 0
at a point in a column ai, then c/e agrees with f̃ i at that point. Hence, Claim 5.2.9
has been proved.

Combining Claims 5.2.8 and 5.2.9, we conclude that in a row bW that is both nice
and good, cbW /ebW agrees with f̃ i for i 5 1, . . . , 8h and cbW /ebW 5 gbW . Thus the row
polynomial gbW agrees with f̃ i for i 5 1, . . . , 8h, and so there are no ,’s in the
first 8h entries of this row.

But how many rows are both nice and good? The fraction of good rows is at
least 1/2, as already noted. We claim that the fraction of nice rows is at least 1 2
48mh3/ uFu3. The reason is that the restriction of e to any of the columns
{a1, . . . , a8h} is a nonzero polynomial in F6h2[x2, . . . , xm], and so is zero in
this column at no more than 6(m 2 1)h2/ uFu) fraction of the rows. So the
fraction of rows in which e has zeroes in any one of these 8h columns is at most
(8h z 6h2m)/ uFu.

Since at least 1 2 48mh3/ uFu3 rows are nice and at least 1/2 of the rows are
good, at least 1/ 2 2 48mh3/ uFu3 of the rows are both. Since 48mh3/ uFu3 , 0.1,
we conclude that at least 0.4 fraction of the rows are both nice and good. Thus,
there are no ,’s in the submatrix consisting of the first 8h columns and all (the
0.4 fraction of) rows that are both good and nice. This proves Lemma 5.2.2.
(Note that our matrix has 8h columns, which is larger than the h 1 1 we needed
to prove.) e

6. Discussion

As mentioned above, our characterization of NP in terms of PCP is nonrelativiz-
ing. This opens up the tantalizing possibility of separating the class NP from
other classes (e.g., EXPTIME) using relativizing techniques (e.g., diagonaliza-
tion). Of course, similar tantalizing possibilities were raised by recent results like
IP 5 PSPACE or MIP 5 NEXPTIME, which are also nonrelativizing. (We note
that in fact, IP 5 PSPACE is false with probability 1 with respect to a random
oracle [Chang et al. 1994].)

Note in this connection that the characterization NP 5 PCP(log n, log0.51e n)
can be strengthened further by using an idea of Babai et al. [1991a]. Namely, if
we change the model a little and ask that the input be provided in an encoded
form (using a specific error-correcting code) to the verifier, then our (log n,
log0.51e n)-restricted verifier runs in polylogarithmic time. This stronger charac-

113Probabilistic Checking of Proofs: A New Characterization of NP

terization might be useful in any attempts to separate complexity classes using
our new characterization of NP.

Another application of our ideas is to mechanical checking of formal mathe-
matical proofs. Babai et al. [1991a] observed earlier that since the language

$~T, 1n! : T is a theorem of Peano arithmetic with a proof of size # n .%

is NP-complete, their main theorem implies that proofs for mathematical
statements can be checked by reading only poly(log n) bits in them. (Note that
above language is also NP-complete if we use instead of Peano arithmetic, any of
the usual axiomatic systems for mathematics.) Our main result implies that these
proofs can be checked by reading a sublogarithmic number of bits. We suspect
that this result is largely of theoretical (as opposed to practical) interest.

As mentioned in the introduction, the initial motivation for our work was to
show the NP-hardness of approximating clique, thereby solving an open problem
of Feige et al. [1991] (namely, how to change “almost” NP-hard in their main
result to NP-hard). Indeed, by showing that NP 5 PCP(log n, log n), and
applying the reduction to Clique approximation [Feige et al. 1991], we get that
approximating Clique to within a constant factor is NP-hard.

We were surprised to find out that our technique enables us to show an even
better characterization of NP in terms of PCP, with a sub-logarithmic number of
queries. Thus there appeared to be no reason why the number of queries
couldn’t be decreased further. So, in an earlier draft of this paper, we posed this
as an open problem.

Soon, the open problem acquired even more importance, since it was realized
that decreasing the number of queries would have important consequences for
MAX-SNP problems.

The class MAX-SNP was introduced by Papadimitriou and Yannakakis [1991],
as a framework for classifying approximation problems according to their
difficulty. The authors defined a notion of MAX-SNP-completeness: a MAX-SNP-
complete problem has the property that it has a polynomial-time approximation
scheme iff every MAX-SNP problem does. (A polynomial-time approximation
scheme for a problem is a family of polynomial-time algorithms, such that for
every fixed e . 0, some algorithm from this family approximates the problem
within a factor 1 1 e.)

Soon after the circulation of the draft of this paper, Mario Szegedy and Madhu
Sudan independently discovered a reduction from a weaker subclass of PCP
(namely, the one where the decision time of the verifier is small) to MAX-3SAT,
a MAX-SNP-complete problem. Our proof of Theorem 1.2.2.2 implies that NP is
contained in this weaker subclass. Hence, their reduction—a precursor of the
reduction that later appears in Arora et al. [1992]—shows the hardness of
approximating MAX-3SAT within a factor (1 1 e), where e depends upon the
decision time of the verifier in our result. Further, this e becomes a constant if
the decision time could be reduced to a constant (equivalently, when the number
of query bits is constant). This reduction was reported in Arora et al. [1992],
along with the result that approximating any MAX-SNP-complete problem to
within a factor of 1 2 (1/(log log n)O(1)) is NP-hard.

114 S. ARORA AND S. SAFRA

Shortly afterwards, it was shown in Arora et al. [1992] that NP 5 PCP(log n,
1). Note that this characterization of NP in terms of PCP is optimal up to
constant factors if P Þ NP (see our remarks following Theorem 1.2.2.1).

The techniques of Arora et al. [1992a] are similar to ours and rely heavily on
our Composition Lemma (Lemma 3.4). Their first step is to construct a new
verifier that improves our basic verifier of Section 4.2, in that it reads only O(1)
entries from the table provided in the proof, and has polylogarithmic decision
time. One crucial component in constructing such a verifier is an efficient
low-degree test based upon our main technical lemma (Lemma 5.2.1) and the
work of Rubinfeld and Sudan [1992]. Another important idea is that of parallel-
ization, introduced in the work of Lapidot and Shamir [1991] and Feige and
Lovász [1992]. The second step in Arora et al. [1992a] is to compose the verifier
of the first step with itself. This gives a verifier that reads O(1) entries from the
proof, but now the entries are of size O(log log n). The third step is to compose
the verifier of the second step with a new verifier, whose construction used some
ideas in Blum et al. [1990]. This new verifier is inefficient in the number of
random bits it uses (this number is polynomial in the proof size), but it queries
only O(1) bits from the proof. The verifier obtained through the above compo-
sition is (log n, 1)-restricted.

Since Arora et al. [1992a], a sequence of papers8 have constructed more and
more efficient (in terms of constant factors) (log n, 1)-restricted verifiers for
SAT. The latest verifier [Hastad 1997] needs only 3 query bits.9 (Some of our
ideas from Section 4.4 regarding the “concatenation property” were useful in
achieving some of this efficiency.) In a different direction, a recent paper
[Polishchuk and Spielman 1994] improves existing verifiers by reducing the size
of the proof required by this verifier to n11e. (This had not been achieved in
Arora et al. [1992a] because of the huge field size required by our Lemma 5.2.1,
which is crucial to Arora et al. [1992a]. A centerpiece of Polishchuk and
Spielman [1994] is a better proof for Lemma 5.2.1—more correctly, of the
subcase of the lemma when m, the number of variables, is 2.) In another, even
more recent work, Raz and Safra [1997] prove an important generalization of
NP 5 PCP(log n, 1) in which the proof is no longer a bit string but a string over
an alphabet of size 2a (i.e., each symbol is represented using a bits). The verifier
is allowed to use O(log n) random bits, read O(1) symbols from the proof, and
must reject with probability 22Q(a) if the input is not in language L. The paper
shows how to construct such verifiers for a # log12e n. It also generalizes our
low degree test in an important way (see also Arora and Sudan [1997]).

Problems other than Clique and MAX-SNP problems have also been shown
hard to approximate. These include Chromatic-Number and Set-Cover [Lund
and Yannakakis 1994], (see also Bellare et al. [1993] and Khanna et al. [1993])
and problems on lattices, codes, and linear systems [Arora et al. 1993]. Indepen-
dently of these works, other hardness results for a variety of approximation
problems were obtained by Bellare [1993], Bellare and Rogaway [1993], and
Zuckerman [1993]. We refer the reader to Arora and Lund [1996] for a survey.

8 See Phillips and Safra [1992], Bellare et al. [1993; 1995] Bellare and Sudan [1994], and Hastad
[1996].
9 The definition of proof-checking is slightly different from ours, and allows a small probability of
error when x [L.

115Probabilistic Checking of Proofs: A New Characterization of NP

The NP-hardness result for approximating clique has been steadily improved.
A consequence of NP 5 PCP(log n, 1) is that approximating clique number
within a factor ne is NP-hard, for some fixed e . 0. A sequence of improvements
culminating in Hastad [1996] shows that even approximating within a factor n12e

is hard if NP Ü BPP.
Lastly, we mention that PCP-style characterizations have been provided for

other complexity classes as well, such as PSPACE [Condon et al. 1993] and PH
[Kiwi et al. 1994].

Appendix

We include the statements/proofs of some simple facts assumed in the paper.

FACT A.1. For every set of k (point, value) pairs {(ai, bi) : 1 # i # k}, (where
ai, bi [F and the ai’s are distinct), there is a unique polynomial p(x) of degree k 2
1 such that

p~ai! 5 bi for i 5 1, 2, . . . , k.

PROOF. Let

Li~ x! 5 P
jÞi

~ x 2 aj!

ai 2 aj

be the polynomial that is 1 at ai and zero at all aj for j Þ i. Then, the desired
polynomial p is given by

p~ x! 5 O
i#k

biLi~ x! .

Uniqueness is easy to verify. e

FACT A.2 (SCHWARTZ). An m-variate polynomial of degree d is 0 at no more
than md/q fraction of points in Fm, where q 5 uFu.

PROOF. Proved by induction on m. Truth for m 5 1 is clear, since a
univariate degree-d polynomial has at most d roots.

A degree-d polynomial p(x1, . . . , xm) has a representation as

O
i50

k

x1
i z pi~ x2, . . . , xm! . (42)

where k # d, each pi(x2, . . . , xm) is a (m 2 1)-variate polynomial of degree at
most d, and pk(x2, . . . , xm) is a nonzero polynomial.

By the inductive hypothesis, pk(x2, . . . , xm) 5 0 for at most d(m 2 1)/q
fraction of values of (x2, . . . , xm) [Fm21. For any other value of (x2, . . . ,
xm), the expression in Eq. (42) is a degree k polynomial in x1, and so is zero for
at most k values of x1.

Hence, the fraction of values of (x1, . . . , xm) [Fm where p is zero is at most
d(m 2 1)/q 1 k/q # dm/q. e

Now we prove a lemma that was used in Section 4.2.1.

116 S. ARORA AND S. SAFRA

LEMMA A.3 (“ZERO-TESTER” POLYNOMIALS [BABAI ET AL. 1991; FEIGE ET AL.
1992]). Let F 5 GF(q) and integers m, h satisfy 32mh , q. Then there exists a
family of q4m polynomials {R1, R2, . . .} in Fh[x1, . . . , x4m] such that if f: [0, h]4m 3
F is any function not identically 0, then if R is chosen randomly from this family,

PrF O
y[[0,h]4m

R~ y! f~ y! 5 0G #
1

8
. (43)

This family is constructible in qO(m) time.

PROOF. In this proof we will use the symbols 0, 1, . . . , h to denote both
integers in {0, . . . , h}, and field elements. We use boldface to denote the latter
usage. Thus, for example, 0 [F. (Furthermore, 0, 1, . . . , h refer to integers
only when they appear in the exponent.)

For now, let t1, . . . , t4m be formal variables (later we give them values).
Consider the following degree h polynomial in t1, . . . , t4m with coefficients in F.

O
i1,i2, . . . ,i4m [@0,h#

f~i1, i2, . . . , i4m! P
j51

4m

tj
ij. (44)

This polynomial is the zero polynomial iff f is identically 0 on [0, h]4m. Further, if
it is not the zero polynomial then by Fact 4.1.3 its roots constitute a fraction no more
than 4hm/q of all points in F4m. This fraction is less than 1/8.

We construct a family {Rb1, . . . ,b4m
: b1, . . . , b4m [F} of q4m polynomials,

such that

O
(i1,i2, . . . ,i4m) [@0,h#

Rb1, . . . , b4m
~i1, i2, . . . , i4m! f~i1, i2, . . . , i4m! 5 0 (45)

iff (b1, . . . , b4m) is a root of the polynomial in (44). This will prove the lemma.
Denote by Iti

(xi) the univariate degree-h polynomial in xi whose coefficients are
polynomials in ti and whose values at 0, 1, . . . , h [F are 1, ti, . . . , ti

h respectively (such
a polynomial exists and has degree h in ti; see the proof of Fact A.1 in the appendix).

Let g be the following polynomial in variables x1, . . . , x4m, t1, . . . , t4m.

g~t1, . . . , t4m, x1, . . . , x4m! 5 P
i51

4m

Iti
~ xi! .

Then for i1, i2, . . . , i4m [[0, h] we have

g~t1, . . . , t4m, i1, . . . , i4m! 5 P
j51

4m

Itj
~i j! 5 P

j51

4m

tj
ij,

and so

O
i1,i2, . . . ,i4m [@0,h#

f~i1, i2, . . . , i4m! g~t1, . . . , tm, i1, i2, . . . , i4m!

5 O
i1,i2, . . . ,i4m [@0,h#

f~i1, i2, . . . , i4m! P
j51

4m

tj
ij.

117Probabilistic Checking of Proofs: A New Characterization of NP

Now for b1, . . . , b4m [F define Rb1, . . . ,b4m
as the polynomial obtained by

substituting t1 5 b1, . . . , t4m 5 b4m in g.

Rb1, . . . ,b4m
~ x1, . . . , x4m! 5 g~b1, . . . , b4m, x1, . . . , x4m! .

This family of polynomials clearly satisfies the property that (45) holds iff (b1, . . . ,
b4m) is a root of the polynomial in (44). Hence, the lemma is proved. e

Remark. An alternative proof of Lemma 4.2.1.2 uses the notion of e-biased
random variables [Naor and Naor 1993; Alon et al. 1992].

Example A.4. We give an example to illustrate Lemma A.3. We write a
polynomial g for checking the sums of functions on [0, h]p for h 5 1 and p 5 2.

g~t1, t2, x1, x2! 5 ~1 1 x1~t1 2 1!!~1 1 x2~t2 2 1!! . (46)

Hence, we have

O
x1, x2[[0,1]2

f~x1, x2!g~t1, t2, x1, x2! 5 f~0, 0! 1 f~1, 0!t1 1 f~0, 1!t2 1 f~1, 1!t1t2. (47)

Clearly, the polynomial in (47) is nonzero if any of its four terms is nonzero. e

FACT A.5. Let A 5 (aij) be an n 3 n matrix, where the entries aij are considered
as variables. Then the determinant of A is a polynomial of degree n in the aij’s.

PROOF. Follows from inspecting the expression for the determinant.

det~ A! 5 O
s[Sn

~21! sgn~s! z P
i#n

ais(i),

where Sn is the set of all permutations of {1, . . . , n}. e

The following fact is used in the proof of Lemma 5.2.7. The reader may choose
to read it by mentally substituting “F[x1, . . . , xm], the set of polynomials over
field F in the formal variables x1, . . . , xm” in place of “integral domain R.”

FACT A.6 (CRAMER’S RULE). Let A be an m 3 n matrix whose entries come
from an integral domain R, and m . n. Let A z z 5 0 be a system of m equations in
n variables (Note: It is an overconstrained homogeneous system).

(1) The system has a nontrivial solution iff all n 3 n submatrices of A have
determinant 0.

(2) If the system has a nontrivial solution, then it has one of the type (z1 5 t1, . . . ,
zn 5 tn) where each ti is a sum of determinants of submatrices of A.

PROOF (PART 1). If some n 3 n submatrix has nonzero determinant, then
the coefficient vectors are independent and so cannot have a nontrivial combina-
tion summing to 0. Conversely, if a nontrivial combination of the coefficient
vectors exists, then they are dependent and therefore every n 3 n submatrix
must have zero determinant.

(PART 2). Our proof mimics the usual method of solving equations over
fields. We need to be careful, however, since this method involves matrix
inversion, which involves division. Division is not a well-defined operation over
an integral domain. Therefore, we will use the fact that for a square matrix M,

118 S. ARORA AND S. SAFRA

det~M! z M21 5 adj~M! ,

where adj(M) is a square matrix whose each entry is a determinant of some
submatrix of M. In other words, adj(M) is well-defined over an integral domain.

We solve the system A z z 5 0 as follows: Let B be the largest nonsingular
square submatrix of A. Suppose B is (n 2 l) 3 (n 2 l) for l $ n 2 m 2 1.
Without loss of generality, assume that the first l columns are not in B. Hence, A
looks like

A 5 SC

E

B

DD ,

where we assume without loss of generality that C Þ 0. Let u 5 (z1, . . . , zl)
and y 5 (zl11, . . . , zn). Then, for every value of u [Rl, the system B z y 5
2C z u can be solved for y.

We take any vector û [Rl such that C z û Þ 0, and solve the following system
for y:

B z y 5 2C z ~det~B! z û! .

Let ŷ 5 2det(B) z B21(C z û) be a solution. Note that ŷ is well-defined since
det(B) z B21 involves no division. Hence, our solution is of the form z 5
(det(B) z û, ŷ). Every coordinate of det(B) z û is a multiple of det(B) and every
coordinate of ŷ is a sum of entries of adj(B). But each entry of adj(B) is a
determinant of some submatrix of B. Hence, the claim is proved. e

Finally, we state the result in Feige et al. [1991] that was used in the proof of
Corollary 1.2.2.3. First, we need to define the soundness of a verifier. A verifier
checks membership proofs for a language with soundness p if for every input that
is in the language, the verifier accepts some proof with probability 1, and for
every input that is not in the language, the verifier rejects every proof with
probability 1 2 1/p.

THEOREM A.7 [FEIGE ET AL. 1991]. For integer-valued functions r, q, p,
suppose there is a (r(n), q(n))-restricted verifier that checks membership proofs for
SAT with soundness p(n).

Then, for every integer n, there is a reduction from SAT instances of size n to
graphs of size 2O(r(n))q(n), such that the clique number of the graph when the SAT
instance is satisfiable is a factor p(n) bigger than the clique number when the
instance is not satisfiable.

ACKNOWLEDGMENTS. We thank Mike Luby for many discussions in the early
stages of this work; specifically, his lower bound on the complexity of the
protocol as presented in Feige et al. [1991] is what started this work. We also
thank Ron Fagin, Oded Goldreich, Noam Nisan, Madhu Sudan, Steven Phillips,
Mario Szegedy, Umesh Vazirani, and Moshe Vardi for many insightful discus-
sions. Numerous comments of Yuval Shahar and the anonymous referees helped
us improve the clarity of our presentation.

119Probabilistic Checking of Proofs: A New Characterization of NP

REFERENCES

AJTAI, M., KOMLÓS, J., AND SZEMEREDI, E. 1987. Deterministic simulation in LOGSPACE. In
Proceedings of the 19th Annual ACM Symposium on Theory of Computing (New York, N.Y., May
25–27). ACM, New York, pp. 132–140.

ALON, N., GOLDREICH, O., HASTAD, J., AND PERALTA, R. 1992. Simple constructions of almost
k-wise independent random variables. Rand. Struct. Algor. 3, 3, 289 –304.

ARORA, S., BABAI, L., STERN, J., AND SWEEDYK, Z. 1993. The hardness of approximate optima in
lattices, codes and linear equations. In Proceedings of the 34th IEEE Symposium on Foundations of
Computer Science. IEEE, New York, pp. 724 –733.

ARORA, S., AND LUND, C. 1996. Hardness of approximations. Chapter 10 in Approximation
Algorithms for NP-hard Problems, Dorit Hochbaum, ed. PWS Publishing.

ARORA, S., LUND, C., MOTWANI, R., SUDAN, M., AND SZEGEDY, M. 1992a. Proof verification and
intractability of approximation problems. In Proceedings of the 33rd IEEE Symposium on Founda-
tions of Computer Science. IEEE, New York, pp. 13–22.

ARORA, S., MOTWANI, R., SAFRA, M., SUDAN, M., AND SZEGEDY, M. 1992b. PCP and approxima-
tion problems. Manuscript.

ARORA, S., AND SAFRA, S. 1992. Probabilistic checking of proofs: A new characterization of NP. In
Proceedings of the 33rd IEEE Symposium on Foundations of Computer Science. IEEE, New York,
pp. 2–12.

ARORA, S., AND SUDAN, M. 1997. Improved low degree testing and its applications. In Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, ACM, New York, pp. 496 –505.

BABAI, L. 1985. Trading group theory for randomness. In Proceedings of the 17th ACM Symposium
on Theory of Computing (Providence, R.I., May 6 – 8). ACM, New York, pp. 421– 429.

BABAI, L., FORTNOW, L., LEVIN, L., AND SZEGEDY, M. 1991a. Checking computations in polyloga-
rithmic time. In Proceedings of the 23rd ACM Symposium on Theory of Computing (New Orleans,
La., May 6 – 8). ACM, New York, pp. 21–31.

BABAI, L., FORTNOW, L., AND LUND, C. 1991b. Non-deterministic exponential time has two-prover
interactive protocols. Comput. Comp. 1, 3– 40.

BELLARE, M. 1993. Interactive proofs and approximation: Reductions from two provers in one
round. In Proceedings of the 2nd Israel Symposium on Theory and Computing Systems. IEEE
Computer Press, New York, pp. 266 –274.

BELLARE, M., GOLDREICH, O., AND SUDAN, M. 1995. Free bits and nonapproximability: Towards
tight results. In Proceedings of the 35th IEEE Symposium on Foundations of Computer Science.
IEEE, New York, pp. 422– 431.

BELLARE, M., GOLDWASSER, S., LUND, C., AND RUSSELL, A. 1993. Efficient probabilistically
checkable proofs with applications to approximation. In Proceedings of the 25th Annual ACM
Symposium on Theory of Computing (San Diego, Calif., May 16 –18). ACM, New York, pp. 113–131.
(Errata in Proceedings of the 26th Annual ACM Symposium on Theory of Computing, p. 820.)

BELLARE, M., AND ROGAWAY, P. 1993. The complexity of approximating nonlinear programs. In
Complexity of Numerical Optimization, P. M. Pardalos, ed. World Scientific.

BELLARE, M., AND SUDAN, M. 1994. Improved non-approximability results. In Proceedings of the
26th Annual ACM Symposium on Theory of Computing (Montreal, Que., Canada, May 23–25).
ACM, New York, pp. 184 –193.

BEN-OR, M., GOLDWASSER, S., KILIAN, J., AND WIGDERSON, A. 1988. Multi prover interactive
proofs: How to remove intractability assumptions. In Proceedings of the 20th Annual ACM
Symposium on Theory of Computing (Chicago, Ill., May 2– 4). ACM, New York, pp. 113–121.

BERLEKAMP, E., AND WELCH, L. 1986. Error correction of algebraic block codes. US Patent
Number 4,633,470.

BLUM, M., AND KANNAN, S. 1989. Designing programs that check their work. In Proceedings of the
21st Annual ACM Symposium on Theory of Computing (Seattle, Wash., May 15–17). ACM, New
York, pp. 86 –97.

BLUM, M., LUBY, M., AND RUBINFELD, R. 1990. Self-testing/correcting with applications to numer-
ical problems. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing
(Baltimore, Md., May 12–14). ACM, New York, pp. 73– 83.

BOPPANA, R., AND HALLDÓRSSON, M. 1992. Approximating maximum independent sets by exclud-
ing subgraphs. BIT 32, 180 –196.

CHANG, R., CHOR, B., GOLDREICH, O., HARTMANIS, J., HASTAD, J., RANJAN, D., AND ROHATGI, P.
1994. The random oracle hypothesis is false. J. Comput. Syst. Sci. 49, 1.

120 S. ARORA AND S. SAFRA

CHOR, B., AND GOLDREICH, O. 1989. On the power of two-point based sampling. J. Complex. 5,
96 –106.

CONDON, A. 1993. The complexity of the max-word problem and the power of one-way interactive
proof systems. Computat. Complex. 3, 292–305.

CONDON, A., FEIGENBAUM, J., LUND, C., AND SHOR, P. 1993. Random debaters and the hardness
of approximating stochastic functions. In Proceedings of the 9th Structure in Complexity Theory
Conference. pp. 280 –293.

CONDON, A., AND LADNER, R. 1989. On the complexity of space bounded interactive proofs. In
Proceedings of the 30th IEEE Symposium on Foundations of Computer Science. IEEE, New York,
pp. 462– 467.

COOK, S. A. 1971. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing (Shaker Heights, Oh., May 3–5). ACM, New
York, pp. 151–158.

FAGIN, R. 1974. Generalized first-order spectra and polynomial-time recognizable sets. In Com-
plexity of Computer Computations, Richard Karp, ed. AMS, Providence, R.I., pp. 43–73.

FEIGE, U., GOLDWASSER, S., LOVÁSZ, L., SAFRA, S., AND SZEGEDY, M. 1991. Approximating clique
is almost NP-complete. In Proceedings of the 32nd Annual IEEE Symposium on Foundations of
Computer Science. IEEE, New York, pp. 2–12.

FEIGE, U., AND LOVÁSZ, L. 1992. Two-prover one-round proof systems: Their power and their
problems. In Proceedings of the 24th Annual ACM Symposium on Theory of Computing (Victoria,
B.C., Canada, May 4 – 6). ACM, New York, pp. 733–741.

FORTNOW, L., ROMPEL, J., AND SIPSER, M. 1988. On the power of multi-prover interactive
protocols. In Proceedings of the 3rd Conference on Structure in Complexity Theory. pp. 156 –161.

FORTNOW, L., AND SIPSER, M. 1988. Are there interactive protocols for co-np languages? Inf. Proc.
Lett. 28, 249 –251.

GOLDWASSER, S., MICALI, S., AND RACKOFF, C. 1989. The knowledge complexity of interactive
proofs. SIAM J. Comput. 18, 186 –208.

HASTAD, J. 1996. Clique is hard to approximate within n12e. In Proceedings of the 37th IEEE
Symposium on Foundations of Computer Science. IEEE, New York, pp. 627– 636.

HASTAD, J. 1997. Some optimal inapproximability results. In Proceedings of the 29th Annual ACM
Symposium on Theory of Computing (El Paso, Tex., May 4 – 6). ACM, New York, pp. 1–10.

KARP, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer
Computations, Miller and Thatcher, eds. Plenum Press, New York, pp. 85–103.

KHANNA, S., LINIAL, N., AND SAFRA, S. 1993. On the hardness of approximating the chromatic
number. In Proceedings of the 2nd Israel Symposium on Theory and Computing Systems, ISTCS.
IEEE Computer Society Press, New York, pp. 250 –260.

KIWI, M., LUND, C., RUSSELL, A., SPIELMAN, D., AND SUNDARAM, R. 1994. Alternation in
interaction. In Proceedings of the 9th Structure in Complexity Theory Conference. IEEE Computer
Press, New York, pp. 294 –303.

LAPIDOT, D., AND SHAMIR, A. 1991. Fully parallelized multi prover protocols for NEXPTIME. In
Proceedings of the 32nd IEEE Symposium on Foundations of Computer Science. IEEE, New York,
pp. 13–18.

LEVIN, L. 1973. Universal’nyı̆e perebornyı̆e zadachi (universal search problems: in Russian). Prob.
Per. Inf. 9, 3, 265–266.

LIPTON, R. 1989. Efficient checking of computations. In Proceedings of 6th STACS.
LUND, C., FORTNOW, L., KARLOFF, H., AND NISAN, N. 1992. Algebraic methods for interactive

proof systems. J. ACM, 39, 4 (Oct.), 859 – 868.
LUND, C., AND YANNAKAKIS, M. 1994. On the hardness of approximating minimization problems.

J. ACM, 41, 5 (Sept.), 960 –981.
NAOR, J., AND NAOR, M. 1993. Small-bias probability spaces: efficient constructions and applica-

tions. Siam J. Comput., 22, 838 – 856.
PAPADIMITRIOU, C. 1994. Computational Complexity. Addison Wesley, Reading, Mass.
PAPADIMITRIOU, C., AND YANNAKAKIS, M. 1991. Optimization, approximation and complexity

classes. J. Comput. Syst. Sci. 43, 425– 440.
PHILLIPS, S., AND SAFRA, S. 1992. PCP and tighter bounds for approximating MAX-SNP. Manu-

script.

121Probabilistic Checking of Proofs: A New Characterization of NP

POLISHCHUK, A., AND SPIELMAN, D. 1994. Nearly-linear size holographic proofs. In Proceedings of
the 26th Annual ACM Symposium on Theory of Computing (Montreal, Que., Canada, May 23–25),
ACM, New York, pp. 194 –203.

RAZ, R., AND SAFRA, S. 1997. A sub-constant error-probability low-degree test and a sub-constant
error-probability PCP characterization of NP. In Proceedings of the 29th Annual ACM Symposium
on Theory of Computing (El Paso, Tex., May 4 – 6). ACM, New York, pp. 475– 484.

RUBINFELD, R., AND SUDAN, M. 1992. Self-testing polynomial functions efficiently and over
rational domains. In Proceedings of the 3rd Annual ACM–SIAM Symposium on Discrete Algorithms
(Orlando, Fla., Jan. 27–29). ACM, New York, pp. 23–32.

SHAMIR, A. 1992. IP 5 PSPACE. J. ACM, 39, 4 (Oct.), 869 – 877.
SHEN, A. 1991. Multilinearity test made easy. Manuscript.
SUDAN, M. 1992. Efficient checking of polynomials and proofs and the hardness of approximation

problems. Ph.D. dissertation. U.C. Berkeley, Berkeley, Calif.
ZUCKERMAN, D. 1991. Simulating BPP using a general weak random source. In Proceedings of the

32nd IEEE Symposium on Foundations of Computer Science. IEEE, New York, pp. 79 – 89.
ZUCKERMAN, D. 1993. NP-complete problems have a version that’s hard to approximate. In

Proceedings of the 8th Structure in Complexity Theory Conference, pp. 305–312.

RECEIVED APRIL 1994; REVISED MARCH 1997; ACCEPTED OCTOBER 1997

Journal of the ACM, Vol. 45, No. 1, January 1998.

122 S. ARORA AND S. SAFRA

